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Spaces with no S or L Subspaces

We consider spaces that contain neither an S-space nor an L-space.

Outline of talk

1. History

2. ESLC spaces

3. Spoiling an ESLC product

4. Questions

Reference

J. Hart & K. Kunen, Spaces with no S or L Subspaces, preprint. . .

See my home page

http://www.uwosh.edu/faculty_staff/hartj/

All spaces are T3 (Hausdorff and regular).
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History

A space X is

hereditarily separable (HS ) iff all subspaces of X are separable, and

hereditarily Lindelöf (HL) iff all subspaces of X are Lindelöf.

Also, X is strongly HS/HL iff Xn is HS/HL for all n ∈ ω.

Then, X is an S-space iff X is HS but not HL,

and X is a strong S-space iff in addition X is strongly HS.

Similarly, X is an L-space iff X is HL but not HS,

and X is a strong L-space iff in addition X is strongly HL.

In ZFC, a strong S-space exists iff a strong L-space exists [Zenor 1980].

Strong S-spaces are refuted by MA(ℵ1) [Kunen 1976],

but exist under CH [Kunen 1975].

L-spaces exist in ZFC [J. T. Moore 2006].

S-spaces are consistent with MA(ℵ1) [Szentmiklóssy 1983]

but are refuted by PFA [Todorčević 1981].

First S- or L-spaces were from a Suslin line:

L-space: Kurepa (1935) S-space: M.E. Rudin (1972)

Con(∃ a Suslin line): Tennenbaum, Jech, Jensen (1967,’68)

S- or L-spaces using Cohen forcing:

S-space: Hajnal and Juhász (1971-72); strong L-space: Roitman (1979)

For more background:

Roitman, Basic S and L, Handbook of set-theoretic topology (1984)

OR

Juhász, A survey of S- and L-spaces, Topology, Vol. II

(Proc. Fourth Colloq., Budapest, 1978)

OR

Juhász, Topology and its Applications, 158 (2011) 2460–2462
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No S or L subspaces:

Def. The space X is ESLC iff every subspace of X

is either both HS and HL or neither HS nor HL.

HS

HL

HC

The space X is HC (hereditarily ccc)

iff every subspace of X has the ccc (countable chain condition)

iff X has countable spread

iff X has no uncountable discrete subspaces.

HC 6→ HS and HC 6→ HL: S-space ⊕ L-space is HC

X is HC iff X has no discrete ω1-sequences.

X is HS iff X has no left separated ω1-sequences.

X is HL iff X has no right separated ω1-sequences.

A sequence 〈xα : α < ω1〉 is
discrete provided that each xα /∈ cl({xξ : ξ 6= α}), and

left separated provided that each xα /∈ cl({xξ : ξ < α}), and

right separated provided that each xα /∈ cl({xξ : ξ > α}).

X is ESLC iff HS ↔ HL ↔ HC holds for all subspaces of X .

Pf: ⇐=: by def of ESLC. =⇒: Suppose X is ESLC and Y ⊆ X .

If Y is HS, then Y is also HC and by ESLC is HL.

If Y is not HS, apply ESLC to get a discrete ω1-sequence in Y :

By not HS, Y has a left separated 〈xα : α < ω1〉.

By ESLC, this left separated {xα : α < ω1} is also not HL,

and hence has a right separated 〈xαβ : β < ω1〉.
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ESLC examples:

0. HS+HL spaces :

Sorgenfrey line is HS + HL

PFA(S)[S] → each compact ccc T5 space is HS + HL [Todorčević]
T5 = hereditarily normal
page 39: http://www.math.toronto.edu/~stevo/todorcevic chain cond.pdf

MA + ¬CH → each separable hereditarily supercompact space

is HS + HL [Banakh,Kosztolowicz,Turek, 2014]
A space X is hereditarily supercompact if every closed subspace of X is supercompact; it is super-
compact if it has a subbase S so that each cover of X by elements of S has a 2-element subcover.

1. metrizable spaces : Every metric space is either second countable

or has an uncountable discrete subspace.

2. separately continuously semi-metrizable spaces :

(semi-metrizable = symmetrizable and first countable)

Every HC separately continuously semi-metrizable space is also HG

(more later . . . ).

3. countable products of monarch butterfly spaces

Special case:
∏

n∈ω

Xn with each Xn a subspace of the Sorgenfrey line.

In ZFC, such products cannot contain an S- or L-space. It’s consistent

that these products can be HS + HL, or neither HS nor HL.

In contrast to #3:

Theorem (CH or V [one Cohen real]) There are X, Y that are stHG

(so stHS and stHL) such that X×Y contains strong S- and L-spaces.
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The fourth property:

HG

HS

HL

HC

The space X is HG iff there are no bad sequences in X .

A sequence 〈xα : α < ω1〉 in X is bad iff there are open Uα ∋ xα for

α < ω1 such that for all {α, β} ∈ [ω1]
2, xα /∈ Uβ or xβ /∈ Uα.

HS + HL 6→ HG : the Sorgenfrey line is not HG.

|
xα

|
xβ

UβUα

To see Sorgenfrey line E is HL: Suppose Y ⊆ E.
Recall that if U is a cover of Y by basic clopen Ux = (x− εx, x] ∩ Y ,
then |Y \

⋃
{Ux \ {x} : x ∈ Y }| ≤ ℵ0 (because R is ccc).

Also, letting Vx = Ux\{x},
∃V ∈ [{Vx : x ∈ Y }]≤ℵ0 with

⋃
V =

⋃
{Vx : x ∈ Y } (R is HL).

Recap: All four properties start

“if {xα : α < ω1} ⊆ X and ∀α < ω1 xα ∈ Uα

open

⊆ X”

and then conclude that X is:

HS iff ∃α < β [xα ∈ Uβ] no left separated sequence

HL iff ∃α < β [xβ ∈ Uα] no right separated sequence

HC iff ∃α 6= β [xβ ∈ Uα] no discrete sequence

HG iff ∃α 6= β [xβ ∈ Uα & xα ∈ Uβ] no bad sequence
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The four strong properties:

Def. X is strongly P iff Xn is P for all n ∈ ω.

Ex: X is strongly HG/HC iff Xn is HG/HC for all n ∈ ω.

stHG

stHS

stHL

stHC

CH: None of the four → reverses:

stHC 6→ stHS: strong L-space

stHC 6→ stHL: strong S-space

stHS + stHL 6→ stHG: Sorgenfrey X ∈ [R]ℵ1

that is n-entangled ∀n ∈ ω

Without n-entangled :

(Sorgenfrey line) × (Sorgenfrey line) is not HC.

y = −x is discrete

b

b

x

y
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Separately continuous semi-metrizable spaces

Def. For any space X , let d : X ×X → R, and

B(x, ε) = {y ∈ X : d(x, y) < ε}. The function d is a scsymmetric

for X iff d satisfies the following four conditions:

1. d(x, y) ≥ 0, and d(x, y) = 0 ↔ x = y.

2. d(x, y) = d(y, x).

3. For each x ∈ X , {B(x, ε) : ε > 0} is a local base at x.

4. For each x, the map y 7→ d(x, y) is continuous.

Then X is scsymmetrizable iff there exists a scsymmetric for X .

Note: each B(x, ε) is open by #4.

symmetric = #1 & #2; semi-metric = #1 & #2 & #3
Davis, Gruenhage, Nyikos (1978): ∃ a symmetrizable space in which some closed set is not a Gδ.
Our scsymmetrizable space: Every closed set is a Gδ .

Lemma. For X scsymmetrizable, the four properties (HG, HS, HL,

HC) are equivalent. So every scsymmetrizable X is ESLC.

Proof: HC → HG:

Suppose 〈xα : α < ω1〉 is a bad sequence with open Uα ∋ xα for

α < ω1 such that ∀{α, β} ∈ [ω1]
2 xα /∈ Uβ or xβ /∈ Uα.

By #3, each Uα ⊇ B(xα, 2
−nα) for some nα ∈ ω.

Passing to a subsequence, nα = n ∈ ω for all α.

Now d(xα, xβ) ≥ 2−n, so xα /∈ B(xβ, 2
−n), for all {α, β} ∈ [ω1]

2.

By #4, the sequence 〈xα : α < ω1〉 is discrete.

Sorgenfrey line is ESLC, but is not scsymmetrizable (fails #3) . . .
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Simple scsymmetric example:

The Cantor Tree Space X = 2ω ∪ 2<ω

t00 t01 t10 t11

t000 t001 t110 t111

t0 t1

b

bb

b

b b

b

b b

b b

2ω (closed and discrete) x

t1011 = x↾4

open Ux
3

b

b

b b

b

b b

For x, y ∈ X with x 6⊆ y: d(x, y) = d(y, x) = 2

For s, t ∈ 2<ω and s ⊆ t: d(s, t) = d(t, s) = |2−lh(s) − 2−lh(t)|

For x ∈ 2ω: d(x, x↾n) = d(x↾n, x) = 2−n

d is a scsymmetric with basic nbds:

2<ω: Us = {s} 2ω: Ux
n := {x↾ν : n ≤ ν ≤ ω} = B(x, 2−n+1)

d is not a metric: X separable, but 2ω discrete → X not HC

For Y ⊆ X :

the five properties HC, HS, HL, HG, and countable are equivalent.
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Preserving products

Theorem Every countable product of monarch spaces is ESLC.

A butterfly or bow-tie : Alexandroff and Niemytzki [1938] (Engelking 3.1.I).

Burke and van Douwen [1980]

Another version:

Def. A monarch space is a set X with a butterfly refinement of some

separable metric on X . A butterfly refinement of a separable metric

space (X, T ) is a topology T̂ on X with base {Un
x : x ∈ X & n ∈ ω}

satisfying:

1. x ∈ Un
x ,

2. Un
x \{x} is T open,

3. diam(Un
x ) ցn 0, and

4. cl(Un+1
x , T ) ⊆ Un

x .

Example : X ⊆ R with the Sorgenfrey topology is a monarch space:

Un
x = X ∩ (x− 2−n, x]

Trivial example : T̂ = T

Another trivial example : T̂ is discrete
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Spoiling ESLC products

Theorem (CH or V[one Cohen real]) There areX, Y that are strongly

HG (hence ESLC) such that X × Y contains strong L- and S-spaces.

V [one Cohen real ] Pf : Adapt strong L-space to get stHG spaces:

Our strongly HG spaces will be FΨ = {fΨ
β : β ∈ ω1} ⊆ ωω1,

where each fΨ
β : ω1 → 2 by fΨ

β (α) = Ψ(α, β),

and Ψ : ω1 × ω1 → 2 is defined from Cohen reals.

Instead of forcing with Fn(ω, 2) to add a Cohen real x : ω → 2,

use Fn(ω, 2)× Fn(ω, 2) to add Cohen reals xu : ω → 2, xℓ : ω → 2.

In V , choose ϕβ : β
1−1
→ ω for β < ω1

with α 6= β → |ran(ϕα) ∩ ran(ϕβ)| < ℵ0.

α = β

xu(ϕβ(α))

xℓ(ϕα(β))

stL-space: xℓ(ϕα(β)) = 0

ω1

ω1Define Ψ : ω1 × ω1 → 2 by

Ψ(α, β) =





0 if α = β,

xu(ϕβ(α)) if α < β,

xℓ(ϕα(β)) if α > β.

Now get X 6= Y from xiu, x
i
ℓ for i = 0, 1, as above, with x0ℓ = x1ℓ .

So X = FΨ0 and Y = FΨ1, where Ψi : ω1 × ω1 → 2. Let f i
β = fΨi

β .

Then ∆ = {(f 0
β , f

1
β) : β < ω1} ⊆ X×Y . Note ∆ is constructed from

Ψ̂ : ω1 × ω1 → 2× 2 by Ψ̂(α, β) = (Ψ0(α, β),Ψ1(α, β)).

∆ is a strong L-space because Ψ̂(lower right) ( Ψ̂(upper left) :

x0ℓ = x1ℓ generic → Ψ̂(lower right) = {(0, 0), (1, 1)} ∼= 2

and xiu generic → Ψ̂(upper left) = {(0, 0), (1, 1), (1, 0), (0, 1)} ∼= 4.
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Questions

1. Is HG equivalent to “hereditarily P” for some known property?

2. Is HG → strongly HG consistent? is it provable from MA(ℵ1)?

3. ?? × ESLC → ESLC

Example: Does ?? = scsymmetric work?

Theorem metric × ESLC → ESLC

Pf: Use the fact that in a metric space, every uncountable set has an

uncountable subset that is either discrete or second countable.
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