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WiFi   instructions:     Go   to   your   WiFi   connection   settings   on   your   device   and   choose 
“UDwireless.”   In   the   popup   window,   find   the   “Visitors:   Connect   to   UDwireless”   section 
and   click   on   “Register   for   guest   network   access.”   Follow   the   prompts   to   setup   your 
temporary   account.   You   will   receive   a   network   password   good   for   16   hours   that   is 
renewable   up   to   four   times. 



Schedule 
 

  Tuesday  Wednesday  Thursday  Friday 

   8:45      9:00     Welcome,   Rm   119       
   9:00      9:30     (P)   Walter   Tholen 

   Rm   119 
   (P)   Jen   Hom 
   Rm   119 

   (P)   Jan   Boronski 
   Rm   119 

   (P)   Vladimir   Tkachuk 
   Rm   119    9:30      10:00 

   10:00      10:30     Break   (Rm   124)     Break   (Rm   124)     Break   (Rm   124)     Break   (Rm   124) 
   10:30      11:00     Parallel   sessions     Parallel   sessions     Paul   McKenney   (Rm   214) 

   Eriko   Hironaka   (Rm   103) 
   Helge   Gloeckner   (Rm   201) 
   Ian   Biringer   (Rm   109) 
   Michael   Mislove   (Rm   119)    11:00      11:30 

   11:30      12:00     (P)   Karl   Hofmann 
   Rm   119 

   Parallel   sessions 

   12:00      12:30     Lunch     Lunch 

   12:30      1:00     Lunch     Lunch 

   1:00      1:30 
   1:30      2:00     Tom   Richmond   (Rm   119) 

   Isabel   Garrido   (Rm   201) 
   Janusz   Prajs   (Rm   103) 

   (P)Kathryn   Mann 
   Rm   119 

   Bus   pickup   S2   Lot 
   Airforce   museum   (1:30   PM) 

   2:00      2:30 
   (P)   Jean   Lafont 
      Rm   119 

   2:30      3:00     (W)   Dikran   Dikranjan   
   (Rm   214) 
   (W)   Ted   Porter   (Rm   119) 

   (W)   Dikran   Dikranjan   
   (Rm   214) 
   (W)   Ted   Porter   (Rm   119) 

 

   3:00      3:30 
   Olga   Lukina   (Rm   103) 
   Reynaldo   RojasHernandez  
   (Rm   214)    3:30      4:00     Break   (Rm   124)     Break   (Rm   124) 

   4:00      4:30     Parallel   sessions     Parallel   sessions     Break   (Rm   124) 
   4:30      5:00     Parallel   sessions 

   5:00      5:30 

   5:30      6:00     
   Bus   to   banquet:   S2   Lot  
   (5:45   PM) 

         Last   bus   home   (10   PM)   
 

Locations 
 
Registration       Miriam   Hall   Atrium,   Room   124. 
Plenary   talks       O’Leary   Hall,   Room   119. 
Workshops       Porter,   Room   119;   Dikrajan,   Room   214. 
 
 

Topology   +   Algebra   &   Analysis       Room   213. 
Topology   +   Asymmetric   Structures       Room   205. 
Topology   +   Dynamics   &   Continuum   Theory       Room 
103   (Room   104). 
Topology   +   Foundations       Room   214   (Room   201). 
Topology   +   Geometry       Room   109. 

 
 



 
 

   Topology   +   Analysis   and   Algebra     Room   213 

 

Tuesday  Room   213  Wednesday  Room   213  Friday  Room   213 

10:30      11:00  Neil   Hindman  10:30      11:00  Rafael   Dahmen  11:30      12:00   

11:00      11:30  Maxim   R.   Burke  11:00      11:30  Gábor   Lukács  12:00      12:30   

11:30      12:00  Dariusz   Bugajewski  11:30      12:00  Daniele   Toller     

        4:30      5:00   

4:00      4:30  Xiao   Chang  4:00      4:30 
TMG 
Ahsanullah  5:00      5:30   

4:30      5:00 
Menachem 
Shlossberg  4:30      5:00 

Salvador 
Hernández  5:30      6:00   

5:00      5:30  Luis   Tárrega  5:00      5:30  J.   O.   Olaleru     

 
 

Topology   +   Asymmetric   Structures  Room   205 

 

Tuesday  Room   205  Wednesday  Room   205  Friday  Room   205 

10:30      11:00  *Walter   Tholen  10:30      11:00  Seminar  11:30      12:00  *Michael   Mislove 

11:00      11:30  *Walter   Tholen  11:00      11:30  Ralph   Kopperman  12:00      12:30  *Michael   Mislove 

11:30      12:00  Tom   Vroegrijk  11:30      12:00  Seminar     

        4:30      5:00 
Stephen 
Rodabaugh 

4:00      4:30 
*Tom 
Richmond  4:00      4:30  Seminar  5:00      5:30 

Stephen 
Rodabaugh 

4:30      5:00 
*Tom 
Richmond  4:30      5:00  Collins   Amburo   Agyingi  5:30      6:00  Olela   Otafudu 

5:00      5:30  Seminar  5:00      5:30  Hope   Sabao     

      *Session   slots   are   reserved   following   plenary   and   semiplenary   speakers   for   discussion. 
 



Topology   +   Dynamics   and   Continuum   Theory Rooms   103   and   104 

 

Tuesday  Room   103  Wednesday  Room   103  Room   104  Friday  Room   103 

10:30      11:00 
Jennyffer 
Bohorquez  10:30      11:00  John   C   Mayer    11:30      12:00  Lori   Alvin 

11:00      11:30  David   Cosper  11:00      11:30  Joanna   Furno    12:00      12:30 
Ramon   Barral 
Lijo 

11:30      12:00  James   Kelly  11:30      12:00  Judy   Kennedy       

          4:30      5:00 
Felix   Capulin 
Perez 

4:00      4:30  Sergio   Macias  4:00      4:30  Daniel   Ingebretson 
Mathew 
Timm  5:00      5:30 

Miguel   A. 
Lara 

4:30      5:00  David   Maya  4:30      5:00 
Krystyna 
Kuperberg  Paul   Gartside  5:30      6:00   

5:00      5:30 
Gabriele 
Carcassi  5:00      5:30 

Jesús   A.   Álvarez 
López  Max   Pitz     

 
 
 

Topology   +   Foundations  Rooms   214   and   201 

 

Tuesday  Room   214  Room   201  Wednesday  Room   214  Room   201  Friday 
Room 
214 

10:30      11:00  Alan   Dow    10:30      11:00 
Jila 
Niknejad 

Vladimer 
Baladze  11:30      12:00 

Nathan 
Carlson 

11:00      11:30  Alex   Shibakov    11:00      11:30 
Joe 
Mashburn 

Leonard 
Mdzinarishvili 

12:00    
12:30 

Ivan   S. 
Gotchev 

11:30      12:00  Akira   Iwasa    11:30      12:00 

David 
Guerrero 
Sánchez  Anzor   Beridze     

            4:30      5:00 
Daniel 
Hathaway 

4:00      4:30  Jocelyn   Bell 

Fr.V. 
ANTONY 
SAMY  4:00      4:30 

Strashimir   G. 
Popvassilev  Çetin   Vural  5:00      5:30 

Sergei 
Logunov 

4:30      5:00 
Hector   Alonzo 
Barriga   Acosta  M.Y.   Bakier  4:30      5:00 

Jerry   E. 
Vaughan 

Bhamini   M.   P. 
Nayar  5:30      6:00 

Joshua 
Sack 

5:00      5:30 
Piotr 
Szewczak 

Ramandeep 
Kaur  5:00      5:30  Joan   Hart 

Ruslan 
Tsinaridze     

 



Topology   +   Geometry  Room   109 

 

Tuesday  Room   109  Wednesday  Room   109  Friday  Room   109 

10:30      11:00  Devin   Murray  10:30      11:00  Rebecca   Winarski  11:30      12:00  Xiangdong   Xie 

11:00      11:30  Chris   O'Donnell  11:00      11:30  Elmas   Irmak  12:00      12:30  Shi   Wang 

11:30      12:00  Sean   Cleary  11:30      12:00  Greg   Bell     

        4:30      5:00 
Thomas 
Weighill 

4:00      4:30 
Eduardo   Martinez 
Pedroza  4:00      4:30  Kevin   Schreve  5:00      5:30  Micah   Chrisman 

4:30      5:00  Andrew   Sale  4:30      5:00 
Tommaso 
Cremaschi  5:30      6:00 

Andrzej 
Nagorko 

5:00      5:30  Ignat   Soroko  5:00      5:30  Benjamin   Linowitz     
 



Registration

Plenary
O’Leary, Room 119

Room 109

Room 103

Room 104

Room 121

Miriam Hall First Floor

Room 124



Room 214

Room 201

Room 213

Miriam Hall Second Floor

Room 205
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Workshops

Entropy in Topological Groups, Room 214
Dikran Dikranjan
Udine University
dikran.dikranjan@uniud.it

Entropy was introduced first in thermodynamics and statistical mechanics, as well as information theory.
In the last sixty years entropy made its way also in topology, ergodic theory, as well as other branches
of mathematics as algebra, geometry and number theory where dynamical systems appear in one way or
another.

Roughly speaking, entropy is a non-negative real number or infinity assigned to a “selfmap” T of a “space”
X, where the “space” X can be a topological or uniform space, a measure space, an abstract or topological
group (or vector space) or just a set. The “selfmap” T can be, respectively, a (uniformly) continuous selfmap,
a measure preserving transformation, a (continuous) endomorphism, etc. Depending on each choice, one may
have a topological entropy, uniform entropy, measure entropy, algebraic entropy, etc.

We intend to discuss:
(a) the connection between these entropies with particular emphasis on the case of topological groups;
(b) a unified (categorical) approach to entropy based on appropriate functors to the category of normed

semigroups;
(c) the connection of entropy to other well-known functions (e.g., the scale function of Georege Willis,

the Mahler measure and the related Lehmer problem in number theory, etc);
(d) (if time permits) entropy of semigroup actions (in place of selfmaps).
References
R. Adler, A. Konheim, M. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965) 309-319
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Workshop on Monotone Covering Properties, Room 119
Ted Porter
Murray State University
jporter@murraystate.edu

Topological properties, when monotonized, have proven to be useful and interesting. The past couple of
decades has seen a growth in the study of monotone covering properties. For the purpose of this workshop,
a monotone covering property of a topological space X is an operator r : A ⇢ C ! C (where C is the set of
open covers of X) such that (1) r(U) is a suitable refinement of U for every U 2 A, and (2) if U ,V 2 A and
U refines V, then r(U) refines r(V). For example, a topological space is said to be monotonically Lindelöf
(compact) if r(U) is countable (finite) for every U 2 C or monotonically countably metacompact if r(U) is
point-finite and A is the set of all countable open covers of X.

Monotone versions of covering properties often behave di↵erently than their non-monotonized versions.
Di↵erent characterizations of paracompact spaces, when monotonized, may give rise to di↵erent classes of
spaces. Monotonically Lindelöf spaces may not even be monotonically countably metacompact. I will also
discuss metrization theorems, open problems, and further areas of research on monotone covering properties.



Plenary Speakers

A compact minimal space whose Cartesian square is not minimal, Room 119
Jan P. Boronski
AGH Krakow and IT4Innovations Ostrava
jan.boronski@osu.cz

Coauthors: Alex Clark and Piotr Oprocha

A compact metric space X is called minimal if it admits a minimal homeomorphism; i.e. a homeomor-
phism h : X ! X such that the forward orbit {hn(x) : n = 1, 2, . . .} is dense in X, for every x 2 X. In
my talk I shall outline a construction of a family of 1-dimensional minimal spaces from [1], whose existence
answer the following long standing problem in the negative.
Problem. Is minimality preserved under Cartesian product in the class of compact spaces?
Note that for the fixed point property this question had been resolved in the negative already 50 years ago
by Lopez [3], and a similar counterexample does not exist for flows, as shown by Dirbák [2].

References

[1] Boronski J.P.; Clark A.; Oprocha P., A compact minimal space Y such that its square YxY is not minimal.
arXiv:1612.09179
[2] Dirbák, M. Minimal extensions of flows with amenable acting groups. Israel J. Math. 207 (2015), no. 2,
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Locally Compact Groups: Tradition and Trends, Room 119
Karl Heinrich Hofmann
Technische Universitt Darmstadt and Tulane University, New Orleans
hofmann@mathematik.tu-darmstadt.de

Coauthors: W. Herfort, F.G.Russo

For a lecture in the Topology+Algebra+Analysis section, the subject of locally compact groups appears
particularly fitting: Historically and currently as well, the structure and representation theory of locally
compact groups draws its methods from each of theses three fields of mathematics. Nowadays one might
justifiably add Combinatorics +Number Theory as sources.

The example of a study of a class of locally compact groups called “near abelian”, undertaken by
W.Herfort, K.H.Hofmann, and F.G.Russo, may be used to illustrate the liaison of topological group theory
with this di↵erent areas of interest. Concepts like the compact Hausdor↵ “Chabauty space” attached to each
locally compact group, or the “scalar multiplication” of periodic locally compact abelian groups can serve
as guiding moments in contemplating this diversity. (03-21-2017)

W.Herfort, K.H.Hofmann, and F.G.Russo, Near Abelian Locally compact Groups, Preprint 2017, ix+228pp.
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Knot surgery and Heegaard Floer homology, Room 119
Jennifer Hom
Georgia Tech
hom@math.gatech.edu

Coauthors: Cagri Karakurt, Tye Lidman

One way to construct new 3-manifolds is by surgery on a knot in the 3-sphere; that is, we remove a
neighborhood of a knot, and reglue it in a di↵erent way. What 3-manifolds can be obtained in this manner?
We provide obstructions using the Heegaard Floer homology package of Ozsvath and Szabo. This is joint
work with Cagri Karakurt and Tye Lidman.

Hyperbolic groups with boundary an n-dimensional Sierpinski space, Room 119
Jean-Francois Lafont
The Ohio State University
jlafont@math.ohio-state.edu

Coauthors: Bena Tshishiku, Harvard

Gromov hyperbolicity is a ”large-scale” version of negative curvature. A finitely generated group is called
hyperbolic if it has a Cayley graph which is Gromov hyperbolic. Such a group has a well-defined boundary
at infinity, a topological space which encodes the di↵erent directions along which you can escape to infinity.
We will consider groups G whose boundary at infinity is an n-dimensional Sierpinski space. If n is at least
5, we will show that any such group can be realized as the fundamental group of an aspherical manifold of
dimension n+2, with non-empty boundary. We will also briefly explain why the converse fails. This was
joint work with Bena Tshishiku (Harvard)

Orders on groups and actions on 1-manifolds, Room 119
Kathryn Mann
University of California, Berkeley
kpmann@math.berkeley.edu

Given a group G, and a manifold M, can one describe all the ways that G acts on M? More precisely,
can one parameterize the space of actions of G on M? This is a remarkably rich question even in the case
where M is the line or the circle, and is connected to problems in topology, foliation theory, and dynamics.

This talk will describe one very useful way to capture such an action, namely, through the algebraic data
of a left-invariant linear or circular order on a group. I’ll explain new work, joint with C. Rivas, that relates
the topology of the space of orders on a group G to the moduli space of actions of G on the line or circle. As
an application we’ll see new rigidity phenomena for actions, and the answers to some older questions about
orderings.

Page 3



Order, distance, closure and convergence: reconciling competing fundamental topological con-
cepts, Room 119
Walter Tholen
Dept. of Mathematics and Statistics, York University, Toronto
tholen@mathstat.yorku.ca

Already in Hausdor↵’s 1914 book [H], often considered the cradle of general topology, one finds traces
of a discussion on the relative strengths of the concepts mentioned in the title of this talk. In fact, one may
argue that Hausdor↵ anticipated the basic ideas of how to unify these concepts, which were developed only
later on by many mathematicians over the course of a century, as propagated in the recent book [HST].
Indeed, Hausdor↵ thought of ordering points by assigning to every pair of them a (truth) value, just as a
metric assigns to them a number. More importantly, he also contemplated extending such assignments to
pairs, whose second component would remain a point, but whose first component would now be a subset, or a
sequence, of points of the space in question, which is then assigned a value that measures the extent to which
that point lies in the closure of the subset, or is a convergence point of the sequence. In monoidal topology,
the first components of the arguments of such value assignments are given by a monad T on Set (where,
for a set X, TX could be all strings of points of X, or all subsets of X, or all filters on X, etc), while the
values themselves must lie in a quantale V (which could be the lattice 2 = {true, false}, or the non-negative
extended real line, or the lattice of distribution functions of that extended line, etc). These structures must
then satisfy two basic axioms, generalizing the reflexivity and transitivity of relations. With morphisms to
be maps laxly preserving the structure, this defines the category (T, V )-Cat, which is topological over Set
and, therefore, automatically boosts a wealth of good properties.

The principal categories of interest to topologists are all of this type, or may be reflectively or coreflectively
embedded into them. But as indicated above, an individual category, like Top, may be presentable in various
(T, V )-guises, and establishing the equivalence may not necessarily be easy. In fact, its validity may depend on
additional properties of V . For example, for T the powerset monad, we may easily extend the usual properties
of distance and closure to define and study so-called V -topological spaces, but the establishment of their
equivalent description in terms of a V -valued ultrafilter convergence relation requires V to be completely
distributive (see [LT]). Among other theorems, we will present this equivalence statement and show how it
unifies previous results for topological spaces and approach spaces and leads to novel applications. Time
permitting we will also discuss essential topological properties, like compactness and separation, in the
V -context.

References
[H] F. Hausdor↵, Grundzüge der Mengenlehre, Veit & Comp., Leipzig 1914.
[HST] D. Hofmann, G.J. Seal, W. Tholen (eds): Monoidal Topology, Cambridge Univ. Press, Cambridge

2014.
[LT] H. Lai, W. Tholen: Quantale-valued topological spaces via closure and convergence. Topology

Applications (to appear).

Dense subsets of function spaces with no non-trivial convergent sequences, Room 119
Vladimir V. Tkachuk
Universidad Autonoma Metropolitana, Mexico
vova@xanum.uam.mx

We will show that a monolithic compact space X is not scattered if and only if Cp(X) has a dense subset
without non-trivial convergent sequences. Besides, for any cardinal  � c, the space R has a dense subspace
without non-trivial convergent sequences. If X is an uncountable �-compact space of countable weight, then
any dense set Y ⇢ Cp(X) has a dense subspace without non-trivial convergent sequences. We also prove
that for any countably compact sequential space X, if Cp(X) has a dense k-subspace, then X is scattered.
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Semi-plenary Speakers

Unimodular measures on the space of all Riemannian manifolds, Room 109
Ian Biringer
Boston College
ianbiringer@gmail.com

Coauthors: Miklos Abert, Jean Raimbault

We will discuss ‘unimodular’ measures on the space of all pointed Riemannian manifolds (M,p). These
measures can be described in di↵erent ways: through a conservation of mass formula, via transverse measures
on foliated spaces, or as measures that (when lifted to the space of unit tangent bundles of Riemannian
manifolds) are invariant under geodesic flow. Unimodular measures are useful since many sequence of finite
volume manifolds have subsequences that converge in some sense to a such a measure. In other words,
one can use these measures to compactify spaces of finite volume manifolds, much like one uses measured
laminations to compactify the set of simple closed curves on a surface. We will mention an application
to higher rank locally symmetric spaces, and will describe how to understand the topology of unimodular
measures supported on surfaces with bounded curvature.

Some topics around Uniformly Continuous Functions, Room 201
Isabel Garrido
Universidad Complutense de Madrid
maigarri@mat.ucm.es

In this talk we will present some recent results where the uniformly continuous functions on metric (or
uniform) spaces play an important role. Namely, results about approximation by uniformly continuous
functions, algebraic properties of the family of real-valued uniformly continuous functions, new notions of
realcompactifications, and new properties of completions.

Most of these results have been obtained in collaboration with G. Beer (California State University, Los
Angeles) and A.S. Meroño (Universidad Complutense de Madrid, Spain).

Completeness of infinite-dimensional Lie groups in their left uniform structure, Room 201
Helge Glöckner
University of Paderborn, Germany
glockner@math.uni-paderborn.de

I’ll explain that many of the main examples of infinite-dimensional Lie groups are complete in their left
uniform structure. The findings are based on results concerning the completeness of strict direct limits of
complete topological groups, small box products, and topological groups which are locally k!.

References
1. Glöckner, H., Completeness of infinite-dimensional Lie groups in their left uniformity, preprint,

arXiv:1610.00428.
2. Glöckner, H., Completeness of locally k!-groups and related infinite-dimensional Lie groups, preprint,

arXiv:1612.09111.
3. Hunt D.C. and S.A. Morris, Free subgroups of free topological groups pp. 377-387 in: Proc. 2nd

internat. Conf. Theory of Groups, Canberra 1973, Lect. Notes Math. 372, 1974.
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Braid group actions on rational maps, Room 103
Eriko Hironaka
American Mathematical Society
ehironaka@gmail.com

Coauthors: Sarah Koch

Rational maps are maps from the Riemann sphere to itself that are defined by ratios of polynomials. A
special type of rational map is the ones where the forward orbit of the critical points is finite. That is, under
iteration, the critical points all eventually cycle in some periodic orbit. In the 1980s Thurston proved the
surprising result that (except for a well-understood set of exceptions) when the post-critical set is finite the
rational map is determined by the “combinatorics” of how the map behaves on the post-critical set. Recently,
there has been interest in the question: what happens if we just fix the degree and impose the condition that
only one critical orbit is finite. In that case, the family of rational maps defined by the combinatorics is a
complex manifold naturally acted on by subgroups of the pure spherical braid group on n-strands where n
depends on the order of the orbit and the degree, In this talk, we discuss the question: what is the global
topology of this manifold? The work is joint with Sarah Koch.

Classifying matchbox manifolds, Room 103
Olga Lukina
University of Illinois at Chicago
lukina@uic.edu

A matchbox manifold is a compact connected foliated space, locally homeomorphic to the product of a
Euclidean disk and a Cantor set. Strange attractors in dynamical systems, and exceptional minimal sets of
smooth foliations present examples of matchbox manifolds. Many actions of profinite groups on trees can be
suspended to obtain matchbox manifolds, and similar examples arise in other contexts and in other parts of
mathematics.

Thus there is a natural problem of classifying matchbox manifolds. The most tractable class of matchbox
manifolds is the class of weak solenoids which are the inverse limits of finite-to-one coverings of closed
manifolds. In my talk, I will describe the recent results in this direction, obtained by my co-authors and
myself. This includes the asymptotic discriminant, an algebraic invariant which can be seen as the measure
of local complexity of matchbox manifolds.

Rigidity and nonrigidity of corona algebras, Room 214
Paul McKenney
Miami University
mckennp2@miamioh.edu

Coauthors: Alessandro Vignati

Shelah proved in the 70’s that there is a model of ZFC in which every homeomorphism of the Cech-Stone
remainder of the natural numbers is induced by a function on the natural numbers. More recently, Farah
proved that in essentially the same model, every automorphism of the Calkin algebra on a separable Hilbert
space must be induced by a linear operator on the Hilbert space. I will discuss a common generalization of
these rigidity results to a certain class of C*-algebras called corona algebras. No prerequisites in C*-algebra
will be assumed.
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Domains and Probability Measures: A Topological Perspective, Room 119
Michael Mislove
Tulane University
mislove@tulane.edu

Domain theory has seen success as a semantic model for high-level programming languages, having devised
a range of constructs to support various e↵ects that arise in programming. One of the most interesting -
and problematic - is probabilistic choice, which traditionally has been modeled using a domain-theoretic
rendering of sub-probability measures as valuations. In this talk, I will place the domain-theoretic approach
in context, by showing how it relates to the more traditional approaches such as functional analysis and
set theory. In particular, we show how the topologies that arise in the classic approaches relate to the
domain-theoretic rendering. We also describe some recent developments that extend the domain approach
to stochastic process theory.

Isometrically Homogeneous Continua, Topologically Homogeneous Continua and the Pseudo-
arc, Room 103
Janusz R. Prajs
California State University, Sacramento, and University of Opole, Poland
prajs@csus.edu

We use accumulated knowledge on topologically homogeneous continua, and, in particular, on the pseudo-
arc, to investigate the properties of isometrically homogeneous continua.

Topology and Order, Room 119
Tom Richmond
Western Kentucky University
tom.richmond@wku.edu

We will discuss topologies as orders, orders on sets of topologies, and topologies on ordered sets. More
specifically, we will discuss Alexandro↵ topologies as quasiorders, the lattice of topologies on a finite set,
and partially ordered topological spaces. Some topological properties of Alexandro↵ spaces are characterized
in terms of their order. Complementation in the lattice of topologies on a set and in the lattice of convex
topologies on a partially ordered set will be discussed.

On the Lindelöf ⌃-property and some related conclusions, Room 214
Reynaldo Rojas-Hernandez
Centro de Ciencias Matematicas, UNAM
satzchen@yahoo.com.mx

Coauthors: Fidel Casarrubias-Segura and Salvador Garcia-Ferreira

We will present some known and some new results about Lindelöf ⌃-spaces. We extend some classical
results about the Lindelöf and the Lindelöf ⌃-property in spaces Cp(X) for compact X to the case when
X is a Lindelöf ⌃-space. We also present some results about the Lindelöf ⌃-property in ⌃s-products. A
result of Tkachenko is generalized by showing that the bound w(X)  nw(X)Nag(X) holds for regular (not
necessarily Tychono↵) spaces. Finally we present the solution for two question posed by V. V. Tkachuk
about Eberlein and Corson compact spaces.
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Topology + Algebra and Analysis

Quantale-valued gauge groups and approach convergence transformation groups, Room 213
TMG Ahsanullah
Department of Mathematics, King Saud University, Riyadh, Saudi Arabia
tmga1@ksu.edu.sa

E. Colebunders, et al., introduced a category C [3], consisting of objects all triple (X,S, �), where X 2 |
CAP|, an object in the category of Lowen-approach spaces [8], S 2 |CAG|, an object in the category of
approach groups [9], and � : X ⇥ S �! X, a contraction mapping. Actually, in [3], the authors brought
to light a concept of approach convergence transformation monoids without explicit mention. On the other
hand, following the idea of probabilistic convergence group [1] (see also [5]), we introduced a category of
probabilistic convergence transformation groups, PCONVTG [2]. Our motive here is to demonstrate the
link between these two categories. In so doing and, failing to provide a direct link between these two, ap-
parently di↵erent approaches, we consider a value quantale V in the line of [6,7] (see also [4], with opposite
order), and propose a notion of quantale-valued gauge group (en route to a category V-CONVTG) - a
notion closely related to quantale-valued metric group vis-à-vis quantale-valued convergence group. The
advantage that we have using V-CONVTG is, it provides a global framework, where C, like many others
existing categories of similar nature, serve examples whenever appropriate quantales are considered.

References
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[4] R. C. Flagg, Quantales and continuity spaces, Algebra Univers. 37(1997), 257–276.
[5] G. Jäger, A convergence theory for probabilistic metric spaces, Quaest. Math. 3(2015), 587-599.
[6] G. Jäger and W. Yao, Quantale-valued gauge spaces, to appear in Iranian Journal of Fuzzy Systems.
[7] H. Lai and W. Tholen, Quantale-valued approach spaces via closure and convergence, arXiv:1604.08813.
[8] R. Lowen, Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad, Clarendon
Press, Oxford, 1997. Index Analysis, Springer, 2016.
[9] R. Lowen and B. Windels, Approach groups, Rocky Mountain J. Math. 30(2000), 1057–1073.

On a construction of some class of metric spaces, Room 213
Dariusz Bugajewski
Department of Mathematics and Computer Science, Adam Mickiewicz University in Poznań, Poland,
ddbb@amu.edu.pl

In this talk we are going to describe Száz’s construction of some class of metric spaces. Most of all we
will analyze topological properties of metric spaces obtained by using Száz’s construction. In particular, we
provide necessary and su�cient conditions for completeness of metric spaces obtained in this way. Moreover,
we will discuss the relation between Száz’s construction and the “linking construction”. A particular attention
will be drawn to the “floor” metric, the analysis of which provides some interesting observations.
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Generic approximation and interpolation by entire functions via restriction of the values of
the derivatives, Room 213
Maxim R. Burke
University of Prince Edward Island
burke@upei.ca

A theorem of Hoischen states that given a positive continuous function " : Rn ! R, an unbounded
sequence 0  c1  c2  . . . and a closed discrete set T ✓ Rn, any C1 function g : Rn ! R can be
approximated by an entire function f so that for k = 0, 1, 2, . . . , for all x 2 Rn such that |x| � ck, and for
each multi-index ↵ such that |↵|  k,

(a) |(D↵f)(x)� (D↵g)(x)| < "(x);

(b) (D↵f)(x) = (D↵g)(x) if x 2 T .

We show that if C ✓ Rn+1 is meager, A ✓ Rn is countable and disjoint from T , and for each multi-index ↵
and p 2 A we are given a countable dense set Ap,↵ ✓ R, then we can require also that

(c) (D↵f)(p) 2 Ap,↵ for p 2 A and ↵ any multi-index;

(d) if x 62 T , q = (D↵f)(x) and there are values of p 2 A arbitrarily close to x for which q 2 Ap,↵, then
there are values of p 2 A arbitrarily close to x for which q = (D↵f)(p);

(e) for each ↵, {x 2 Rn : (x, (D↵f)(x)) 2 C} is meager in Rn.

Clause (d) is a surjectivity property which can be strengthened to allow for finding solutions in A to equations
of the form q = h⇤(x, (D↵f)(x)) under similar assumptions, where h(x, y) = (x, h⇤(x, y)) is one of countably
many given fiber-preserving homeomorphisms of open subsets of Rn+1 ⇠= Rn ⇥ R.

We also prove a weaker corresponding result with “meager” replaced by “Lebesgue null.” In this context,
the approximating function is C1 rather than entire, and we do not know whether it can be taken to be
entire.

Which topological groups arise as automorphism groups of locally finite graphs? Room 213
Xiao Chang
University of Pittsburgh
xic58@pitt.edu

Coauthors: Paul M Gartside

Let � be a graph which is countable and locally finite (every vertex has finite degree). Then the auto-
morphism group of �, Aut(�), with the pointwise topology has a compact, zero dimensional open normal
subgroup. We investigate whether the converse holds.
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Compactly supported homeomorphisms as long direct limits, Room 213
Rafael Dahmen
TU Darmstadt (Germany)
dahmen@mathematik.tu-darmstadt.de

Coauthors: Gabor Lukacs

Let � be a limit ordinal and consider a directed system of topological groups (G↵)↵<� with topological
embeddings as bonding maps and its directed union G =

S
↵<� G↵. There are two natural topologies on G:

one that makes G the direct limit (colimit) in the category of topological spaces and one which makes G the
direct limit (colimit) in the category of topological groups.

For � = ! it is known that these topologies almost never coincide (Yamasaki’s Theorem [1]).
In my talk last year, I introduced the Long Direct Limit Conjecture, stating that for � = !1 the two

topologies always coincide.
This year, I will introduce one particular example of such a direct limit: The groups of compactly

supported homeomorphisms of the Long Line which is naturally such a directed union of topological groups.
I will explain why on this group the two direct limit topologies mentioned above agree (and are equal to the
compact open topology). Unfortunately this method only works in dimension one and breaks down as soon
as one wants to consider groups of homeomorphisms of the Long Plane or similar two dimensional manifolds.

References
[1] A. Yamasaki. Inductive limit of general linear groups.J. Math. Kyoto Univ., 38(4):769–779, 1998.

Groups with few finite dimensional representations, Room 213
Salvador Hernández
Universitat Jaume I
hernande@uji.es

Coauthors: Maŕıa V. Ferrer

Suppose an algebraic group G is equipped with two locally compact topologies G1 = (G, ⌧1) and G2 =
(G, ⌧2). In case G is abelian,we have that G1 and G2 are naturally (topologically) isomorphic if and only if so
are their respective Bohr compactifications bG1 and bG2. Furthermore, if ⌧1 ( ⌧2, then | bG2

bG1
| � 2c. Therefore

the Bohr compactification of a locally compact abelian group completely characterizes its topological and
algebraic structure. It is known that this fact do not extend to non abelian groups and basically every option
is possible for these groups. In this talk, we will discuss to what extent the Bohr compactification of a non
abelian locally compact group reflects its topological and algebraic structure.

Topological properties of some algebraically defined subsets of �N, Room 213
Neil Hindman
Howard University
nhindman@aol.com

Coauthors: Dona Strauss, University of Leeds

Let S be a discrete semigroup and let the Stone-Čech compactification �S of S have the operation
extending that of S which makes �S a right topological semigroup with S contained in its topological center.
We show that the closure of the set of multiplicative idempotents in �N does not meet the set of additive
idempotents in �N. We also show that the following algebraically defined subsets of (�N,+) are not Borel:
the set of idempotents; the smallest ideal; any semiprincipal right ideal of N⇤; the set of idempotents in any
left ideal; and N⇤ + N⇤.
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On the tightness and long directed limits of free topological algebras, Room 213
Gábor Lukács
Halifax, NS, Canada
lukacs@topgroups.ca

Coauthors: Rafael Dahmen

For a limit ordinal �, let (A↵)↵<� be a system of topological algebras (e.g., groups or vector spaces) with
bonding maps that are embeddings of topological algebras, and put A =

S
↵<�

A↵. Let (A, T ) and (A,A)

denote the direct limit (colimit) of the system in the category of topological spaces and topological algebras,
respectively. One always has T ◆ A, but the inclusion may be strict; however, if the tightness of A is smaller
than the cofinality of �, then A = T .

In this talk, we show that the free abelian topological group A(!1) and the free topological vector
space V (!1) are countably tight. Consequently, A(!1) = colim

↵<!1

A(↵) and V (!1) = colim
↵<!1

V (↵) not only as

topological algebras, but also as topological spaces.

Multiples best proximity points for generalised Cyclic (w)- contractions, Room 213
J. O. Olaleru
Mathematics Department, University of Lagos, Lagos, Nigeria
Jolaleru@unilag.edu.ng

Coauthors: H. Olaoluwa

Title: Multipled best proximity points for generalized cyclic (w)-contractions.
Abstract: Non-self mappings from A to B do not necessarily have fixed points. However, when A and

B are subsets of a distance type space, it is of interest to find elements as close as possible to their image.
These elements are called best proximity points. In this paper, we prove the existence of multipled best
proximity points of cyclic contractions in metric type spaces. An application is given to illustrate the result.
The result generalises, extends and improves earlier related works in literature.

Balanced and functionally balanced P -groups, Room 213
Menachem Shlossberg
Univesity of Udine
menysh@yahoo.com

In relation to Itzkowitz’s problem, we show that a c-bounded P -group is balanced if and only if it is
functionally balanced. We prove that for an arbitrary P -group, being functionally balanced is equivalent to
being strongly functionally balanced. A special focus is given to the uniform free topological group defined
over a uniform P -space. In particular, we show that this group is (functionally) balanced precisely when its
subsets Bn, consisting of words of length at most n, are all (resp., functionally) balanced.
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The topological entropy and the scale function, Room 213
Daniele Toller
Universit di Udine
tollerdaniele@gmail.com

If G is a totally disconnected locally compact group, and � : G ! G is a continuous group endomorphism
of G, we show the relation between the scale of �, and the topological entropy of �.

Interpolation sets in compact groups, Room 213
Luis Trrega
Universitat Jaume I
ltarrega@uji.es

Coauthors: Salvador Hernndez and Mara V. Ferrer

In this talk, we will report on some results about the properties and the existence of interpolation sets
in the dual set of a compact (non necessary abelian) group. We will especially focus on the notion of central
I0 sets.
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Topology + Asymmetric Structures

On di-injective T0-quasi-metric spaces, Room 205
Collins Amburo Agyingi
North-West University (Mafikeng campus)
collins.agyingi@nwu.ac.za

We prove that every q-hyperconvex T0-quasi-metric space (X, d) is di-injective without appealing to
Zorn’s lemma. We also demonstrate that QX as constructed by Kemajou et al. and Q(X) (the space of all
Katětov function pairs on X) are di-injective. Moreover we prove that di-injective T0-quasi-metric spaces do
not contain proper essential extensions. Among other results, we state a number of ways in which the the
di-injective envelope of a T0-quasi-metric space can be characterized.

Decimals and Aspigories, Room 205
Ralph Kopperman
The City College, City University of New York
rdkcc@ccny.cuny.edu

We discuss approximation of the reals and of other topological algebras using limits of finite neighborhood
spaces with very weak algebraic structure. Some properties of the approximated object are determined by
corresponding properties of the finite ones (e.g. compactness), while others are induced by properties of the
maps (e.g. normality, strong algebraic structure, continuity of operations). This approximation is influenced
by categorical ideas, but is carried out in structures more general than categories.

The Isbell-hull of an asymmetrically normed space, Room 205
Olivier Olela Otafudu
North-West University
olivier.olelaotafudu@nwu.ac.za

Coauthors: Jurie Conradie and Hans-Peter Künzi

In this talk, we discuss an explicit method to define the linear structure of the Isbell-hull of an asymmet-
rically normed space. We use a lot results in [2], and the construction of the Isbell-hull of a T0-quasi-metric
space in [1].

References
[1] E. Kemajou, H.-P.A. Künzi and O. Olela Otafudu, The Isbell-hullof a di-space, Topology Appl. 159

(2012) 711-720.
[2] O. Olela Otafudu, Extremal function pairs in asymmetric normed linear spaces, Topology Appl. 166

(2014) 98-107.
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Enriched Topology and Asymmetry, Room 205
Stephen E. Rodabaugh
Institute for Applied Topology and Topological Structures, Youngstown State University
rodabaug@math.ysu.edu

Coauthors: Je↵rey T. Denniston, Austin Melton

Mathematically modeling the question of how to satisfactorily compare, in many-valued ways, both bit-
strings and the predicates which they might satisfy—a surprisingly intricate question when the conjunction
of predicates need not be commutative—applies notions of enriched categories and enriched functors. Par-
ticularly relevant is the notion of a set enriched by a po-groupoid, which turns out to be a many-valued
preordered set, along with enriched functors extended as to be ”variable-basis”. This positions us to model
the above question by constructing the notion of topological systems enriched by many-valued preorders,
systems whose associated extent spaces motivate the notion of topological spaces enriched by many-valued
preorders, spaces which are non-commutative when the underlying lattice-theoretic base is equipped with
a non-commutative (semi-)tensor product. Of special interest are crisp and many-valued specialization
preorders generated by many-valued topological spaces, orders having these consequences for many-valued
spaces: they characterize the well-established L-T0 separation axiom, define the L-T1(1) separation axiom—
logically equivalent under appropriate lattice-theoretic conditions to the L-T1 axiom of T. Kubiak, and define
an apparently new L-T1(2) separation axiom. Along with the consequences of such ideas for many-valued
spectra, these orders show that asymmetry has a home in many-valued topology comparable in at least some
respects to its home in traditional topology.

Relationships between Hereditary Sobriety, Sobriety, TD, T1, and Locally Hausdor↵, Room
205
Stephen E. Rodabaugh
Institute for Applied Topology and Topological Structures, Youngstown State University
rodabaug@math.ysu.edu

Coauthors: Je↵rey T. Denniston, Austin Melton, Jamal K. Tartir

This work augments the standard relationships between sobriety, T1, and Hausdor↵ by mixing in locally
Hausdor↵ and the compound axioms sober + T1 and sober + TD. We show the latter compound condition
characterizes hereditary sobriety, and that locally Hausdor↵ fits strictly between Hausdor↵ and sober + T1.
Classes of examples are constructed, in part to show the non-reversibility of key implications.

On quasi-uniform box products, Room 205
Hope Sabao
North-West University, Mafikeng Campus, Mmabatho 2735, South Africa.
hope@aims.edu.gh

Coauthors: Olivier Olela Otafudu

In this talk, we preset the quasi-uniform box product, a topology that is finer than the Tychonov product
topology but coarser than the uniform box product. We then present various notions of completeness of a
quasi-uniform space that are preserved by their quasi-uniform box product using Cauchy filter pairs.
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QH-singularity of quasi-uniform spaces, Room 205
Tom Vroegrijk
Technische Universiteit Delft
t.w.c.vroegrijk@tudelft.nl

In the book Uniform Spaces by Isbell it is wrongfully claimed that the Hausdor↵ uniformities associated
with two distinct uniform structures on a set X define distinct hyperspace topologies. The question for which
uniformities this claim is in fact true became known as the Isbell-Smith problem. In this talk we will take a
closer look at the Isbell-Smith problem for quasi-uniform spaces. In particular, we will study the properties
of QH-singular quasi-uniform spaces and describe the QH-equivalence class of a transitive quasi-uniformity.
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Topology + Dynamics and Continuum Theory

Homeomorphic restrictions of unimodal maps, Room 103
Lori Alvin
Bradley University
lalvin@bradley.edu

In this talk we provide two symbolic characterizations for a class of unimodal maps whose restriction to the
omega-limit set of the turning point is a minimal homeomorphism on a Cantor set. The first characterization
is given in terms of the shift space generated by the kneading sequence of the unimodal map, whereas the
second characterization relies only on the structure of the kneading sequence.

Entropy of induced continuum dendrite homeomorphisms, Room 103
Jenny↵er Bohorquez
Federal University of Rio de Janeiro
jennyffer.smith.bohorquez@gmail.com

Coauthors: Alexander Arbieto; Federal University of Rio de Janeiro

Let f : D ! D be a dendrite homeomorphism. Let C(D) denote the hyperspace of all nonempty
connected compact subsets of D endowed with the Hausdor↵ metric. Let C(f) : C(D) ! C(D) be the
induced continuum homeomorphism. In this talk we sketch the proof of the following result: If there exists
a nonrecurrent branch point then the topological entropy of C(f) is 1.

Topology and experimental distinguishability, Room 103
Gabriele Carcassi
University of Michigan
carcassi@umich.edu

Coauthors: Christine A. Aidala, David J. Baker, Mark J. Greenfield - University of Michigan

In this talk we are going to formalize the relationship between topological spaces and the ability to
distinguish objects experimentally, providing understanding and justification as to why topological spaces
and continuous functions are pervasive tools in the physical sciences. The aim is to use these ideas as
a stepping stone to give a more rigorous physical foundation to dynamical systems and, in particular,
Hamiltonian dynamics.

We will first define an experimental observation as a statement that can be verified using an experimental
procedure. We will show that observations are not closed under negation and countable conjunction, but
are closed under finite conjunction and countable disjunction. We then consider observations that identify
elements in a set and show how they induce a Hausdor↵ and second countable topology on that set, thus
identifying an open set as one that can be associated with an experimental observation. For example, the
use of the standard topology on Euclidean space corresponds to the ability to measure continuous quantities
only with finite precision (i.e. an open interval). We then show that only continuous functions preserve
experimental distinguishability and that the collection of these functions can be given a Hausdor↵ and
second countable topology. This shows that the universe of discourse of experimental distinguishability so
defined is closed and consistent.
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Entropy Locking, Room 103
David Cosper
IUPUI
dcosper@iupui.edu

Coauthors: Michal Misiurewicz

I show that in certain one-parameter families of piecewise continuous piecewise linear interval maps with
two laps, topological entropy stays constant as the parameter varies. The proof is simple and applies to a
large set of families.

Liouville numbers and one-sided ergodic Hilbert transforms, Room 103
Joanna Furno
Indiana University-Purdue University Indianapolis
jfurno@iupui.edu

Coauthors: David Constantine

In joint work with David Constantine, we examine one-sided ergodic Hilbert transforms for irrational
circle rotations and some mean-zero functions. Our approach uses continued fraction expansions to specify
rotations by Liouville numbers for which the transformation has everywhere convergence or divergence.

Circular Graph-Like Continua, Room 104
Paul Gartside
University of Pittsburgh
gartside@math.pitt.edu

Coauthors: Max Pitz and Ana Mamatelashvili

A continuum X is ‘graph-like’ (as defined by Thomassen and Vella) if it contains a zero-dimensional
compact subset V such that X � V is a disjoint union of open intervals. The Freudenthal compactification
of any locally finite, countable graph is graph-like, and these provide the motivating examples.

We provide characterizations of graph-like continua, connecting them closely to finite graphs. We investi-
gate when graph-like continua have strong connectedness properties, establishing a connection with Eulerian
graphs.

Hausdor↵ dimension of Kuperberg minimal sets, Room 103
Daniel Ingebretson
Department of Mathematics, University of Illinois at Chicago
dingeb2@uic.edu

The Seifert conjecture was answered negatively in 1994 by Kuperberg who constructed a smooth aperiodic
flow on a three-manifold. This construction was later found to contain a minimal set with a complicated
topology. The minimal set is embedded as a lamination by surfaces with a Cantor transversal of Lebesgue
measure zero. In this talk we will discuss the pseudogroup dynamics on the transversal, the induced symbolic
dynamics, and the Hausdor↵ dimension of the Cantor set.

Page 17



The specification property and infinite entropy for certain classes of linear operators, Room
103
James Kelly
Christopher Newport University
james.kelly@cnu.edu

Coauthors: Will Brian and Tim Tennant

We study the specification property and infinite topological entropy for two specific types of linear
operators: translation operators on weighted Lebesgue function spaces and weighted backward shift operators
on sequence F -spaces.

It is known from the work of Bartoll, Martińınez-Giménez, Murillo-Arcila (2014), and Peris, that for
weighted backward shift operators, the existence of a single non-trivial periodic point is su�cient for spec-
ification. We show this also holds for translation operators on weighted Lebesgue function spaces. This
implies, in particular, that for these operators, the specification property is equivalent to Devaney chaos. We
also show that these forms of chaos imply infinite topological entropy, but that the converse does not hold.

Shift maps and their variants on inverse limits with set-valued functions, Room 103
Judy Kennedy
Lamar University
kennedy9905@gmail.com

Coauthors: Kazuhiro Kawamura

We study inverse limits with set-valued functions using a pull-back construction and representing the
space as an ordinary inverse limit space, which allows us to prove some known results and their extensions
in a unified scheme. We also present a scheme to construct shift dynamics on the limit space and give some
examples using the construction.

Capturing trajectories using non-compact plugs, Room 103
Krystyna Kuperberg
Auburn University
kuperkm@auburn.edu

A compact plug contains a minimal set, an ↵- and !-limit set for a usually large set of trajectories. A
non-compact plug need not possess a minimal set. We show that non-compact plugs can be used to capture
all trajectories in a flow without forming non-empty, closed, invariant subsets. The topology of such flows
will be discussed.
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Sequential decreasing strong size properties, Room 103
Miguel A. Lara
Universidad Autonoma del Estado de Mexico
nanoji@live.com.mx

Coauthors: Fernando Orozco, Universidad Autonoma del Estado de Mexico; Felix Capulin, Universidad
Autonoma del Estado de Mexico

Let X be a continuum. A topological property P is said to be a sequential decreasing strong size property
provided that if µ is a strong size map for Cn(X), {tn} is a sequence in the interval (t, 1) such that lim tn = t
and each fiber µ�1(tn) has the property P, then µ�1(t) has the property P. We show that the following
properties are sequential decreasing strong size properties: be a Kelley continuum, indecomposability, local
connectedness, continuum chainability and unicoherence.

Aperiodic graph colorings and dynamics, Room 103
Ramon Barral Lijo
University of Santiago de Compostela
ramonbarrallijo@gmail.com

Coauthors: Jesus Antonio Alvarez Lopez

A graph coloring is strongly aperiodic if every colored graph in its hull has no automorphisms. The
talk will describe a method to define strongly aperiodic colorings on graphs with bounded degree. This also
provides an optimal bound for the strongly distinguishing number of a graph. Then some applications to
the theory of foliated spaces and to tilings will be discussed.

A trace formula for foliated flows, Room 103
Jess A. lvarez Lpez
University of Santiago de Compostela
jesus.alvarez@usc.es

Coauthors: Yuri A. Kordyukov and Eric Leichtnam

The talk will be about our progress to show a trace formula for foliated flows on foliated spaces, which
has been conjectured by V. Guillemin, and later by C. Deninger with more generality. It describes certain
Leftchetz distribution of the foliated flow, acting on some version of the leafwise cohomology, in terms of
local data at the closed orbits and fixed points.

Quotients of n-fold hyperspaces, Room 103
Sergio Macias
National University of Mexico
sergiom@matem.unam.mx

Coauthors: Javier Camargo

Given a continuum X and an integer n � 2, let Cn(X) be the n-fold hyperspace of X consisting of
all nonempty closed subsets of X with at most n components. We consider the quotient space Cn

1 (X) =
Cn(X)/C1(X) with the quotient topology. We prove several properties. For example: Cn

1 (X) is unicoherent;
if X has the property of Kelley, Cn

1 (X) is contractible; dim(Cn(X)) = dim(Cn
1 (X)); both Cn

1 ([0, 1]) and
Cn

1 (S
1) are Cantor manifolds; etc.
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A new class of dendrites having unique second symmetric product, Room 103
David Maya
Universidad Autnoma del Estado de Mxico
dmayae@outlook.com

Coauthors: Jos G. Anaya and Fernando Orozco Zitli

The second symmetric product of a continuum X, F2(X), is the hyperspace consisting of all nonempty
subsets of X having at most two points. A continuum X has unique hyperspace F2(X) provided that each
continuum Y satisfying that F2(X) and F2(Y ) are homeomorphic must be homeomorphic to X. In this talk,
a new class of dendrites having unique F2(X) will be presented.

Critical Portraits of Complex Polynomials, Room 103
John C Mayer
University of Alabama at Birmingam
jcmayer@uab.edu

A complex polynomial P of degree d for which all orbits of critical points converge to attracting periodic
orbits is said to exhibit hyperbolic dynamics. We consider those for which no critical point is attracted to the
attracting fixed point at infinity. For such polynomials, it is well-known that the Julia set J(P ) is connected
and locally connected. To such a Julia set, there corresponds a lamination, a collection of non-crossing chords
in the unit disk whose quotient space formed by shrinking the chords to points is dynamically equivalent to
J(P ).

We propose a high level view of the parameter space of such hyperbolic polynomials through the concept
of critical portraits in the context of laminations of the unit disk. For degree d, a unit disk with a maximal
number of non-crossing chords of critical length (each length k/d for some k) that can only meet at endpoints
is called a critical portrait. In this talk, we will illustrate the connection between J(P ) and its corresponding
critical portrait, and ultimately a critical portrait corresponding to a family of laminations and corresponding
family of Julia sets. We introduce the concept of a weakly bicolored tree as a classification scheme for families
of laminations

PSEUDOCONTRACTIBILITY, Room 103
FELIX CAPULIN PEREZ
UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO
fcapulin@gmail.com

Coauthors: LEONARDO JUAREZ VILLA, FERNANDO OROZCO ZITLI

Let X, Y be topological spaces and let f, g : X ! Y be mappings, we say that f is pseudo-homotopic to
g if there exist a continuum C, points a, b 2 C and a mapping H : X⇥C ! Y such that H(x, a) = f(x) and
H(x, b) = g(x) for each x 2 X. The mapping H is called a pseudo-homotopy between f and g. A topological
space X is said to be pseudo-contractible if the identity mapping is pseudo-homotopic to a constant mapping
in X. i.e., if there exist a continuum C, points a, b 2 C, x0 2 X and a mapping H : X ⇥ C ! X satisfying
H(x, a) = x and H(x, b) = x0 for each x 2 X. In this talk we are going to give general facts about
pseudo-homotopies and pseudocontractibility. As a consequence of these we can construct more examples of
pseudo-contractible continua and non pseudo-contractible continua.
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Eulerian continua, Room 104
Max Pitz
University of Hamburg
max.pitz@uni-hamburg.de

Coauthors: Paul Gartside

A finite multi-graph is Eulerian if it admits a closed walk that uses every edge exactly once (vertices may
be used more than once). It is well-known that a connected graph is Eulerian if and only if every bipartition
of its vertex set has an even number of edges between the partition classes.

Generalising this notion, a (Peano-)continuum is said to be Eulerian if it is an irreducible image of the
unit circle. Bula, Nikiel and Tymchatyn (Can. J. Math., 1994) began to investigate Eulerian Continua, and
proposed a conjecture for a characterisation of Eulerian continua. This conjecture has remained unsolved so
far.

Inspired by the notion of graph-like continua (a combinatorial analogue of completely regular continua)
introduced by Thomassen and Vella (Combinatorica, ’08), we have recently established characterisations for
Eulerian graph-like continua very much in the spirit of the original graph-theoretic ones (Espinoza, Gartside,
Pitz, 2016+). Extending these results, I will explain how these new techniques from combinatorics can be
applied to give, in several interesting cases, positive solutions to the Bula-Nikiel-Tymchatyn conjecture.

This is joint with Paul Gartside.

On Continua with Regular Non-abelian Self Covers, Room 104
Mathew Timm
Bradley University
mtimm@fsmail.bradley.edu

We look at a planar 2-dimensional continuum X which satisfy the following:
Given any finite group G there is an |G|-fold regular self cover f : X ! X with G as its group of deck

transformations.
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Topology + Foundations

On Roitman’s principle for box products, Room 214
Hector Alonzo Barriga Acosta
Joint Program on Mathematical Sciences, UNAM-UMSNH
hector.alonsus@gmail.com

One of the oldest problems in box products is if the countable box product of the convergent sequence
is normal. It is known that consistenly (e.g., b=d, d=c) the answer is a�rmative. A recent progress is due
to Judy Roitman that states a combinatorial principle which also implies the normality and holds in many
models.

Although the countable box product of the convergent sequence is normal in some models of b¡d¡c,
Roitman asked what happen with her principle in this models. We answer that Roitman’s principle is true
in some models of b¡d¡c.

On Cohomological Dimensions of Remainders of Stone-Čech Compactifications, Room 201
Vladimer Baladze
Batumi Shota Rustaveli State University
vbaladze@gmail.com

In the paper the necessary and su�cient conditions are found under which a metrizable space has the
Stone-Čech compactification whose remainder has the given cohomological dimensions (cf. [Sm], Problem I,
p.332 and Problem II, p.334, and [A-N]).

In the paper [B] an outline of a generalization of Čech homology theory was given by replacing the set
of all finite open coverings in the definition of Čech (co)homology group (Ĥn

f (X,A;G)) Ĥf
n(X,A;G) (see

[E-S],Ch.IX, p.237) by the set of all finite open families of border open coverings [Sm1].
Following Y. Kodama (see the appendix of [N]), we give the following definition:
Definition 1. The border small cohomological dimension df1(X;G) of normal space X with respect

to group G is defined to be the smallest integer n such that, whenever m � n and A is closed in X, the
homomorphism i⇤A,1 : Ĥm

1(X;G) ! Ĥm
1(A;G) induced by the inclusion i : A ! X is an epimorphism.

The border small cohomological dimension of X with coe�cient group G is a function df1 : N !
N [ {0,+1} : X ! n, where df1(X;G) = n and N is the set of all positive integers.

We have the following results:
Theorem 2. Let X be a metrizable space. Then the following equality

df1(X;G) = df (�X \X;G)

holds, where df (�X \X;G) is the small cohomological dimension of �X \X (see [N], p.199).
Theorem 3. Let A be a closed subspace of a normal space X. Then

df1(A;G)  df1(X;G).

Corollary 4. For each closed subspace A of a metrizable space X,

df1(A;G)  df (�X \X;G).

Definition 5. The border large cohomological dimension Df
1(X;G) of normal space X with respect to

group G is defined to be the largest integer n such that Ĥn
1(X,A;G) 6= 0 for some closed set A of X.

The border large cohomological dimension of X with coe�cient group G is a function Df
1 : N !

N [ {0,+1} : X ! n, where Df
1(X;G) = n and N is the set of all positive integers.

Theorem 6. For each metrizable space X, one has

Df
1(X;G) = Df (�X \X;G),
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where Df (�X \X;G) is the large cohomological dimension of �X \X (see [N], p.199).
Theorem 7. If A is a closed subset of normal space X, then

Df
1(A;G)  Df

1(X;G).

Corollary 8. For each closed subspace A of metrizable space X, one has

Df
1(A;G)  Df (�X \X;G).

Theorem 9. If X is a normal space, then

df1(X;G)  Df
1(X;G).

Corollary 10. For each metrizable space X, one has

df (�X \X;G)  Df
1(X;G)

and
df1(X;G)  Df (�X \X;G).

Remark 11.The results of this paper also hold for spaces satisfying the compact axiom of countability
[Sm1]. The locally metrizable spaces, complete in the seance of Čech spaces and locally compact spaces
satisfy the compact axiom of countability.
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Variations on the proximal infinite game, Room 214
Jocelyn Bell
Hobart and William Smith Colleges
bell@hws.edu

The proximal infinite game is a two player game played in a uniform space. We will discuss some variants
of this game and related topological results.
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On the Chogoshvili Homology Theory of Continuous Maps of Compact Spaces, Room 201
Anzor Beridze
Batumi Shota Rustaveli State University
a.beridze@bsu.edu.ge

Coauthors: Vladimer Baladze

In this paper an exact homology functor from the category MorC of continuous maps of compact Haus-
dor↵ spaces to the category LES of long exact sequences of abelian groups is defined (cf. [2], [3],[5]). This
functor is an extension of the Hu homology theory, which is uniquely defined on the category of continuous
maps of finite CW complexes and is constructed without the relative homology groups [9]. To define the
given homology functor we use the Chogoshvili construction of projective homology theory [7], [8]. For each
continuous map f : X ! Y of compact spaces, using the notion of the partition of spaces [7], [8] and approx-
imations of continuous maps [1], [2], [3], V. Baladze defined the inverse system f = {f�, p��0 ,⇤}, where ⇤ is
the directed system of pairs � = (↵,�) of partitions, where ↵ is refined in f�1(�) and f� : X↵ ! Y� is the
simplicial map of nerves X↵ and Y� of closed coverings defined by partitions ↵ and �. Using this system he

has defined and studied the inverse system of chain complexes C⇤(f) = {C⇤(f�), p
#
��0 ,⇤} and the projective

and spectral homology groups:
H̄⇤(f) ⌘ H⇤(lim �{C⇤(f�), p

#
��0 ,⇤})

Ĥ⇤(f) ⌘ lim �({H⇤(f�), p
#
��0 ,⇤}).

A. Beridze has shown that there exists a Milnor short exact sequence (cf. [10], [11], [12]), which connects
the defined homology groups:

0! lim �
1Hn+1(f�)! H̄⇤(f)! Ĥ⇤(f)! 0.

Using this property, he has shown that the homology groups H̄⇤(f) satisfy the universal coe�cient formula:

0! Ext(Ĥn+1(f);G)! H̄⇤(f)! Hom(Ĥn(f);G)! 0.

Consequently, using the methods developed in [4], [6] and [11], we have shown that the constructed
functor is unique on the category MorC .
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On cardinality bounds involving the weak Lindelöf degree and H-closed spaces, Room 214
Nathan Carlson
California Lutheran University
ncarlson@callutheran.edu

Coauthors: Angelo Bella, Jack Porter

1. Bella and Carlson give several classes of spaces X for which |X|  2wL(X)�(X). This includes locally
compact spaces and, more recently, extremally disconnected spaces. Three proofs of the former lead to
more general results. One such result is that any regular space X with a ⇡-base consisting of elements
with compact closure satisfies |X|  2wL(X)�(X). It is also shown that if X is locally compact and power
homogeneous that |X|  2wL(X)t(X), an extension of De la Vega’s Theorem.

2. Porter and Carlson give a new cardinality bound for any Hausdor↵ space that answers a long-standing
question of Bella’s on H-closed spaces. Using an open ultrafilter assignment, a cardinal invariant L̂(X) is

defined with properties a) L̂(X)  L(X), b) L̂(X) is countable if X is H-closed, and c) |X|  2L̂(X)�(X) for
any Hausdor↵ space X. This gives a common proof of Arhangel’skii’s Theorem and the cardinality bound
2�(X) for H-closed spaces given by Dow and Porter in 1982.

Sequential order in compact scattered spaces, Room 214
Alan Dow
UNC Charlotte
adow@uncc.edu

A space is sequential if the closure of set can be obtained by iteratively adding limits of converging
sequences. The sequential order of a space is a measure of how many iterations are required. A space is
scattered if every non-empty set has a relative isolated point. It is not known if it is consistent that there is
a countable (or finite) upper bound on the sequential order of a compact sequential space. We consider the
properties of compact scattered spaces with infinite sequential order.

On cardinality of spaces with dense sets of isolated points, Room 214
Ivan S. Gotchev
Central Connecticut State University
gotchevi@ccsu.edu

In this talk we will show that if X is a Hausdor↵ space with a ⇡-base whose elements have compact
closures, then |X|  2wL(X) c(X)t(X). This generalizes a recent theorem of Bella and Carlson stating that if
X is a regular T1-space with a ⇡-base whose elements have compact closures, then |X|  2wL(X) (X)t(X). It
follows directly from our result that if X is a Hausdor↵ space with a dense set of isolated points, then |X| 
2wL(X) c(X)t(X). Therefore our inequality improves the following previously known cardinal inequalities for
a space X with a dense set of isolated points:

(a) [Dow-Porter, 1982] |X|  2wL(X)�(X), whenever X is a Hausdor↵ space;
(b) [Alas, 1993] |X|  2wLc(X) c(X)t(X), whenever X is a Hausdor↵ space; and
(c) [Bella-Carlson, 2016] |X|  2wL(X) (X)t(X), whenever X is a regular T1-space.
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Spaces with no S or L Subspaces, Room 214
Joan Hart
University of Wisconsin Oshkosh
hartj@uwosh.edu

Coauthors: Kenneth Kunen

We show it consistent for spaces X and Y to be both HS and HL even though their product X ⇥ Y
contains an S-space. Recall that an S-space is a T3 space that is HS but not HL.

More generally, consider spaces that contain neither an S-space nor an L-space. We say a space is ESLC
i↵ each of its subspaces is either both HS and HL or neither HS nor HL. The “C” in “ESLC” refers to
HC; a space is HC i↵ each of its subspaces has the ccc (countable chain condition) (i↵ the space has no
uncountable discrete subspaces). Classes of ESLC spaces include metric spaces (because every metric space
is either second countable or has an uncountable discrete subspace), subspaces of the Sorgenfrey line and
(suitably defined) generalized butterfly spaces; for these classes, countable products are still ESLC.

Disjoint Infinity Borel Functions, Room 214
Daniel Hathaway
University of Denver
Daniel.Hathaway@du.edu

Consider the statement that every uncountable set of reals can be surjected onto R by a Borel function.
This is implied by the statement that every uncountable set of reals has a perfect subset. It is also implied
by a new statement D which we will discuss: for each real a there is a Borel function fa : RtoR and for each
function g : RtoR there is a countable set G(g) of reals such that the following is true: for each a in R and
for each function g : R to R, if fa is disjoint from g, then a is in G(g). We will show that D follows from ZF
+AD+ whereas the negation of D follows from ZFC.

Uncountable discrete sets and forcing, Room 214
Akira Iwasa
University of South Carolina Beaufort
iwasa@uscb.edu

Suppose that a space X has no uncountable discrete subspace. We will discuss if forcing can create an
uncountable discrete subspace of X.

A study of closed sets and maps with ideals, Room 201
Ramandeep Kaur
Research Scholar, PEC University of Technology, Chandigarh, INDIA
deepsandhu.raman@gmail.com

Coauthors: Asha Gupta

The purpose of this paper is to study a class of closed sets, called generalized pre-closed sets with respect
to an ideal (briefly Igp-closed sets), which is an extension of generalized pre-closed sets in general topology.
Then, by using these sets, the concepts of Igp- compact spaces along with some classes of maps like continuous
and closed maps via ideals have been introduced and analogues of some known results for compact spaces,
continuous maps and closed maps in general topology have been obtained.
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Nice spaces and non-normality points, Room 214
Sergei Logunov
Russia, Izhevsk, Udmurt State University, dep. for algebra and topology
olappa@mail.ru

We define a new class of spaces, which contains all metrizable crowded spaces and Sorgenfray line. Every
point of Cech-Stone remainder of a nice space is a non-normality point of the compactification.

Fuzzy multi-valued Functions between Fuzzy Minimal Spaces, Room 201
M.Y.Bakier
Mathematics Department, Faculty of Science, Assiut University, Assiut, Egypt
mybakier@yahoo.com

The biggest di↵erence between fuzzy functions and fuzzy multi-valued functions has to do with the
definition of an inverse image. For a fuzzy multi-valued function there are two types of inverses. These two
definitions of the inverse then leads to two definitions of continuity. In this paper we introduce upper/ lower
M-continuous fuzzy multi-functions as a fuzzy multifunction defined between sets satisfying certain minimal
conditions. We obtain some characterizations and some properties of such fuzzy multi-functions. Moreover,
we define M-fuzzy compactness and investigate some of its properties. Key words and phrases: Minimal
spaces,Fuzzy multifunction, m-compact

Properties of Weak Domain Representable Spaces, Room 214
Joe Mashburn
University of Dayton
joe.mashburn@udayton.edu

We will explore some of the basic properties of weak domain representable (wdr) spaces, including hered-
itary properties and properties of products. In particular, we will construct a Baire space that is not wdr,
show that products of wdr spaces are wdr, and demonstrate that the factors of a product that is wdr need
not themselves be wdr. We will also show that if X is a wdr space and Y ✓ X such that |Y | = |X| then Y
is wdr. We can declare a subset of a wdr space X to be open or to consist of isolated points without losing
the property of being wdr.

On the Axiomatic Systems of Steenrod Homology Theory of Compact Spaces, Room 201
Leonard Mdzinarishvili
Georgian Technical University, 77, Kostava St., Tbilisi 0171, Geogia
l.mdzinarishvili@gtu.ge

Coauthors: Anzor Beridze

The Steenrod homology theory on the category of compact metric pairs was axiomatically described
by J.Milnor. In [6] the uniqueness theorem is proved using the Eilenberg-Steenrod axioms and as well as
relative homeomorphism and clusres axioms. J. Milnor constructed the homology theory on the category
Top2C of compact Hausdor↵ pairs and proved that on the given category it satisfies nine axioms - the
Eilenberg-Steenrod, relative homeomorphis and cluster axioms (see theorem 5 in [6]). Besides, he proved that
constructed homology theory satisfies partial continuity property on the subcategory Top2CM (see theorem 4
in [6]) and the universal coe�cient formula on the category Top2C (see Lemma 5 in [6]). On the category of
compact Hausdor↵ pairs, di↵erent axiomatic systems were proposed by N. Berikashvili [1], [2], H.Inasaridze
and L. Mdzinarishvili [4], L. Mdzinarishvili [5] and H.Inasaridze [3], but there was not studied any connection
between them. The paper studies this very problem. In particular, in the paper it is proved that any
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homology theory in Inasaridze sense is the homology theory in the Berikashvili sense, which itself is the
homology theory in the Mdzinarishvili sense. On the other hand, it is shown that if a homology theory in
the Mdzinarishvili sense is exact functor of the second argument, then it is the homology in the Inasaridze
sense.
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Compactness Via Adherence Dominators, Room 201
Bhamini M. P. Nayar
Morgan State University
Bhamini.Nayar@morgan.edu

Coauthors: T. A. Edwards, J. E. Joseph and M. H. Kwack

An adherence dominator on a topological space X is a function ⇡ from the collection of filterbases on X to
the family of closed subsets of X satisfying A(⌦) ✓ ⇡(⌦) where A(⌦) is the adherence ⌦. The notations ⇡(⌦)
and A(⌦) are used for the values of the functions ⇡ and A and ⇡(⌦) = \⌦⇡F = \O⇡V , where O represents
the open members of ⌦. The ⇡ -adherence may be adherence, ✓- adherence, u-adherence s-adherence, f -
adherence, �-adherence etc., of a filterbase. Many of the recent theorems by the authors and others on
Hausdor↵-closed, Urysohn-closed, and regular-closed spaces are subsumed in this paper. It is also shown
that a space X is compact if and only if for each upper-semi-continuous relation � on X with ⇡-strongly
closed graph, the relation µ on X defined by µ = ⇡� has a maximal value with respect to set inclusion.

Normal Images of the Product and Countably Paracompact Condensation, Room 214
Jila Niknejad
University of Kansas
jilaniknejad@gmail.com

In 1997, Buzjakova proved that for a pseudocompact Tychono↵ space X and � = |�X|+, X condenses
onto a compact space if and only if X ⇥ (�+1) condenses onto a normal space. This is a condensation form
of Tamano’s theorem. An interesting problem is to determine how much of Buzjakova’s result will hold if
“pseudocompact” is removed from the hypothesis.

In this talk, I am going to show for a Tychono↵ space X, there is a cardinal � such that if X ⇥ (�+ 1)
condenses onto a normal space, then X condenses onto a countably paracompact space.
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Monotone interior-preserving open operators, Room 214
Strashimir G. Popvassilev
The City College of New York, CUNY, and Institute of Mathematics and Informatics, Bulgarian Academy
of Sciences
spopvassilev@ccny.cuny.edu

Coauthors: John E. (Ted) Porter, Murray State University

Ted Porter and the speaker proved (using di↵erent approaches) that the Sorgenfrey line does not have a
monotone closure-preserving operator. In contrast, we prove that it has a monotone interior-preserving open
operator. We do not know if the space !1 of all countable ordinals with the order topology has a monotone
interior-preserving open operator. We state an order-theoretic translation of this question, and discuss other
monotove versions of paracopmactness-like properties.

REVELATION OF NANO TOPOLOGY IN CECH ROUGH CLOSURE SPACES, Room 201
Fr.V.ANTONY SAMY
RESEARCH SCHOLAR, SCHOOL OF MATHEMATICS, MADURAI KAMARAJ UNIVERSITY, MADU-
RAI -625021, TAMILNADU, INDIA
tonysamsj@yahoo.com

Coauthors: Dr.M.LLELLIS THIVAGAR, Professor and Head, School of Mathematics, Madurai Kamaraj
University, Madurai - 625021, Tamilnadu, INDIA and

M.AROCKIA DASAN, Research Scholar, School Of Mathematics, Madurai Kamaraj University, Madurai
-625021, Tamilnadu, India

The concept of Cech closure space was initiated and developed by E. Cech in 1966 [1,2]. Henceforth
many more research scholars [6] set their minds in this theory and developed it to a new height. Pawlak.Z [5]
derived and gave shape to Rough set theory in terms of approximation using equivalence relation known as
indiscernibility relation. Further Lellis Thivagar [3] enhanced rough set theory into a topology, called Nano
Topology, which has at most

five elements in it and he [4] also extended this into multi granular nano topology. The purpose of this
paper is to derive Nano topology in terms of Cech rough closure operators. In addition to this, we also
establish the continuous functions on Cech rough closure space and its properties. From these, we evolve a
Cech nano topological space that satisfies the topological axioms on infinite universe.

2010 MSC: 54A05, 03B50, 03B52.
Keywords: Rough sets, Cech rough closure operators, Cech rough continuity, Cech nano topological

spaces.
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Relationships between topological properties of X and algebraic properties of intermediate
rings A(X), Room 214
Joshua Sack
California State University Long Beach
Joshua.Sack@csulb.edu

A topological property is a property invariant under homeomorphism, and an algebraic property of a ring
is a property invariant under ring isomorphism. Let C(X) be the ring of real-valued continuous functions
on a Tychono↵ space X, let C⇤(X) ✓ C(X) be the subring of those functions that are bounded, and call a
ring A(X) an intermediate ring if C⇤(X) ✓ A(X) ✓ C(X). For a class Q of intermediate rings, an algebraic
property P describes a topological property T among Q if for all A(X), B(Y ) 2 Q if A(X) and B(Y ) both
satisfy P , then X satisfies T if and only if Y satisfies T . An example of a topological property being described
by an algebraic property among a class of intermediate rings is that of a P -space, a Tychono↵ space in which
every zero-set is open. We see that the property that every prime ideal of the ring is maximal describes
P -spaces among rings C(X), however for the same algebraic property does not describe P -spaces among all
intermediate rings. Another example of a topological property is that of an F -space, a Tychono↵ space in
which disjoint co-zero sets are completely separated. We see that the property that the set of prime ideals
contained in a maximal ideal form a chain describes F -spaces among all intermediate rings. We investigate
what other algebraic properties describe topological properties as well as other types of relationships between
algebraic properties and topological properties, and we prove some theorems about how certain topological
properties relate to algebraic properties of intermediate rings.

Cohen reals and the sequential order of groups, Room 214
Alex Shibakov
Tennessee Tech University
ashibakov@tntech.edu

We show that adding uncountably many Cohen reals to a model of diamond results in a model with
no countable sequential group with an intermediate sequential order. The same model has an uncountable
group of sequential order 2. We also discuss related questions.

The Scheepers property and products of Menger spaces, Room 214
Piotr Szewczak
Cardinal Stefan Wyszynski University in Warsaw
p.szewczak@wp.pl

Coauthors: Boaz Tsaban, Lyubomyr Zdomskyy

A topological space X is Menger if for every sequence of open covers O1,O2, . . . of the space X, there
are finite subfamilies F1 ✓ O1, F2 ✓ O2, . . . such that their union is a cover of X. If, in addition, every
finite subset of X is contained in the set

SFn for some natural number n, then the space X is Scheepers.
The above properties generalize �-compactness, and Scheepers’ property is formally stronger than Mengers
property. It is consistent with ZFC that these properties are equal.

One of the open problems in the field of selection principles is to find the minimal hypothesis that the
above properties can be separated in the class of sets of reals. Using purely combinatorial approach, we
provide examples under some set theoretic hypotheses. We apply obtained results to products of Menger
spaces and products of function spaces with the pointwise convergence topology.
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Some applications of the point-open subbase game, Room 214
David Guerrero Snchez
Universidad Autnoma Metropolitana Iztapalapa
dgs@ciencias.unam.mx

Coauthors: V. Tkachuk

Given a subbase S of a space X, the game PO(S,X) is defined for two players P and O who respectively
pick, at the n-th move, a point xn 2 X and a set Un 2 S such that xn 2 Un . The game stops after the
moves {xn, Un : n 2 !} have been made and the player P wins if the union of the Un’s equals X; otherwise
O is the winner. Since PO(S,X) is an evident modification of the well-known point-open game PO(X), the
primary line of research is to describe the relationship between PO(X) and PO(S,X) for a given subbase
S. It turns out that, for any subbase S, the player P has a winning strategy in PO(S,X) if and only if he
has one in PO(X). However, these games are not equivalent for the player O: there exists even a discrete
space X with a subbase S such that neither P nor O has a winning strategy in the game PO(S,X). Given
a compact space X, we show that the games PO(S,X) and PO(X) are equivalent for any subbase S of the
space X.

Fiber Strong Shape Theory for Topological Spaces, Room 201
Ruslan Tsinaridze
Batumi Shota Rustaveli State University
r.tsinaridze@bsu.edu.ge

Coauthors: Vladimer Baladze

The purpose of this paper is the construction and investigation of fiber strong shape theory for compact
metrizable spaces over a fixed base space B0, using the fiber versions of cotelescop, fibrant space and SSDR-
map. In the paper obtained results containing the characterizations of fiber strong shape equivalences,
based on the notion of double mapping cylinder over a fixed space B0. Besides, in the paper we construct
and develop a fiber strong shape theory for arbitrary spaces over fixed metrizable space B0. Our approach
is based on the method of Mardešić-Lisica and instead of resolutions, introduced by Mardešić, their fiber
preserving analogues [1] are used.

The fiber strong shape theory yields the classification of spaces over B0 which is coarser than the clas-
sification of spaces over B0 induced by fiber homotopy theory, but is finer than the classification of spaces
over B0 given by usual fiber shape theory.
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On the paracompactness of linearly stratifiable spaces, Room 214
Jerry E. Vaughan
University of North Carolina at Greensboro
vaughanj@uncg.edu

Coauthors: Peter J. Nyikos

Linearly stratifiable spaces, more specifically spaces stratifiable over !µ, where !µ is an infinite cardinal,
are generalization to arbitrary cardinals of the well known concepts of stratifiable spaces. We consider two
properties possessed by every space stratifiable over !µ. A space is called a weak P (!µ)-space provided every
subset of cardinality less than !µ is closed. A space is called an !µ-perfect space provided every closed set is
the intersection of less than !µ open sets. If we consider the countable case in these definitions, we get the
standard concepts of stratifiable space, weak P -space and perfect space. Our somewhat unexpected main
result states: If X is monotonically normal, and both a weak P(!µ)-space and an !µ-perfect space, then X
is paracompact. The assumption of monotonic normality allows us to call on the Balogh-Rudin Theorem:
A monotonically normal space is paracompact if and only if it has no closed subsets homeomorphic to a
stationary subset of a regular uncountable cardinal with its order topology. In order to invoke the Balogh-
Rudin theorem, we prove some facts about the topology of stationary subsets of regular uncountable cardinals
(with the subspace topology inherited from the usual order topology on the cardinal). As an easy corollary
we get an entirely di↵erent proof of the known theorem that spaces stratifiable over !µ are paracompact.

Some New Completeness Properties in Topological Spaces, Room 201
etin Vural
Gazi University
cvural@gazi.edu.tr

Coauthors: Sleyman nal

One of the most widely known completeness property is the completeness of metric spaces and the other
one being of a topological space in the sense of Cech. It is well known that a metrizable space X is completely
metrizable if and only if X is Cech-complete. One of the generalisations of completeness of metric spaces is
subcompactness. It has been established that, for metrizable spaces, subcompactness is equivalent to Cech-
completeness. Also the concept of domain representability can be considered as a completeness property. In
[1], Bennett and Lutzer proved that Cech-complete spaces are domain representable. They also proved, in
[2], that subcompact regular spaces are domain representable. Then Fleissner and Yengulalp, in [3], gave
a simplified characterization of domain representability. In this work, we introduce the completeness of a
quasi-pair-base and study the topological spaces having such a base. Our results include the fact that Cech-
complete spaces and subcompact spaces have complete quasi-pair-basis, and we prove that if a topological
space X has a complete quasi-pair-base then X is domain representable.

References
[1] Harold Bennett and David Lutzer, Domain Representable spaces, Fund. Math. 189 (3) (2006) 255–

268.
[2] Harold Bennett and David Lutzer, Domain-representability of certain complete spaces, Houston J.

Math. 34 (3) (2008) 753-772.
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On direct product stability of asymptotic property C, Room 109
Greg Bell
UNCG
gcbell@uncg.edu

Coauthors: Andrzej Nagrko

Asymptotic property C is a dimension-like large-scale invariant of metric spaces that is of interest when
applied to spaces with infinite asymptotic dimension. It was first described by Dranishnikov, who based it
on Haver’s topological property C. Topological property C fails to be preserved by products in very striking
ways and so a natural question that remained open for some 10+ years is whether asymptotic property
C is preserved by products. Using a technique inspired by Rohm we show that asymptotic property C is
preserved by direct products of metric spaces.

Virtual Seifert surfaces and slice obstructions for knots in thickened surfaces, Room 109
Micah Chrisman
Monmouth University
mchrisma@monmouth.edu

Coauthors: Hans U. Boden, Robin Gaudreau

For i = 0, 1, let Ki be an oriented knot in ⌃i ⇥ I, where ⌃i is a compact oriented surface and I = [0, 1].
Then K0 and K1 are said to be concordant if there is a compact oriented 3-manifold M and an embedding
⌃1 t �⌃0 ,! @M such that K1 t �K0 bounds an annulus in M ⇥ I. A knot K in ⌃ ⇥ I is said to be slice
if it is concordant to the unknot in S2 ⇥ I. This geometric definition, due to Turaev [Tu], is equivalent to
concordance of virtual knots as defined by Dye-Kaestner-Kau↵man [DKK] and Carter-Kamada-Saito [CKS].

Homologically trivial knots in ⌃ ⇥ I correspond to the collection of virtual knots called almost classical
knots (AC knots). Here we introduce the notion of virtual Seifert surfaces. Virtual Seifert surfaces may be
thought of as a generalization of Gauss diagrams of virtual knots to spanning surfaces of a knot. This device
is then employed to extend the Tristram-Levine signature function to AC knots. Using the AC signature
functions and Tuarev’s graded genus invariant, we determine the slice status of all 76 almost classical knots
having at most six crossings. The slice obstructions for AC knots are then extended to all virtual knots via
the parity projection map. This map, which is computable from a Gauss diagram, sends a concordance class
of virtual knots to a concordance class of AC knots.
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Curve shortening to find geodesics in CAT(0) spaces of trees, Room 109
Sean Cleary
The City College of New York and the CUNY Graduate Center
cleary@sci.ccny.cuny.edu

Coauthors: Joel Hass, University of California- Davis Katherine St. John, City University of New York

Billera, Holmes, and Vogtmann introduced a CAT(0) complex whose points are phylogenetic trees on
a specified set of taxa. Finding geodesics between points of these spaces gives not only a useful distance
between trees, but also a way to interpolate between trees. Algorithms for finding geodesics in these spaces
are often di�cult because of the many cells present. We describe an approach for finding geodesics e�ciently
based upon iterative curve shortening.

Hyperbolization on infinite type 3-manifolds, Room 109
Tommaso Cremaschi
Boston College
cremasch@bc.edu

In this talk we will provide an answer to the following question posed by Agol:
Question (Agol). Is there a 3-dimensional manifold M with no divisible subgroups in its fundamental

group that is locally hyperbolic but not hyperbolic?
To do so we will construct a 3-manifold M that is locally hyperbolic and without divisible subgroups but

such that it does not admit a hyperbolic structure. We will then state a characterisation of hyperbolizable
3-manifolds in the following class: 3- manifolds that admit an exhaustion by hyperbolizable 3-manifolds with
incompressible boundary such that all boundary components have uniformly bounded genera.

Superinjective Simplicial Maps of the Two-sided Curve Complexeson Nonorientable Surfaces,
Room 109
Elmas Irmak
Bowling Green State University
eirmak@bgsu.edu

Coauthors: Luis Paris

I will talk abouta joint work with Luis Paris. We prove that on a compact, connected, nonorientable
surface of genus at least 5,any superinjective simplicial map from the two-sided curve complex to itself is
induced by a homeomorphismthat is unique up to isotopy. Iwill also talk aboutan application in the mapping
class groups.
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Totally geodesic surfaces in arithmetic hyperbolic 3-manifolds, Room 109
Benjamin Linowitz
Oberlin College
benjamin.linowitz@oberlin.edu

Coauthors: Je↵rey S. Meyer

In this talk we will discuss some recent work on the problem of determining the extent to which the
geometry of an arithmetic hyperbolic 3-manifold M is determined by the geometric genus spectrum of M
(i.e., the set of isometry classes of finite area, properly immersed, totally geodesic surfaces of M, considered
up to free homotopy). In particular, we will give bounds on the totally geodesic 2-systole, construct infinitely
many incommensurable manifolds with the same initial geometric genus spectrum and analyze the growth
of the genera of minimal surfaces across commensurability classes. These results have applications to the
study of how Heegard genus grows across commensurability classes.

Subgroups of relatively hyperbolic groups of relative dimension 2, Room 109
Eduardo Martinez-Pedroza
Memorial University
emartinezped@mun.ca

A remarkable result of Gersten states that the class of hyperbolic groups of cohomological dimension 2 is
closed under taking finitely presented subgroups. We prove the analogous result for toral relatively hyperbolic
groups of dimension 2 with respect to the family of parabolic subgroups. The proof relies on an algebraic
approach to relative homological Dehn functions, and a new characterization of relative hyperbolicity. In
the talk, I will describe the result and some applications, and briefly describe some of the tools used in the
proof.

Title: CAT(0) groups, rigidity, and the morse boundary, Room 109
Devin Murray
Brandeis University
dmurray@brandeis.edu

Coauthors: Ruth Charney

In geometric group theory a finitely presented group is often identified with its Cayley graph. Unfor-
tunately, the Cayley graph depends on the generating set of the group, and is only well defined up to
quasi-isometry. Because quasi-isometries are such a weak geometric equivalence a natural question to ask
is, if two groups are quasi-isometric how similar are they as groups? For some classes of groups the answer
is quite surprising! For example, a group which is quasi-isometric to the fundamental group of a surface
group is (virtually) isomorphic to a surface group! A class of groups which exhibits this property is called
quasi-isometrically rigid.

Many classes of groups are quasi-isometrically rigid, free abelian groups, finite volume discrete subgroups
of a non-compact Lie group, surface groups, etc. Often, negative or non-positive curvature plays an important
role in proving rigidity theorems.

CAT(0) groups are a natural generalization of non-positively curved manifold groups. The morse bound-
ary is a quasi-isometry invariant for CAT(0) groups that serves a similar role that the boundary of hyperbolic
n-space serves for hyperbolic manifold groups. I will introduce all of the objects in question and talk about
some results for the morse boundary that make it a promising tool to study the quasi-isometric rigidity of
some classes of CAT(0) groups.
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Compactifications of unstable Nöbeling spaces, Room 109
Andrzej Nagorko
University of Warsaw
amn@mimuw.edu.pl

This work revolves around two major open conjectures of dimension theory.
Conjecture 1. Every k-dimensional subset of the n-dimensional Euclidean space Rn has a k-dimensional

compactification that embeds into Rn.
Conjecture 2. A k-dimensional Menger cube Mn

k ⇢ Rn contains a topological copy of every k-dimensional
subset of Rn.

A deep theorem of Stanko from 1971 implies that these conjectures are equivalent. Hurewicz and Wallman
wrote in 1941 that Conjecture 1 is the most important open conjecture left in dimension theory. It is still
open.

Nobeling space Nn
k is a subset of Rn consisting of points with at most k rational coordinates. It is

conjectured to be a universal space for k-dimensional subsets of Rn. Hence a natural question, asked by
Engelking in 1978.

Question. Does Nn
k embed into Mn

k ?
We answer this question a�rmatively. We prove that Nn

k has a k-dimensional compactification that
embeds into Rn. By Stanko’s theorem, Mn

k is universal for k-dimensional compact subsets of Rn. Hence Nn
k

embeds into Mn
k .

Decomposing CAT(0) Cube Complexes, Room 109
Christopher O’Donnell
Tufts University
christopher.o donnell@tufts.edu

Coauthors: Robert Kropholler

It is known that if a CAT(0) cube complex decomposes as a product, then any group of automorphisms
must virtually act as a the product of automorphisms of the factors. My talk will discuss how much we can
say about a CAT(0) cube complex which admits a nice enough action by a product of groups.

The outer automorphism group of a right-angled Coxeter group is either large or virtually
abelian, Room 109
Andrew Sale
Vanderbilt University
andrew.w.sale@gmail.com

Coauthors: Tim Susse

In the study of automorphisms of graph products of cyclic groups (including RAAGs and RACGs), a
separating intersection of links (SIL) has been shown to hold a lot of power. The reason for this is that a SIL
is exactly the necessary condition on the underlying graph that determines when two partial conjugations do
not commute. We introduce two variations on a SIL that give a combinatorial condition on a right-angled
Coxeter group that determine the dichotomy given in the title: the outer automorphism group of a RACG
has a finite index subgroup that is either abelian or maps onto F2. This is joint work with Tim Susse.
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Manifold Models for Hyperplane Complements, Room 109
Kevin Schreve
Univesity of Michigan
schreve@umich.edu

Coauthors: Michael Davis, Giang Le

A complex hyperplane arrangement is a collection of a�ne hyperplanes in Cn. The space obtained
by removing these hyperplanes is called the hyperplane complement. The hyperplane complement is a
noncompact manifold of dimension 2n. We are interested in when this complement is homotopy equivalent
to a manifold of smaller dimension. Our main result is that this almost always occurs when the complement
is aspherical.

Uncountably many quasi-isometry classes of groups of type FP, Room 109
Ignat Soroko
University of Oklahoma
ignat.soroko@ou.edu

Coauthors: Robert Kropholler, Tufts University; Ian Leary, University of Southampton

An interplay between algebra and topology goes in many ways. Given a space X, we can study its
homology and homotopy groups. In the other direction, given a group G, we can form its Eilenberg–Maclane
space K(G, 1). It is natural to wish that it is ‘small’ in some sense. If K(G, 1) space has n–skeleton with
finitely many cells, then G is said to have type Fn. Such groups act naturally on the cellular chain complex
of the universal cover for K(G, 1), which has finitely generated free modules in all dimensions up to n. On
the other hand, if the group ring ZG has a projective resolution (Pi) of length n where each module Pi is
finitely generated, then G is said to have type FPn. There have been many intriguing questions on whether
classes Fn and FPn are di↵erent, and some of them are still open. Bestvina and Brady gave first examples
of groups of type FP2 which are not finitely presentable (i.e. not of type F2). In his recent paper, Ian Leary
has produced uncountably many of such groups. Using Bowditch’s concept of taut loops in Cayley graphs,
we show that Ian Leary’s groups actually form uncountably many classes up to quasi-isometry.

simplicial volume of nonpositively curved manifolds, Room 109
Shi Wang
Indiana University
wang679@iu.edu

Coauthors: Chris Connell

In this talk, I will discuss the notion of simplicial volume introduced by Gromov and Thurston. For
nonpositively curved manifolds, Gromov conjectured that negative Ricci curvature implies postivitity of
simplicial volume. I will talk about some recent work joint with Chris Connell. We show that, under a
stronger curvature condition, the simplicial volume is always positive, this answers a special case of Gromov’s
problem.
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Extension theorems for large scale spaces via neighbourhood operators, Room 109
Thomas Weighill
University of Tennessee
tweighil@vols.utk.edu

Coauthors: Jerzy Dydak

Coarse geometry is the study of the large scale behaviour of spaces. The motivation for studying such
behaviour comes mainly from index theory and geometric group theory. In this talk we introduce the notion
of (hybrid) large scale normality for large scale spaces and prove analogues of Urysohns Lemma and the
Tietze Extension Theorem for spaces with this property, where continuous maps are replaced by (continuous
and) slowly oscillating maps. To do so, we first prove a general form of each of these results in the context
of a set equipped with a neighbourhood operator satisfying certain axioms, from which we obtain both the
classical topological results and the (hybrid) large scale results as corollaries. We prove that all metric spaces
are large scale normal, and give some examples of spaces which are not hybrid large scale normal. Finally,
we look at some properties of Higson coronas of hybrid large scale normal spaces.

Cyclic branched covers of the sphere, Room 109
Rebecca R Winarski

winarskr@uwm.edu

Coauthors: Tyrone Ghaswala

Birman and Hilden ask: given finite branched cover X over the 2-sphere, does every homeomorphism
of the sphere lift to a homeomorphism of X? For covers of degree 2, the answer is yes, but the answer is
sometimes yes and sometimes no for higher degree covers. In joint work with Ghaswala, we completely answer
the question for cyclic branched covers. When the answer is yes, there is an embedding of the mapping class
group of the sphere into a finite quotient of the mapping class group of X. In a family where the answer
is no, we find a presentation for the group of isotopy classes of homeomorphisms of the sphere that do lift,
which is a finite index subgroup of the mapping class group of the sphere.

Rigidity of quasiisometries of nilpotent Lie groups and negatively curved solvable Lie groups,
Room 109
Xiangdong Xie
Bowling Green State University
xiex@bgsu.edu

I will give a survey of recent progresses on the rigidity of quasiisometries of nilpotent Lie groups and
negatively curved solvable Lie groups.
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