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TOPOLOGY  ALGEBRA
Space X  π1(X ), Hn(X ), πn(X ), etc.

ALGEBRA  TOPOLOGY
Group G  Eilenberg–Maclane space X = K (G , 1) :

X is a CW-complex,

π1(X ) = G ,

X̃ is contractible.

We build X = K (G , 1) as follows:

X has a single 0–cell,

1–cells of X correspond to generators of G ,

2–cells of X correspond to relations of G ,

3–cells of X are added to kill π2(X ),

4–cells of X are added to kill π3(X ),

etc. . .
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If the n–skeleton of K (G , 1) has finitely many cells, group G is of type Fn:

F1 = finitely generated groups,
F2 = finitely presented groups.

If K (G , 1) has finitely many cells, group G is of type F.

If X = K (G , 1), G acts cellularly on X̃ and we have a long exact sequence

· · · −→ Ci (X̃ ) −→ · · · −→ C1(X̃ ) −→ C0(X̃ ) −→ Z −→ 0

consisting of free ZG–modules. This leads to a definition:

A group G is of type FPn if the trivial ZG–module Z has a projective
resolution which is finitely generated in dimensions 0 to n:

· · · −→ Pn −→ · · · −→ P1 −→ P0 −→ Z −→ 0

If, in addition, all Pi = 0 for i > N, for some N, group G is of type FP.
Clearly,

FPn ⊃ FPn+1 and Fn ⊃ Fn+1.

FPn ⊃ Fn, and FP ⊃ F .
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Question 1: Are these inclusions strict?
Answer: Yes.

Stallings’63: example of F2 \ F3,

Bieri’76: Fn \ Fn+1

Bestvina–Brady’97: FP2 \ F2.

Bestvina–Brady machine:

Input: A flag simplicial complex L.
Output: A group BBL with nice properties:

L is (n − 1)–connected ⇐⇒ BBL is of type Fn,

L is (n − 1)–acyclic ⇐⇒ BBL is of type FPn.

L is octahedron: π1(L) = 1, π2(L) 6= 0, =⇒ Stallings’s example.
L is n–dimensional octahedron (orthoplex) =⇒ Bieri’s example.
L has π1(L) 6= 1, but H1(L) = 0 =⇒ BBL of type FP2 \ F2.

Question 2: How many groups are there of type FP2?
Answer 1: Up to isomorphism: 2ℵ0 (I.Leary’15)
Answer 2: Up to quasiisometry: 2ℵ0 (R.Kropholler–I.Leary–S.’17)
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I.J.Leary’s groups GL(S)

Input: A flag simplicial complex L, a finite collection Γ of directed edge
loops in L that normally generates π1(L), a subset S ⊂ Z.

Output: Group GL(S) defined as:

Generators: directed edges of L, the opposite edge to a being a−1.

(Triangle relations) For each directed triangle (a, b, c) in L, two
relations: abc = 1 and a−1b−1c−1 = 1.

(Long cycle relations) For each n ∈ S \ 0 and each (a1, . . . , al) ∈ Γ, a
relation: an1a

n
2 . . . a

n
l = 1.

Theorem (I.J.Leary)

If L is a flag complex with π1(L) 6= 1, then groups GL(S) form 2ℵ0

isomorphism classes. If, in addition, L is aspherical and acyclic, then
groups GL(S) are all of type FP.

What is a possible example of an aspherical and acyclic flag simplicial
complex L?
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Take the famous Higman’s group:

H = 〈a, b, c , d | ab = a2, bc = b2, cd = c2, da = d2〉.
Let K be its presentation complex. It is aspherical and acyclic. Take L to
be the 2nd barycentric subdivision of K . Then L is a flag simplicial
complex with 97 vertices, 336 edges and 240 triangles. Thus,

GL(S) = 〈336 gen’s | 240× 2 triangle relators, 1 long relator ∀n ∈ S〉.

Theorem (R.Kropholler–Leary–S.)

Groups GL(S) form 2ℵ0 classes up to quasiisometry.

Recall that groups G1, G2 are quasiisometric (qi), if their Cayley graphs
are qi as metric spaces, i.e. there exists f : Cay(G1, d1)→ Cay(G2, d2),
and A ≥ 1, B ≥ 0, C ≥ 0 such that for all x , y ∈ Cay(G1):

1

A
d1(x , y)− B ≤ d2(f (x), f (y)) ≤ Ad1(x , y) + B,

and for all z ∈ Cay(G2) there exists x ∈ Cay(G1) such that
d2(z , f (x)) ≤ C .
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be the 2nd barycentric subdivision of K . Then L is a flag simplicial
complex with 97 vertices, 336 edges and 240 triangles. Thus,

GL(S) = 〈336 gen’s | 240× 2 triangle relators, 1 long relator ∀n ∈ S〉.

Theorem (R.Kropholler–Leary–S.)

Groups GL(S) form 2ℵ0 classes up to quasiisometry.

Recall that groups G1, G2 are quasiisometric (qi), if their Cayley graphs
are qi as metric spaces, i.e. there exists f : Cay(G1, d1)→ Cay(G2, d2),
and A ≥ 1, B ≥ 0, C ≥ 0 such that for all x , y ∈ Cay(G1):

1

A
d1(x , y)− B ≤ d2(f (x), f (y)) ≤ Ad1(x , y) + B,

and for all z ∈ Cay(G2) there exists x ∈ Cay(G1) such that
d2(z , f (x)) ≤ C .
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How to distinguish groups up to qi?

Bowditch’98: a concept of taut loops in Cayley graphs. These are the
loops which are not consequences of shorter loops.

Let TL(G ) denote the spectrum of lengths of taut loops in the Cayley
graph of a group G . Bowditch proves that if groups G1 and G2 are qi,
then there exist constants A,B,N > 0 such that for every l1 ∈ TL(G1),
l1 > N, there exist an l2 ∈ TL(G2) such that l1 ∈ [Al2,Bl2] and vice versa.

Goal: to engineer groups with taut loops spectra “wildly interspersed” in
N, this will make the linear relation above impossible.

Bowditch does this for small cancellation groups: he proves that there exist
continuously many qi classes of 2–generator small cancellation groups.

In our case, groups GL(S) do not have the property of small cancellation,
so instead we use CAT(0) geometry of branched covers of cubical
complexes to get estimates for the taut loops spectra. This information,
and the freedom to choose arbitrary subsets S ⊂ Z for groups GL(S) allow
us to construct continuously many qi classes of these groups.
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