University of Dayton
 eCommons

The Specification Property and Infinite Entropy for Certain Classes of Linear Operators

James Kelly
Christopher Newport University, james.kelly@cnu.edu
Will Brian
Tim Tennant

Follow this and additional works at: http://ecommons.udayton.edu/topology_conf
Part of the Geometry and Topology Commons, and the Special Functions Commons

eCommons Citation

Kelly, James; Brian, Will; and Tennant, Tim, "The Specification Property and Infinite Entropy for Certain Classes of Linear Operators" (2017). Summer Conference on Topology and Its Applications. 24.
http://ecommons.udayton.edu/topology_conf/24

The Specification Property and Infinite Entropy for Certain Classes of Linear Operators

James P. Kelly
Coauthors: Will Brian and Tim Tennant

III CHRISTOPHER NEWPORT U N I V ER S I T Y

$32^{\text {nd }}$ Summer Conference on Topology and Its Applications

Definitions

Let X be a separable F-space, and let $T: X \rightarrow X$ be a continuous linear operator.

Definitions

Let X be a separable F-space, and let $T: X \rightarrow X$ be a continuous linear operator.

- T is hypercyclic if there exists a point $x \in X$ such that the set

$$
\left\{x, T x, T^{2} x, T^{3} x, \ldots\right\}
$$

is dense in X.

Definitions

Let X be a separable F-space, and let $T: X \rightarrow X$ be a continuous linear operator.

- T is hypercyclic if there exists a point $x \in X$ such that the set

$$
\left\{x, T x, T^{2} x, T^{3} x, \ldots\right\}
$$

is dense in X.

- A point $x \in X$ is periodic if $T^{n} x=x$ for some $n \in \mathbb{N}$.
- T is Devaney chaotic if it is hypercyclic and has a dense set of periodic points.

Specification Property

- y_{2}

Specification Property

- $T^{b_{1}} y_{1}$
- $T^{b_{2}} y_{2}$
- $T^{b_{s}} y_{s}$
- $T y_{1}$
- $T^{a_{2}} y_{2}$
- $T^{a_{s}} y_{s}$
- y_{1}
- y_{2}
- y_{s}

Specification Property

Specification Property

$$
\begin{array}{cll}
T^{b_{1}} x \bullet \bullet T^{b_{1}} y_{1} & \bullet T^{b_{2}} y_{2} & \\
\vdots & \bullet & T^{b_{s}} y_{s} \\
\vdots & \bullet & \vdots \\
T x \bullet \bullet y_{1} & \bullet T^{a_{2}} y_{2} & \\
x \bullet \bullet y_{1} & \bullet y_{2} & \bullet \cdot T^{a_{s}} y_{s} \\
\vdots & \bullet & \bullet y_{s}
\end{array}
$$

Specification Property

$$
\begin{array}{rccc}
T^{b_{1}} x \bullet & \bullet T^{b_{1}} y_{1} & T^{b_{2}} x \bullet \bullet T^{b_{2}} y_{2} & \\
\vdots & \vdots & \bullet & T^{b_{s}} y_{s} \\
\vdots & \vdots & \bullet & \\
T x & \bullet T y_{1} & T^{a_{2}} x \bullet & \bullet T^{a_{2}} y_{2} \\
& \bullet y_{2} & \bullet \cdot & \bullet T^{a_{s}} y_{s} \\
x \bullet y_{1} & & \bullet & \bullet y_{s}
\end{array}
$$

Specification Property

$$
\begin{array}{cccc}
T^{b_{1}} x \bullet \bullet T^{b_{1}} y_{1} & T^{b_{2}} x \bullet \bullet T^{b_{2}} y_{2} & & T^{b_{s}} x \bullet \bullet T^{b_{s}} y_{s} \\
\vdots & \vdots & \vdots & \\
T x & \bullet & \vdots y_{1} & T^{a_{2}} x \bullet \bullet T^{a_{2}} y_{2} \\
& \bullet y_{2} & \bullet & \bullet \\
x \bullet y_{1} & & T^{a_{s}} x \bullet \bullet T^{a_{s}} y_{s} \\
& \bullet y_{s}
\end{array}
$$

Specification Property

Definition

Let K be a compact, T-invariant, subset of X. We say that T has the specification property on K if for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for any $s \in \mathbb{N}$, any points $y_{1}, \ldots, y_{s} \in K$, and any integers

$$
0=a_{1} \leq b_{1}<a_{2} \leq b_{2}<\cdots<a_{s} \leq b_{s}
$$

which satisfy $a_{i+1}-b_{i} \geq N$ for $i=1, \ldots, s-1$, there exists a point $x \in K$ which is fixed by $T^{N+b_{s}}$ and, for each $i=1, \ldots, s$ and all integers k with $a_{i} \leq k \leq b_{i}$, we have

$$
d\left(T^{k} x, T^{k} y_{i}\right)<\epsilon
$$

Specification Property

Definition

T has the operator specification property if there exists an increasing sequence $\left(K_{n}\right)_{n=1}^{\infty}$ of compact, T-invariant sets with $0 \in K_{1}$ and

$$
\overline{\bigcup_{n=1}^{\infty} K_{n}}=X
$$

such that T has the specification property on K_{n} for each $n \in \mathbb{N}$.

Specification Property

Definition

T has the operator specification property if there exists an increasing sequence $\left(K_{n}\right)_{n=1}^{\infty}$ of compact, T-invariant sets with $0 \in K_{1}$ and

$$
\overline{\bigcup_{n=1}^{\infty} K_{n}}=X
$$

such that T has the specification property on K_{n} for each $n \in \mathbb{N}$.

If T has the operator specification property, then

Specification Property

Definition

T has the operator specification property if there exists an increasing sequence $\left(K_{n}\right)_{n=1}^{\infty}$ of compact, T-invariant sets with $0 \in K_{1}$ and

$$
\overline{\bigcup_{n=1}^{\infty} K_{n}}=X
$$

such that T has the specification property on K_{n} for each $n \in \mathbb{N}$.

If T has the operator specification property, then

- T is Devaney chaotic.

Specification Property

Definition

T has the operator specification property if there exists an increasing sequence $\left(K_{n}\right)_{n=1}^{\infty}$ of compact, T-invariant sets with $0 \in K_{1}$ and

$$
\overline{\bigcup_{n=1}^{\infty} K_{n}}=X
$$

such that T has the specification property on K_{n} for each $n \in \mathbb{N}$.

If T has the operator specification property, then
$\downarrow T$ is Devaney chaotic.

- T has positive topological entropy.

The Frequent Hypercyclicity Criterion

Definition (Frequently Hypercyclic)

T is frequently hypercyclic if there exists a point $x \in X$ such that for every non-empty open set $U \subseteq X$,

$$
\liminf _{n \rightarrow \infty} \frac{\operatorname{card}\left(\left\{k \in \mathbb{N}: T^{k} x \in U\right\} \cap[1, n]\right)}{n}>0 .
$$

The Frequent Hypercyclicity Criterion

Definition (Frequently Hypercyclic)

T is frequently hypercyclic if there exists a point $x \in X$ such that for every non-empty open set $U \subseteq X$,

$$
\liminf _{n \rightarrow \infty} \frac{\operatorname{card}\left(\left\{k \in \mathbb{N}: T^{k} x \in U\right\} \cap[1, n]\right)}{n}>0 .
$$

Theorem (Frequent Hypercycicity Criterion, Bonilla and Grosse-Erdmann, 2007)

Let T be an operator on a separable F-space X. If there is a dense subset X_{0} of X and a sequence of maps $S_{n}: X_{0} \rightarrow X$ such that, for each $x \in X_{0}$,

1. $\sum_{n=1}^{\infty} T^{n} x$ converges unconditionally
2. $\sum_{n=1}^{\infty} S_{n} x$ converges unconditionally
3. $T^{n} S_{n} x=x$, and $T^{m} s_{n} x=S_{n-m} x$ for $n>m$.

Then T is frequently hypercyclic.

The Frequent Hypercyclicity Criterion

(Adapted from a diagram by Bartoll, Martínez-Giménez, Peris)

The Frequent Hypercyclicity Criterion

(Adapted from a diagram by Bartoll, Martínez-Giménez, Peris)

The Frequent Hypercyclicity Criterion

(Adapted from a diagram by Bartoll, Martínez-Giménez, Peris)

Topological Entropy

- Let $K \subseteq X$ be compact. Given $n \in \mathbb{N}$ and $\epsilon>0$, a set $S \subseteq K$ is called (n, ϵ)-separated if for any $x, y \in S$ with $x \neq y$, we have $d\left(T^{k} x, T^{k} y\right) \geq \epsilon$ for some $0 \leq k \leq n$.

Topological Entropy

- Let $K \subseteq X$ be compact. Given $n \in \mathbb{N}$ and $\epsilon>0$, a set $S \subseteq K$ is called (n, ϵ)-separated if for any $x, y \in S$ with $x \neq y$, we have $d\left(T^{k} x, T^{k} y\right) \geq \epsilon$ for some $0 \leq k \leq n$.
We denote the largest cardinality of an (n, ϵ)-separated subset of K by $s_{n, e}(T, K)$.

Topological Entropy

- Let $K \subseteq X$ be compact. Given $n \in \mathbb{N}$ and $\epsilon>0$, a set $S \subseteq K$ is called (n, ϵ)-separated if for any $x, y \in S$ with $x \neq y$, we have $d\left(T^{k} x, T^{k} y\right) \geq \epsilon$ for some $0 \leq k \leq n$.
We denote the largest cardinality of an (n, ϵ)-separated subset of K by $s_{n, e}(T, K)$.
- The topological entropy of T restricted to the compact set K is given by

$$
h(T, K)=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log s_{n, \epsilon}(T, K) .
$$

Topological Entropy

- Let $K \subseteq X$ be compact. Given $n \in \mathbb{N}$ and $\epsilon>0$, a set $S \subseteq K$ is called (n, ϵ)-separated if for any $x, y \in S$ with $x \neq y$, we have $d\left(T^{k} x, T^{k} y\right) \geq \epsilon$ for some $0 \leq k \leq n$.
We denote the largest cardinality of an (n, ϵ)-separated subset of K by $s_{n, e}(T, K)$.
- The topological entropy of T restricted to the compact set K is given by

$$
h(T, K)=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log s_{n, \epsilon}(T, K) .
$$

- The topological entropy of T is given by

$$
h(T)=\sup \{h(T, K): K \text { is a compact subset of } X\}
$$

Translation Operators on $L_{v}^{p}\left(\mathbb{R}_{+}\right)$

- Let $v:[0, \infty) \rightarrow[0, \infty)$ be a measurable function such that for every $b \geq 0$,

$$
\int_{0}^{b} v(x) d x<\infty
$$

and for every $\alpha>0$

$$
\sup _{x>0} \frac{v(x)}{v(x+\alpha)}<\infty
$$

Translation Operators on $L_{v}^{p}\left(\mathbb{R}_{+}\right)$

- Let $v:[0, \infty) \rightarrow[0, \infty)$ be a measurable function such that for every $b \geq 0$,

$$
\int_{0}^{b} v(x) d x<\infty
$$

and for every $\alpha>0$

$$
\sup _{x>0} \frac{v(x)}{v(x+\alpha)}<\infty
$$

- Then for each $1<p<\infty$, we define

$$
\begin{aligned}
L_{v}^{p}\left(\mathbb{R}_{+}\right) & =\left\{f:\left.\mathbb{R}_{+} \rightarrow \mathbb{R}\left|\int_{0}^{\infty}\right| f(x)\right|^{p} v(x) d x<\infty\right\} \\
\|f\|_{L_{v}^{p}} & =\left(\int_{0}^{\infty}|f(x)|^{p} v(x) d x\right)^{1 / p}
\end{aligned}
$$

Translation Operators on $L_{v}^{p}\left(\mathbb{R}_{+}\right)$

- Let $v:[0, \infty) \rightarrow[0, \infty)$ be a measurable function such that for every $b \geq 0$,

$$
\int_{0}^{b} v(x) d x<\infty
$$

and for every $\alpha>0$

$$
\sup _{x>0} \frac{v(x)}{v(x+\alpha)}<\infty
$$

- Then for each $1<p<\infty$, we define

$$
\begin{aligned}
L_{v}^{p}\left(\mathbb{R}_{+}\right) & =\left\{f:\left.\mathbb{R}_{+} \rightarrow \mathbb{R}\left|\int_{0}^{\infty}\right| f(x)\right|^{p} v(x) d x<\infty\right\} \\
\|f\|_{L_{v}^{p}} & =\left(\int_{0}^{\infty}|f(x)|^{p} v(x) d x\right)^{1 / p}
\end{aligned}
$$

- For each $\alpha>0$, we define the translation operator T_{α} on $L_{v}^{p}\left(\mathbb{R}_{+}\right)$by

$$
T_{\alpha} f(x)=f(x+\alpha) .
$$

Translation Operators on $L_{v}^{p}\left(\mathbb{R}_{+}\right)$

Theorem (Mangino and Murillo-Arcila, 2015)

The following are equivalent:

1. T_{α} satisfies the Frequent Hypercyclicity Criterion.
2. T_{α} is frequently hypercyclic.
3. T_{α} has the operator specification property.
4. T_{α} is Devaney chaotic.
5. $\int_{0}^{\infty} v(x) d x<\infty$.

Translation Operators on $L_{v}^{p}\left(\mathbb{R}_{+}\right)$

Theorem (Mangino and Murillo-Arcila, 2015)

The following are equivalent:

1. T_{α} satisfies the Frequent Hypercyclicity Criterion.
2. T_{α} is frequently hypercyclic.
3. T_{α} has the operator specification property.
4. T_{α} is Devaney chaotic.
5. $\int_{0}^{\infty} v(x) d x<\infty$.
6. T_{α} has a non-trivial periodic point.

Translation Operators on $L_{v}^{p}\left(\mathbb{R}_{+}\right)$

Theorem (Mangino and Murillo-Arcila, 2015)

The following are equivalent:

1. T_{α} satisfies the Frequent Hypercyclicity Criterion.
2. T_{α} is frequently hypercyclic.
3. T_{α} has the operator specification property.
4. T_{α} is Devaney chaotic.
5. $\int_{0}^{\infty} v(x) d x<\infty$.
6. T_{α} has a non-trivial periodic point.

Theorem (Brian, K, Tennant)

If any of the equivalent conditions in the theorem above are satisfied, then $h\left(T_{\alpha}\right)=\infty$.

Translation Operators on $L_{v}^{p}\left(\mathbb{R}_{+}\right)$

Theorem (Mangino and Murillo-Arcila, 2015)

The following are equivalent:

1. T_{α} satisfies the Frequent Hypercyclicity Criterion.
2. T_{α} is frequently hypercyclic.
3. T_{α} has the operator specification property.
4. T_{α} is Devaney chaotic.
5. $\int_{0}^{\infty} v(x) d x<\infty$.
6. T_{α} has a non-trivial periodic point.

Theorem (Brian, K, Tennant)

If any of the equivalent conditions in the theorem above are satisfied, then $h\left(T_{\alpha}\right)=\infty$.

The converse does not hold.

The Backward Shift on l_{v}^{p}

$\triangleright l_{v}^{p}=\left\{\left(x_{n}\right)_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}: \sum_{n=1}^{\infty}\left|x_{n}\right|^{p} v_{n}<\infty\right\}$

The Backward Shift on l_{v}^{p}

- $l_{v}^{p}=\left\{\left(x_{n}\right)_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}: \sum_{n=1}^{\infty}\left|x_{n}\right|^{p} v_{n}<\infty\right\}$
- $|x|_{l_{v}^{p}}=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p} v_{n}\right)^{1 / p}$

The Backward Shift on l_{v}^{p}

- $l_{v}^{p}=\left\{\left(x_{n}\right)_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}: \sum_{n=1}^{\infty}\left|x_{n}\right|^{p} v_{n}<\infty\right\}$
- $|x|_{l_{v}^{p}}=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p} v_{n}\right)^{1 / p}$
- We define the backward shift B on l_{v}^{p} by

$$
B\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right) .
$$

The Backward Shift on l_{v}^{p}

Theorem (Bartoll, Martínez-Giménez, and Peris, 2015)

The following are equivalent:

1. $\sum_{n=1}^{\infty} v_{n}<\infty$
2. B has the operator specification property.
3. B is Devaney Chaotic.

The Backward Shift on l_{v}^{p}

Theorem (Bartoll, Martínez-Giménez, and Peris, 2015)

The following are equivalent:

1. $\sum_{n=1}^{\infty} v_{n}<\infty$
2. B has the operator specification property.
3. B is Devaney Chaotic.

Theorem (Brian, K, Tennant)

If any of the equivalent conditions in the theorem above are satisfied, then $h(B)=\infty$.

The Backward Shift on l_{v}^{p}

Example of a non-summable weight sequence where $h(B)=\infty$.

The Backward Shift on l_{v}^{p}

Example of a non-summable weight sequence where $h(B)=\infty$.

$$
\begin{aligned}
P_{1} & =\{1\} \\
Q_{1} & =\{2, \ldots, 10\}
\end{aligned}
$$

The Backward Shift on l_{v}^{p}

Example of a non-summable weight sequence where $h(B)=\infty$.

$$
\begin{aligned}
P_{1} & =\{1\} \\
Q_{1} & =\{2, \ldots, 10\}
\end{aligned}
$$

Suppose P_{j-1} and Q_{j-1} have been defined, and let $q=\max Q_{j}$. Then define

$$
\begin{aligned}
P_{j} & =\left\{q+1, q+2 \ldots, q+j^{2}\right\} \\
Q_{j} & =\left\{q+j^{2}+1, q+j^{2}+2 \ldots, q+10 j^{2}\right\}
\end{aligned}
$$

The Backward Shift on l_{v}^{p}

Example of a non-summable weight sequence where $h(B)=\infty$.

$$
\begin{aligned}
P_{1} & =\{1\} \\
Q_{1} & =\{2, \ldots, 10\}
\end{aligned}
$$

Suppose P_{j-1} and Q_{j-1} have been defined, and let $q=\max Q_{j}$. Then define

$$
\begin{aligned}
P_{j} & =\left\{q+1, q+2 \ldots, q+j^{2}\right\} \\
Q_{j} & =\left\{q+j^{2}+1, q+j^{2}+2 \ldots, q+10 j^{2}\right\}
\end{aligned}
$$

We define the weight sequence $\left(v_{n}\right)_{n=1}^{\infty}$ as follows:

The Backward Shift on l_{v}^{p}

Example of a non-summable weight sequence where $h(B)=\infty$.

$$
\begin{aligned}
P_{1} & =\{1\} \\
Q_{1} & =\{2, \ldots, 10\}
\end{aligned}
$$

Suppose P_{j-1} and Q_{j-1} have been defined, and let $q=\max Q_{j}$. Then define

$$
\begin{aligned}
P_{j} & =\left\{q+1, q+2 \ldots, q+j^{2}\right\} \\
Q_{j} & =\left\{q+j^{2}+1, q+j^{2}+2 \ldots, q+10 j^{2}\right\}
\end{aligned}
$$

We define the weight sequence $\left(v_{n}\right)_{n=1}^{\infty}$ as follows:
If $n \in P_{j}$, then $v_{n}=1 / j^{2}$.

The Backward Shift on l_{v}^{p}

Example of a non-summable weight sequence where $h(B)=\infty$.

$$
\begin{aligned}
P_{1} & =\{1\} \\
Q_{1} & =\{2, \ldots, 10\}
\end{aligned}
$$

Suppose P_{j-1} and Q_{j-1} have been defined, and let $q=\max Q_{j}$. Then define

$$
\begin{aligned}
P_{j} & =\left\{q+1, q+2 \ldots, q+j^{2}\right\} \\
Q_{j} & =\left\{q+j^{2}+1, q+j^{2}+2 \ldots, q+10 j^{2}\right\}
\end{aligned}
$$

We define the weight sequence $\left(v_{n}\right)_{n=1}^{\infty}$ as follows:
If $n \in P_{j}$, then $v_{n}=1 / j^{2}$.
If $n \in Q_{j}$, then $v_{n}=v_{n-1} / 2$.

The Backward Shift on l_{v}^{p}

If $n \in P_{j}$, then $v_{n}=1 / j^{2}$.
If $n \in Q_{j}$, then $v_{n}=v_{n-1} / 2$.

The Backward Shift on l_{v}^{p}

If $n \in P_{j}$, then $v_{n}=1 / j^{2}$.
If $n \in Q_{j}$, then $v_{n}=v_{n-1} / 2$.

$$
v_{1}=\frac{1}{1^{2}}
$$

The Backward Shift on l_{v}^{p}

If $n \in P_{j}$, then $v_{n}=1 / j^{2}$.
If $n \in Q_{j}$, then $v_{n}=v_{n-1} / 2$.

$$
\begin{aligned}
v_{1} & =\frac{1}{1^{2}} \\
v_{2} & =\frac{1}{2 \cdot 1^{2}}
\end{aligned}
$$

The Backward Shift on l_{v}^{p}

If $n \in P_{j}$, then $v_{n}=1 / j^{2}$.
If $n \in Q_{j}$, then $v_{n}=v_{n-1} / 2$.

$$
\begin{aligned}
v_{1} & =\frac{1}{1^{2}} \\
v_{2} & =\frac{1}{2 \cdot 1^{2}} \\
v_{3} & =\frac{1}{2^{2} \cdot 1^{2}}
\end{aligned}
$$

The Backward Shift on l_{v}^{p}

If $n \in P_{j}$, then $v_{n}=1 / j^{2}$.
If $n \in Q_{j}$, then $v_{n}=v_{n-1} / 2$.

$$
\begin{aligned}
v_{1} & =\frac{1}{1^{2}} \\
v_{2} & =\frac{1}{2 \cdot 1^{2}} \\
v_{3} & =\frac{1}{2^{2} \cdot 1^{2}} \\
& \vdots \\
v_{10} & =\frac{1}{2^{9} \cdot 1^{2}}
\end{aligned}
$$

The Backward Shift on l_{v}^{p}

If $n \in P_{j}$, then $v_{n}=1 / j^{2}$.
If $n \in Q_{j}$, then $v_{n}=v_{n-1} / 2$.

$$
\begin{aligned}
v_{1} & =\frac{1}{1^{2}} \\
v_{2} & =\frac{1}{2 \cdot 1^{2}} \\
v_{3} & =\frac{1}{2^{2} \cdot 1^{2}} \\
& \vdots \\
v_{10} & =\frac{1}{2^{9} \cdot 1^{2}}
\end{aligned}
$$

$$
\begin{aligned}
v_{11} & =\frac{1}{2^{2}} \\
& \vdots \\
v_{14} & =\frac{1}{2^{2}}
\end{aligned}
$$

The Backward Shift on l_{v}^{p}

If $n \in P_{j}$, then $v_{n}=1 / j^{2}$.
If $n \in Q_{j}$, then $v_{n}=v_{n-1} / 2$.

$$
\begin{aligned}
v_{1} & =\frac{1}{1^{2}} \\
v_{2} & =\frac{1}{2 \cdot 1^{2}} \\
v_{3} & =\frac{1}{2^{2} \cdot 1^{2}} \\
& \vdots \\
v_{10} & =\frac{1}{2^{9} \cdot 1^{2}}
\end{aligned}
$$

$$
\begin{aligned}
v_{11} & =\frac{1}{2^{2}} \\
& \vdots \\
v_{14} & =\frac{1}{2^{2}} \\
v_{15} & =\frac{1}{2 \cdot 2^{2}}
\end{aligned}
$$

The Backward Shift on l_{v}^{p}

If $n \in P_{j}$, then $v_{n}=1 / j^{2}$.
If $n \in Q_{j}$, then $v_{n}=v_{n-1} / 2$.

$$
\begin{aligned}
v_{1} & =\frac{1}{1^{2}} \\
v_{2} & =\frac{1}{2 \cdot 1^{2}} \\
v_{3} & =\frac{1}{2^{2} \cdot 1^{2}} \\
& \vdots \\
v_{10} & =\frac{1}{2^{9} \cdot 1^{2}}
\end{aligned}
$$

$$
\begin{aligned}
v_{11} & =\frac{1}{2^{2}} \\
& \vdots \\
v_{14} & =\frac{1}{2^{2}} \\
v_{15} & =\frac{1}{2 \cdot 2^{2}} \\
& \vdots \\
v_{50} & =\frac{1}{2^{36} \cdot 1^{2}}
\end{aligned}
$$

The Backward Shift on l_{v}^{p}

If $\left(x_{n}\right)_{n=1}^{\infty}$ is bounded, and $x_{n}=0$ for all $n \in \bigcup_{j=1}^{\infty} P_{j}$, then $\left(x_{n}\right)_{n=1}^{\infty} \in l_{v}^{p}$.

The Backward Shift on l_{v}^{p}

If $\left(x_{n}\right)_{n=1}^{\infty}$ is bounded, and $x_{n}=0$ for all $n \in \bigcup_{j=1}^{\infty} P_{j}$, then $\left(x_{n}\right)_{n=1}^{\infty} \in l_{v}^{p}$. Hence, for all $M \in \mathbb{N}$, we can embed the full shift on M symbols into l_{v}^{p}.

The Backward Shift on l_{v}^{p}

If $\left(x_{n}\right)_{n=1}^{\infty}$ is bounded, and $x_{n}=0$ for all $n \in \bigcup_{j=1}^{\infty} P_{j}$, then $\left(x_{n}\right)_{n=1}^{\infty} \in l_{v}^{p}$. Hence, for all $M \in \mathbb{N}$, we can embed the full shift on M symbols into l_{v}^{p}. It follows that $h(B) \geq 0.9 \log M$ for all $M \in \mathbb{N}$.

The Backward Shift on l_{v}^{p}

If $\left(x_{n}\right)_{n=1}^{\infty}$ is bounded, and $x_{n}=0$ for all $n \in \bigcup_{j=1}^{\infty} P_{j}$, then $\left(x_{n}\right)_{n=1}^{\infty} \in l_{v}^{p}$. Hence, for all $M \in \mathbb{N}$, we can embed the full shift on M symbols into l_{v}^{p}. It follows that $h(B) \geq 0.9 \log M$ for all $M \in \mathbb{N}$.

Thus $h(B)=\infty$.

THANK YOU

