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Definitions

Let X be a separable F -space, and let T : X → X be a continuous linear
operator.

I T is hypercyclic if there exists a point x ∈ X such that the set

{x, Tx, T 2x, T 3x, . . .}

is dense in X.
I A point x ∈ X is periodic if Tnx = x for some n ∈ N.
I T is Devaney chaotic if it is hypercyclic and has a dense set of periodic

points.
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Specification Property
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Specification Property

Definition
Let K be a compact, T -invariant, subset of X. We say that T has the
specification property on K if for all ε > 0, there exists N ∈ N such that for any
s ∈ N, any points y1, . . . , ys ∈ K, and any integers

0 = a1 ≤ b1 < a2 ≤ b2 < · · · < as ≤ bs

which satisfy ai+1 − bi ≥ N for i = 1, . . . , s− 1, there exists a point x ∈ K
which is fixed by TN+bs and, for each i = 1, . . . , s and all integers k with
ai ≤ k ≤ bi, we have

d(T kx, T kyi) < ε.

W. R. Brian, J. P. Kelly, T. Tennant Christopher Newport University June 27, 2017 4 / 16



Specification Property

Definition
T has the operator specification property if there exists an increasing
sequence (Kn)∞n=1 of compact, T -invariant sets with 0 ∈ K1 and

∞⋃
n=1

Kn = X

such that T has the specification property on Kn for each n ∈ N.

If T has the operator specification property, then

I T is Devaney chaotic.
I T has positive topological entropy.
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The Frequent Hypercyclicity Criterion

Definition (Frequently Hypercyclic)
T is frequently hypercyclic if there exists a point x ∈ X such that for every
non-empty open set U ⊆ X,

lim inf
n→∞

card
(
{k ∈ N : T kx ∈ U} ∩ [1, n]

)
n

> 0.

Theorem (Frequent Hypercycicity Criterion, Bonilla and
Grosse-Erdmann, 2007)
Let T be an operator on a separable F -space X. If there is a dense subset
X0 of X and a sequence of maps Sn : X0 → X such that, for each x ∈ X0,

1.
∑∞
n=1 T

nx converges unconditionally
2.
∑∞
n=1 Snx converges unconditionally

3. TnSnx = x, and Tmsnx = Sn−mx for n > m.
Then T is frequently hypercyclic.
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The Frequent Hypercyclicity Criterion

(Adapted from a diagram by Bartoll, Martı́nez-Giménez, Peris)

Freq Hyp Crit OSP

Mixing

Chaotic

Freq Hyp

Pos EntropyInfinite Entropy
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Freq Hyp Crit OSP

Mixing

Chaotic

Freq Hyp

Pos EntropyInfinite Entropy

W. R. Brian, J. P. Kelly, T. Tennant Christopher Newport University June 27, 2017 7 / 16



Topological Entropy

I Let K ⊆ X be compact. Given n ∈ N and ε > 0, a set S ⊆ K is called
(n, ε)-separated if for any x, y ∈ S with x 6= y, we have d

(
T kx, T ky

)
≥ ε

for some 0 ≤ k ≤ n.

We denote the largest cardinality of an (n, ε)-separated subset of K by
sn,e(T,K).

I The topological entropy of T restricted to the compact set K is given by

h(T,K) = lim
ε→0

lim sup
n→∞

1
n

log sn,ε(T,K).

I The topological entropy of T is given by

h(T ) = sup{h(T,K) : K is a compact subset of X}
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Translation Operators on Lp
v(R+)

I Let v : [0,∞)→ [0,∞) be a measurable function such that for every b ≥ 0,∫ b

0
v(x)dx <∞,

and for every α > 0

sup
x>0

v(x)
v(x+ α) <∞.

I Then for each 1 < p <∞, we define

Lpv(R+) =
{
f : R+ → R

∣∣∣ ∫ ∞
0
|f(x)|pv(x)dx <∞

}
‖f‖Lp

v
=

(∫ ∞
0
|f(x)|pv(x)dx

)1/p

I For each α > 0, we define the translation operator Tα on Lpv(R+) by

Tαf(x) = f(x+ α).
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Translation Operators on Lp
v(R+)

Theorem (Mangino and Murillo-Arcila, 2015)
The following are equivalent:

1. Tα satisfies the Frequent Hypercyclicity Criterion.
2. Tα is frequently hypercyclic.
3. Tα has the operator specification property.
4. Tα is Devaney chaotic.
5.
∫∞

0 v(x)dx <∞.

6. Tα has a non-trivial periodic point.

Theorem (Brian, K, Tennant)
If any of the equivalent conditions in the theorem above are satisfied, then
h(Tα) =∞.

The converse does not hold.
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The Backward Shift on lpv

I lpv =
{

(xn)∞n=1 ∈ RN :
∑∞
n=1 |xn|pvn <∞

}

I |x|lpv = (
∑∞
n=1 |xn|pvn)1/p

I We define the backward shift B on lpv by

B(x1, x2, x3, . . .) = (x2, x3, . . .).
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The Backward Shift on lpv

Theorem (Bartoll, Martı́nez-Giménez, and Peris, 2015)
The following are equivalent:

1.
∑∞
n=1 vn <∞

2. B has the operator specification property.
3. B is Devaney Chaotic.

Theorem (Brian, K, Tennant)
If any of the equivalent conditions in the theorem above are satisfied, then
h(B) =∞.
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The Backward Shift on lpv

Example of a non-summable weight sequence where h(B) =∞.

P1 = {1}
Q1 = {2, . . . , 10}

Suppose Pj−1 and Qj−1 have been defined, and let q = maxQj . Then define

Pj = {q + 1, q + 2 . . . , q + j2}
Qj = {q + j2 + 1, q + j2 + 2 . . . , q + 10j2}

We define the weight sequence (vn)∞n=1 as follows:

If n ∈ Pj , then vn = 1/j2.

If n ∈ Qj , then vn = vn−1/2.
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The Backward Shift on lpv

If n ∈ Pj , then vn = 1/j2.

If n ∈ Qj , then vn = vn−1/2.

v1 = 1
12

v2 = 1
2 · 12

v3 = 1
22 · 12

...

v10 = 1
29 · 12
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The Backward Shift on lpv

If (xn)∞n=1 is bounded, and xn = 0 for all n ∈
⋃∞
j=1 Pj , then (xn)∞n=1 ∈ lpv.

Hence, for all M ∈ N, we can embed the full shift on M symbols into lpv.

It follows that h(B) ≥ 0.9 logM for all M ∈ N.

Thus h(B) =∞.
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