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The trace formula
Case of non-singular foliated flows

General case

Foliated flows

M a closed manifold, dim M = n.
F a foliation on M, codimF = 1.
φ = (φt ) a foliated flow on M, leaves→ leaves.
M0 the union of leaves with fixed points.
M1 = M \M0.
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The trace formula
Case of non-singular foliated flows

General case

Hypotheses

1 The closed orbits are simple: c, any period `, x ∈ c,

det(id−φ`∗ : TxF → TxF) 6= 0 ,

 ε`(c) = sign det.
2 The fixed points are simple: p,

det(id−φt
∗ : TpM → TpM) 6= 0 ∀t 6= 0 ,

 εp = sign det.
 φt

∗ = eκp t on NpF := TpM/TpF , κp 6= 0.
 M0 is a finite union of compact leaves.

3 φt t F on M1 := M \M0.
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Case of non-singular foliated flows

General case

The problem of the trace formula
Guillemin-Sternberg, C. Deninger

Define:
a “leafwise cohomology” H i ,  φ∗ = (φt∗) on H i ,
a “distributional trace” Tr(φ∗|H i ) ∈ C−∞(R),
 “Leftschetz distribution”
L(φ) := Trs(φ∗) :=

∑
i (−1)i Tr(φ∗|H i ) ∈ C−∞(R).

Prove a trace formula: on R+,

L(φ) =
∑

c

`(c)
∞∑

k=1

εk`(c)(c) δk`(c) +
∑

p

εp
|1− eκp t |

,

c runs in the closed orbits and p in the fixed points of φ,
`(c) minimal positive period of c.
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The trace formula
Case of non-singular foliated flows

General case

Motivation

Guillemin-Sternberg: Quantization.
C. Deninger: Arithmetic Geometry (Berlin, ICM, 1998).
Deninger’s program needs a version for foliated spaces.
Arithmetic foliated spaces?
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The trace formula
Case of non-singular foliated flows

General case

Non-singular foliated flows

φ has no fixed point.  infinitesimal generator X 6= 0.
 a Riemannian metric on M so that |X | = 1 and X ⊥ F .
 F is defined by local Riemannian submersions:
a bundle-like metric, a Riemannian foliation.
Leafwise complex: C∞(M; ΛF), ΛF :=

∧
T ∗F ,

dF defined by the de Rham diff. operator on the leaves.
 Reduced leafwise cohomology: H(F) = ker dF/im dF .

 φt∗ : H
i
(F)→ H

i
(F). Trace?

H
i
(F) may be of infinite dimension.
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The trace formula
Case of non-singular foliated flows

General case

Leafwise Hodge isomorphism
for any Riemannian foliation on a closed manifold, of arbitrary codimension

δF on C∞(M; ΛF) defined by the adjoint of dF on the
leaves.
 Leafwise Laplacian ∆F = dFδF + δFdF .
Bundle-like metric⇒ ∆F is symmetric in L2(M; ΛF).
H = ker ∆F in C∞(M; ΛF), L2H = ker ∆F in L2(M; ΛF)
Π : L2(M; ΛF)→ L2H the orthogonal projection.
∃ a restriction Π : C∞(M; ΛF)→ H inducing H(F) ∼= H.
(J.A., Y. Kordyukov, 2001).
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The trace formula
Case of non-singular foliated flows

General case

Leftschetz trace formula
for non-singular foliated flows (J.A., Y. Kordyukov, 2002)

∀f ∈ C∞c (R), the operator

Af =

∫
R
φt∗ · f (t) dt ◦ Π .

is smoothing ( of trace class) (φt∗ ◦ Π is not.)
L(φ) = (f 7→ Trs Af ) ∈ C−∞(R).
On R+,

L(φ) =
∑

c

`(c)
∞∑

k=0

εc(k`(c)) δk`(c) .
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The trace formula
Case of non-singular foliated flows

General case

Difficulties

Recall: M = M0 tM1,
M0 = (finite) union of (compact) leaves with fixed points.
F is not Riemannian,
F1 := F|M1 is Riemannian,
F is a transversely affine foliation almost without holonomy.
The Schwartz kernel of Af is not smooth at M0.
 (C∞(M; ΛF),dF ) doesn’t work,
 another leafwise complex,
 elements of C−∞(M; ΛF) with “nice” singularities at M0.
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The trace formula
Case of non-singular foliated flows

General case

Distributional leafwise forms conormal to M0

X(M,F) = {infinitesimal transformations of (M,F)}
= {infinitesimal generators of foliated flows}.
X(M,F) generates the C∞(M)-module
X(M,M0) = {Y ∈ X(M) | Y is tangent to M0 }.
X(M,M0) Diff(M,M0; ΛF),
dF ∈ Diff(M,M0; ΛF).
Hs(M; ΛF) Sobolev space of order s.
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The trace formula
Case of non-singular foliated flows

General case

Distributional leafwise forms conormal to M0 (contd.)

Distributional leafwise forms conormal to M0:

I[s](M,M0; ΛF) = {α ∈ Hs(M; ΛF) |
Diff(M,M0; ΛF) · α ⊂ Hs(M; ΛF) } ,

I(M,M0; ΛF) =
⋃
s

I[s](M,M0; ΛF) .

I(M,M0; ΛF), dF
≡ the continuous extension of dF to C−∞(M; ΛF).
 H(I(M,M0; ΛF),dF ).
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The trace formula
Case of non-singular foliated flows

General case

Canonical short exact sequence

α ∈ I(M,M0; ΛF) ∃ α|M1 ∈ C∞(M1; ΛF1).
 a canonical short exact sequence

0→ {α ∈ I(M,M0; ΛF) | suppα ⊂ M0 }
→ I(M,M0; ΛF)→ {α|M1 | α ∈ I(M,M0; ΛF) } → 0 .

∃ a non-canonical continuous section of complexes

I(M,M0; ΛF)← {α|M1 | α ∈ I(M,M0; ΛF) } .

 direct sum decomposition of H(I(M,M0; ΛF),dF ).
 define L(φ) on both terms of the direct sum, and study
the corresponding trace formulae.
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The trace formula
Case of non-singular foliated flows

General case

Term supported on M0

Assume F transversely oriented ∃ ω, η ∈ C∞(M; Λ1M)
such that TF = kerω and dω = ω ∧ η.
F transversely affine⇔ we can assume dη = 0.
Using δ-sections at M0 and their transverse derivatives,

{α ∈ I(M,M0; ΛF) | suppα ⊂ M0 }

≡
∞⊕

k=0

C∞(M0; ΛM0 ⊗ Ω−1NM0) ,

dF ≡
∞⊕

k=0

(dM0 + k η∧) .
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The trace formula
Case of non-singular foliated flows

General case

Term supported on M0 (contd.)

 Novikov complexes on the compact manifold M0 . . .
 contributions of the fixed points.
Expected contributions?
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The trace formula
Case of non-singular foliated flows

General case

Term supported on M1

F almost without holonomy: only the compact leaves in M0

have holonomy.
 “cutting” M through M0, we get a finite number of
compact foliated manifolds with boundary (Ml ,Fl),
M1 ≡

⊔
l M̊l , F1 ≡

⊔
l F̊l . (Hector)

∃ g1 appropriate bundle-like metric for (M1,F1) of
bounded geometry.
 the Hodge isomorphism

H(H∞(M1; ΛF1),dF1) ≡
⊕

l

H(H∞(M̊l ; ΛF̊l),dF̊l
)

∼=
⊕

l

ker ∆F̊l
(in H∞(M̊l ; ΛF̊l)) .
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The trace formula
Case of non-singular foliated flows

General case

Term supported on M1 (contd.)

 Af is defined as above in every L2(M̊l ; ΛF̊l).
Difficulty: M1 is not compact,
 smoothing operators are not of trace class.
 g1 ≡ a b-metric of the manifolds with boundary Ml
(b-calculus, Melrose, 1993)
 Af ∈ Ψ−∞b (Ml ; ΛFl).
Af has a b-trace bTrs(Af ) a part of L(φ).
Description of this part:
contribution of the closed orbits + extra term
(bTr is not a trace: bTr[A,B] 6= 0).
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The trace formula
Case of non-singular foliated flows

General case

Term supported on M1 (contd.)

∃ ρ ∈ C∞(M l) such that ∂Ml = {ρ = 0} and dρ 6= 0 on ∂Ml ,
a defining function of ∂Ml .
We can also assume dρ = ρη.
Then

{α|M1 | α ∈ I(M,M0; ΛF) } =
⊕

l

∞⋃
m=0

ρ−mH∞(M̊l ; F̊l) .

Multiplication by ρm defines an isomorphism

(ρ−mH∞(M̊l ; F̊l),dF̊l
) ∼= (H∞(M̊l ; F̊l),dF̊l

+ m η∧) .

 a Novikov perturbation of (H∞(M̊l ; F̊l),dF̊l
).
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Term supported on M1 (contd.)

We solved the case where m = 0 with the above argument
using Af .
 Novikov’s complex versions of the above argument . . .
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Thank you very much!
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