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Normal Images of a Product and Countably Paracompact Condensation.

Background and history

Theorem (Dowker, 1951)

For a normal space X , X × I is normal iff X × (ω + 1) is normal iff
X is also countably paracompact.

Theorem (Tamano, 1960)

For a normal space X , X × βX is normal iff X is paracompact.

There have been a few results that are variations of Tamano’s
theorem, one is a result by Kunen .

Theorem (Kunen, 1984)

In 1984, Kunen proved: For a normal space X , X × (|X |+ 1) is
normal iff X is paracompact.
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Background and history

The condensation variation of Kunen’s proof was introduced by
Buzjakova.

Theorem (Buzjakova, 1997)

Let X be a pseudocompact Tychonoff space and κ = |βX |+. Then
X condenses onto a compact space iff X × (κ+ 1) condenses onto
a normal space.

Comparing the results of Buzjakova and Kunen, the question is
whether it is possible to prove condensation variation to Kunen’s
result without the extra assumption that X is pseudocompact.
(If a Tychonoff space is Pseudocompact and Paracompact then the
space is compact.)
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Background and history

Definition

A continuous function f : X −→ Y is a condensation iff f is
one-to-one and onto Y . Without loss of generality we assume that
Y is the same set as X with a coarser topology than the topology
of X .

We use the following picture of the condensation f :
X × (κ+ 1)→ Z for the rest of this talk.

κ+ 1

(X , τ)

Z

f

Condensation
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Normal Images of a Product and Countably Paracompact Condensation.

Background and history

Today we show that for a Tychonoff space X , if X × (κ+ 1)
condenses onto a normal space, then X condenses onto a
countably paracompact space, where κ = (22

|X |
)+.
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Normal Images of a Product and Countably Paracompact Condensation.

Structure of the product

Buzjakova’s argument of a coarser topology depends on the
structure of Stone-Čech compactification of the product, which is
the product of Stone-Čech compactifications, by assuming that X
is pseudocompact.
So we begin with some facts about the structure of the
Stone-Čech compactification of the product.

Henceforth, let X be a Tychonoff space and κ be a regular cardinal
> |X |, and denote X × (κ+ 1) by Y.

Structure of the product June 28, 2017
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Structure of the product

Definition

A space A ⊆ X is C ∗-embedded in space X if and only if any
bounded real valued continuous function f : A→ R can be
extended to bounded real valued continuous function h : X → R
such that h(x) = f (x) for all x ∈ A.

Fact

Let X be a Tychonoff space, κ a cardinal, and K a closed subset of
κ+ 1. Then X × K is C ∗-embedded in X × (κ+ 1).

Proof. Let f ∈ C∗(X × K ). f is continuously extendable to whole
space by

f̂ (x , α) =

{
f (x , inf(K \ α)), if supK > α;

0, otherwise.

�
Structure of the product June 28, 2017
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Structure of the product

Notation

For a Tychonoff space X , a cardinal κ, and α ∈ κ+ 1, by the
above fact, X × {α} is C ∗-embedded in X × (κ+ 1) =: Y . As Y
is C ∗-embedded in βY , it follows that X × {α} is C ∗-embedded in
βY . So hα : βX × {α} ≈ clβY (X × {α}). For y ∈ βX ,
hα(y , α) ∈ βY . To avoid confusion, we denote hα(y , α) by e(y , α)
and e[βX × (κ+ 1)] =

⋃
y∈βX ,α∈κ e(y , α).

Structure of the product June 28, 2017



Normal Images of a Product and Countably Paracompact Condensation.

Structure of the product

Using this notation, Stone-Čech compactification of
Y := X × (κ+ 1) will look like this:

βY \ e[βX × (κ+ 1)]

· · ·

κ+ 1

β(X × (κ+ 1))

X

βX \ X

· · ·

e[(βX \ X )×
(κ+ 1)]

Structure of the product June 28, 2017
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Structure of the product

Fact

Let Y = X × (κ+ 1) and α ∈ κ+ 1 be such that cf(α) > |X |.
Then for y ∈ βX \ X and e(y , α) ∈ U ∈ τ(βY ), there exists ξ < α
and V ∈ τ(βX ) such that e(y , α) ∈ e[V × (ξ, α]] ⊆ U.

Pictorial Proof:

Structure of the product June 28, 2017
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Structure of the product

κ+ 1

X

e(y , α)

y
spine

e[V × {α}
e(y , α)
∪

V × {α}

⋃
|

W

⋃
|

clYW ⊆ U

ξ = supx∈V∩X ξx

ξx α

(x , α)

�
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Structure of the product

So some parts of a spine of green points is convergent to specific
green points or:

Corollary

Let Y = X × (κ+ 1), and let α ∈ κ+ 1 be such that cf(α) > |X |.
If {βγ : γ < cf(α)} is a cofinal sequence in α, then
{e(y , βγ) : γ < cf(α)} → e(y , α). And for a regular cardinal α,
e(y , α) is the unique complete accumulation point of
{e(y , βγ) : γ < α}.

Structure of the product June 28, 2017
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Structure of the product

Fact

For every free z−ultrafilter F on X × K , where K is closed in
κ+ 1, there exists yF ∈ βX such that

⋂
F∈F clβXπX (F ) = {yF}.

Denote yF as the corresponding βX - element of F .

Let Z1, Z2 ∈ F .

βY \ e[βX × (κ+ 1)]

κ+ 1

X

πX [Z1]

clβXπX [Z1]
Z1

πX [Z1]

clβXπX [Z2]

Z2

yF⋂
6= ∅

Structure of the product June 28, 2017
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Structure of the product

Fact

Let η ∈ κ and {Cξ : ξ ∈ κ} be a family of subsets of κ+ 1
isomorphic to η+ 1 such that minCξ > supCζ if ξ > ζ. Let F be a
free z−ultrafilter on X × (η + 1) and {F(ξ) : ξ ∈ κ} be a collection
of z−ultrafilter homeomorphic to F on the corresponding X × Cξ
and let yF be as in the previous fact. Then for ν such that
cf(ν) > |X | and for e(yF , α) ∈W ∈ τ(βY ), where α = sup

ξ∈ν
∪Cξ,

there exists λ < α such that W ∩F(ξ) 6= ∅ for all ξ > λ. Moreover,
a spine of red points also converges to a green point at level α.

Structure of the product June 28, 2017
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Structure of the product

F(ξ)

(yF , α)

W

α

· · ·

X × Cξ
κ+ 1

X

Structure of the product June 28, 2017
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How to incorporate Buzjakova’s insight without pesudocompactness.

Definition

Let X be a Tychonoff space and κ be a cardinal such that
cf(κ) > |βX | and let f : X × (κ+ 1)→ Z be a condensation onto
a normal space Z , then let
C1 := {y ∈ βX \ X s.t |{α ∈ κ : f (e(y , α)) ∈ Z}| = κ and
|f [e[{y} × κ]] ∩ Z | = κ}.
C2 := {y ∈ βX \ X s.t |{α ∈ κ : f (e(y , α)) ∈ Z}| = κ and
|f [e[{y} × κ]] ∩ Z | < κ}.

How to incorporate Buzjakova’s insight
without pesudocompactness. June 28, 2017
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How to incorporate Buzjakova’s insight without pesudocompactness.

To prove any type of paracompactness, we need to show that
many of the f [X × {ξ}] have the same topology. Setting κ > 22

|X |

ensures that we have an unbounded number of ξs with the same
topology, for there are at most 22

|X |
many topologies on X .

Also we need another method to show that the closure of a group
of η many of these lines will not intersect closure of the limit line
of the group. Partitioning βX \ X into C1, C2 and the rest,
provides the necessary tools.

How to incorporate Buzjakova’s insight
without pesudocompactness. June 28, 2017
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How to incorporate Buzjakova’s insight without pesudocompactness.

Let y1 ∈ C1 and y2 ∈ C2, f [e({y1} × (κ+ 1))] and
f [e({y2} × (κ+ 1))] will look like this:

C1 3 y1

κ+ 1

(X , τ)

βZ

Z

f

C2 3 y2

How to incorporate Buzjakova’s insight
without pesudocompactness. June 28, 2017
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How to incorporate Buzjakova’s insight without pesudocompactness.

Using the above Fact allows us to draw a few conclusions about
spines on points of C1 or C2:

C1 3 y1

κ+ 1

(X , τ)

βZ

Z

f

xy1

f (xy2 , αy2)
C2 3 y2
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without pesudocompactness. June 28, 2017
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How to incorporate Buzjakova’s insight without pesudocompactness.

Moreover, by above Fact, we can find unbounded set B ⊆ κ such
that for ξ ∈ B,

for y1 ∈ C1, f (e(y1, ξ)) = f (xy1 , ξ);

for y2 ∈ C2, f (e(y2, ξ)) = f (xy2 , αy2);

for α ∈ limA, where A ⊂ B,
clZ f [X × {α}] ∩ clZ f [X × {ξ}] = clZ [f [e[C2 × {ξ}]]], for
ξ ∈ B ∩ α.

How to incorporate Buzjakova’s insight
without pesudocompactness. June 28, 2017
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How to incorporate Buzjakova’s insight without pesudocompactness.

The topology defined by f on X × {ξ} for ξ ∈ B is the
coarsest topology defined by f on X × {α} for large α.

Now using the above fact, we pick C ⊆ B of size η, where η is
the size of the cover, so that image of red points, if it is in Z ,
will be on the same image of spines as elements of C1 and C2.

How to incorporate Buzjakova’s insight
without pesudocompactness. June 28, 2017
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How to incorporate Buzjakova’s insight without pesudocompactness.

Now we have enough tools to prove the space
f [X × {ξ}] ∪ clβZ [f [e[C2 × {ξ}]] is countably paracompact, by
choosing C of size ω by the technique mentioned before and using
the cover to obtain a triangular set, whose closure does not
intersect the closure of the limit line.

f [X × {ξi}]
\Ui × {ξi}

Z

clZ f [e[C2 × B]]

How to incorporate Buzjakova’s insight
without pesudocompactness. June 28, 2017
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How to incorporate Buzjakova’s insight without pesudocompactness.

Then we prove f [X × {ξ}] ∪ clβZ [f [e[C2 × {ξ}]] maps under a
closed continuous function to X and that proves X has a coarser
countably paracompact topology.
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How to incorporate Buzjakova’s insight without pesudocompactness.
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How to incorporate Buzjakova’s insight without pesudocompactness.

Thank you!

How to incorporate Buzjakova’s insight
without pesudocompactness. June 28, 2017
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