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Entropy in Topological Groups

Connections different entropies 1: the Bridge Theorem

Weiss [1976] Let φ : K → K a continuous endomorphism of a
totally disconnected compact abelian group K . If φ̂ : K̂ → K̂ is the
Pontryagin dual of φ. Then

htop(φ) = halg (φ̂). (†)

Peters [1979] proved (†) when G is compact metrizable and φ is a
continuous automorphism (Peters [Pac.J.Math. 1980] LCA groups).

Theorem (Giordano Bruno - DD)

Let φ : G → G be a continuous endomorphism of a LCA group G .
Then (†) holds if one of the following condition is fulfilled:

(a) G is totally disconnected (generalizes Weiss);

(b) G is compact (generalizes Peters).

Question

Does (†) hold true for every LCA group G?

Yes, for automorphisms (for actions of amenable groups), Virili ’13
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Entropy in Topological Groups

Entropy of generalized shifts and combinatorial entropy

Let X be a set and λ : X → X a selfmap. For a finite subset D of
X and n ∈ N+ the n-th λ-trajectory of D is

Tn(λ,D) = D ∪ λ(D) ∪ · · · ∪ λn−1(D),

while the λ-trajectory ([positive] orbit) of D under λ is

T(λ,D) =
⋃
n∈N

λn(D) =
⋃

n∈N+

Tn(λ,D).

This is the smallest λ-invariant subset of X containig D.
One can define similarly the inverse n-th λ-trajectory of D by

T∗n(λ,D) = D ∪ λ−1(D) ∪ · · · ∪ λ−n+1(D)
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Entropy in Topological Groups

Entropy of generalized shifts and combinatorial entropy

Let X be a set and λ : X → X a selfmap.
(a) For a finite subset D of X the (covariant) combinatorial

entropy of λ with respect to D is
hc(λ,D) = limn→∞

|Tn(λ,D)|
n ≤ |D|.

(b) The number hc(λ) = sup {hc(λ,D) : D ∈ [X ]<ω} is the
(covariant) combinatorial entropy of λ.

If λ : X → X is finitely many-to-one, the (contravariant)
combinatorial entropy h∗c (λ) of λ can be defined similarly, by
making use of T∗n(λ,D) in place of Tn(λ,D).

Example (Generalized shifts)

Let K be a finite group (set) and λ : X → X be a selfmap, X 6= ∅.
Define the generalized shift σλ : K X → K X by σλ(g) = g ◦ λ for
g : X → K .
(a) htop(σλ) = hc (λ) log |K | (this remains true also for
compositions ψ ◦ σλ or σλ ◦ ψ, where ψ = (ψi ) ∈ Sym(K )I ).
(b) if λ : X → X is finitely many-to-one, then the direct sum⊕

X K is σλ-invariant in K X and halg (σλ �⊕
X K ) = h∗c (λ) log |K |.
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Entropy in Topological Groups

Entropy of generalized shifts and combinatorial entropy

Call a compact group strictly reductive if it is isomorphic to a
cartesian product of simple compact groups.

Theorem (Countable Layer Theorem, Hofmann-Morris)

Any compact profinite group G has a canonical countable
descending sequence

G = Ω0(G ) ⊇ . . . ⊇ Ωn(G ) ⊇ . . .
of closed characteristic subgroups of G such that:
(1)

⋂
n=1 Ωn(G ) = {e},

(2) each layer Ln = Ωn−1(G )/Ωn(G ) is a strictly reductive group.

The computation of the topological entropy of an automorphism
f : G → G of a compact profinite group G can be reduced to the
case of a strictly reductive compact group L. Indeed, f induces an
automorphism fn : Ln → Ln of the strictly reductive group Ln and
htop(f ) =

∑∞
n=1 htop(fn), as G = lim←− G/Ωn(G ) and the induced

automorphism f of G/Ωn(G ) has htop(f ) =
∑n

k=1 htop(fk ).
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Entropy in Topological Groups

Entropy of generalized shifts and combinatorial entropy

An automorphism f of a compact group L induces automorphisms
of L′ and L/L′, so by using AT (when L′ = L

′
), one can assume

wlog that either L = L′ or L is abelian when computing htop(f ).
A strictly reductive compact group with L = L′ has the form∏

j∈J Kj , where Kj = F
Ij
j , for some simple finite non-abelian group

Fj and Ij 6= ∅ 6= J. Then f induces automorphisms fj of Kj so that
htop(f ) =

∑∞
j∈J htop(fj ). Each fj induces a bijection λj of Ij , so

that ψj := σ−1λj
◦ fj acts coordinatewise on F

Ij
j . Thus,

htop(fj ) = htop(σλj
◦ ψj ) = htop(σλj

) = hc (λj ) log |Fj |.

In case L is abelian, it has the form L =
∏

p∈π Kp, where Kp = Zκp
p

for some set π of primes. Now each fp : Kp → Kp is conjugated to
a direct product of generalized shifts of Zκp

p .
Note that in both cases these generalized shifts are just products
of periodic automorphsims and Bernoulli automorphsims.
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Similarly, one can compute htop(f ) when G is a compact
connected group. As mentioned above, we can reduce to the cases
when G is abelian or G ′ = G (note that G ′ is closed and
connected). The abelian case can be reduced, via the Bridge
theorem, to the computation of halg (f̂ ).
Since Z (G ) is characteristic, the computation of htop(f ) can be
reduced, due to AT, to the case when G is center-free, as
Z (G/Z (G )) = {e}. In such a case the group G is, again, strictly

reductive, i.e., G =
∏

i∈I F
Ij
i , where Fi are pairwise non-isomorphic

compact connected simple Lie groups with trivial center.
As above, fj induces a bijection λj of Ij , so that ψj := g−1λj

◦ fj acts

coordinatewise on F
Ij
j . Now htop(f ) is computed as above, but

here one has a dichotomy:

either htop(f ) = 0 (if all hλj
(f ) = 0), or

htop(f ) =∞ otherwise (i.e., some λj has infinite orbits).
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Definition

A normed semigroup is a commutative semigroup (S ,+) provided
with a map (norm) v : S → R≥0 = {r ∈ R : r ≥ 0} satisfying

v(x + y) ≤ v(x) + v(y)

for all x , y ∈ S .

The category S of normed semigroups has as morphisms all
contractive semigroup homomorphism f : (S , v)→ (S1, v1)
(i.e., φ(x + y) = φ(x) + φ(y) and v1(φ(x)) ≤ v(x) hold for every
x , y ∈ S).
For (S , v) ∈ S we say that the norm is s-monotone, if

max{v(x), v(y)} ≤ v(x + y) ≤ v(x) + v(y) for all x , y ∈ S .



Entropy in Topological Groups

Entropy of generalized shifts and combinatorial entropy

Definition

A normed semigroup is a commutative semigroup (S ,+) provided
with a map (norm) v : S → R≥0 = {r ∈ R : r ≥ 0} satisfying

v(x + y) ≤ v(x) + v(y)

for all x , y ∈ S .

The category S of normed semigroups has as morphisms all
contractive semigroup homomorphism f : (S , v)→ (S1, v1)
(i.e., φ(x + y) = φ(x) + φ(y) and v1(φ(x)) ≤ v(x) hold for every
x , y ∈ S).
For (S , v) ∈ S we say that the norm is s-monotone, if

max{v(x), v(y)} ≤ v(x + y) ≤ v(x) + v(y) for all x , y ∈ S .



Entropy in Topological Groups

Entropy of generalized shifts and combinatorial entropy

Definition

A normed semigroup is a commutative semigroup (S ,+) provided
with a map (norm) v : S → R≥0 = {r ∈ R : r ≥ 0} satisfying

v(x + y) ≤ v(x) + v(y)

for all x , y ∈ S .

The category S of normed semigroups has as morphisms all
contractive semigroup homomorphism f : (S , v)→ (S1, v1)
(i.e., φ(x + y) = φ(x) + φ(y) and v1(φ(x)) ≤ v(x) hold for every
x , y ∈ S).
For (S , v) ∈ S we say that the norm is s-monotone, if

max{v(x), v(y)} ≤ v(x + y) ≤ v(x) + v(y) for all x , y ∈ S .



Entropy in Topological Groups

Entropy of generalized shifts and combinatorial entropy

Definition

A normed semigroup is a commutative semigroup (S ,+) provided
with a map (norm) v : S → R≥0 = {r ∈ R : r ≥ 0} satisfying

v(x + y) ≤ v(x) + v(y)

for all x , y ∈ S .

The category S of normed semigroups has as morphisms all
contractive semigroup homomorphism f : (S , v)→ (S1, v1)
(i.e., φ(x + y) = φ(x) + φ(y) and v1(φ(x)) ≤ v(x) hold for every
x , y ∈ S).
For (S , v) ∈ S we say that the norm is s-monotone, if

max{v(x), v(y)} ≤ v(x + y) ≤ v(x) + v(y) for all x , y ∈ S .



Entropy in Topological Groups

Entropy in S

For (S , v) ∈ S, x ∈ S and n ∈ N+ consider the n-th trajectory of
x under φ

Tn(φ, x) = x + φ(x) + . . .+ φn−1(x) and cn(φ, x) = v(Tn(φ, x)).

Then (cn(φ, x)) is subadditive and cn ≤ n · v(x), so the growth of
the function n 7→ cn(φ, x) is at most linear.

Theorem

Let φ : S → S be an endomorphism in S. Then for every x ∈ S the
limit hS(φ, x) := limn

cn(φ,x)
n exists and satisfies hS(φ, x) ≤ v(x).

The existence of the limit is ensured by Fekete Lemma.

Definition

Let φ : S → S be an endomorphism in S. The semigroup entropy
of φ is

hS(φ) = supx∈S hS(φ, x).
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Lemma (hS is monotone under taking quotients)

If φ : S → S and ψ : T → T are endomorphisms in S and
α : T → S is a surjective homomorphism between normed
semigroups such that α ◦ ψ = φ ◦ α, then hS(φ) ≤ hS(ψ).

Corollary (hS is invariant under conjugation)

If φ : S → S is an endomorphism in S and α : T → S is an
isomorphism in S, then hS(φ) = hS(α ◦ φ ◦ α−1).

Lemma (hS is invariant under inversion)

If φ : S → S is an isomorphism in S, then hS(φ−1) = hS(φ).

Lemma (Logarithmic Law)

Let (S , v) be a normed semigroup and φ : S → S an
endomorphism. Then hS(φk ) ≤ k · hS(φ) for every k ∈ N.
Furthermore equality holds if v is s-monotone.
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A (functorial) example of a normed monoid based on open covers of a space

For a topological space X the family cov(X ) of all open covers of
X is a commutative monoid (cov(X ),∨, E), where ∨ is defined as
before and E = {X} is the trivial cover.
One has a natural a preorder U ≺ V on cov(C ) (V refines U , i.e, if
for every V ∈ V there exists U ∈ U such that V ⊆ U), that is not
an order. It has bottom element E . In general, U ∨ U 6= U (so
cov(C ) is not a semilattice), yet U ∨ U ∼ U (where U ∼ V means
U ≺ V abd V ≺ U)
For a continuous map φ : X → Y and U ∈ cov(Y ) let

φ−1(U) = {φ−1(U) : U ∈ U}.

The assignment U 7→ φ−1(U) gives a semigroup homomorphism
cov(φ) : cov(Y )→ cov(X ) (as φ−1(U ∨ V) = φ−1(U) ∨ φ−1(V)).
This defines a contravariant functor cov from the category of all
topological spaces to the category of commutative semigroups.
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Entropy in S

A (functorial) example of a normed monoid based on open covers of a space

To get a norm on the semigroup cov(X ) we restrict this functor to
the subcategory CTop of compact spaces. For X ∈ CTop,
U ∈ cov(X ) let v(U) = N(U).

Lemma

For a compact space X , (cov(X ),∨, v) is an normed semigroup.
For every continuous map φ : X → Y of compact spaces the
inequality v(φ−1(W)) ≤ v(W) holds for every W ∈ cov(Y ).

By the lemma cov(φ) : cov(Y )→ cov(X ) is a morphism in S, so
that the assignement X 7→ cov(X ) defines a contravariant functor

cov : CTop→ S,

that sends embeddings in CTop to surjective morphisms in S and
sends surjective maps in CTop to embeddings in S.
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Entropy in Topological Groups

The general scheme for obtaining the entropies and their properties

Let F : X → S a functor. Define the entropy function hF in the
category X by

hF (φ) = hS(Fφ),

for an endomorphism φ : X → X in X . The functor F preserves
commutative squares and isomorphisms. So, with X ,Y ∈ X and
φ ∈ EndX (X ), the entropy hF will satisfy:

[Invariance under conjugation] If α : Y → X is an isomorphism,
then hF (φ) = hF (α−1 ◦ φ ◦ α).

[Invariance under inversion] hF (φ−1) = hF (φ), if φ is an
isomorphism.

[Logaritmic law] If the norm of the semigroup F (X ) is
s-monotone, then hF (φk ) = k · hF (φ). for all k ∈ N.
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The general scheme for obtaining the entropies and their properties

Further properties of hF depend on properties of the functor F .
We start by monotonicity under taking invariant subobjects or
factor flows.
[Monotonicity under taking invariant subobjects] If F sends
subobject embeddings in X to embeddings in S or to surjective
maps in S, then hF is monotone under taking invariant subobjects
(i.e., if Y is a φ-invariant subobject of X , then hF (φ �Y ) ≤ hF (φ)).

[Monotonicity under taking quotients] If F sends quotients in
X to surjective maps in S or to embeddings in S, then hF is
monotone under taking quotients.

[“Continuity” under direct limits] If F is covariant and sends
direct limits to direct limits, then hF (φ) = sup hF (φ|Xi

) whenever
X = lim−→ Xi and each Xi is a φ-invariant subobject of X
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Obtaining the topological entropy htop as hcov
For the contravariant functor cov : CTop→ S the entropy
hcov : CTop→ R+ coincides with the topological entropy htop

defined by Adler et al.
Since the functor cov,

takes factors in CTop to embeddings in S,

takes embeddings in CTop to surjective morphisms in S, and

takes inverse limits in CTop to direct limits in S

the topological entropy htop

is monotone w.r.t. taking factors or restrictions to invariant
subspaces,

is continuous w.r.t. inverse limits;

satisfies the invariance under conjugation and inversions and
the logarithmic laws (in particular, always htop(idX ) = 0),

satisfies the weak Addition Theorem:
htop(φ1 × φ2) = htop(φ1) + htop(φ2).
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The category MesSp of probability measure spaces

For a measure space (X ,B, µ) let P(X ) be the family of all
measurable partitions ξ = {A1,A2, . . . ,Ak} of X . For ξ, η ∈ P(X )
let ξ ∨ η = {U ∩ V : U ∈ ξ,V ∈ η}. Then (P(X ),∨) becomes a
semilattice (as ξ ∨ ξ = ξ) with zero (the cover ξ0 = {X}). For
ξ = {A1,A2, . . . ,Ak} ∈ P(X ) of X define the entropy of ξ by

v(ξ) = −
k∑

i=1

µ(Ak ) logµ(Ak ) (Shannon entropy)

This is a monotone norm making P(X ) a normed semilattice with
0. For a measure preserving T : X → Y and ξ = {Ai}k

i=1 ∈ P(Y )
let T−1(ξ) = {T−1(Ai )}k

i=1. Since T is measure preserving, one
has T−1(ξ) ∈ P(X ) and µ(T−1(Ai )) = µ(Ai ) for all i . Hence,
v(T−1(ξ)) = v(ξ). The assignment X 7→ P(X ) defines a
contravariant functor

P : MesSp −→ L.
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The category MesSp of probability measure spaces

Obtaining the measure entropy hmes as hP

For the contravariant functor P : MesSp→ L the entropy
hP = hS ◦P : MesSp→ R+ coincides with measure-theoretic
entropy hm defined by Kolmogorov and Sinai in ergodic theory in
the fifties.
This is why, similarly to htop, also the measure-theoretic entropy
hmes is monotone w.r.t. taking quotients or restrictions to
invariant subspaces, is continuous w.r.t. inverse limits, etc.

Example (measure entropy vs topological entropy)

Let X be a compact topological group, let µ be its Haar measure
and let φ : G → G be continuous endomorphism.

(a) [Halmos] φ is measure preserving iff φ is surjective.

(b) [Aoki] if φ is surjective, then hmes(φ) = htop(φ).

(c) [variational priciple] if X is a compact space and f : X → X a
continuous map, then
htop(φ) = sup{hmes(φµ) : µ is an f -invariant measure on X}.
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The general scheme for obtaining the entropies and their properties

The category MesSp of probability measure spaces

Example (Adler, Konrad and McAndrew’s algebraic entropy ent)

Let G be an Abelian group and let (F(G ),+) be the semilattice of
all finite subgroups of G . Letting v(F ) = log |F | for F ∈ F(G ),
makes F(G ) a normed semilattice with a monotone norm.
For every homomorphism φ : G → H of Abelian groups the map
F(φ) : F(G )→ F(H) defined by F(φ)(F ) = φ(F ) for every
F ∈ F(G ) is a morphism in S. The assignments G 7→ F(G ),
φ 7→ F(φ) define a covariant functor

F : AbGrp −→ S.

The entropy hF = hS ◦ F coincides with the algebraic entropy ent
defined by Adler, Konrad and McAndrew. So ent satisfies the
invariance under conjugation and inversions as well as the
logartmic law. Since F sends monomorphisms to embeddings, ent
is also monotone w.r.t. taking invariant subgroups (not w.r.t.
taking factors).
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Example (The algebraic entropy halg )

For G ∈ AbGrp let H(G ) be the family of all finite non-empty
subsets of G . Then (H(G ),+, {0}) is a monoid. For every
homomorphism φ : G → H of Abelian groups, the map
H(φ) : H(G )→ H(H), defined by H(φ)(F ) = φ(F ) for every
F ∈ H(G ), is a semigroup morphism.
Letting v(F ) = log |F | for F ∈ H(G ) makes H(G ) a normed
semigroup. The assignements G 7→ (H(G ), v) and φ 7→ H(φ) give
a covariant functor

H : AbGrp −→ S.

Moreover, (H(G ),⊆) is an ordered semigroup and the norm v is
s-monotone. The entropy hH = hS ◦ H coincides with the
algebraic entropy halg . So halg is invariant under conjugation and
inversions, monotone w.r.t. taking invariant subgroups and
satisfies the logartmic law.
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Entropy in Topological Groups

Entropy of semigroup actions

A discrete dynamical systems, namely a flow T : X → X , can be
considered also as an action N αy X of the semigroup N on X such
that α(n)(x) = T n(x) for x ∈ X and n ∈ N. This makes it natural
to define entropy of d pairwise commuting endomorphisms of X ,
i.e., actions of Nd . More generally, one may try to define entropy
of arbitrary semigroup actions S

αy X .
In this direction, the notion of entropy of actions of amenable
groups on compact metrizable spaces ot measure spaces was
introduced by Ornstein and Weiss [1987].
Hofmann and Stoyanov [1995] defined and studied topological

entropy hα(γ) of actions S
γ
y X of a locally compact semigroup S

on a metric space X , depending on a countable system α of
compact subsets α = (N1,N2, . . . ,Nn, . . .) of S satisfying
Ni Nj ⊆ Ni+j . If S = N is generated by a single map f : X → X
and Nn = [0, n − 1], the entropy hα(γ) coincides with Bowen’s
topological entropy hU(f ).
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Entropy in Topological Groups

Entropy of semigroup actions

Recently Ceccherini-Silberstein, Coornaert and Krieger extended
the notions of entropy to actions of amenable semigroups,
following Ornstein and Weiss’s approach.
Let S be a semigroup and let Pfin(S) be the family of its
non-empty subsets; S is right amenable, if for every K ∈ Pfin(S)
and every ε > 0 there exists an F ∈ Pfin(S), such that
|Fx \ F | ≤ ε|F | for every x ∈ K .
It is easy to see that a cancellative semigroup S is right-amenable
iff S admits a right-Følner net, i.e., a net (Fi )i∈I in Pfin(S) such
that for every s ∈ S

lim
i∈I

|Fi s \ Fi |
|Fi |

= 0.

A map f : Pfin(S)→ R is said to be:
1 subadditive if f (F1 ∪ F2) ≤ f (F1) + f (F2) for every

F1,F2 ∈ Pfin(S);
2 right-subinvariant if f (Fs) ≤ f (F ) for every s ∈ S and every

F ∈ Pfin(S);
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Entropy of semigroup actions

The following theorem and definition, due to Ceccherini-
Silberstein, Coornaert and Krieger, are inspired by Ornstein and
Weiss’ approach.

Theorem (Ceccherini-Silberstein, Coornaert and Krieger 2014)

Let S be a cancellative left amenable monoid and let f : P(S)→ R
be a subadditive, right-subinvariant map. Then there exists
λ ∈ R≥0 such that, for every left-Følner net (Fi )i∈I of S,

lim
i∈I

f (Fi )

|Fi |
= λ.

Let X be a compact topological space, let S be a cancellative

left-amenable monoid and consider the left action S
γ
y X by

continuous maps. For U ∈ cov(X ) and for every F ∈ Pfin(S), let

Uγ,F =
∨
s∈F

γ(s)−1(U).
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γ
y X by

continuous maps. For U ∈ cov(X ) and for every F ∈ Pfin(S), let

Uγ,F =
∨
s∈F

γ(s)−1(U).
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Definition (Fornasiero, Giordano Bruno, DD - 2017, Virili 2013 for
amenable groups)

Let S be a cancellative right-amenable semigroup, A an abelian
group and S

αy A. For X ∈ Pfin(A), the algebraic entropy of α
with respect to X is Halg (α,X ) and the algebraic entropies of α are

halg (α) = sup{Halg (α,X ) | X ∈ Pfin(A)}.

and
ent(α) = sup{Halg (α,X ) | X ∈ F(A)}.

These entropies share many of the properties of the algebriac
entropies halg and ent defined for single endomorphisms.

Moreover, if f ∈ End(A) and the action N αy A is defined by
α(n)(x) = f n(x) for n ∈ N and x ∈ A, then

halg (N αy A) = halg (f ) and ent(N αy A) = ent(f )
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Theorem (Continuity for direct limit)

Let S be a cancellative right-amenable semigroup, A an abelian
group and consider S

αy A. If A is a direct limit of α-invariant
subgroups {Ai | i ∈ I}, then halg (α) = supi∈I halg (αAi

).

Theorem (Logarithmic Law)

Let G be an amenable group, A an abelian group and G
αy A. If H

is a subgroup of G of finite index [G : H] = k ∈ N, then

halg (α �H) = k · halg (α) and ent(α �H) = k · ent(α).

Theorem (Fornasiero, Giordano Bruno, DD - 2017)

Let A be a torsion abelian group, S be a right-amenable monoid, α
be a left action of S on A, and B be an α-invariant subgroup of A.
Then

ent(α) = ent(αB) + ent(αA/B).
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For a locally compact abelian group A and a continuous
endomorphism φ : A→ A denote by Â the Pontryagin dual of A
and φ̂ : Â→ Â be the dual of φ, defined by φ̂(χ) = χ ◦ φ.

A left action S
γ
y K of a cancellative left-amenable semigroup S

on a compact abelian group K induces a right dual action K̂
γ̂
x S

on the discrete group K̂ , defined by

γ̂(s) = γ̂(s) : K̂ → K̂ for every s ∈ S .

The Bridge theorem remains true in this much more general
context (where γ̂op is the left action of Sop associated to γ̂):

Theorem (Fornasiero, Giordano Bruno, DD - 2017)

For a left action S
γ
y K of a cancellative left-amenable semigroup

S on a compact totally disconnected abelian group K

htop(γ) = halg (γ̂op).
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