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Abstract—In this paper, we describe a new recursive Non-
Local means (RNLM) algorithm for video denoising that has been
developed by the current authors. Furthermore, we extend this
work by incorporating a Poisson-Gaussian noise model. Our new
RNLM method provides a computationally efficient means for
video denoising, and yields improved performance compared with
the single frame NLM and BM3D benchmarks methods. Non-
Local means (NLM) based methods of denoising have been ap-
plied successfully in various image and video sequence denoising
applications. However, direct extension of this method from 2D to
3D for video processing can be computationally demanding. The
RNLM approach takes advantage of recursion for computational
savings, and spatio-temporal correlations for improved perfor-
mance. In our approach, the first frame is processed with single
frame NLM. Subsequent frames are estimated using a weighted
combination of the current frame NLM, and the previous frame
estimate. Block matching registration with the prior estimate is
done for each current pixel estimate to maximize the temporal
correlation. To address the Poisson-Gaussian noise model, we
make use of the Anscombe transformation prior to filtering to
stabilize the noise variance. Experimental results are presented
that demonstrate the effectiveness of our proposed method. We
show that the new method outperforms single frame NLM and
BM3D.

I. INTRODUCTION

In a broad range of real-world problems, digital image
or/video is corrupted by random noise. The characteristic
of random noise sources in digital images can generally be
accurately modeled as Poisson-Gaussian noise. In many digital
image applications such as medical imaging, fluorescence
microscopy, and astronomy, only a limited amount of photons
can be collected due to various physical constraints such
as a light source with low power, short exposure time, and
phototoxicity [1]. The two predominant random noise sources
in digital image acquisition modalities are the stochastic nature
of the photon-counting at the detectors (Poisson), and the
intrinsic thermal and electronic fluctuations of the acquisition
devices (Gaussian) [1]. A wide variety of denoising algorithms
have employed the additive white Gaussian noise modeling
to account for the second source of noise, such as [2]–[6].
However, the denoising algorithms for the Poisson-Gaussian
noise is a less studied issue. The mixed Gaussian-Poisson noise
model was introduced in [7]. Since the Poisson component
models the signal-dependent of the errors, it cannot have a
constant noise variance, which makes the premise for Poisson

denoising very different from the case of additive white
Gaussian noise with constant variance [8].

There are two main options to overcome this issue and
maintain the denoising of images that have been corrupted
by Poisson noise (signal-dependent). The first option is to
specifically consider the signal dependent statistics of the
noise model, and exploit these properties and observations in
designing an effective denoising algorithm [1], [9]. The alter-
native option utilizes variance stabilization, which is performed
through a three-step process. First, the variance stabilizing
transforms (VSTs) such as the Anscombe transformation [10].
This procedure allows us to treat the noise as additive Gaussian
with unitary variance [11]. Second, the noise is removed using
our proposed denoising algorithm for additive white Gaussian
noise. Finally, the inverse transformation VST is employed to
the desired estimate signal to obtain the final estimate of the
signal [11].

Recently, many algorithms have been proposed for de-
noising. The Non-Local Means (NLM) algorithm has been
proposed by Buades et al. in [2], and it has been successfully
employed in applications such as video and texture denoising
[12]. NLM is employed to denoise images and video that
have been corrupted by additive white Gaussian noise(AWGN).
However, many authors have proposed methods to improve the
NLM for Poisson noise models [12]–[15]. In addition, Block
Matching and 3-D filtering (BM3D) has been proposed [6].
BM3D is a state-of-the-art method that uses vector distances
between 2-D image blocks. Registered blocks are stacked into
a 3-D group (grouping), and noise is reduced by collaborative
Wiener filtering. This method has been extended for Poisson-
Gaussian noise using the unbiased inverse of the generalized
Anscombe transformation (GAT) [11].

In this paper, we present a recursive NLM (RNLM) algo-
rithm for video processing. In our approach, we take advantage
of recursion for computational savings, and spatio-temporal
correlations for improved performance, compared with the
direct 3D NLM. The first frame is processed with single-frame
NLM. Subsequent frames are estimated using a weighted sum
of pixels from the current frame, and a pixel from the previous
frame estimate. Only the best matching patch from the previous
estimate is incorporated into the current estimate. This is
done to maximize the temporal correlation. We show that the
new method outperforms single frame NLM and single frame



BM3D.

The remainder of this paper is organized as follows: the ob-
servation model and some benchmark methods are introduced
in Section II, the proposed RNLM algorithm is presented in
Section III, experimental results are presented in Section IV,
and conclusions are presented in Section V.

II. VIDEO RESTORATION

A. Observation Model

In this section, we present the observation model and
notation for our video restoration methods. The degradation
model is classified into a Poisson signal-dependent noise and
a Gaussian signal-independent noise. The signal 𝑧 is assumed
to follow the Poisson-Gaussian noise model:

𝑦𝑘(𝑖) = 𝛼× 𝑃𝑘(𝑖) + 𝑛𝑘(𝑖), (1)

for 𝑖 = 1, 2, ..., 𝑁 and 𝑘 = 1, 2, ...,𝐾. Note that 𝑦𝑘(𝑖)
represents pixel values in the observed frame in the video se-
quence. The pixel is obtained through a digital image acquisi-
tion device. The pixel is corrupted by Poisson 𝑃𝑘(𝑖) with mean
𝑃 ((𝑥𝑘(𝑖)), scaled by 𝛼. The parameter 𝛼 is a positive scaling
factor that is a camera gain parameter, and 𝑛𝑘(𝑖) ∼ 𝒩 (0, 𝜎2

𝑛)
is additive zero-mean Gaussian noise with variance 𝜎2

𝑛. The
parameters of Poisson-Gaussian noise model are 𝛼 and 𝜎2

𝑛.
The parameter 𝛼 impacts the Poisson component, and 𝜎2

𝑛 is the
standard deviation of the additive Gaussian noise component.
These are camera specific parameters depend on the CCD array
in the camera and also on the integration time.

B. Single Frame Non-Local Means Filter

We begin by defining the single-frame NLM (SNLM) [2],
upon which our method is built. Processing the frames from
an image sequence individually, the SNLM output can be
expressed as

�̂�𝑘(𝑖) =
1

𝑊𝑘,𝑖

∑
𝑗∈𝜀(𝑖)

𝑤𝑘(𝑖, 𝑗)𝑦𝑘(𝑗), (2)

where �̂�𝑘(𝑖) denotes the estimated image at pixel 𝑖. The set
𝜀(𝑖) contains the indices of the pixels within an 𝑀𝑠 × 𝑀𝑠

search window centered about pixel 𝑖. The variable 𝑤𝑘(𝑖, 𝑗)
is the weight applied to pixel 𝑗, when estimating pixel 𝑖 in
frame 𝑘. To normalize the weights, the variable 𝑊𝑘,𝑖 is used,
and this is simply the sum of the individual weights.

The SNLM weights are computed based on patch similarity
and spatial proximity. In particular, 𝑤𝑘(𝑖, 𝑗) is computed as

𝑤𝑘(𝑖, 𝑗) = exp

{
−
∥∥y𝑘,𝑖 − y𝑘,𝑗

∥∥2
2𝜎2

𝑦

− 𝑑(𝑖, 𝑗)
2

2𝜎2
𝑑

}
, (3)

and 𝑊𝑘,𝑖 can be expressed as

𝑊𝑘,𝑖 =
∑

𝑗∈𝜀(𝑖)

𝑤𝑘(𝑖, 𝑗). (4)

Note that the variable y𝑘,𝑖 is a vector in lexicographical form
containing pixels from an 𝑀𝑝×𝑀𝑝 patch centered about pixel
𝑖 in frame 𝑘 from the sequence {𝑦𝑘(⋅)}. The variable 𝑑(𝑖, 𝑗)2

is the squared spatial distance between pixel 𝑖 and 𝑗. The
parameter 𝜎2

𝑦 is a tuning parameter to control the decay of
the exponential weight function with regard to patch similarity,
and 𝜎2

𝑑 is a tuning parameter controlling the decay with regard
to spatial proximity between pixels 𝑖 and 𝑗. It can seen from
Equation (3) that the weight given to pixel 𝑦𝑘(𝑗) goes down
as ∥y𝑘,𝑖 − y𝑘,𝑗∥2 goes up. The weight also goes down with
the spatial distance between pixel 𝑖 and 𝑗. Note that the tuning
parameter, 𝜎2

𝑦 , is often set close to the noise variance. Studies
of filter parameter selection can be found in [2], [16]–[18].

III. DENOISING BY ANSCOMBE TRANSFORMATION AND
THE PROPOSED RNLM ALGORITHM

The block diagram of video denoising using the Anscombe
transformation and exact unbiased inverse of Anscombe trans-
formation along with our proposed method RNLM for video
denoising is shown in Figure I. The block diagram shows
the procedure of Poisson-Gaussian denoising. First, the for-
ward Anscombe transformation is applied to stabilize the
noise variance and remove the signal-dependency which can
be treated as additive Gaussian noise with unitary variance.
Second, the proposed method is applied to reduce the noise,
treating it as independent and constant variance noise. Third,
to reduce the bias error which occurs when the nonlinear for-
ward Anscombe transformation is applied. The exact unbiased
inverse of Anscombe transformation is applied to obtain the
estimated frame of interest.

Fig. I. Block Diagram of the Process of denoising using generalized
Anscombe transformation combined with Recursive Non-Local Means Filter
for Poisson-Gaussian noise.

A. RNLM Definition

The goal of the proposed RNLM method is to effectively
exploit spatio-tempotal information, but with a computational
complexity more in line with the SNLM in Equation (2). To
do so, RNLM estimate is formed as a weighted sum of pixels
from the current frame, like Equation (2), but it also includes a
previous frame pixel estimate. That is, the current input frame
and the prior output frame are used to form the current output.
This type of recursive processing helps to exploit the temporal
correlation, without significantly increasing the search window
size or overall computational complexity.

Specifically, the estimate for the proposed RNLM is given



(a)

(b)

Fig. II. Block Diagram of Proposed Algorithm.

by

�̂�𝑘(𝑖) =
1

𝑊𝑘,𝑖

⎡
⎣𝑤�̂�,𝑘(𝑖)�̂�𝑘−1(𝑠𝑘(𝑖)) +

∑
𝑗∈𝜀(𝑖)

𝑤𝑦,𝑘(𝑖, 𝑗)𝑦𝑘(𝑗)

⎤
⎦ ,

(5)
where �̂�𝑘−1(𝑠𝑘(𝑖)) is the previous frame estimate (i.e., frame
𝑘 − 1) at pixel 𝑠𝑘(𝑖) ∈ {1, 2, ..., 𝑁}. Pixel 𝑠𝑘(𝑖) is selected
from {�̂�𝑘−1(⋅)} based on block matching with respect to the
block in frame 𝑘 centered about pixel 𝑖. For the selection of
𝑠𝑘(𝑖), we allow for a potentially different block and search size
from that used for the within-frame processing. In particular,
the block matching block size is 𝑁𝑏 ×𝑁𝑏, with an 𝑁𝑠 ×𝑁𝑠

search window. As in Equation (2) for the SNLM, the set
𝜀(𝑖) in Equation (5) contains the indices of the pixels within
an 𝑀𝑠 × 𝑀𝑠 search window centered about pixel 𝑖. The
recursive weight in Equation (5) is 𝑤𝑥,𝑘(𝑖), and the non-
recursive weights, 𝑤𝑦,𝑘(𝑖, 𝑗), are similar to that for the SNLM.
We shall define and discuss all of the weights shortly. The
relationship among the various pixels used in the RNLM
estimation process is depicted in Figure II. Shown are the
raw unprocessed frames in parallel with the processed frames.
Output �̂�𝑘(𝑖) is formed using a weighted sum of the input
frames pixels, shown on the left, and the previous processed

output, shown on the back right.

Let us now define the weights. The non-recursive weights
are defined in a manner similar to SNLM. Specifically, these
are given by

𝑤𝑦,𝑘(𝑖, 𝑗) = exp

{
−∥y𝑘(𝑖)− y𝑘(𝑗)∥2

ℎ𝑦𝑏

− 𝜎2
𝑛

ℎ𝑦𝑛

}
, (6)

where ℎ𝑦𝑏
and ℎ𝑦𝑛

are tuning parameters. Here, we do not use
the spatial distance weighting term of the SNLM. This could
easily be added, but it did not provide improved performance
in our experimental results. The recursive weights are given
by

𝑤�̂�,𝑘(𝑖) = exp

{
−∥y𝑘(𝑖)− x̂𝑘−1(𝑠𝑘(𝑖))∥2

ℎ�̂�𝑏

−
𝜎2
�̂�𝑘−1(𝑠𝑘(𝑖))

ℎ�̂�𝑛

}
,

(7)
where ℎ�̂�𝑏

and ℎ�̂�𝑛
are tuning parameters, and 𝜎2

�̂�𝑘−1(𝑠𝑘(𝑖))
is

the residual noise variance associated with �̂�𝑘−1(𝑠𝑘(𝑖)). The
vector x̂𝑘−1(𝑠𝑘(𝑖)) is the 𝑀𝑝×𝑀𝑝 patch of pixels about pixel
�̂�𝑘−1(𝑠𝑘(𝑖)) (shown in Figure IIb) in lexicographical vector
form. The weight normalization factor here is given by

𝑊𝑘,𝑖 = 𝑤�̂�,𝑘(𝑖) +
∑

𝑗∈𝜀𝑦(𝑖)

𝑤𝑦,𝑘(𝑖, 𝑗). (8)

Finally, assuming the noise is independent and identically
distributed, the residual noise variance can be computed re-
cursively as follows:

𝜎2
�̂�𝑘
(𝑖) =

𝑤2
�̂�,𝑘(𝑖)𝜎

2
�̂�𝑘−1

(𝑠𝑘(𝑖)) +
∑

𝑗∈𝜀𝑦(𝑖)

𝑤2
𝑦,𝑘(𝑖, 𝑗)𝜎

2
𝑛

𝑊 2
𝑘,𝑖

. (9)

Note that Equation (9) is not the error variance. Rather it only
accounts for the variance of the noise component of the error
associated with the estimate �̂�𝑘−1(𝑠𝑘(𝑖)).

The RNLM weights in Equations (6) and (7) have a total
of four tuning parameters, two to govern the non-recursive
weights, and two to govern the recursive weights. In the non-
recursive weights in Equation (6), the parameter ℎ𝑦𝑏

serves
the same role as 𝜎2

𝑦 in the SNLM in Equation (3). We refer
to this weight as the non-recursive bias error weight. We view
∣∣y𝑘(𝑖)−y𝑘(𝑗)∣∣2 as a measure of the bias error in 𝑦𝑘(𝑗) with
respect to the true sample 𝑥𝑘(𝑖) that we are estimating. That
is, underlying signal differences between the pixel 𝑖 and 𝑗 are
being quantified by this term. The tuning parameter ℎ𝑦𝑏

con-
trols the exponential decay of the weights as a function of this
bias error. The noise error associated with 𝑦𝑘(𝑗) is given by the
constant noise variance 𝜎2

𝑛. The noise variance in Equation (6)
is scaled by the ℎ𝑦𝑛

to control the weight decay as a function
of the noise variance. For the recursive weight, we have similar
tuning parameters. The term ∣∣y𝑘(𝑖)−x̂𝑘−1(𝑠𝑘(𝑖))∣∣2 quantifies
the bias error associated with �̂�𝑘−1(𝑠𝑘(𝑖)), and the residual
noise variance associated with this estimate is 𝜎�̂�2

𝑘−1
(𝑠𝑘(𝑖)), and

may be computed using Equation (9). We give each of these
error quantities a tuning parameter, to balance their impact on
the resulting filter weights. The bias error for the recursive
sample is scaled by ℎ�̂�𝑏

, and the residual noise term is scaled
by ℎ�̂�𝑛

.



IV. RESULTS AND DISCUSSION

A set of experiments was performed in order to evaluate the
proposed RNLM algorithm. We compare against state-of-art
denoising algorithms. The spatio-temporal resolution of each
sequence is indicated in Table A. These sequences present
variations of condition, for instance, dark and low light con-
ditions, and global and local motion. The original sequences
were simulated under different acquisition parameters.

A. Simulated Data

In this section, we provide quantitative quality evaluations
of the results that we obtained with the proposed RNLM
algorithm. As a measure of quality, the peak signal-to-noise
ratio (PSNR) is computed for each experiment and the re-
sulting values are displayed in Table A. PSNR is defined as
𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(𝐿

2/𝑀𝑆𝐸), where 𝐿 is the the maximum
intensity of the original image and 𝑀𝑆𝐸 is the mean square
error between the original image and restored image.

In order to test the proposed method, we have conducted
comparisons with two competing algorithms on simulated data.
The video sequences we have used in the simulations are
publicly available video sequences [19] allowing for repro-
ducible and comparative results. The original video sequences
are composed of 50 frames. We added mixed Poisson-Gaussian
noise into the original data with a scaled Poisson noise and a
zero-mean additive Gaussian noise.

We show in Table A the PSNR results obtained by the
proposed method, along with BM3D and SNLM. Table A
presents the results of three experiments with different values
of the scaling parameter 𝛼 of the Poisson noise, and the
variance 𝜎2 of the Gaussian noise. Experiment 1 is defined
by 𝛼 = 0.5 and 𝜎2 = [1, 5, 10, 20]. Experiment 2 by 𝛼 = 1
and 𝜎2 = [1, 5, 10, 20], and Experiment 3 uses 𝛼 = 1.5 and
𝜎2 = [1, 5, 10, 20]. The results confirm that our proposed algo-
rithm combined with the generalized Anscombe transformation
(RNLM+GAT) shows the highest performances and best noise
reduction of the methods tested on our sequences.

In Figure III, we show a visual result of the various
algorithms applied on Tennis, Salesman, Miss America, and
News sequences. We would suggest that the RNLM+GAT
denoised frames exhibit the best subjective visual appearance.
The method is not over-smoothing, as we see with some of the
other methods. In our results, we have found that it is generally
advantageous to choose 𝑁𝑏 > 𝑀𝑝. This helps to provide a
better match for the the important sample �̂�𝑘−1(𝑠𝑘(𝑖)) . The
size of the search window 𝑁𝑠 maybe selected based on the
temporal motion expected in the video sequence.

V. CONCLUSION

We have proposed a computationally efficient recursive
NLM method (RNLM), and combined it with the Anscombe
transformation to allow it to restore video with Poisson-
Gaussian noise. Our results show that RNLM is compet-
itive with more computationally complex algorithms, such
as BM3D. We believe the proposed method offers a simple
and practical video denoising solution, capable of balancing
noise reduction and detail preservation. Because of its low
computational cost, we believe it is well suited for real-time
implementation.
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[11] Mäkitalo, M., Foi, A.: Poisson-gaussian denoising using the exact unbi-
ased inverse of the generalized anscombe transformation. In: 2012 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1081–1084 (2012). IEEE

[12] Bindilatti, A.A., Mascarenhas, N.D.: A nonlocal poisson denoising
algorithm based on stochastic distances. IEEE Signal Processing Letters
20(11), 1010–1013 (2013)

[13] Deledalle, C.-A., Tupin, F., Denis, L.: Poisson nl means: Unsupervised
non local means for poisson noise. In: 2010 IEEE International Con-
ference on Image Processing, pp. 801–804 (2010). IEEE

[14] He, L., Greenshields, I.R.: A nonlocal maximum likelihood estimation
method for rician noise reduction in mr images. IEEE transactions on
medical imaging 28(2), 165–172 (2009)

[15] Salmon, J., Harmany, Z., Deledalle, C.-A., Willett, R.: Poisson noise
reduction with non-local pca. Journal of mathematical imaging and
vision 48(2), 279–294 (2014)

[16] Wang, Z., Zhang, L.: An adaptive fast non-local image denoising
algorithm. Journal of Image and Graphics 14(4), 669–675 (2009)

[17] Manjón, J.V., Carbonell-Caballero, J., Lull, J.J., Garcı́a-Martı́, G., Martı́-
Bonmatı́, L., Robles, M.: Mri denoising using non-local means. Medical
image analysis 12(4), 514–523 (2008)

[18] Li, H., Suen, C.Y.: A novel non-local means image denoising method
based on grey theory. Pattern Recognition 49, 237–248 (2016)

[19] Video Trace Library. http://trace.eas.asu.edu/index.html



TABLE A. PSNR COMPARISON WITH COMPETITIVE DENOISING ALGORITHM.

a s
Video: Salesm. Tennis
Alg. RNLM( bma) RNLM(no bma) BM3D SNLM RNLM( bma) RNLM(no bma) BM3D SNLM

0.5 1

PSNR

38.33 38.22 37.14 35.87 34.50 34.10 33.92 33.09
0.5 5 37.23 37.14 35.76 34.45 33.65 33.20 33.08 32.26
0.5 10 35.36 35.28 33.66 32.24 31.79 31.61 31.60 30.85
0.5 20 32.32 32.23 30.79 29.13 29.76 29.38 29.14 29.11
1 1 36.51 36.51 35.27 33.92 32.67 32.23 32.14 31.36
1 5 35.82 35.69 34.51 33.13 32.20 31.77 31.75 30.98
1 10 34.37 34.23 32.98 31.58 31.21 30.79 30.91 30.20
1 20 31.56 31.45 30.59 28.91 29.52 29.15 29.44 28.93

1.5 1 35.50 35.37 34.21 32.81 31.75 31.23 31.20 30.50
1.5 5 35.00 34.87 33.68 32.24 31.46 30.95 30.90 30.27
1.5 10 33.86 33.70 32.55 31.06 30.73 30.16 30.43 29.77
1.5 20 31.42 31.29 30.40 28.70 29.30 28.94 29.28 28.78

a s
Video: Miss America News
Alg. RNLM( bma) RNLM(no bma) BM3D SNLM RNLM( bma) RNLM(no bma) BM3D SNLM

0.5 1

PSNR

42.01 41.84 41.90 41.05 41.74 41.83 38.32 36.97
0.5 5 41.05 40.89 40.92 40.11 40.33 40.33 35.56 35.72
0.5 10 39.66 39.16 39.71 38.38 37.82 37.90 34.11 33.49
0.5 20 36.55 36.24 37.14 35.42 34.12 34.11 31.72 29.97
1 1 40.72 40.52 40.78 39.62 39.62 39.69 36.24 34.85
1 5 40.21 39.98 40.26 39.03 38.34 38.26 35.56 34.16
1 10 39.10 38.84 39.15 37.73 36.61 36.62 34.11 32.60
1 20 36.88 36.61 36.91 35.20 33.47 33.17 31.40 29.65

1.5 1 39.94 39.70 39.95 38.70 37.77 37.84 35.01 33.61
1.5 5 39.55 39.30 39.57 38.25 37.18 37.19 34.55 33.12
1.5 10 38.67 38.38 38.69 37.22 35.82 35.83 33.45 31.93
1.5 20 36.75 36.41 36.71 34.97 33.19 33.05 31.12 29.33

Fig. III. Visual Comparison of denoised Frames from top to bottom, Tennis, Salesman, Miss America, and News corrupted by mixed Poisson-Gaussian noise
with 𝜎 = 10 and 𝛼 = 0.5.
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