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ABSTRACT  

In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by 
atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were 
simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is 
used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise 
mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed 
with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a block matching 
method with restoration filter. These algorithms were chosen because they incorporate different approaches and 
processing techniques. The results quantitatively show how well the algorithms are able to restore the simulated 
degraded imagery. 

Keywords: Imaging, turbulence, anisoplanatism, Monte-Carlo, wave optics, noise, restoration 
 

1. INTRODUCTION 
An imaging system is susceptible to a wide range of degradations that limit its performance. In situations where data is 
captured over long distances, such as in the astronomical case, the limiting factor in the camera’s performance is 
typically due to turbulence.  

Turbulence artifacts are due to continual changes in temperature and pressure that lead to random fluctuations in the 
index of refraction1. These continual changes in the atmosphere lead to warping and blurring in collected imagery. The 
strength of turbulence can be quantified by a Cn

2 profile along the path. Additionally this profile is used to calculate the 
Fried parameter1,2 and the isoplanatic angle1. Both of these products convey information on how an atmospheric point 
spread function (PSF) will behave. In cases where the FOV subtends many isoplanatic patches, the turbulent short 
exposure PSF’s now become space variant. This in turn leads to a more challenging case for turbulence mitigation. It is 
important to note that in either imaging scenario the Fried parameter used for the long exposure case PSF is space 
invariant.  

It is well established there is continual research to simulate and mitigate turbulence. Approaches to simulate turbulence3,4 
allow for truth data to be available to be used in quantifying how well a mitigation approach works on varying levels of 
turbulence strength. Mitigation methods include, but are not limited to, multi-frame approaches and deblurring5, Lucky 
Look6, or speckle imaging7,8. All three methods have different variations in the approach to remove turbulence.  

Another consideration in image quality is the signal to noise ratio (SNR). A higher SNR level allows for more contrast in 
the imagery. However, there are cases where a short integration time is used with the camera to freeze the effects of 
turbulence. In doing so the signal levels of the imagery remain lower than a long exposure case.  

Typically, just as with trying to model and mitigate turbulence, a camera’s noise statistics are modeled with an additive 
Gaussian noise term9,10. A more accurate representation of the total camera system noise11,12 is through a Poisson-
Gaussian noise mixture model. 

In this paper we combine simulated turbulence with a Poisson-Gaussian noise model to survey how well the three main 
outlined algorithms perform in restoring the degraded data. Section 2 discusses the modeling/simulation approach. The 
results of the algorithms are presented in Section 3. Finally, a conclusion is provided in Section 4. 
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2. OBSERVATION MODEL 
The forward model used to describe noisy turbulent data stems from previous work4,13. In these papers the th observed 
image is a culmination of warping and blurring, such that 

 ( , ) = ( , ) ℎ( , ) ( , ) +  ( , ) . (1) 

The ideal frame is ( , ) with ,  being spatial coordinates. A position-dependent shift operator, ( , ) (), describes 
the warping seen in the imagery. In turn, the position-dependent/position corrected blurring is included in ℎ( , ) (). 
Note the above model only includes additive iid Gaussian noise, ( , ) , that has a zero mean with a known variance.  

As discussed earlier in and in other papers11,12, a Poisson-Gaussian noise model is more accurate. Thus, part of the 
equation above can be rewritten for simplicity as ( , ) = ( , ) ℎ( , ) ( , )  .                                                                   (2)     

The warped/blurred image, ( , ) , is then added into the Possion-Gaussian noise model to represent the observed 
frame as  

 ( , ) = ( ( , ) ) +  ( , ) .       (3) 

In the equation above  is a Poisson random process contributing the signal dependent component of the noise and  is a 
scalar value representing the camera gain. For the purposes of generic noise modeling, versus a physical cameras 
performance, we will allow  to be one for the simulations in this paper. In the revised noise mode we have neglected to 
show a camera offset term as it is typically zero11. 

The camera model used in the turbulence simulations is the same as in a previous paper4, and shown again for 
convenience in Table 1. 

Table 1. Information on the camera system used in the simulations. 

Parameter Value 

Aperture D = 0.2034m 

Focal length l = 1.2m 

F-number f/# =5.9 

Wavelength λ = 0.525µm 

Object distance L = 7km 

Nyquist pixel spacing (focal plane) δf = 1.5488µm 

Nyquist pixel spacing (object plane) δo = 9.0344mm 

Input image dynamic range 256 digital units 

Additive Gaussian noise variance 4 digital units 

 

The camera parameters listed above were chosen to represent a generic imaging system. The wavelength of the system 
certainly allows for turbulent imagery to be collected over the horizontal slant range of seven kilometers. A input 
dynamic range of 8 bits was chosen due to the fact the camera would be collecting short exposure imagery to freeze the 
turbulence. The f-number of the system was also chosen to ensure the system was limited by the turbulent component of 
the modulation transfer function (MTF). 

The turbulence parameters also follow from a previous paper4 and are given in Table 2. The algorithm used was a 
Monte-Carlo wave optics approach using a set number of equally spaced phase screens between the object and the 
camera. Any aspects of camera motion were not incorporated into the simulation data sets generated for this survey. 
Instead, the camera and object were modeled as remaining stationary during the time of the collection. 
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Table 2. Information on the turbulence parameters used in the simulations. 

Parameter Value 

Path length L = 7km 

Propagation step Δz = 700m 

Cropped screen samples  = 256 

Propagation screen width X = 0.9699 m 

Pupil plane point spread = 0.8136 m 

Propagation sample 
spacing 

Δx = 0.0038m 

Number of phase screens  N = 10 (9 non-zero) 

Phase screen type Modified von K ́ rm ́ n with 
subharmonics 

Inner scale lo= 0.01m 

Outer scale Lo=300m 

Image size (pixels) 257×257 

Image size (object plane) 2.3218×2.3218 m  

Pixel skip 4 pixels (65×65 PSF array) 

 

These turbulence parameters were used to simulate turbulence over a horizontal path where the Cn
2 would be a constant 

value. 

All turbulent datasets used in this survey were generated by a method discussed in another paper4 and also used in a 
restoration paper5. The restoration paper however did not use a Poisson-Gaussian noise mixture model. These two papers 
provide greater details on the specific details used to create the simulated turbulence products. Camera noise was then 
added after the turbulence was simulated following the equations outlined above. 

3. RESULTS 
In this section we present a variety of restoration results. Three main algorithms were chosen to process four levels of 
turbulence. The first algorithm is the block-matching Wiener filter (BMWF) turbulence mitigation system5. The main 
parameters used in the BMWF algorithm is the block matching algorithm (BMA) that had the window size set to 15 ×15 
pixels. The other component is the noise to signal ratio (NSR) used in the Wiener filter portion of the algorithm. The 
algorithm was able to choose the best NSR value to minimize the mean absolute error (MAE) as the true object scene is 
known. The Wiener filter utilized the point spread function (PSF) of the imaging system outlined in Table 1, along with 
the estimated atmospheric coherence diameter determined from the reduction in warping during image restoration as 
discussed in the previous paper. 
 
The second algorithm used in this evaluation is the Sobolev gradient flow (SOB) plus Laplacian (LAP) referred to in the 
literature as SOB+LAP14. This algorithm mitigates turbulence in two parts by using a Laplacian operator to mitigate 
temporal distortions in the imagery. The second part involves using a Sobolev gradient method to sharpen the content in 
the individual frames. The MATLAB code for the SOB+LAP algorithm is available online15. The SOB+LAP & Lucky 
Look algorithm does require a degraded video sequence and outputs a restored sequence. This capability is very useful 
for applications when a restored video sequence is required over the whole input sequence. The output video sequence 
can be temporally averaged to produce a single frame result. The SOB+LAP output data sequence could also be further 
processed with a Lucky Look fusion6 approach as done in this paper. The Lucky Look fusion Gaussian blur parameter 
was optimized to yield the best MAE. 
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