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Differential tilt variance effects of turbulence in imagery: comparing 
simulation with theory 

Daniel A. LeMaster*a, Russell C. Hardieb, Szymon Gladyszc, Matthew D. Howarda, Michael A. 
Ruccia, Matthew E. Trippela, Jonathan D. Powera, Barry K. Karcha 

aAir Force Research Laboratory, 2241 Avionics Circle, Wright Patterson AFB, OH 45433;  
bDepartment of Electrical and Computer Engineering, University of Dayton, 300 College 

Park, Dayton, Ohio 45459; cFraunhofer Institute of Optronics, System Technologies and Image 
Exploitation, Gutleuthausstr. 1, 76275 Ettlingen, Germany 

ABSTRACT  

Differential tilt variance is a useful metric for interpreting the distorting effects of turbulence in incoherent imaging 
systems.  In this paper, we compare the theoretical model of differential tilt variance to simulations.   Simulation is based 
on a Monte Carlo wave optics approach with split step propagation.  Results show that the simulation closely matches 
theory.  The results also show that care must be taken when selecting a method to estimate tilts. 

Keywords: Imaging, turbulence, tilt anisoplanatism, differential tilt, monte carlo, wave optics 
 

1. INTRODUCTION  
Differential Tilt Variance (DTV) is a measure of tilt anisoplanatism; it relates how apparent motion evolves spatially in a 
sequence of turbulence degraded images.  For imaging scenarios where the sensor field-of-view subtends many 
isoplanatic patches, DTV can be used as an expression of requirements on dewarping for image restoration algorithms.  
Specifically, DTV could be used to compute the size of an isokinetic patch to be used as a block in these algorithms.  
Along with due consideration for higher order aberrations, DTV may also aid kernel size selection in lucky-region 
fusion1 or for the processing block size used in bispectrum speckle techniques2.  Furthermore, we hope to use DTV to 
improve predictive models of image quality that, at present, do not account for anisoplanatism.   

DTV for spherical wave propagation was derived and verified experimentally over horizontal paths by Gladysz et al3.  
Using an array of Light Emitting Diode (LED) point sources and this model of DTV, they were able to infer refractive 
index structure constant, outer scale and the slope of the turbulence power spectrum.  In this paper, we compare theory to 
an anisoplanatic turbulence simulator that recreates conditions of the Gladysz field collect.  This comparison is of 
general interest because differential tilt variance is not factored explicitly into simulation design (specifically, into phase 
screen selection) yet it is a readily identifiable effect in imagery and easily measurable, as opposed to higher-order 
aberrations for which a wavefront sensor is needed. 

The Monte-Carlo wave optics turbulence simulator used in this paper is based on the well-known split-step approach 
where radiation propagates from object space, through a series of turbulence phase screens, and into the receiving 
aperture using the Fresnel/angular spectrum method.  This particular implementation draws on two sources from the 
literature4-5. Specifically, unique turbulence degraded Point Spread Functions (PSFs) are calculated and applied to each 
point in the true object image in order to simulate the space-varying effects of turbulence.  This approach is one of 
several variations on wave-optics based methods.  For instance, in another variation, a field corresponding to the entire 
object with a random realization of surface roughness is split-step propagated though a series of phase screens under 
frozen turbulence conditions.  This process is repeated many times for different object surface phase realizations and 
averaged to produce a final incoherent image6.  All other conditions being equal, simulation time for the technique used 
in this paper will be faster than the random surface roughness approach.   

Turbulence simulators are a useful way to evaluate image restoration performance; therefore, it is necessary to verify 
that the differential tilt variance predicted by theory is observed in the simulated results.  Background on differential tilt 
variance is presented in Section 2.  The experiment and results are presented in Section 3.  This paper concludes with 
interpretation and conclusions in Section 4.    
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Recalling that, in all cases8, )()( 21 txtx −  = )()( 21 txtx − , Equation 3 shows that the estimate of differential tilt 
variance follows directly from the variance of the difference in observed tilts.  It is straightforward to derive an identical 
result for the σp

2 case.    Regression can be used to fit estimates of σp
2 and σc

2 from imagery to values of turbulence 
strength, spectral slope, and outer scale via Equation 1.  The requirement for accurate tilt estimation is implicit in 
Equation 3.  Three tilt estimation techniques were applied in this paper, two based on centroiding and a third based on 
template matching in Fourier space. 

The first centroiding process utilizes a multipass algorithm to separate each LED object in the frame and then calculate 
the location of the centroid. The first pass begins by thresholding to determine a region of interest around each LED. 
Next, the objects are detected from the mask by using the OpenCV contour finding routine and considering the largest 
contours to correspond to the objects.  The central moments of the contours are used to obtain estimated centroids for the 
two objects.  The second pass takes the estimated centroids and uses the region around them to find the power-weighted 
centroid of each object.   

In the second centroiding process, regions containing LED signals are determined by thresholding the image above three 
standard deviations of the noise floor after local background subtraction.  The noise floor is also estimated from the 
imagery.  Pixels containing signal above this threshold are then used to find the centroid for each LED. 

For the template matching tilt estimator, an idealized reference image is cross-correlated in Fourier space with the 
measured signal.  In the discrete Fourier transform domain, both the reference and measured data are upsampled by a 
factor of 10 using zero-padding. The idealized reference image for each individual LED is determined from the average 
image over the collected sequence. In field collections, this is an important consideration for imaging over short 
distances because the experimental LEDs are slightly resolved and each looks a bit different. In simulation, the LEDs are 
closer to true points. This is the tilt estimator used during field trials3. 

3. ANALYSIS OF SIMULATED RESULTS 
Our simulation attempts to recreate the conditions of the experiment at the Institute of Saint-Louis (ISL) discussed in 
reference [3] (specifically, Figure 2).  The experiment included a 10 by 10 array of white light LEDs, spaced 5 cm apart, 
and imaged from a range of 270 m.  The telescope used in this experiment had an aperture diameter of 145 mm, focal 
length is 800 mm, and detector pitch of 5.5 μm. DTV estimates were extracted from 1000 frames of short exposure 
imagery collected at 100 Hz.  Turbulence strength is 4.2x10-14 m-2/3 along the path as measured by a scintillometer.  For 
the purposes of simulation, the LEDs are assumed to be point sources with 600 nm wavelength.  Also, we simulated a 13 
by 13 LED array (rather than a 10 by 10). 

3.1 Simulation parameters 

Our Monte-Carlo wave optics simulation technique was discussed in Section 1.  To significantly speed up processing, 
each LED image is calculated separately and stitched together to form the composite array.  This is an effective approach 
because each LED image is essentially a short exposure point spread function on a black background.  Volume 
turbulence is approximated using two phase screens, evenly spaced along the path (i.e. at 90 m and 180 m), and scaled 
based on a variation of the Bos and Roggemann method5.  The phase screens are selected to match the theoretical 
coherence diameter but the discrete isoplanatic angle was scaled down so that the empirical isoplanatic angle was a 
better match with the theoretical after generating images.  Agreement with theoretical log amplitude variance is 
deemphasized since each point spread function is assigned equal amplitude.  The phase screens are generated using the 
von Karman power spectrum with 3 levels of subharmonics.  Table 1 summarizes the details of the simulation and 
Figure 3 shows 3 by 3 LED image chips extracted from three successive frames.  The chips have been upsampled and 
contrast stretched to aid visualization.   
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Table 1.  A summary of simulation conditions. 

theoretical discrete units 

coherence diameter 4.2 4.2 cm 

isoplanatic angle 49 40 μrad 

log amplitude variance 0.023 0.04 unitless 
 

 
Figure 3. 3 x 3 LED array images in turbulence as simulated with the Monte-Carlo approach (upsampled and contrast 

stretched). 

 
Figure 4. 3 x 3 LED array sample from the field collection in [3]. 

Figure 4 shows a 3 by 3 LED region extracted from an image taken during the field collect3.  It is visibly softer than the 
simulated data.  Several factors may contribute to this difference: the real LEDs were not true point sources; real LEDs 
are polychromatic; the simulation does not include the true telescope and detector array modulation transfer 
characteristics; and, perhaps most importantly, it is easy to achieve perfect focus in simulation but difficult to do so for 
turbulence degraded imagery in practice.  Our assumption is that the unmodeled effects contributing to blur do not 
degrade the apparent motion that is key to estimating differential tilt variance.  

3.2 Comparing simulation and theory 

Figure 5 summarizes how differential tilt variance estimates are affected by choice of tilt estimator.  Each estimate 
includes all possible tip (x) and tilt (y) combinations of LED separations, e.g. 312 estimates for 5 cm spacing at each 
DTV orientation, 286 estimates for 10 cm spacing, et cetera.  It is clear that the Fourier cross-correlation estimator 
provides results that are most in agreement with the theoretical values overall.  Centroid method 2 slightly outperforms 
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the Fourier method when only the perpendicular case (σp
2) is considered. As a useful point of comparison, the field trial 

results from Figure 2 in reference 3, which is precisely the case that we attempted to simulate, are also included in the 
plot.  

 
Figure 5. A comparison of Differential Tilt Variance theory and simulations.   

(Left) Parallel to the common axis between sources.  (Right)  Perpendicular to the common axis between sources. 
 

The close agreement between the Fourier method and theory was anticipated as this is also the standard model used by 
the authors of the field trial.  Taken on its face, this result seems to show that the Monte-Carlo wave optics simulation 
does give rise to the correct differential tilt variance statistics even though this measure is not considered explicitly when 
selecting the location and composition of the phase screens.     

It is instructive to consider the results in Figure 5 in terms of the Cn
2 values that best fit the estimated DTV curves.  Best 

fit is defined to be in the minimum mean squared error sense.  Table 2 contains multiple different estimates of Cn
2 across 

the three tilt estimators.  Cn
2 is estimated for the parallel and perpendicular variances for both the horizontal (along each 

row of LEDs) and vertical (along each column of LEDs) directions in all possible combinations.  At the bottom of Table 
2, these results are recast in terms of percent deviation from the theoretical value, 4.2 x 10-14 m-2/3.  Outer scale estimates 
were all much larger than 10 m.  Consequently, there is no significant deviation in these results when outer scale is 
assumed to be infinite. 

 

Table 2.  Turbulence strength estimates from each tilt estimator for all orientation combinations. 
 

Cn
2 (x10-14) horizontal vertical horizontal and vertical together 

parallel perpendicular combined parallel perpendicular combined parallel perpendicular combined 

Centroid 1 3.04 2.59 2.89 2.76 2.72 2.72 2.89 2.65 2.83 

Centroid 2 3.75 3.39 3.63 3.4 4.85 3.87 3.6 4.12 3.73 

Fourier 4.32 4.08 4.23 3.92 3.91 3.93 4.12 4.01 4.06 

Cn
2 error (%) horizontal vertical horizontal and vertical together 

parallel perpendicular combined parallel perpendicular combined parallel perpendicular combined 

Centroid 1 -27.6 -38.3 -31.2 -34.3 -35.2 -35.2 -31.2 -36.9 -32.6 

Centroid 2 -10.7 -19.3 -13.6 -19.0 15.5 -7.9 -14.3 -1.9 -11.2 

Fourier 2.9 -2.9 0.7 -6.7 -6.9 -6.4 -1.9 -4.5 -3.3 
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Table 2 confirms the agreement between theory and the simulated data when the Fourier estimator is used.  Cn
2 estimates 

tend to fall below the theoretical value (if only slightly in the Fourier case).  More experimentation is required to 
determine if this discrepancy can be traced to the tilt estimators or to the simulation.  Ideally, there would be perfect 
agreement between the theory and the model.  That being said, it is worth mentioning that the variation in Cn

2 estimates is 
equivalent to or smaller than variation seen in field measurements of Cn

2 using scintillometers.  There is no definitive 
evidence of anisotropy when comparing the Cn

2 estimates across the horizontal and vertical cases.  Results from the 
Centroid 1 and Fourier estimators are slightly higher in the horizontal case while, for Centroid 2, the vertical case is 
slightly higher.  Neither parallel nor perpendicular fits show any strong advantage over the others in terms of percent 
error.   Out of all possible variations, it is clear that choice of tilt estimator has the most demonstrable impact on 
performance.   

4. CONCLUSION 
We intend to use differential tilt variance as a means to discuss and compare the effects of anisoplanatism across 
different turbulence restoration algorithms, approaches to turbulence mitigation, and image quality performance models.  
Differential tilt variance is useful for these tasks because it describes (in a statistical sense) how turbulence induced 
apparent motion in imagery evolves over angles that are much larger than the isoplanatic patch.  We expect this measure 
to be particularly salient in the evaluation of algorithms that depend on space-varying block or kernel processing. 

In this paper, we simulated turbulence degraded imagery of an LED array with conditions corresponding to a recent field 
collect where differential tilt variance was used to estimate Cn

2, outer scale, and the slope of the turbulence power 
spectrum.  The turbulence simulation used in the paper employs a wave optics Monte Carlo approach with split step 
propagation where phase screen placement and properties are selected to closely match the coherence diameter and 
isoplanatic angle of the bulk turbulence.  Consequently, our initial hypothesis was that simulated differential tilt variance 
would make a poor comparison to theory because differential tilt variance is not considered explicitly in the phase screen 
selection process. After processing the results, we have determined that this hypothesis was incorrect; in fact, theory and 
simulation are in good agreement when tilts are estimated using the approach recommended from the field collect 
campaign.   
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