
Ouachita Baptist University
Scholarly Commons @ Ouachita

Honors Theses Carl Goodson Honors Program

2015

Natural Language Processing for Foreign Language
Learning
Jacob Kausler
Ouachita Baptist University

Follow this and additional works at: https://scholarlycommons.obu.edu/honors_theses

Part of the Computational Linguistics Commons, Software Engineering Commons, and the
Theory and Algorithms Commons

This Thesis is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly Commons @ Ouachita. It has been accepted
for inclusion in Honors Theses by an authorized administrator of Scholarly Commons @ Ouachita. For more information, please contact
mortensona@obu.edu.

Recommended Citation
Kausler, Jacob, "Natural Language Processing for Foreign Language Learning" (2015). Honors Theses. 197.
https://scholarlycommons.obu.edu/honors_theses/197

https://scholarlycommons.obu.edu?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.obu.edu/honors_theses?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.obu.edu/honors?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.obu.edu/honors_theses?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/375?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.obu.edu/honors_theses/197?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mortensona@obu.edu

SENIOR THESIS APPROVAL
This Honors thesis entitled

"Natural Language Processing for
Foreign Language Learning"

written by

Jacob Kausler

and submitted in partial fulfillment of
the requirements for completion of
the Carl Goodson Honors Program

meets the criteria for acceptance
and has been approved by the undersigned readers.

Dr. JetfMatocha, thesis director

Dr. Joey Dodson, second reader

Dr. Darin Buscher, third reader

Jr. Barbara Pemberton, Honors Program director

4/20/2015

Nat ural Language Generation for Foreign Language
Learning

Second Draft

•

Jacob Kauslcr

February 2015

41 tN .• Klj L1t.SO T .AM UUAARY !·
'XJAC~Tt\ IIAPTIST JNIVERSITY

For my Pawpaw,
You taught me that the purpose of an education was not to
open new doors, but to keep old doors open.

Contents

Abstract

1 Introduction
1.1 Background Information

1.1.1 Natural Language Processing
1.1.2 Natural Language Generation
1.1.3 Related Work

1.2 What is to Come

2 User Interaction and Top-Level Design
2.1 Layout of the GUI
2.2 The Sentence Generation Algorithm .
2.3 Modelled vs. Semantic Generation

3 Modeled Sentence Generation
3.1 Construction of the Sentence Models
3.2 Database Design

4 Semantic Sentence Generation
4.1 Construction of the Sentence Models
4.2 Database Design

5 Filling the Sentence Models
5.1 Word Choice Process . . .
5. 2 The Lexicon Databases . .
5.3 Part of Speech Conjugation

5.3.1 Verbs ...
5.3.2 Nouns . .
5.3.3 Adjectives
5.3.4 Pronouns
5.3.5 Determiners

6 The Implemented System
6.1 Corpora Choice ...
6.2 Development Process ..

11

v

1
1
2
3
4
5

6
6
8
8

13
13
14

17
18
19

22
22
24
25
25
26
26
26
26

27
27
28

CONTENTS

7 Conclusion
7.1 Results
7.2 Remaining Work
7.3 Future Work . . .

Appendix A Getting Started Guide
A.1 Installation
A.2 Layout of the Interface
A.3 Creating New Sentences ...
A.4 Navigating Between Sentences
A.5 Saving and Opening Sessions .

Appendix B Se1nantic Sentence Generation Pseudocode

Appendix C Software Requirements Specification
C.1 Introduction . .

C.l.l Purpose
C.l.2 Scope
C.1.3 Acronyms and Abbreviations
C.1.4 Overview

C.2 Overall Description
C.2.1 Product Perspective
C.2.2 Product Functions .
C.2.3 User Characteristics
C.2.4 Constraints
C.2.5 Assumptions and Dependencies
C.2.6 Apportioning of Resources

C.3 Specific Requirements
C.3.1 Functions
C.3.2 Performance Requirements .
C.3.3 Logical Database Requirements
C.3.4 Design Constraints
C.3.5 Software System Attributes

Appendix D Test Suite
D.l Modelled Sentence Generation Test Suite .
D.2 Semantic Sentence Generation Test Suite

Bibliography

lll

30
30
30
31

33
33
33
33
34
35

36

41
41
41
41
41
42
42
42
43
44
44
44
44
44
44
45
46
46
46

48
48
53

58

List of Figures

2.1 GUI of the program. 7
2. 2 G UI Processes 9
2.3 Steps of the Sentence Generation Algorithm 10
2.4 Sentence Model Structure 11
2.5 Features possible in Greek feature structures 11

3.1 modeled sentence generation process 14
3.2 Sentence model of the first sentence in Mark from the Models database 16

4.1 Semantic sentence generation 17

5.1 Choosing and conjugating a word in the sentence model . 23
5.2 Subset of verbs in the Verb Lexicon 24
5.3 Subset of words found in the "JobTitle" domain, along with their frequencies 25

A.1 Layout of the Interface

C.1 General Process Diagram for BGP
C.2 GUI Diagram for BGP

IV

34

42
43

Abstract

This research presents novel algorithms which generate sentences in a natural language, using
natural language generation tE-chniques. The purpose of the algorithms is to benefit foreign
language learning. As far as we can tell, ours is the first such research being done in the field.
In creating the algorithms, we also developed a piece of software to showcase the work and
allow testing by users. The main algorithm begins by generating sentence models by using
one of two methods, namely modeled sentence generation and semantic sentence generation.
Each of these have benefits and drawbacks, which the user must take into consideration
when generating sentence::;. When the models are generated, they are filled in word by word
using a conjugation algorithm. The completed sentences are then returned to the user and
may then be translated. There is still much work to do before we will be satisfied with the
algorithms, but our research shows that it is possible to use natm~al language generation
techniques to benefit foreign language learning. '

v

Chapter 1

Introduction

The study of another language opens one's mind to new cultures and ways of life. Ancient
languages can widen a student's perspective even further. Not only do they take the reader
around the world, but they also take them back in time. There are great benefits to studying
these languages.

One of the best ways to become familiar with a language is through practice. However,
in the case of ancient languages, it is nearly impossible to find someone who is able and
willing to communicate with the student. This l'eaves one option: he or she must find texts
to translate in order to keep up their knowledge of the language. The problem with this
method is that it can be burdensome to find a piece of literature in the target language every
time he or she wants to practice. For some rarer languages, it can be a near impossible task.
For example, in Ugaritic, the only existing manuscripts are those from the ancient city of
Ugarit, dating from the fourteenth to twelfth century[28].

We propose a new method for translation practice, natural language genemtion for for·eign
language learning. By utilizing natural language generation techniques, we have constructed
novel software with which students of foreign languages can practice translating sentences
that are not found in any corpus. As far as we can telL ours is the first such utilization
of natural language generation to benefit foreign language learning. The sentences are con
structed based on existing literature of the desired language, using its vocabulary, syntax,
and style. The result is an algorithm that can construct sentences found nowhere in the
existing literature, but that are of a related style such that they can be used by students to
maintain their language skills.

This chapter provides a brief history of natural language processing and generation. It
also gives an overview of work related to the nature of this product. Much of the background
information in this chapter comes from Jurafsky's Speech and Language Processing[13].

1.1 Background Information

The nature of this project is rooted deeply in the existing field of computer science called
natural language processing (NLP). Therefore, it is important to understand previous work
that has been done in this field related to foreign language generation. To the best of our
knowledge, the use of natural language generation to assist students in foreign language has

1

CHAPTER 1. INTRODUCTION 2

never been UtiCU. There arc, however, similar fields that. have inftueuce<..l this project.

1.1.1 Natural Language Processing

The field of natural language processing is one of the oldest fields of study in computer sci
ence. It grew out of the work of several pioneers of computers, including Thring, Kleene, and
Chomsky. When the idea of automatons, theoretical machinf'...s that could model various pro
cesses, grew out of Thring's work, people almost immediately began applying it to linguistic
study. For example, in 1943 McCulloch and Pitts used automaton to study and model the
behavior of propositional logic. Kleene developed both the ideas of finite automata and reg
ular expressions as ways to model regular languages. Chomsky went further, and developed
ways to represent deeper levels of languages, including context-free languages. There were
various other branches of NLP developed during this period, including speech processing
and optical recognition; however, they are unrelated to this project and will not be dis
cussed. The interested reader should look into the introductory chapters of NLP textbooks
for further information.

After Chomsky, the field divided into two main branches. First were those who used
symbolic methods of research. These were researchers who, like Chomsky and others, de
veloped automata and other theoretical machines to complete tasks. Those who worked
in formal language theory developed processes that worked mainly with parsing problems,
which parsed and labeled words based on their parts of speech or some other factor. Others,
working in artifidal intclligen('c (AI) , ('rcatcd pro('csscs to handle rea...:;oning and logi('-hascd
problems. These became foundational in question-answering systems and similar work.

The second group used stochastic methods of research. These were people who applied
probability-based solutions to their problems. Emerging mainly from a statistical back
ground, this area gave rise to several important methods for probability used in NLP today,
including the application of the Bayesian method to NLP problems. One of the key prob
lems addressed by this group involved sequence probabilities, and was used in both optical
character recognition (OCR) and authorship attribution.

In the 1970s, four main areas of research emerged. Because of its probabilistic nature,
the stochastic researchers began to explore the problem of speech recognition. The work done
in this field augmented other area.-; of research, bringing the hidden Markov model (H~I:\1)
and noisy channel algorithms to light.

Another area dealt with logic-based programming in more detail. Having already been
given heavy attention by researchers of AI, this field already had a solid base going into this
new era. One of the major breakthroughs during this new decade was the development of
the metamorphosis grammar, the predecessor of the definite clause grammar, which played
an important role in the development of feature structure unification, an important part of
this project.

Third was the ascent of natural language understanding. This field was related to that
of logic-based programming; however, instead of simply realizing the logic behind state
ments, natural language understanding allowed programmers to perform actions based on
natural language commands. This field saw the development of the first major grammar
of English, and was also an important reason predicate logic began to be used in semantic
representations.

CHAPTER 1. INTRODUCTION 3

Finally, this decade saw the begi1ming of discourse modeling. Researchers in this field
attempted to create algorithms that could understand discourse structure and focus, as well
as the related problems of reference resolution and speech act theory in discourse.

The next major research shift happened in the late 1990s. Up to this time, the various
camps of NLP had slowly begun to blend together. This process was accelerated at the
end of the millennium (as is continuing to occur) as researchers grew more connected. New
problems emerged, revolving around the Internet and how information was to be retrieved
effectively. As computers sped up and became more powerful, researchers were able to utilize
new techniques that would have been impossibly slow on old machines.

In the new millennium, much of the research done in NLP involved machine learning.
Researchers were becoming interested in discovering how much a computer could learn and
relay information to the user. Because machine learning requires large portions of training
material to effectively create algorithms. and because of the new ease in sharing information,
the past fifteen years have seen a tremendous increase in the amount of training material,
both labeled anrl unlabeled, available to researchers.

1.1.2 Natural Language Generation

Throughout the decades of NLP research, other research areas have arisen. One of these
is natural language generation (NLG). This field is the main focus of our research, and
therefore we will give a brief history of the field, separate from the history we have given of
NLP above. While some work was done in the early years of NLP, it was very primitive and
impacted the overall field very little. It was not until the 1960s that meaningful work began
to be produced.

Early work in this field involved machine translation. Researchers were interested in find
ing the best ways to translate between two languages and produce coherent, grammatically
correct sentences. The 1960s saw the first breakthrough of XLG in this field, as researchers
began to use grammars to produce well-formed sentences.

Most of the work in NLG of the past fifty years consisted of the construction of text
representing non-linguistic data in a readable form. Therefore, most research was done in
order to develop better methods of relating this data to some user. In the early period
of NLG, researchers equated th<"' field to natural language understanding, thinking that by
making the system understand the data it would be able to better output the data.

However, in the early 1980s, many researchers began to realize that a good NLG system
could not easily be constructed out of an understanding system. Therefore, researchers
began to research the field independently. Work was done on large systems at first, but most
of these were scrapped as researchers noted that until they could develop small, focused
systems, they would not be able to develop systems to work with wide knowledge bases.

Researchers in the field soon realized they were right about NLG being separate from
understanding tasks. In order to relay information to the user after understanding the
information, researchers knew that much work would have to be done to create both work
ing algorithms, and onc..o;; that <'Ould do the work efficiently. However, after separating th('
branches, researchers noticed that by giving the system only a small understanding of the
knowledge base, good text could still be generated. Therefore, most of the work of the past

CHAPTER 1. INTRODUCTION 4

twenty years has consisted of creating accurate, well-formed text, as opposed to making the
systems understand the knowledge behind the text.

1.1.3 Related Work

As far as we can tell, our work is a new area of research in natural language processing.
There are related systems in NLG, but none generate sentences in a foreign language for the
purpose of practice translation.

Currently, the most well-known software for foreign language learning is Rosetta Stone[2].
This program attempts to teach students foreign languages through a process known as
spaced repetition. In this process, new vocabulary or grammatical concepts are shown to the
student, and, depending on whether it was answered correctly or incorrectly, an algorithmic
method determines how long the program must wait before showing the question again.
The more often a question is answered correctly, the less often it is shown. Some flashcard
programs also use spaced repetition, including Anki[8], Mnemosyne[l], and SuperMemo[3].
All of these, however, require programmers or users to manually enter the data (or import
it from another source) for the questions, and do not rely on NLC techniques.

Natural language generation has played a role in machine translation. In this field, a
hierarchy of methods has been theorized. At the base is direct translation, where individual
words are translated one by one. This is extremely rudimentary and lacks any need for
structured generation. The second level is syntactic translation. At this level, phrases are
translated into the target language, accounting for differences in grammatical rulc.s. This
is currently the most widespread model of translation, and relies on NLC to generate a
grammatically correct translated document. The third and fourth levels of translation use
semantic meanings to translate, first translating into an abstract language that represents the
meaning of the sentence, then translating into the target language using this meaning. Few
systems have implemented this type of translation, and those that have are small, domain
specific systems. This is currently an important field of research.

Aside from its use in translation, NLG is mainly used in three key areas: question
answering systems, conversational agents, and data summarization. These three are parts
of overlapping fields of research, and all have seen important applications during their de
velopment. Question-answering systems are just what they seem; a user queries the system
and the system replies with the answer. User queries can take several forms, from simple
keyword systems to complex natural language statements. The system takes the query and
analyzes its knowledge base to return an answer in natural language.

The second field of research involves conversational agents. Conversational agents are
systems with which the user can converse. They can take many forms, from simple, one-line
joke generators (currently a popular use of NLG) to complex tutorial systems. These agents
have several parallels with question-answering systems, in that sometimes they must answer
user questions. However, question-answering systems are typically reliant on a single query,
while conversational agents must be able to analyze the surrounding context to determine
the nature of a question. Neither are all conversational agents purely interested in answering
questions correctly, or even at all. Some agents, especially ones which are interested only in
researching well-formed generation methods, create systems that, when asked something by
the user, turn the asker's words around, dodging the question.

CHAPTER 1. INTRODUCTION 5

The final research area is data summarization. This is probably the most popular area of
research in NLG. Researchers develop tools for summarizing and describing data. Because
question-answering systems rely on representing data to the user, they will often use methods
clcvelopcd in this fidel. However, clata summarization is much hroadcr than systems designed
to answer user queries. These systems are uot only used to represent data sets in natural
language, but also to summarize existing documents, finding the key points and structures
of the document and providing a brief abstract.

As can be seen, the areas of research in natural language generation are very broad. How
ever, none have yet attempted to use NLG methods in foreign language learning. Therefore,
while there are many algorithms with which to base our new area of research, the field itself
is a. novel contribution to natural language generation, as wdl as to its parent field, natural
language processing.

1.2 What is to Come

The next chapter describes the layout of the graphical user interface and gives a description
of the overall sentence generation algorithm. We dedicate two chapters to describing the two
model generation methods, modeled sentence generation and semantic sentence generation;
we explain the process of filling in sentence models with actual words in Chapter Five. Then,
Chapter Six gives a description of the system as we implemented it, including our choice
of corpora and the development process. We conclude with a description of the remaining
problems and future work planned for the project.

In addition to the main text of this work, we include three appendices. The first is the
Geting Started Guide document, which is to be provided with the program when distributed
to users. Second is the Software Requirements Specification document, which was created
before development started to outline the requirements of the system. Finally, we include a
test suite, containing example sentences generated by each method.

A CD containing the software described is included with this text. In order to run
this software, the user must have Python 2.7 installed on their system. For installatiou
instructions, sec Appendix A.

Chapter 2

User Interaction and Top-Level
Design

We start the discussion of our program design by describing the top-level fnnctionalities
of the system. First, we discuss the reasoning behind the graphical user interface (GUI)
layout. Then we examine the main algorithm, discussing the process it follows in calling
sub-methods that, together, generate a sentence that is returned to the user.

2.1 Layout of the GUI

Despite the thousands of lines of code required to make the system run, most users will not
think beyond the layout that makes up the main window. Because of this, we designed the
GUI such that users of any level of technical skill can take full advantage of it. Figure 2.1
shows a screenshot of the program's GUI.

The first thing the user will notice are two large text boxes in the center of the screen. The
top box, a read-only field labded usentencc", will hold one of the sentences generated by the
program. The second box, labeled "Translation", will hold the user's (optional) translation
of that sentence. We wanted to make the two boxes as self-explanatory as possible, and hope
that the labels make their roles clear.

After the text boxes, the user's attention will be directed to the bottom of the window,
where there is an array of buttons and sliders. Each of these are labeled and, with the help
of frames, guide the user in their meaning. The "Previous" and "Next" buttons navigate to
backward and forward, respectively, in the list of generated sentences. Upon reaching the
beginning or end of the list, the system cycles back to the other end for a continuous loop.

A feature that we decided would be helpful for the user is to have the system automatically
save translations when navigating forward and backward. Therefore, any time the "Previous"
or "Nexe' buttons are pressed, the system stores the user translations in memory, with the
same key as the sentence. Then, whenever the displayed sentence is changed, the system
must simply lookup the key of the current sentence in the saved translations and output
them into the bottom box. The user need not worry about having to save their work as they
go.

This feature is limited only to the current session, however. Should the user close the

6

CHAPTER 2. USER INTERACTION AND TOP-LEVEL DESIGN

-.c. /&

Previous

S.Ve

Next

Open I

Greek Translation Practice

Gr~k Grammar Generator

Tat:

T ransl.sttcn:

Number:

CompleJUty:

r Wetghted r. Semanttc Mode r Modelle:d Mode

Figure 2.1: GUI of the program

7

~ I
'

software or choose to generate new sentences, the current list will be lost. Therefore, we
have also included two other buttons: one to allow the user to save their current session,
and another to allow the user to open a previously saved session.

Because there are several times when the user could potentially lose their work, we have
chosen to include a notification feature that warns the user if his or her current session will
be erased by their action. It gives them the opportunity to either continue without saving,
continue after saving, or cancel the action. This notification will appear before generating
new sentences, opening a saved session, or closing the software.

There is one other time when translations could be lost. If the program crashes without
giving the user a chance to save their work, it will be lost. We have included an auto save
functionality that, whenever a user changes the current sentence, saves the current session
into an automatically generated recovery file. The user will then be able to open this file on
their next load of the program should it crash.

The remainder of buttons and sliders at the bottom of the screen have to do with sentence
generation. The "Generate" button triggers the program to generate and output sentences
to the main window. The other objects allow the user to select various options regarding
the generated sentences. First, the "Number" slider allows the user to specify the number
of sentences that should be output. The "Complexity" slider determines the complexity
of the sentences generated. At present, this simply determines the maximum length of
generated sentences, but in future versions it will take into account other variables as well.
The "Weighted" checkbox enables the user to choose whether or not sentences' vocabulary
selection will be based on word frequencies. Finally, the radio buttons which switch between

CHAPTER 2. USER INTERACTION AND TOP-LEVEL DESIGN 8

"Semantic" and "Modelled" determine the type of generation to be used. We describe these
two types of generation briefly in Section 2.3, and expand on them in Chapters 3 and 4. The
processes that the various parts of the GUI run are shown iu Figure 2.2.

In all, our hope for the GUI was to design an interface with which the user may begin
working with the system immediately. We will continue to fine-tune it, and, as new features
are added, likely group functionalities into other designs.

2.2 The Sentence Generation Algorithm

When the user clicks on the button that makes the system generate seutences, all they notice
is a delay, followed by the sudden appearance of a sentence in the top box. However, there
is a great deal of work happening behind the scenes during this delay. When the system
triggers sentence generation, the main algorithm runs. Figure 2.3 gives an overview of the
steps in this algorithm, which will be described throughout the remainer of the text.

The system allows the user to select between two types of sentence generation. There are
two differences between the models: when sentence models are generated and the method
of sentence model generation. The latter will be covered in subsequent chapters; here, we
examine when sentence models are generated.

Both methods of generation follow a similar process after the sentence model ha..c;; been
chosen. The sentence model will be of a form similar to that. shown in Figure 2.4. The
model is a list of "words"; words are a list of feature structures. These feature structures
contain the data required by the algorithm to form the final, conjugated words returned as
part of the generated sentences. Features can be several things, depending on the language.
The full list of features used in generating Greek sentences is given in Figure 2.5. Oue who
knows Greek can see that not all of these can coexist in every Greek word; indeed, not every
feature needs to have a value filled for the algorithm to run. In the case that a feature is left
blank, the algorithm chooses a legal random value to place in the feature. Feature structures
of one word can also be made to agree with other words' feature structures, so a.c;; to create
grammatically correct sentences.

Wh('n the Rcntencc modc1 is filled, then the system will replace each :.word" of the
model with an actual Greek word. Much more will be said about this process and that of
feature structure construction in Chapter 5. The algorithm replaces each word in the model,
and when finished. returns the generated sentence. The entire process is repeated for each
sentence that must be generated 1 based on how many the user requested. \Vhen finished: a
list of the generated sentences is returned, and the user may then view them on the GUI.

2.3 Modelled vs. Semantic Generation

The next two chapters will provide in depth descriptions of both the modeled and semantic
generation methods. Therefore, in this section we will simply provide a brief definition of
both methods, as well as the benefits and drawbacks of using each.

The first method is modeled sentence generation. This method chooses sentence models
from a set of prernade models included with the system. The models are taken directly from

CHAPTER 2. USER INTERACTION AND TOP-LEVEL DESIGN 9

Figure 2.2: GUI Processes

CHAPTER 2. USER INTERACTION AND TOP-LEVEL DESIGN

Yes

Generate
Sentences

,-------Yes------'

Read Sentence
Model F~e

Yes

Choose a
sentence model

Yes

Conjugate first
word

No

ConJugate next
word

>------N

ReadCFG File

Yes

Make a sentence
model

COiljugate first
WO(d

No

Conjugllle neiCt
word

Figure 2.3: Steps of the Sentence Generation Algorithm

10

Yes

CHAPTER 2. USER INTERACTION AND TOP-LEVEL DESIGN

[word!, word2, ·-, wordN)

/ \ ~
[featurel- Value, \ [featurel- Value,
feature2 -- 1, \ feature2 -- ?,

... , [featurel-- Value, ,
featureN- Value] feature2 -- ?, featureN --Value]

featureN --Value]

Figure 2.4: Sentence Model Structure

Part of Speech
Mood
Voice
Number
Case

Semantic Meaning
Tense
Person
Gender

Figure 2.5: Features possible in Greek feature structures

11

text in the original language; the system analyzes these texts and generates sentence models
that arc as flexible as possible, while still generating syntartir.ally correct sentences.

This method has a few benefits. First, because it is taken directly from the source
language, the syntax of the generated sentences will match almost perfectly with that of the
target language. Not only that, but because the sentence models are already formed, the
system will be able to skip the formation step, saving a great deal of time in generation. The
flaws of this method are notable, however. Because the models only represent syntax, the
sentences will rarely make sense semantically. They are also less flexible than the sentences
generated with the semantic method, as there will only be a finite number of models with
which to draw from.

In order to remedy the flaws of the former method, we developed the semantic sentence
generation method. This process starts with a context-free grammar (CFG), distributed with
the system, which is created from annotated phrase structures of the language. The phrase
structures represent the ways in which existing sentences are broken down into smaller parts,
allowing a recursive algorithm to build custom sentences from these parts. Each phrase is
annotated by features required by one or more parts of the phrase and the semantic meaning
of the head node in the phrase. By combining these two in the recursive algorithm, the
sentences generated are both well-formed and semantically meaningful.

The major benefit of this method over that of modeled sentence generation is that sen
tences make sense. Generated sentences also have more variety than those formed from
pre-made models. The tradeoff comes from both time and detail. For one, the semantic
algorithm takes considerably longer to run than does an algorithm for selecting a sentence.
To a lesser degree, these sentences are also one more step removed from the source language,
and therefore look slightly less like sentences found in the training data.

The two algorithms are can generate sentences in the target language, but the user must
choose whether he or she wants to trade quality for time. The goal of the next chapters is

CHAPTER 2. USER INTERACTION AND TOP-LEVEL DESIGN 12

to examine the methods we used to develop both the modeled and semantic algorithms.

Chapter 3

Modeled Sentence Generation

Our system contains two methods of sentence model generation. Of these, the first to be
implemented was modeled sentence generation. This method, a much simpler process than its
counterpart, semantic sentence generation, takes place before system distribution. Therefore,
models are already made when tbe user runs the system, noticably improving run time.

Modeled sentence generation, though much faster than semantic sentence generation,
suffers the drawback of creating sentences that make little to no sense semantically to the
translator. Therefore, the user must determine whether quality sentences or speedy genera
tion is of more importance.

The goal of this chapter is to outline the process of the modeled sentence generation
algorithm and to describe the organization of the database in which the sentence models are
held. Figure 3.1 shows how the system generates sentences using this method; this chapter
is concerned with how the sentence model database is created.

3.1 Construction of the Sentence Models

The actual construction of the sentence models is fairly simple. A series of XML files detailing
the sentences of our corpora, the bodies of text from which we draw: is used to find the
features for each word in the corpus. These features are then analyzed by the system and
replaced by a feature structure in the form of a string. Each feature structure is then
considered a word, and the words are linked together as a list. These lists, now representing
sentence models, arc output to a 'Model, file, which contains the complete sentence model
database.

The beauty of this algorithm comes from its simplicity; the pain comes from the organi
zation of the corpora data. In order for this model to be used, the corpora must be hand
(or automatically, which was not attempted in this project) labeled with the full range of
features listed in the previous chapter. Therefore, it is important to understand the layout
of the data files.

13

CHAPTER 3. !-.10DELED SENTENCE GENERATION

Generate
Sentence

Get Model
Sentences

Choose a
Model

Sentence

Fill In Each
f-------.(Word of the

Sentence

Return the
Sentence

Figure 3.1: modeled sentence generation process

3.2 Database D esign

14

In our algorithm, the features in the sentence models come from a series of X:\11 files.
Because we are implementing our project with Kaine Greek, we used the books of the New
Testament as our corpora (using the SBL version of the text) . We knew that each sentence
would need to be labeled with phrase structures, and each word would need to be labeled
with both its part of speech and its features. We decided to usc the label schema designed by
the MorphGNT team. This group has painstakingly created fully labeled sentence diagrams
of the Greek New Testament, complete with all the labels we would need. We had to enter
semantic labels manually, as will be seen in the next chapter, but for modeled generation,
this data set was exactly what we were seeking. Becam;e it was implemented as XlVIL files,
split between the books of the New Testament, we decided to use this format for our work.
Here is a sentence represented in XML format:
<Sentence ID = " Mrk1 :1: 1 - 1:1:5'>
<Trees>
<Tree>
<Node Cat='S' Head='O' nodeld ='410010010010053 ' >

<Node Cat='CL' Start='O' End='4 ' Rule=' P2CL' Head='O ' C!Type='Verbless' nodeld
='410010010010052'>

<Node Cat='P ' Start='O' End='4' Rule='np2P' Head='O' nodeld='410010010010051'>
<Node Ca.t='np ' Sta.rt='O' End='4' Rule='NPofNP ' Head= ' O' nodeld='410010010010050'>

<Node Ca.t='np' Start='O' End='O' Rule='N2NP' Hea.d= 'O' nodeld= '410010010010011'>
<Node Cat='noun' Start='O' End='O' UnicodeLemma='apx~· Unicode='}\px~·

Number=' Singular' Type='Common' morphld='41001001001' Case=' Nominative' Gender
='Feminine' nodeld='410010010010010'>J\px1)
</Node>

</Node>
<Node Cat='np' Start='l' End='4' Rule='DetNP ' Head =' l ' Ha.sDet='True' nodeld

='410010010020040' >
<Node Cat='det' Start=' 1' End= '1' Case=' Genitive' UnicodeLemma.='b' Unicode='·wv'

Gender='Neuter' Number='Singular' morphld='41001001002' nodeld
='4100IOOI0020010' >•ov
</Node>

<Node Cat='np' Start='2' End='4' Rule='NPofNP' Head= 'O' nodeld='410010010030030 '>
<Node Cat='np' Start ='2' End= '2' Rule= 'N2NP' Head= '0' nodeld ='410010010030011 '>

<Node Cat='noun' Start= '2' End='2' UnicodeLemma='£\xxyyt).wv' Unicode='t\xxyytAiov'
Number='Singu lar ' Type='O:munon' morphld ='41001001003' Case='Genitive'
Gender=' Neuter ' nodeld = '41001001 0030010' >tVay-rtAiov

CHAPTER 3. NIODELED SENTENCE GENERATION

</Node>
</Node>
<Node Cat='np' Start='3' End='4' Rule= 'NP-Appos' Head='O' nodeld

='410010010040020'>
<Node Cat='np' Start='3' End='3' Rule='N2NP' Head= ' O' nodeld

='410010010040011'>
<Node Cat='noun' Start= '3' End= '3' UnicodeLernma='1T)OoV<;' Unicode='1T)Ooi/

Number='Singular' Type='Proper' morphld='4100100!004' Cast>='Genitive'
Gender=' Masculine ' nodeld = '410010010040010' > 'IT)Oov
</Node>

</Node>
<Node Cat='np' Start ='4' End='4' Rule='N2NP' Head='O' nodeld

='410010010050011'>
<Node Cat='noun' Start='4' End='4' UnicodeLemma='Xpi.o"roc:' Unicode=':x:ptcnov.'

Number='Singular' Type='Proper' morphld='41001001005' Cnse='Genitive'
Gender= ' Masculine ' nodeld = '41 001 0010050010' >)(pto~ov
</Node>

</Node>
</Node>

</Node>
</Node>

< / Node>
</Node>

< / Node>
</Node>
< / Tree>
</Trees>
</SPntence>

15

In this format, sentences are labeled with an ID, the location in the New Testament from
where it originated. The first three characters represent the book. The next number is the
chapter, then following the first colon is the verse, and finally another colon and the word
number. Then there is a hyphen, and the same series of information, without the book code.
The first series tells where the sentence starts, and the second tells where it ends. So, in this
case, the sentence begins with the first word of Mark 1:1, and ends with the fifth word of
that verse.

The rest of the sentence is composed of a tree of phrase structures. Most of the labels
in this tree are unimportant to modeled sentence generation, and will not be described until
the next chapter. However, the algorithm does use the bottom leaf nodes, which represent
words of the sentence, in generating models.

The model generator first goes through each leaf node, forming it into a feature structure.
Each leaf node has a 'Cat", or category, attribute that is labeled with a part of speech. In
generating a word in the model, this will be the first part displayed, before the feature
structure. Then the system begins generating the feature structure, by searching for each
of the features listed in the previous chapter, as attributes in the node. If any are present,
these are appended to the feature structure. When each has been searched for, the part of
speech and feature structure are combined, forming a 'word".

The final step is for the algorithm to put the words in the correct order. Because the
data sets must organize the sentences so that words can correctly be placed in tree format,
sometimes words, most notably postpositive conjunctions, arc not displayed in their original
order. Therefore, each leaf node is provided with a 'NodeiD" attribute, which determines its
position in the sentence. The first two digits represent the book, followed by another three
rcpn..>senting the chapter, then three representing the verse, and finally, three representing
the word index. Because these are inherently sortable, the system must simply take the
set of words it has generated and sort them by the node ID. When this is done, the words

• Rll.EV~HICKINGf10THAM ... IORAkY t
JACH1TA RArnST UNIVERSfTY

CHAPTER 3. !vfODELED SENTENCE GENERATION

[' noun_Case=l ,Number=l ,Gender=2', 'deLCase=2,Number=l ,Gender=3 ',
' noun_Case=2,Number= l,Gender=3' , ' noun_Case = 2 ,Number=l ,Gender
= 1 ', ' noun_Case=2 ,Number= l,Gender=l ']

Figure 3.2: Sentence model of the first sentence in Mark from the 1lodels database

16

are then output as a sentence model to the main model database, and the next sentence
is analyzed. Figure 3.2 shows an example line from the model database, representing a
complete sentence. When read by the system, words can be separated by the quote-comma
space-quote delimiter, the part of speech found by looking to the left of the underscore, and
the features by looking to the right of the underscore. Features are separated by commas,
with their type given on the left of au equal sign, and their value given on the right.

Chapter 4

Semantic Sentence Generation

Modeled sentence generation was characterized by its pre-processed sentence models. Se
mantic sentence generation, on the other hand, will create sentence models as the algorithm
runs. That is not the only difference between the models. Where the former generated
sentences that made little sense semantically, the latter will create sentences that make more
sense, as it takes into account semantic meanings while generating.

The drawback to these 'semantically correct" sentences is that it takes much longer for
the system to generate them. As will be shown, model creation with the semantic algorithm
requires a recursive examination of a CFG, and sometimes returns failed models and must
begin again. Therefore, the user must choose whether they desire sentences created faster
or sentences of better form. In a similar layout as the last chapter, this chapter aims to
describe the semantic sentE'nce generation process. It begins by giving a detailed description
of how the algorithm runs, au overview of which is shown in Figure 4.1. Then it describes
the databases used by the system in storing information needed to run the algorithm.

Generate
Sentence

Read
Semantic

CFG

Recursively Examine
the CFG to Generate 1--- -----el

Return
the

Sentence

Figure 4.1: Semantic sentence generation

17

Choose a
new word

CHAPTER 4. SE!viANTIC SENTENCE GENERATION 18

4.1 Construction of the Sentence Models

When the user chooses to generate a sentence using semantic sentence generation, the system
first creates a navigable CFG from a premade grammar file, which we cover in the next
section. For now, it will suffice to know that the gTammar file is made of production rules,
representing phrase structures. Each production rule has a head, representing the overall
structure, and one or more children, representing the substructures that make up the entire
phrase structure. Structures can be recursive, that is, they can include themselves as their
own children. Each head and child is labeled with zero or more semantic domains and zero
or more features.

The grammar file is then transformed into a CFG by taking each rule and adding it to
a production dictionary, containing all of the production rules of the grammar. The keys
of the dictionary are the names of the heads of the rules in the grammar along with their
semantic domain, and the values for each head are a list of one or more child representations.
This allows for one head rule to contain multiple sets of children. Child representations are
tuples containing each child's head, the feature structure of the rule (because all nodes
in a grammar rule must have the same feature structures), and the head of the rule, which
determines which child passes features through the dictionary when it is the head of a phrase
structure.

When this process is finished , the system may then traverse the grammar and recursively
combine rules to create sentence models. For each sentence that is to be generated, the
system calls a recursive algorithm to create a sentence model. The algorithm uses convergent
probabilities, meaning that productions that have already appeared in a derivation of a
branch have a smaller chance of being selected. This will lower the likelihood of recursive
phrase structures occurring too often. The algorithm also uses a maximum depth variable
that prevents it from recurt~ing too deeply. This, in effect, cancels the algorithm if it will
take too long or result in an infinite loop.

To create the sentence, the algorithm first chooses a starting production rule. Once
chosen, it recursively calls itself on each child in the rule. Then, the algorithm chooses a
production rule that has the child as a head. This is done repeatedly until the child is a
terminal node, or one which is not the head of a node. In this grammar, the only nodes
which are not the head of a node are words that can be added to the sentence model. The
algorithm pays attention to domain labels and feature structures as it works its way down
the tree. Both of these are passed up and down through head children, and the algorithm is
only able to add production rules where the domains and features unify. If they do not, the
system backtracks and tries a different rule. As the system backtracks upon finding these
words, they are added to phrase models. At the top call, the main one called by the system,
the phrase model returned will be the sentence model asked for.

At this point, the system must ensure that the model meets the complexity demands
asked for by the user. If it is of sufficient length, the system can move on. If not, it must
retry the recursive sentence model maker until it finds one of sufficient length.

Words of the system model are of a similar form as those produced in the modeled
sentence generation method. They consist of a part of speech and feature structure. However,
because the grammar relies partially on semantic labels to create production rules, the words
also contain these labels. Therefore, when the system begins to conjugate the words, it uses

CHAPTER 4. SEMANTIC SENTENCE GENERATION 19

this label alongside the feature structure and part of speech. This conjugation step is covered
in the next chapter. After the words have been conjugated, the system presents the sentence
to the user.

4.2 Database Design

The semantic sentence generation algorithm uses one database, the grammar file, when
generating the models. Vve will now describe the creation and usage of this file.

Before distribution, the semantic sentence generation algorithm constucts modified ver
siom; of the sentence XML files disrus:;ed in Chapter 3. Defore, we discussed only the child
nodes of these sentences. Now, however, we will examine each of the nodes and their at
tributes in full. vVe again look at the first sentence in Mark, expressed in XML here.
<Sentence ID='Mrkl: 1:1 -1:1:5' >
<Trees>
<Tree>
<Node Cat='S' Head='O ' Rule='S'>

<Node Cat='CL' Head = 'O' Rule='P2CL'>
<Node Cat='P' Head='O' Rule='np2P'>

<Node Cat='np' Head='O' Rule='NPotNP'>
<Node Cat='np' Head='O' Rule='N2NP'>

<Node Case=' Nominative' Cat='noun' Domain='Time' Gender=' Feminine' Number='
Singular' Rule='noun'>'Apxl)
</Node>

</Node>
<Node Cat='np' Head='l' Rule='DetNP'>

<Node Case='Genitive' Cat='det' Domain=' Article' Gender=' Neuter' Number=' Singular'
Rule='det '>Tou

</Node>
<Node Cat='np' Head='O' Rule='NPotNP'>

<Node Cat='np' Head='O' Rule='N2NP'>
<Node Case=' Genitive' Cat='noun' Domain=' Information' Gender= ' Neuter' Number='

Singular' Rule='noun'>tuayyt}..wu
</Node>

</Node>
<Node Cat='np' Head='O' Rule='NP-Appos'>

<Node Cat='np' Head='O' Rule='N2NP'>
<Node Case=' Genitive' Cat='noun' Domain='Name' Gender=' Masculine' Number= '

Singular' Rule='noun'>1T]crou
</Node>

</Node>
<Node Cat='np' Head='O' Rule='N2NP'>

<Node Case='Genitive' Cat='noun' Domain='JobTitle' Gender='Masculine' Number
='Singular' Rule='noun'>XPLO"Tou
</Node>

</Node>
</Node>

</Node>
</Node>

</Node>
</Node>

</Node>
</Node>
</Tree>
</Tr ees>
</Sentence>

In these models, we show far fewer attributes. As opposed to the files used in modeled
sentence generation, however, each of these attributes plays an important role in constructing
the grammar. The algorithm only ignores the 10, which is simply a reference to the verse

CHAPTER 4. SEMANTIC SENTENCE GENERATION 20

where it is found.
While the modeled sentence generation algorithm created separate models for each sen

tence iu the corpus, the semantic sentence generation uses data from the overall syntax
structure of each senteuce to construct sentences. To do this, it constructs the grammar
from all of the sentences.

The model examines each node in each tree and creates production rules from them.
It first takes the Cat, or category, attribute, and combines it with the Rule attribute. It
then looks at the Cat and Rule attributes of each child of the node and adds them to the
rule's children. If a child is a terminal node, it is also given the domain label and feature
structure of the node. This forms the basic structure of grammar, but with the rules still in
the original tree form.

Because it is still in tree form, the features and domains of terminal nodes may easily
be passed up the tree. Therefore, the next. step works from the bottom up iu each tree,
combining all feature structures and domains agreed upon by sibling nodes. So, for example,
a rule with two children, one being masculine, singular, and nominative and the other being
feminine, singular, and nominative, will then be labeled with the domain and a generic
feature structure, and the head child will be labeled. The feature structure in this case
represents that the children must agree in number and case, but not necessarily gender. The
head child passes domains and featw·e structures up and down the tree; two heads must be
able to unify for the rules to coexist in the sentence. The head child is labeled with a head
keyword attached to the appropriate child in the rule.

When all production rules are labeled correctly, they are ready to form the grammar
file. The system begins by forming a set. It traverses through each rule, adding it to the
set. Because duplicates are not allowed in sets, this ensures that the grammar will not be
redundant. Then, the rules are output into a grammar file to be used by the generation
algorithm. Below is a sample grammar taken only from the first sentence in l\1ark that
showli the final format of our database.

S [Domain='Time '1 -> P2CL--Head [Domain='Time '1
P2CL[Domain='Time '] -> np2P-Head [Domain='Time ']
np2P [Domain='Time '1 -> NPofNP-Head [Domain='Time '1
NPofNP [Domain=' Time '] -> N2NP-Head [Domain=' Time '1 , DetNP [Domain='

Information 'J
N2NP[Dornain='Time', Case='?c', Gender='?g', Number='?n '1 -> noun

Heart [Domain='Time', Case='?c', Gender= '?g' , Number='?n 'J
noun [Domain='Time', Case=' Nominative', Gender='Feminine', Number='

Singular '] -> { noun_Domain='Time' , Case=' Nominative' , Gender='
Feminine' , Number=' Singular '}

DetNP [Domain=' Information', Case='?c', Gender='?g', Number='?n '] ->
det[Dornain='Article ',Case='?c' ,Gender='?g' ,Number='?n'], NPofNP
-Head [Domain=' Information ', Case='?c', Gender='?g' , Number='?n ')

det [Domain=' Article', Case=' Genitive', Gender=' Neuter' ,Number='
Singular '] -> { det_Dornain=' Article ' , Case=' Genitive ' , Gender='
Neuter' ,Number=' Singular'}

NPotNP [Domain=' Information '] -> N2NP-Head [Domain=' Information ') ,

CHAPTER 4. SEMANTIC SENTENCE GENERATION 21

NP-Appos [Domain='Name']
N2NP[Domain='lnformation ',Case='?c' ,Gender = '?g' , Number='?n '] - >

noun-Head [Domain=' Information', Case='?c', Gender='?g' ,Number='?n
,]

noun (Domain=' Information ' , Case=' Genitive ' , Gender=' Neuter ' , Number= '
Singular '] -> {noun_Domain=' Information ',Case=' Genitive',
Gender=' Neuter', Number=' Singular '}

NP-Appos(Domain='Name') -> N2NP-Head (Domain='Name'] , N2NP(Domain
= ' JobTitle ']

N21W[Domain='Name' ,Case='?c' ,Gender='?g' ,Number='?n 1
] ->noun

Head [Domain= 'Name 1
, Case = '? c 1

1 Gender='? g' , Number= '?n ']
N2NP [Domain=' JobTitle', Case = '?c', Gender='?g' , Number='?n '] -> noun

- Head[Domain= 'JobTitle ' ,Case='?c ' ,Gender= '?g' ,Number= '?n ']
noun [Domain='Name', Case=' Genitive ' , Gender=' Masculine ' ,Number='

Singular '] -> {noun_Domain='Narne', Case=' Genitive ',Gender='
Masculine ' , Number=' Singular '}

noun[Dornain='JobTitle ',Case='Genitive ',Gender='Masculine' ,Number= '
Singular'] -> {noun_Domain='JobTitle ',Case='Genitive ',Gender='
Masculine ' , Number=' Singular '}

Chapter 5

Filling the Sentence Models

After the sentence model has been generated, either by modeled sentence generation or
semantic sentence generation, it must be filled in with grammatically correct. words in the
target language. The process to create these words is universal, though the modules will
need to be changed in order to fit the target language, in our case Greek.

The process of choosing and conjugating words can be split into two parts. First, a list
must be created of potential words. This is done in the same way by each part of speech.
Second, a word is randomly chosen from the list and put into the grammatically correct form
specified by the system. Figure 5.1 shows this flow of events. This process is done for every
word in the sentence model. If a word fails to conjugate, the sentence model fails and the
system backs up to choose a new one.

This chapter is organized into three sections. In the first, the process of making a list of
words is discussed. Then, we explain the various databases which hold information about
the words. Finally, we examine the second half of the word creation algorithm, in which the
words themselves are created.

5 .1 Word Choice Process

The first half of the word conjugation algorithm creates a list of potential words. To do
so, the system takes the part of speech of the word and opens the corresponding lexical
database, essentially a dictionary. There are eleven lexicons, each corresponding to a part
of speech.

For modeled sentence generation, the process is simple: every word in the database is
added to the list. For semantic sentence generation, however, the algorithm makes one
adjustment. Because this method takes into account word meaning, it must form another
list, comprised of all words of the specified domain, and take the intersection of the two lists.

From the list that is created, a random word is chosen and a part of speech dependent
function is run to conjugate the word, which will be discussed in Section 5.3. If the function
fails to conjugate a word, that word is removed from the list. A random word continues
to be chosen until either the list is empty or a correct word is supplied. In the case of the
former, the sentence generator must backtrack and create a new sentence model. If the word
succeeds, however, the algorithm saves the word and moves on to the next position. When

22

CHAPTER 5. FILLING THE SENTENCE ~MODELS

Make a LlM of
wonts of Char Plitt

of Speedl

NO

Gel Ehe wonrs
oomaon

unoon ""' 11s1 of ..,<IS
ollhat port ol speKh

1---1 wth lhat ~n w.Ch
en. Jltoocty consuucted

""

Yos

Run.,.

"::""'...;:;.:· ~ I---+(
polloi~

Figure 5.1: Choosing and conjugating a word in the sentence model

23

CHAPTER 5. FILLING THE SENTENCE NIODELS 24

cvlc 5tatLt\lw
cv3a urcof..~tirca\lw

cvlb XCX1"CXAEt TC(v

cvlb E:yxa-raf..e:Lrcw
cvlb rcapayw
cvlb

,
rcape:pxotLa~

cvlb D:rc~pXOtLCXl
cvlb E:~tpxotLm

Figure 5.2: Subset of verbs in the Verb Lexicon

all words have been filled, the completed sentence may be returned to the G UI.

5.2 The Lexicon Databases

There are three types of lexicons, or word lists, used by the system. All are premade and
shipped with the program. The first ones, the part of speech lexicons, consist of all words of
that part of speech and, if the word is declinable (i.e. if it changes based on number, gender,
mood, tense, etc.), a code that indicates the method it will use for conjugation. These
database.s are used by both the modeled sentence generation and the semantic sentence
generation algorithms. Because indeclinable part of speech lexicons are simply a listing of
the words of that part of speech, we will only show an example of words found in a declinable
part of speech lexicon. Figure 5.2 shows a subset of words found in the verb lexicon. The
codes listed will be discussed in the following section.

The second type of lexicons are the semantic lexicons. These are organized by semantic
domain. These lexicons were created at the same time as the XML files used in semantic
sentence generation, and contain all the domains along with all words that can be of that
particular domain. Words can be of multiple domains, and multiple parts of speech can
be within one domain. When the semantic algorithm is run, all the words of the specified
domain are listed, and the intersect of this list and that of all words of the specified part of
speech becomes the total list of possible verbs. A subset of the "JobTitle" semantic domain
lexicon is shown in Figure 5.3.

The final category of lexicons used are frequency lexicons. For semantic domains, the fre
quencies are implemented into the lexicon already. For parts of speech, there are a separate
set of lexicons containing the frequency of each word of each part of speech. These are only
used if the user chooses to generate weighted sentences. Instead of choosing a completely
random word when choosing from the list, if the user wants weighted sentences, more com
mon words will be given a bias over less common words. This feature is still undergoing
experimentation and is not working as well as we had hoped. These lexicons are structured
in the same way as the semantic lexicons, except that they appear with their part of speech
instead of their domain.

CHAPTER 5. FILLING THE SENTENCE MODELS

Olcl[3oAoc;;: 10
npe:a~u-re:poc;;: 24
E:yxr:X'{}e:-roc;;: 1
fll<J'{) lO<;: 2
x~pcc12
&AA6-rptcx;: 2
qnA<ipyupoc;;: 1
X<XXOUpyo<;:3

~.ua'{}u.rr6c;;: 1
VOf.llX0<;:6
ne:p(mxoc;: 1
<iAAoye:v~c;;: 1
f1E-roxoc;;: 1
&AAo-rp(wv: 1

25

Figure 5.3: Subset of words found in the "JobTitle" domain, along with their frequencies

5 .3 Part of Speech Conjugation

We distinguish eleven parts of speech in the Greek language for the purposes of our program.
Of these, six are indeclinable (adverbs, conjunctions, interjections, numbers, particles, and
prepositions). This section explains how we implemented each of the five declinable part of
speech conjugation algorithms. When searching for an indeclinable part of speech, a word is
simply chosen at random, provided the list contains a word that can be chosen.

All of the conjugation functions require three inputs. First is the word to be conjugated.
Second is the code, which comes from the speech lexicon. Finally, the function requires a
complete feature set for the word it is conjugating. Because the generation algorithms allow
words to contain any non-contradicting features (i.e. two or more features that contradict
and so do not allow a word to be formed), the conjugation functions were placed inside of
helper functions, each of which takes auy number of features, and ra.mlomizcs the unspecifi.c<l
features to ones that legally work with the ones given. It also ensures that it has not been
given contradicting features. Therefore, the a lgorithm can assume that it will not fail due
to, for instance, a plural vocative or a first person imperative.

The codes used in the speech lexicons, some of which are shown in Figure 5.2, are derived
from the morphological codes used by Mounce(23) . When constructing the functions, we
analyzed the behavior of each code and were able to systematically <lerive conjugation steps
for each word based on their codes.

5.3 .1 Verbs

Verbs were the most complex type of word we had to conjugate. The verb generator was
divided into over one hundred sections, depending on the mood, tense, and voice of the verb.
Then, these sections were subdivided even further, based on the conjugation code. Even at
this level, nuances in certain types of words required branching statements to ensure that
every type of verb was handled correctly.

CHAPTER 5. FILLING THE SENTENCE MODELS 26

5.3.2 Nouns

Nouns proved to be easier to tackle than verbs, but not by much. They were divided only
on their codes, because their codes had already been divided on declension. These, too, had
many nuances that we had to work around, though there was less branching that had to be
done.

5.3.3 Adjectives

Most adjectives were more regular than nouns when conjugating. We found that there was
less branching than most other parts of speech, and when they did branch it was usually
only because of slight differences.

5.3.4 Pronouns

Pronouns were by far the most irregular of the parts of speech. Because there are far fewer
of these than verbs, they were less complex to program, though we found that for nearly all
of them, we had to handle them on a case by case basis.

5.3.5 Determiners

Determiners were by far the easiest class of words to decline, as we only had to handle two
cases: the article 6 and the relative pronoun oc; . Therefore, we simply structured this as a
single if-elseif statement and handled the conjugation of each word in turn.

Chapter 6

The Implemented System

We have now looked at each part of the sentence generation algorithm in detail, and have
explored the CUI that enables the user to generate sentences and translate them. Now, we
examine the implementation of the system we developed. We do this iu two phases. First,
we explain why we chose the language and corpora included with the first version of the
system. Then we explore the development process, starting at the research stage and ending
with the finished product.

6.1 Corpora Choice

The first version of the system comes ready to work with a single language, Koine Greek,
based on a corpora consisting of the Society of Biblical Languages (SBL) version of the text
of the New Testament[16). We chose the target language for two reasons. First, because
we have seen ancl participated in the study of New Testament Greek firsthand, we realized
that students could benefit from seeing new, well-formed sentences which could be used
for practice. The second reason comes from a more pragmatic perspective. We knew of
Mounce's work, The Morphology of Biblical Greek(23), and realized that it could make the
process of creating conjugation functions much simpler than a language without a similar
work to help guide the development process.

Once we decided on the langllage, the choice of corpora was obvious. Because we were
studying the language of the New Testament, for the purpose of helping students of the New
Testament, it only made sense to usc this body of literature as the data for the system.
When we discovered the work of the MorphGNT group(21), we realized that we had made a
fantastic choice of corpora. By using their work as a basis, we set about organizing the data
and getting it into the format needed for our project.

One note must be made on the usage of the corpora. Because of time constraints, we
were not able to label all the books of the New Testament semantically. At this point,
only Matthew through John arc labeled completely, though most of the rest of the text is
labeled partially. Because we can only use completely labeled texts in the semantic sentence
generation method, it only relies on the first four books. However, these constitute a majority
of the New Testament, because nearly all of the remaining books are only a fraction of the
si1.c of the fin;t four. This docs not affect the modeled sentence generation method. however,

27

CHAPTER 6. THE fl\JPLEAJENTED SYSTENJ 28

because all of the data is correctly labeled for attributes needed in the method.

6.2 Development Process

Development started, like any project, with a large amount of research. We first explored
many important texts ou both NLP and NLG. Though we found that our work would be a
new contril.mtion to the field. we analyzed related projeds, trying to glean from them the
best process to follow when developing and implementing our system. During the research
phase, we were also fortunate to meet with some of the top names in natural language
generation, and were able to get their input on our work.

After research, we began designing the architecture of our software. Knowing that. our
project would eventually be extended to multiple languages and corpora, we designed the
system with a module-based architecture. The main sentence generation algorithm would
nm regardless of the language, as would the two model generation methods. What would
be exchanged, based 011 the language and corpora choice, would be the lexicons, sentence
data, grammar, and conjugation rules and algorithms. Therefore, we designed the proeess
to allow substitutions of one or more of these databases.

The next step was to label the data and create the databases. Fortunately, the only
changes that needed to be made to the Xl\IL files were syntactic, in order to get them into
the format necessary to run with our algorithm. We wrote a few simple scripts to get them
into the needed format. Then, we wrote a function to match words in the XML files with
the conjugation codes given in au electronic version of Mounce's work, creating our part of
speech lexicons. We also created a method to count each word in the XML files and create
our frequency databases. The last step was the most time consuming; we labeled each word
of the New Testament with a semantic label from a custom tag set and merged them with
the X:\ IL files. As mentioned above, we were only able to label the first four books of the
New Testament in this format. Then, we used a similar counting function as before and
created our semantic lexicons.

We then created the data to be included with the system. First, we created the function
described in chapter three to construct the sentence model database, for use with the modeled
sentence generation function. Then, we created the grammar, using the process described in
chapter four, to be used in the semantic sentence generation method.

By far, the most time consuming part of the development process was the creation of the
conjugation functions. While Mounce's work laid out the conjugation process of each type
of word, we discovered that there were many small nuances that needed to be handled in
order to ensure grammatically correct conjugation. We spent a great deal of time writing
these functions. and when finished, were finally able to move on to the overall development
of the system.

""'hen writing the sentence generation algorithm, we first focused on writing it based
ou the modeled sentence generation method. We went through several rewrites of the code
before settling on a format that would work for our purposes. \Vith this finished, we were
able to generate our first sentences. We then turned our attention to the semantic sentence
generation method. Again, we went through several rewrites before getting it right, but
because many of the problems had been addressed in developing the modeled method, this

CHAPTER 6. THE IMPLE1\1ENTED SYSTENI 29

process was simpler.
The final step was to develop the G UI of the system. As we were usiug the Python

language to write the source code, we explored several libraries for GUI development. \Ve
decided to use Tkinter, in part because of the availability of more tutorials and examples than
other options. Once the G Ul was developed, we spent the remainder of our time tweaking
existing processes and making small improvements to the system.

As can be seen, the development of our system was a lengthy process. It involved countless
hours of both research and coding, though the final product is a novel product and area of
research in the overall field of NLG. In the next chapter, we will analyze the performance of
our software compared to our hopes, as well as our plans for future work.

Chapter 7

Conclusion

When we finished developing the system, we had software that did what it was intended
to do: generate sentences using one of two generation methods. This chapter will analyze
the results of the generation compared with our hopes for the system. It will also discuss
remaining work that must be done to optimize the current algorithms and future work we
have planned for the system.

7.1 R esults

While our system managed to create sentences successfully, the ones produced were of poorer
quality than we had hoped. Most sentences do generate in a grammatically correct forms,
but there are more errors than we had hoped. The semantic sentence generation method
also does not perform optimally when choosing word meanings.

The test results gave us direction on where our attention should turn for optimizing and
tweaking the system. The rest of the work that needs to be done cau be split into two parts.
The remaining work is both work that we discovered must be done when testing the system
and work that we did not have time to finish. Future work is work that we knew from the
beginning we would be not able implement in this first version, hut that we plan to add in
future versions.

7.2 Remaining Work

There were many issues that made themselves apparent in the development and testing
processes. There were two developmental processes we were unable to finish. First, we
were not able to finiHh labeling all thr words in the corpora with semantic domains. Before
opening the software to the public, this must be completed. Second, another issue with
the semantic part of the project, we were unable to implement a hierarchical choosing of
semantic domains. Ideally, when choosing semantic domains for words, any domain that is
of the specified domain or of a subrlomain of the specified domain should be allowed. For
instance, if the domain is "Person", domains of "JobTitle", "Name", and "PersonReferral"
should be allowed as well. Currently, the system only allows domains that are of the same
domain, not subdomains. Fixing each of these issues should improve the performance of

30

CHAPTER 7. CONCLUSION 31

the semantic sentence generation method, since the presence of subdomaius will provide the
system with a richer choice of words.

Several other issues arose in testing the system. First, we must go through and optimize
each algorithm used. In their current state, there are many redundant. processes being run,
and many processes that can be improved. This should greatly increase the speed of the
program, which will be better for user interaction. The algorithm for choosing sentence com
plexity should also be improved. Instead of making complexity the equivalent of minimum
sentence length, as it now does, it should be related to other factors, including variety of
phrase structures, vocabulary, and grammar.

Another issue arose when testing the weighted generation feature. Instead of giving a
~light difference iu appea.ram:e rate~ between words of different frequencies, there was a major
difference. This resulted in the modeled sentence generation method returning sentences with
most words of the same part of speech returning the same root word. In semantic generation,
the most common words were nearly always chosen, with those that are only slightly less
common occurring very rarely.

Finally, the conjugation functions should be improved. As they are, they work better than
cxpPcted for conjugating individual words, though they still makC' several fixahlc errors. Not
only should the functions for conjugating individual words be improved, but also functions for
working with groups of words should be added. There are currently no considerations made
for surrounding context when conjugating words, meaning that capitalization, assimilation,
and compounding are given no attention.

7.3 Future Work

Aside from the issues made apparent in development and testing, there were several issues
that we knew would have to be put off until future versions. Foremost among these is the
inclusion of additional languages. We want our software to work for students of a variety of
foreign languages, not just Koine Greek. Therefore, we plan on adding additional language
functionality. The issue with this twcrfold. First, in order to add additional languages, we
must have one or more scholars of that language to consult with during development and
who can test the result. Second, we must create the same types of databases used for Greek
in corpora of the target language. This is no trivial task, especially without the resources
we were able to attain in the development of the Greek databases.

We not only want to expand languages, but also corpora. In order to produce better
sentences, we want to include other literature from first century Greek. This will widen the
variety of grammatical structures anJ vocabulary in the sentences generated, as well as gain
more accurate frequency counts.

In future versions of the system we also want to incorporate multithreading into the
generation methods. This will improve the speed of generation by allowing multiple sentences
to be generated at the same time and by letting more than one sentence generation process
happen simutaneously.

Finally, future versions of the system will be translated into a more efficient programming
language. Python made for faster coding, but the nature of it as a scripting language means
that it cannot run at the speed of a compiled language like Java or C. Before making the

CHAPTER 7. CONCLUSION 32

software publically available, this step will have to be done.

Appendix A

Getting Started Guide

B·iblical Greek Practicer is a program designed to help students practice translating by pro
viding them with automatically generated sentences in the style of New Testament Greek.
This document will guide the user through the installation of the program, the layout of the
user interface, and the basic operations that can be performed.

A. l Installation

In order for the program to run, the user must have Python 2. 7 installed. To get it, visit
https: I /www. python. erg/downloads/. Ensure that the most recent version of Python 2. 7,
not a version of Python 3, is installed. Once downloaded, run the installer and follow the
instructions provided.

After installing Python 2. 7, obtain the BiblicalGreekPracticer.zip file , either from http:
I /www. tobeupdatedwebsi te. com/downloads/ or the program cd. Extract the contents to
the desired program location. Run the program by double clicking the BiblicalGreekPrac
ticer.py file in the top folder, or, if Python files are not set to open with the Python Launcher
by default, by right clicking the file and select Open With>Python Launcher. This will run
the program.

A.2 Layout of the Interface

Figure A.l shows a screcnshot of the program. The top text box is where generated sentences
will be displayed. The bottom text box is where the user can input translations to other
sentence. On the bottom of the screen is a control panel that allows the user to navigate
between sentences, save and open sessions, and generate new sentences.

A .3 Creating New Sentences

To create new sentences, the user should press the "New" button on the bottom right of the
interface. This will create sentences based on the default options. To change the default
options, the user can adjust the settings to the left of the new button. The "Number" slider

33

APPENDIX A. GETTING STARTED GUIDE 34

7l Greek Translation Practice - Ll

Gr~e.k Grllmmar Gen~ratcr

Tm:

T ranslateon:

_P_rev~_·ous _ __,__N_~ Number:
5 ----------:.J_J -

Complexity

J Open I _____ __ ..,.~ r Wetghted

5 ----------------- N~ I
..J.J

r. Semantic Mode (Modelled Mode

Figure A.l: Layout of the Interface

determines how many sentences to generate. The "Complexity" slider changes the minimum
number of words in the generated sentences. The "Weighted" checkbox enables the gener
ation of sentences that take vocabulary frequencies into consideration. Sentences created
with this option will have common vocabulary words used in the generated sentences more
often than less common vocabulary. The "Semantic" and "Modelled" radio buttons allow
the user to switch between semantic sentence generation and modeled sentence generation.
The former method will generate sentences from a grammar and a semantic domain lexicon.
The latter creates sentences from sentence models generated based ou real sentences in the
corpora. When the sentence's arc generated, the first is displayed in the top box. The user
can now move between sentences and translate them.

A.4 Navigating Between Sentences

At the bottom left side of the screen are two buttons, labeled "Next" and "Previous", which
allow the user to navigate between generated sentences. If the last sentence is selected and
"Next" is clicked, the program wraps around to the first sentence. Likewise, if the first
sentence is selected and "Previous" is selected, the last sentence is displayed.

When the user changes to a new sentence, the system auto-saves the session. More will
be said about auto-saving in the next section.

APPENDIX A. GETTING STARTED GUIDE 35

A.5 Saving and Opening Sessions

Biblical Greek Practicer sessions can be saved and opened. The session files will have the
extension ".ftl". In order to save a session, the user should press the "Save'· button in the
bottom left corner of the window. To open a file, press the "Open" button located beside
the "Save" button. When a session is opened, it replaces the current session.

A session ends if the program exits, a saved session is opened, or new sentences are
generated. In order to prevent unwanted deletion of sessions, the program will prompt the
user to save the current session when one of these actions is performed. It is not required to
save a session; if the user chooses to not save a session, he or she should choose the "Don't
Save" option. To caucel the action chosen without ending the current session, choose the
"Cancel" option.

In case of a system crash, the user may restore the previous session by opening the
"autosave.ftl" file in the "Autosave" folder where the program was installed. Sessions are
automatically saved after the user clicks either the "Next" or "Previous" button.

Appendix B

Sen1.antic Sentence Generation
Pseudocode

This appendix contains the pseudocode for the recursive algorithm that produces sentence
models using semantic sentence generation. We chose to include this function because it is
the least straight-foward part of our work, and we hope that by including it future researchers
will be able to avoid the struggles we encountered as we developed it. The remainder of this
appendix contains the algorithm.

GenerateSemanticSentence(cfg, symbol, domain, featureStructure,
countFactor, productionCount, depth)

II cfg - - A CFG object that contains a dictionary of production
rules. The keys are tuples made of t he symbols and domains of
the head nodes, and the value of each key is a list of
productions for that symbol. The elements of the list of
productions are a tuple in the form (right-hand-side,
production-feature-structure, child-head-number). This way,
there can be more than one rule for each head symbol.

II symbol -- Symbol of the head node of the current production
rule (should start as the grammar 's start symbol)

II domain-- Domain of the head node of the current production
rule. If null, a random one (that is possible for the symbol)
is chosen

II featureStructure - - Feature sructur e needed to unify with the
symbol. Should start as null. Onl y passes down through the head
child of the production.

II countFactor -- Controls how tight the convergence is . 0.0 <

36

APPENDIX B. SEMANTIC SENTENCE GENERATION PSEUDOCODE

countFactor < 1 . 0. The higher the value, the more likely
recursive phrase structures (clauses of the same type within
each other) can occur. Used alongside productionCounts to
determine which production rule to choose.

II productionCounts -- Dictionary that sets the value of new
entries to 0. Contains the number of times productions have
occured in the current branch. Used alongside countFactor to
determine which production rule to choose. The keys are the
head nodes in the production rule.

II depth-- Maximum depth to recurse. If this dips below 0, the
algorithm fails.

if depth > 0 then

subsentence = []

II Select a domain if none is given

if domain -- null

II Generic function to choose a legal domain for a given
symbol

domain = ChooseRandom.Domain(symbol)

end if

II Select a random production of the symbol that can unify
with the feature structure that was passed down. If no
production can unify, the algorithm fails

productions = cfg.productions[(symbol, domain)]
randomindex = Randominteger(O,productions.length-1)
randomProduction = productions[randomindex]
productions.delete(randomindex)

II Make the new feature structure (that will be passed down)
by unifying the passed down feature structure with the
first child of the production rule

newFeatureStructure = unify(featureStructure,
randomProduction[l])

37

APPENDIX B. SEMANTIC SENTENCE GENERATION PSEUDOCODE

II While the new feature structure was not able to be formed
(unification was not possible), but there was a child in
the production and there were still productons in the list,
choose a new random production

while newFeatureStructure == null and
randomProduction[l] != null and
len(productions) > 0 do

randomindex = Randomlnteger(O,productions.length-1)
randomProduction = productions[randomlndex]
productions . delete(randomindex)

II Make the new feature structure (that will be passed
down) by unifying the passed down feature s tructure
with the feature structure of the production rule

newFeatureStructure = unify(featureStructure,
randomProduction[l])

end while

II If the new feature structure was not able to be formed, but
there was a child in the production, fail the algorithm

if newFeatureStructure -- null and
randomProduction[l] != null then

return null

end if

II Update the production counts by adding one to the
production rule that was chosen

productionCounts[randomProduction[O]] += 1

II Recurse through the child symbols. If a failed route is
found, fail the algorithm .

i = 0

II for every rule based on this symbol

for rule in randomProduction[O] do

38

APPENDIX B. SEMANTIC SENTENCE GENERATION PSEUDOCODE

II for non-terminals, recurse

if rule in cfg.productions then

II if the current feature is the head node

if randomProduction[2] -- i then

featureStructureToPass = newFeatureStructure

end if

II if the recurse returned a failure, fail

if sentencePart == null then

return null

end if

II otherwise append the word part of the sentence

sentence += sentencePart[O]
oldFeatureStructure = newFeatureStructure
newFeatureStructure = unify()

II Make the new feature structure (that will be passed
down) by unifying the passed up feature structure
with the new feature structure formed earlier of
the production rule

newFeatureStructure = unify(newFeatureStructure,
sentencePart[l])

II if the old featureStructure was not empty but the
new featureStructure is now empty, fail

if oldFeatureStructure != null and
newFeatureStructure -- null then

return null

end if

39

APPENDIX B. SEMANTIC SENTENCE GENERATION PSEUDOCODE

//otherwise simply append the symbol to the sentence

else

sentence.append(rule[O])

end if

i += 1

end for

II return the current branch of the sentence and the feature
structure that should be passed up

return [sentence, newFeatureStructure]

end if

..

40

Appendix C

Software Requirements Specification

C .l Introduction

C.l.l Purpose

This document gives a detailed description of the requirements for the B'iblical Greek Prac
ticer (BGP) software. It describes the purpose and requirements for the development of the
system. It also gives the system constraints, interface and architectural design requirements,
assumptions, and dependencies of the software. This document serves as a proposed plan to
the user and guide to the developer.

C .1.2 Scope

Biblical Greek Practicer (BGP) will be a piece of software that will provide students with
training sentences in the style of the Greek of the Bible. It will incorporate the vocabulary,
grammar, and syntax rules used iu the Bible and attempt to construct sentences that will
work well for students to practice translating.

BGP will be designed in a way such that it will be extendable to other languages. Thus,
the various modules of the program must be treated independently and have specific inputs
and outputs.

C.1.3 Acronyms and Abbreviations

BGP - Biblical Greek Generator
CFG- Context Free Grammar
CUI- Graphical User Interface
NLG - Natural Language Generation
NLP - Nat ural Language Processing

41

APPENDIX C. SOFT\iVARE REQUIRE!VIENTS SPECIFICATION

us~r lnt~rtace
Sc::uknce Geoerdtion

~----~ ~------~
Algorithm

Pat1 of Sp~'Cch
Generation
Algorithms

Figure C.l: General Process Diagram for BG P

C.1.4 Overview

42

The remainder of this document describes the complete requirements of BGP. Section two
provides the overall description of these requirements, and is only meant to provide a general
knowledge of these requirements. Section three provides the exhaustive technical details of
the requirements.

C.2 Overall Description

C .2.1 Product Perspective

BGP will consist of a desktop application which generates and displays sentences to the user.
On the user interface, the user will be able to trigger the generation process. When this is
triggered, the sentence generation algorithm will communicate with two databases, one which
contains the semantic domains of Greek words and one which contains the semantic-based
context-free grammar of the New Testament. A sentence diagram is then constructed, and
filled in with words by using part of speech generation algorithms: which must communicate
with databases containing the parts of speech and conjugation rules for Greek words.

This software will be independent and self-contained. It will not need to access any
external databases at present. However, because it is being written in a way such that it may
be extendable to other languages, the system should be designed so that in future versions,
it may communicate with other databases (internal or external) based on the language.
Figure C.l shows the general processes that will be required by the program.

Interfaces

The system will have several interfaces (see Figure 1). The first is between the user interface
and the sentence generation algorithm. Depending on the language being generated, this
main algorithm may have to change. This algoritlun will in turn need to interface with two
databases and a set of other algorithms. The two databases will contain the language specific
CFG and semantic domains. The sentence generator algorithm will also interface with part of

APPENDIX C. SOFT\VARE REQUIREA1ENTS SPECIFICATION 43

Greek Grammar Practice

Sentence:

[
Translation:

Previous

Figure C.2: CUI Diagram for BCP

speech generators, which conjugate words based on language specific rules. These algorithms
interface with part of speech databases, which contain the language lexicons.

The user interface is the only means for the user to cause the system to generate sentences.
It will consist of a CUI with a button that causes the system to generate and return a sentence
to the CUI. The user will then be able to see the sentence. Figure C.2 shows an example
layout of the CUI.

C.2.2 Product Functions

This section will give the user level functions of the system. These are general functions; the
details of each are given in the third section of this document.

1. BCP shall provide a function to generate sentences in Greek.

2. BCP shall allow the user to specify the number of sentences to generate.

3. BCP shall allow the user to specify the complexity of sentences to generate.

4. BCP shall provide an area to display the sentences which are generated.

5. BC P shall provide an area in which users can type translations to the sentences.

6. BG P shall allow the user to navigate between sentences that are generated, and shall
store user translations when switching sentences.

APPENDIX C. SOFTWARE REQUIREMENTS SPECIFICATION 44

C.2.3 User Characteristics

The user base should be considered students and teachers with the least technical ability, so
that the user interface can be built from the ground up to work with any user. Thus, the
GUI should be built from the ground up to be a minimalistic and intuitive interface.

C.2.4 Constraints

DGP should work with Windows Vista, 7, and 8, and all versions of Mac OS X minimumly.
Preferably, it should also run on recent versions of Linux as well.

C.2.5 Assumptions and Dependencies

BGP assumes that the user will have fonts installed on their computer that support Greek.
lt also assumes that all of the databases included with the system will be in place and
untampered when the system is run.

C.2.6 Apportioning of Resources

Several features will be delayed until future versions of the system. Foremost among these is
the inclusion of additional languages, which will include new databases that can work with
the included algorithms. Also, more literature should be incorporated into the corpus, in
order to improve the algorithms used. Other options should be included as well, including
the ability to focus generation on specific grammatical structures (e.g. create sentences that
include only the subjunctive mootl), specific vocabulary words or frequencies (e.g. words
used less than 100 times), and specific corpi (e.g. using CFGs generated from only Johan
nine literature). The system may incorporate multi-threading in the future, enabling faster
generation. It should also allow the export of sentences anti translation for later viewing and
use in external applications.

C.3 Specific Requirements

C.3.1 FUnctions

This section gives the specific functional requirements of BG P. These requirements are more
specific than the user level requirements of Section 2, as they outline detailed requirements
of the system.

1. BGP shall provide a function to generate sentences in Greek.

1.1. The function shall be activated by the user from the GUI.

1.2. When the user activates the function, the system shall run the sentence generation
algorithm.

1.3. Based on the input given by the user (see below), the system shall generate the
sentences via semantic-based generation and return them to the GUI.

APPENDIX C. SOFTWARE REQUIREMENTS SPECIFICATION 45

2. BCP shall allow the user to specify the number of seutences to generate.

2.1. On the CUI, the user shall be given the option to change the uumber of sentences
to generate.

2.2. There shall be a default number of sentences selected upon opening the program.

2.3. When the sentence generation algorithm is triggered, this number will be given
to decide how many senences to generate.

3. BCP shall allow the user to specify the complexity of sentences to generate.

3.1. On the CUI, the user shall be given the option to change the complexity of
sentences to generate.

3.2. There shall be a default complexity selected upon opening the program.

3.3. When the sentence generation algorithm is triggered, this number will be given
to decide how complex the generated sentences are.

4. BCP shall provide an area to display the sentences which are generated.

4.1. Upon completion of the sentence generation algorithm, the generated sentences
shall be outputted to a list.

4.2. The CUI shall display the current sentence to the user and provide methods to
change the current sentence (see below).

5. BCP shall provide an area in which users can type translations of the sentences.

5.1. A list of empy user translations shall created upon generating sentences, of the
same length as the list of sentences.

5.2. The user shall be able to type translations to the sentences generated.

6. BCP shall allow the user to navigate between sentences that are generated, and shall
store user translations when switching sentences.

6.1. The GUI shall contain features that allow the user to switch the current sentence
and translation being displayed.

6.2. When the current sentence is changed, the the translation shall be changed as
well.

6.3. When the translation is changed, anything the user has typed into the translation
shall be stored.

6.4. When the translation is changed, the new translation displays anything the user
has previously typed into the translation.

C.3.2 Performance Requirements

• The system shall be able to generate up to thirty sentences in one call.

• The system shall be able to generate sentences up to length fifteen in complexity.

• The generation of sentences shall take no more than five seconds to complete.

APPENDIX C. SOFTVVARE REQUIREMENTS SPECIFICATION 46

C.3.3 Logical Database Requirements

There shall be three main types of databases in the system: Semantic Domains, Semantic
Based CFG, and Part of Speech Lexicons.

• Semantic Domains

- These database will consist of the hierarchy of semantic domains.

- It will list each domain and the domains which are subclasses of those domains.

• Semantic-Based CFG

- This database will consist of the grammar of the language.

- It will list the production rules of the language, based 011 phrase structures and
semantic domains and conjugation forms (e.g. mood, person, or tense) allowed in
each structure.

• Part of Speech Lexicons

- These databases will consist of every word of a part of speech, and the rules which
are used to conjugate the rule.

- For each part of speech, will list each word and the conjugation rule.

C.3.4 Design Constraints

Standards Complience

The system should generate sentences that are grammatically correct. Grammatical rules
shall be coded in and extensive testing shall be done to ensure that these rules generate
correct sentences.

C.3.5 Software System Attributes

Reliability

The system shall provide methods that cancel generation should the process take too long
or result in errors, in order to prevent crashes.

Availablity

As the user types, the system shall store translations in the temporary memory of the
operating system, so that it can restore a user session should the system crash.

Security

The system shall conduct data-integrity checks upon starting the system, in order to ensure
that data has not been manipulated by external processes.

APPENDIX C. SOFTWARE REQUIREMENTS SPECIFICATION 47

Maintainablitiy

The system shall be dcHigncd in a way :-;uch that the editing of modnlrs docs not effect other
parts of the system. Databases shall also be constructed in a way that supports easy editing
in the form of additions, deletions, and manipulations of the data.

Porta hili ty

The system is to be designed as a client-side desktop application. However, it should be
written in a way that it may be changed to a server-side program. This will enable the user
interface to become either a web-based or mobile-based CUI, so that the system may be
used more widely.

Appendix D

Test Suite

This appendix lists a suite of sentences output by our system. There are one hundred sen
tences listed for each sentence generation method, generated by calling a special function in
our program to generate random sentences. They feature the same style of syutax, grammar,
and vocabulary that can be expected by the system.

D.l Modelled Sentence Generation Test Suite

1. E:rre:rra xa{)61:L XEXAY)XE'V cXITE\1(1\I't:L 1:000lhO'V 'Aapw\1 xa{)61:L 'Aapwv we;; XAW\1 wocpELAE'V
tJTIO!l'Vl'JOEL<:;;

2. oc; (YJ1:W'V rrape:x-t6c;; f..lOL e:0rrpoac...:mo0'V CflLAOn:punEUEL xa{)6n o1oc;; EUAOYY)XE'V O!lO{)Uf..l<XDO'V
rrY)A(xoc;; op{)orro5o0v

3. oc; yap x<XAxe:uc; f..lEta 1:W'V Ma{)'i)a1: ou xu~e:tac;

4. ou an:<xA6c;; oarravaouaa fe:{)aY)!lCX'V(o~t au1:60 1:YJALXOUTY)c; E:YE!lE\1 1:0 'H)..(E:xd\IY)c; paxa
{)e:oae:~e:c;; E:wpaxu1a E:wpaxe:v &vd 1:ouc;; &Aa1ac;; ou

5. <icpLAaya{)m 01:CX'V of. 'An:OAAW'VLCXL OL6ne:p oc;; <iypLEACXLOc;; <iva 8e:aaaAO'VLXe:uoc;; -rE-caxaaw

6. 6 xa{)6 xa1:aa1pocp~ n:e:n:aAa(wxe:v tmou-r~ iS 11tv-rm ~Oe:Auaao11an ~&p-rupa ~Cu11a (!) &oOv-rL

7. &5txoc; oc; TE'tl!lY)f..lE'VO<:;; XCHE'VWTILO'V ou mvaxlBLOU Ma{){)at cXA~Wc; <ivi)Of..lOAOYEOf..l<lEL xa{)Wc;
Boa\IY)pytc; E:au-roO rrape:x1:6c; E:au-rl;) cppe:van:atae:L

8. !lEf..lE'VY)XCX ~ 'E~pcita'ti Eaowx xa(rre:p 1:UCflW'VLXO\I O"CE ooye:LO'V 5e:Lvwc; ~a{)t'VY)XE'V E'V1:0c; "CO
paf3~i au-c6u

9. E\l't:EO{)e:\1 n:pe:a~e:uo\1-re:c; &pa xAl\IO!lE\IOl x&xe:t{)e:v ~a{)t\IY)X01:Ec; &c; fe:'i)OY)f..lCX\Ii oTc;; ~Y'VLX<XaL\1

10. wad ot6ne:p ~ Euxtf..l & paxa ou Eptcpou xop1:a(n toou ~ Boa\IY)pytc;; 1:moO-rou E:ni Aapw\1
XEXOAO~W1:<XL

11. wane:p Ev1:0<:;; ~Y\IlX<Xf.lE\1 E\1<1\l't:L paxa npocp~1:L'tCX f..lEXPL<:;; \.me:pe:xne:plaaou EU1:0\1Wc; ne:(e:UOf..lE'V

48

J(IO'(~g J(IO'(~'('(Jil 1\QO'(XllX)llO 9 ('J1~X011Q)1\XlnUofpJ)idX~rl XlgQ"Xl)l (10'\l3X~ JOI\X3l~
I\Xll9, ~ 1Xll3~~l01g Xll\3nnoJcbU.~ Xl9QXl)l JlO (101Qgo3d11 ~X"Xl~ J9d11 (101\].3X~ ~I\3AOI\On JC? ~l '0£

101X3909d11Q3 !0

1Xlli\U)Oll311 ~g 101Xl)g I\Xl)OXlrl1xog J1dX~ J10'\l3X~ ~~Q XlJ913chJ2 J2 I\3Xo~ch3 Uono~d1311 d311~ ~ · 6l

1\~ I\('J1X3909d11Q3 ~~Q JU'(Q J01XlnnoXo9dll 1\('JI\11 J(l}3031\l"Xl QO 1~(}{}XlW ~ ·gz
1\~ 1\<;JdXl\f. ~ 111\Xli\~1XlX 1Xll('Jrljch3ll rl~Xn~ 9 I\~1Q"Xl Xl9QXl)l

101\9dg. d311919 1Xlll\091orl9 nol\pX~ m1o<;>"J...mgd"Xlx 10)~g3oQ3 ~ rl ~ rl od31r)go3dll 1\0'('(!~rl · Ll

I\Odogd9g 1\(] djllQ I\3XUdjl.OQ)(l")Xln~ non l~{}{}XlW 91 J(lJX1ll'(~ 319 9 ·gz

1\Ulnm. mg.o~U'(13 J~'(XlX 9, J9d11 Xll\11. 1Xli\3XU'(g.~ I\3Xidchjll

fl.~3d('Jg d3111\~~ 10rl)~J...dUI\XlOH ~1 "Xl)d011Q3 J9, I\3X(I310j113ll JUI\3nA.n'(j9tJf I\3(}13X1?X "Xl9QXl)l ·gz

l\3noA.03cn no1o11 10rlo1~ "~rl ·vz

)191QXl)'(H, I\3XUI\j(}D~].3XJ2X 'EZ

13~'(nXldA.Jil J<? 13~g3o12)~J...dUI\XlOH (l)ii 1\(11\)01 JI)XXl1 f\3(}9, JOI\3nn01'(3rl3(})onm~dg 1\01\PX~
~1.3rl JOI\3n('Jrl0~l 9 ~rl J9X1Xn~ J0'(3ch2 n~rl d~J... r\OI\3nng.;u 1\~r\n 1\91 XlXUA9'(Q3 1011\~n ·zz

10I\3rlnoJ...oxox"Xlx J1Xl"1"3rb::>xuxlr\~ 131A.0 "~'(ll ~gJ_Xlog,ltg ·I z
01n"Xl~ 1dX~ l\3r00X('J111j11 Xl~M~ r\~ 911J?)011\QD1rlng. noXn1Q3: Q01 JOX"Xld<;>g.

1\0r\ngi\)X r\Q Jt')J...J...~ J310XXld~A.3A. 1\3{}9, Xl9Q"Xl)l 9110 r\3n"Xl1110'(~'(J31.0X"Xld<:J~ :l1d=?11 J311~ U1 ·oz

r\Q03'(X(IX 1XllnOJ<fX (}<!'>Xl~~ l;3XJ?X ~ '61

I\OI\3nnOI)1Xl'(11 Q01.(1Xl30 Xlr\13X?ll~ 1Xli\3XU'({}~ JtJ~9
11 l\3!)3r\On3A~3 JXlX (101011 ~1XlX 1\QO~dJ... 9, l\3g.DOd11rl;? 1\0l.QOl 1Xlr\3XUX)r\31\ I\~AO'(Ol.Xld10
r\~1<;>1X1'(UI\(IO 1\('J'('(~)11\1p ~'('(12 l\3~~dXi 31011\~11 r\3lluo~o Jt')3Z 1\9 1 J(')Xd~ Jln"Xll\t')g 1011\~n 9 '81

I\('Jx~xx12 J9~9 0o1 J09X)9 "~ 10r\3n(loo~dll HH. l\3n~rlo~JXQXl J1ox~xx12 "oloux11 1o10o (l}dd9 11

mfi.1.3Xf J31r\Q011(1'()~J...dui\XJOH QOl {}<;>"XltJXl~ r\~1 1o1Qooo1)~g.dQ ~1 ~gurll\oxJ...odjllQ u-?xurl 'L I

1\00c;! r\3X('Jl.J.1j11 noo)I\XlnUO(t3J ~ (IOt')gXJdg Q)l.Q0001 I\3XUr\r\jA3A Xl10r\r\i) 9 d3llO<:J '9I

1\lDXJJ...udd;? noo JtJtJ"Xl9 ~ 0i"Xl13rl

J310X119ll31111919 (IOXXln~CJ? QO I\01ll<;>r\31XlX)r\XlnU0(}3J Q01 1Xl{}D~ r\1DXlXU11()'(3'(('Jr\cn~ "XlX)r\~ ·gi

)311\QOdnx 10'(Jll0)~J...dUr\"XlOff ~ J01~1d3tJ1J, 1DQ0101dXJXQ3 Ji301dX~1g
Xlr\J. I\1D(IOQ31U{}Xlrl 101~ 1orln~~ m1r\Ojrlng.odxXJrl J('Jrlt')g.odll 1Xli\3X(lJ'(chQ131 QO J(lJ'(9Xo(lg ·vI

13~A(l')AXl'(nog 01.('!Xl30 0)1\~11~ Q91(\Xl 1~{}(}XlJt\I ?9QO

~ 3g.DXl'(11rlJ11 l\od31QA.J...~ I\3X3'(j131 J(lJXlnOi'(QU Xll\l Q)H;m r\3XUOJrl3rl d~1(1W JQ Xlr\), J(lJX(Igjg 'EI

JXl1Q"Xl rl~X(I~)~ r\1onooJ30 J3XAXll\~ll~

r\1DX)){(I)l.ll~ll 1o1Qooo1 31o11~rl "~ no11g)unc;(:2 Qi"Xl1.3rl m1?du110 lo 1dX~ 1o1.og~1.3n03 3191 ·zi

6t 3.LJnS .LS3.L ·a XIGNgddV

APPENDIX D. TEST SUITE 50

31. ~~~AT)XCt oiJe:v ~yaTIT)XEVCtl pet<pb:a. n:Ctpa "COU MCtiJiJ(ou TIOtOU tva. Eux~!-1 un:e:ptxe:tva. ~ pCtXa
"CCtU"CT)<; x&xdi}e:v pCt~~(chmxpuc; "(~<; Ea.~et{0'\3 crou ~ xpCt"CCtlOt ou yvW!-!T)t:; oi TIAOE<; !-LOU

32. OE oe:oe:xa-c{t)XCt x&xd 'ACtpwv &n:e:t'\3~ rre:n:6pEU!-1EVT)V pCtp~i EWt:; "COV<; &cre:~OUV"CC(t:; o\jJE ou
Ea.~Ctw'\3 xa.\Ja x{vpk ~ EuxE:!-1 ""CtVOt:; xa.(m:p !-LEXplc; "COU ch68e:tC:E{v<; ov Aetp{0v !-LOU M:Aom01:a.c;
E:rrtxe:tva. ~v 'H:Ai -c~v xpmx71v xa.xon:Ctl3ouv-cCtc; EuxE:!-1 ou K:Aa.68tou

33. "COV cX11:0XpLOLV OO'OV pCtn:LO'EL "COle; \iv6:ymOLc; civa.f3o:A~c; TilO'"CEOU!-LEVOc; pa.xa !-LEla ie:pcitEU!-LCt"COc;
-cpup:Awu -cOLou-coc; :Atx!-!aEL cho1-1wv 'Emxoupe:toc; CtV-cCt n:C:rr-cwxa.Te: o n:C:rrpCt!-lc:vov 'H:Ai !-lEXptc;
cruv1po<pou -c~c; pCtppi ~!-l<pie:cr!-le:voc; l'.mtp ~ ECtpCtwiJ En:txe:tva. 16 re:l3crYJ!-1Ctvi n:6crov 6!-lw!-loxe:v
!lCt"CCtLO"CY)t:; CtVTOTI"CT)V "COV cruv Kauoa. wcrd "CE"ClAXEV 100'0U"COV oc; 11:0Al1"EU!-1Ct EuxE!-1 :Ametp(J)
Ewe; 'H:A(TIY)AlXOc; ucr-ctpT)XEV E!-LWV xa.(rre:p 11:\ILOU!-LEVOc; CixpCtTmUc; -couc; cr-cpetTOAOYOU!-LEVOUc;
EVTO<; ov xpucroOCtX"CUAlOU n:p(v o<; xpa1oc; E!-LOLXEUEV e:'(ve:XEV 17)AlXOU"COU

34. :A6:13p~ YEYCql7)X<X1E xaxd OV0!-1Ct1"Ct ~pn:etX<X!-LEV o(c; Ota<popa.

35. xa.'\3arre:p XEXTT)"CCtL che:p 0 ~CtO'"CcXOVV cre: pa.mAEOU!-LEVOV an:6 rruxva.c; e:;e:uxo!-!OUV E:xdvtp o1
xa.-cclf3a.cre:t<; Cipa. E:v~voxe:v E:xdvouc; n:uv'\3avo!-1<0v E!-1Ctu-co ocro oi ~137) xa.xorrmtoumv x:Ae:ovv

36. Cixav8a.wv &yvoE:ovcr'\3e: E:mivw av-cwv

37. yap -c~'\3paucrtJ.E:Voc; 6 cruvoo(a. na.iva. O'Ol e:'he: Ol tpUXT) "COLOU"COU

38. n:p(v e:u:A6y7Jxe:v n:ot(}l 6 cr-cE:y71 n:wc; n:C:<pe:uye:v Civuxpuc; nvoc; -c6 Ea.~a.w'\3

39. dn:e:p ~y(a.crfle:voc; 'H:Ai n:e:n:(cr-ce:uxwc; :Ae::A6rr7)XEV ~pn:a.xe:-cwcrav flE fl~"CE -cETLAXETwcra.v rrp6c;
E:xdvouc;

40. Ol (ha.v TtflWVEc; X~XALXO"CEc; !-LE 11:E11:"C{uXEV owpov (wcroumv "(~V pa.f3pi E<XU"CWV <ppOVL!-LWc;
cra.Ae:ouv-ce:c; o'i. EVTEu~e:tc; 8e:ouv6:flWflEVOl ~5ova.1c; ve:v671xamv &n:tva.vn rro1a.

41. pa.f3~i au-ca.Tc; ~TIEP Ea.pa.w'\3 n:a.pa 6 vowv !-l~ITO"CE oc; E::Atl3o~OAEEV ou 6 flCtXpoi3UflOUflEVOc;
flEXptc; e:Lc; 'lWV OX"CW Ka.v5a. nva. E:vwmov ov flayou ECtU"COV ou we; xa.-cavuC:e:wc; .6.a.vt~A oc;
cXTIWAEla oc; cruvn6c; oc; crxo:At6c; wv OflO<ppwv xa.(6 n:pw-co-c6xta. TWV EAE{uV 1~c; pa.x6:

42. &xpt M:Au-ca.t e:!rre:p rre:rr:A~pwxe:v -c6v cr1-cov ~ pa.x6: ~ pa.~~(xe:xaiJtxe:v -c6 Ea.paw'\3 &rr6 -cjj
EuxE:!-1 CtV"CT)c; Ewe; EO'XUA "CCtl Euxtfl i}e:oflaxou ~ Euxtfl EITELO~rre:p ucrn:pT)XEV Ea.~a.w'\3 EPT)fl0
(he: ~y6:rr7)XEV cre:crapwflEVT) OV"COt:; xa.-ca re:'\30'7)!-lCtVl 1-lb-cm ~YYEAflEVOc; 6 i\Pto68 1~c; EuxEfl
ov

43. Ecrx71xa.-ce: &:A:Aa 1o6c; Bapax n:o-cCtn:6uc; 8t6 x6xxtvouc; xa.i-cOL l:Aacrxoflwv-ca.c; -c~v Ea.pa.w'\3
rr6owv

44. E:av xat"COL 'Iw86: tva OEOcXflCtO''laL e:uxaptcr-cov xa.'\36-ct 0 Aa.pwv "(lVWV rre:vtxpa O'UVTOflWc; ~
'H:Ai -cotouTwv :Aoy((oflaOflE:iJa o£ &va.vnpp~-cwc; &rr6xpt1-1a-ca. -cov rr6pv71c; E:n:e:to~ OTTJPl~OuflC:V
n:a.pa ov :Aivou tva xe:xwp71xe:v ov flETwrrov -cou-cov fl~-ctye: ~yarr71xe:v xa.'\3& xa'\3& &rr-cmcr-cm

45. &pa. a.u-c6c; aTI"CEl EO'{t) aAA~A{t)V <I>op"Couvii'loc; 00'0\1 ptp:AT)XEV 6 'Iwcr~c; CtU"COU le:pa1EUflCt
ovxi :A6yov OEOElXEV "ClVl ou OV'tWc; avi}pa.xLav ~xo:Ao6137)XEV ou otvov xe:xwpT)XEV au-c~

1\~ b\>~JD~:i 9l. I\Ol.ld~19~ cryd;=n.Ml.DX ·gg

10n njXn3 ~ 1g.lJ.u~nlJ.dX d311.~913llf 3X0JI\A;1 Q->rooD9'{1m ~l.)I\DnlJ.og.3J CJ d3lll\~~ I\3X(l)Dj)D ·gg

3D Xlb\>D3iJ39 Ul.ll.n~'{Oll(l)OOdll. Ml.QOOOl. XJ~ mnO)JX3'{3ll. 'f79

1Xli\3Xli\A~ ~DJAnd<f> 1Dl.l\lJ.OJn3n ~MJiD~ 9. 1dX~ ~3rpnlJ.'()fl.3n JO ~3l.OXlJ.d<Jch3ll. n011.9. ·£g

1\0l.QOl. ~010X1ll.'{~ QO ~9Xll.X>l.OnD ~9X'{X>X

919 QOl.nnn~ JX>AAX>N QOl. ~onu9o1 lJ.I\l.~ro 13dj9 ~Jdl. ~lOl.nDi 0JjdoJ..lJ.nlJ.9 ~n ~J.nO'{lJ.'{'{J9 ·c;g

~13DnOI\~{}I\nll. ~01\09~ '{1m 0!011. ~0911. Ml.no~dx ~l.QX> I\3XlJ.JOll3ll. XJnAX>'{'{~l.l\1p ~<,? 1\)dll ~MchlJ. '{13 '19

noxx9x QO 1dX~ (T)l.Qoool. I\OI\3nMJonch31L Ujnlt.cboXJ'{g jrpc;> JX>X

l\o1o Xf lX>I\3XOI\~I\~ 1Xll.39 l.1dX>X ~l.01Xl1ll.~ 9g I\1D1l. X>XMI\Ai OlOll ~dMX l\3jdMll.1XJ'{X>lf 3l.9 llq ·og

QOl.nXJ~ Jg£JX>9 ~ 1Xll.01'()991\DXO~ 1\ni\)Ol. I\3XlJ.XJg~ d3ll!X!J{}XlX 9 ·5g

130~0 ~n9l.QXJ 9 1g ~OI\3nD3'{fl.3l. ·gg

nOll.'{9X QOl. 1\~dX>y 1\~ mnO)JdnX Q3 ·1.g

D~l.OMch 1\Q Jl!f l~{}{}XJW (T}l.XJI\i l\3(fD1ll2 101091\J? 10 n;:JXn3 1\~l. l\3nOjli\Mm non

~9l.Xf 1\~'{11. ~c>JdJXlx:p ~10 njXn:i "'9f 1\0XX>n~ ~10 I\1D1l. 1\~dX>\(1XllMI\JOX3X ~(f)XldXjX pX~X ·gg

S? I\1DX>XlJ.91\31\ ~3ll\olJ.d9lD 1Xl)3XD'{OX 1\~X 10 ·gg

1Xl{}DQOJ..ndl 0dgi\X>'{Jd"> 01lJ.'{XAjl\1p ~XJI\11 13)JXXl'{

-(lcb 1\lJ.l~n 1Xli\3XlJ.n91\0ru'{X3X ~OI\3n'{nXOi j'{H_ ~jJ..dlJ.I\X>OH MI\J?ll.f 1Xl'()fll. 1\~lnXJ~ i11\lOX 9 ·tg

l~b\>b\>X>JJ\I ~}3 X>gQXJ)l 13)J;>3dlJ.lLf (T)lQOOOl 1lll.u9dg~ (T)x1g)l.l\1p ~1nXJ~ ~9dll 1Xll.39'{'{3AXJdro ~ '£g

13)J"odmMo nmd~nx3l
3l.Oll~n ~1X> XJX10i Xl09, no1.d1XD ~9l31\nO d311.~9131Li 1\QOdlJ.'{X ~X>d~J.. 131.11.()1 ~Ol.Q010l. 1\J;>lL~ '(;£

non I\MI\~n1'{ 1\~ ~9l.X~ ~XJXXJdll.fll. X>l.l\)3glt.n 1\01

-Q0101 ~130~'{'{3n njXn3 31.<,?)I\XJnlJ.og.3J ~J;>cbXJl. l\01ll~l\3l.X>X 9. ~~X1ll.nl. l\9l.(\XJ ~X>xlJ.d<)ldXJn3n '1£

0"l3Xf 1Xlg.DQO'()frp 10jdom jJ.. 009. 9. non 1l.X>nAXJ'{'{'9l.l\~ ~l. '9(}X>X I\OdJ3Af~ · Qg

1nlt.dX:x Ul.n3'{3l ~ 91L0 XJX139?9 lt.ll.XJ10ll. XJI\11 '6f7

1\QOXd~ ml.lJ.I\9l.Od13X3X I\C'JQ3dlX>'{

1\~llf l\(l)lLnl.J11\1p XJdjlL1ll\1p ~)Xl'{f S? l\3{}10ll.jlL l\9nOn'{On ~MJ..XJdXjX ll<,? 39X>l. 1\)dll. ~('JX1b\>~X3X '8f7

I\31Llt.o?o ~xXJs) ~ ~1dX~ J"Xlnl.t.ott3J 1\01'{99 1\)dll · L t

lDI\3X139 jlg J'{H, l\3)~n1xogi I\Od(l)Xjd31L 9. ~911\f 1\QOl.XJll. ~Xll.

-1\QOA.lt.dg. 1\XJ)Dl'{X 3l.~n I\Oll.Q9 ~(l)xX>dll.jll JOI\pXiJ J3'{XJdw:p 9l. <'Ji~ I\MI\3nnojd1 1\~l. d;m0 Jg~9
I\QOOX1p QO l\lt.1n3l1D l\l.t.l\3nnoo~'{ll. "~ nogocbxi QO)I\X>nl.t.ntt3J 1\~l Mii 1~g.{}XJW I\3{}D111.2

I\O)~n1X09f OlnXlnf Ol.3'{'{Jl.f, 1\(_21\(l)m non 1\<:JdXl\(l.~Q-{}XlJt\I XJdjlllll\1p JO'{JJ..dc;> XJnX>l <:JAil XrJi '9f7

Tg a.LiflS .LS~.L ·a XIGN~ddV

APPENDIX D. TEST SUITE 52

67. VACu.rw~ Te:L~pY)xe:v E:xrrA.~pwmv xCiv ye:yEVY)TCXt Totothov xovtop1'6t~ O'tl tA.~A.e:y11ae:v BETjcre:t<;
rrp&ilUflOlU<;

68. Bt 6 4e:uOWVUf10<; tpptflflEVO~ xmvwvtn T~V TOUTOU pax<i E:mxvw ~UXEfl <ipvEOflCXEL a &A
AO!lWV"Ca E:xdvou

69. ou o4t crapxa Toto(ha cr-cmxtw flEXpt<; tva oc; f169ucroc; E:au"l'a o~ '19ptcxtJPe:ue:t

70. XEXAY)XEV ECXU"l'OL<; mx<ipto<; 0~ flEVouvye: OXAOTCOLEW atnaT<; y<ip <;>o~v wcr'l9cxt ota SouA.ay
wytw

71. TOOOU"l'O<; 'lva EppY)YEV ov flEflLYTaL ou atn6c; ~019EVY)XEV "l'Ocroi)'wv ecrrrapy<ivWTCXL

72. f11)0E xoptvvuamv flOL pamA.e:ue:t "l't cirroTOflW<; E:yy(wcre:tv civnrrtpa xorre:-c6tc; ouv Eapa,0'19
xa13<i pcxx<i e:l-ce: crop6t~ rrcxpa'l9cxA.<icrmm<;

7 4. OEXtOV 000 rr~yVVflaL EVCXVn l:OOOUl:OU<;

75. OAtywpouv-cwv 6cr<ixL~ EXdV(\)V oe:owpY)TCXl ltAY)OlOV E:xdvov 'HA.(oust pouAOflaEll:OV "'Acrcrov
~yyd.f1EVOV wcrm:p TCOLOUV ~cxf3Pt E:xdvo We; pappi atn6f1a1:1)V yparr-caL~ 'HJ..(<ipL'I9f10UflEVOV
<iv-c(~ 'HJ..(cXVTLTCEpa 10Ul:(~ exo!l(Ce:v){(\)<pCX a oA(ya flEV Ecxf3aw'l9 1'1)<; Ma{}'19<iT xav cXflET<i'I9ETa
Tou Kup~vwu

76. n:oTE cif1<i(u xuxJ..6'19e:v 6rrotav Cippwcr-coe: ypan:Te: <ixf1<i~oucr'l9w 't'mou-catc; TOLOUTaL E:mivw
TQ pax<i 1'E't'EAe:61'1)Xaow flOL rrtpav 6t6-ct <icrn:t't'o~ wcr"l'e: -rwv '19e:twowv xa'l91)!lEPtvwv aou
TOOOUTWV a Eapaw'l9 XUXA<p BoCXVY)PYE<; pappi

77. otouxe:v d~ -c6v cr1'<if1VOV E(WOf1<l'I9W 't'pt-cov ~1'0l U1t1)pE1:EEl otov

78. xa'l9<i e:Ln:e:p d~(w~ 1'E-c~p1)xac; E:xdvo '19e:wptn 11~ m:Cfj ~y<in:T)X~

79. XCX't'EVCXVn au't'Q &xfl<iCoflEV iXpcx un:oxchw ECXU"t(i} flWfl<lOfl<lOflEV (he: ou·ro~ flE't'<i otc; E:<iv
EVCXV"l'lOV ou Kauoa EflCXU"l'OU oe:oouAe:uxe:v ot~

80. axpl oc; m:oA~ E:xdvov OTEpe:6ne: E~W XEAEUEl crxu'l9pwn:6c; o'l9e:v "COU '19cxull<iCov't'O<; "l'lV<l
xupEpVY)OEW<;

81. pcxf3p! OlO't'l ~ycin:TjflEVY)~ twpcxxe:v 'HJ..(av 6 'Axd.ix6~ flEOT)flPPt<lV ax~!la OAOAUWV OlO'tl pcxf3pi
wcr'l9at ot~ n:oAU't'EAEOlV 6 OlcxtJEplOflO~ Ae:AcXATjXEV ov Mava~v XEXP11f1EVOV

82. flOVOV e:uxapLOTOUcrt flE

83. ~n:6pT)XEV xcixd oe:upo Btxocr-rcxcr(a 6 MJ..omwc; o4t oaov ~VXEfl"l'O cip.E1'CXV01)1"0V flCXvfl<iwv
Ecxf3cxw'l9 'HJ..i E:rre:to~ P<xx<i -caxt~ Mcx{}'l9<i1' -ce:crcre:p<ixov't'a

85. ot Of1Wf1oxe:v ~ 'HJ..i -rfi Bocxvrpytc; o-rcxv n:£rrof1<pe:v ~ 'HJ..i 'to 'Aapwv E:xe:tv71c; E:rre:l f1Eflap16pf1xe:v
ov topWta E:autov te:-ce:A.e:lwxe:v 6 y6vu €~w -cou fe:'l9crf1f1av(ou

APPENDIX D. TEST SUITE 53

86. 6 npt\1 ~yio:o1o:t ~u!l&>\1)..<i{)p~ \IE\IlXYJXa ae: Ea(3aw~

87. £a6po\l nA~\1 o1 11e:yo:Aonpe:m:t<; (i) OEOovAN!lE\1~ Euxt!l 11oaxonm£e:t yap xaxwc; E:pe:LOe:L
au1~ ~E~AYJXE:\Iat t0\1 fl~pa\1

88. fl~ e:otxo-cOflEE\1 ot<; E:xe:l\lat 0m:p€xe:wa W\1 'E~pci(o-ci ya!ltne: E:yw E:ow W\1 bt <pYJflL o:u-c6t
EN<; ou ou E\IOWflYJGEW<; ade:-re: "COOOU"CO<; noaaxt<; flcXXO!laL E:yy6<; ou xa-c~yopou aU"COU

89. <pumxw<; <icptA<Xpyupo\1 xcx{}<Xne:p E\IEXa -cfi LUXEfl no1ou 1myapou\l ~otw<; &\Ia il 'H)..(-ct\lt
)..£)..u-cat nAT}Ot0\1 txe:T\Iat<; -ce:)..e:uTW\1 <iAA~AOlc; 1~\1 E:au-cw\1 Maflfla-c 0\1 E:autw\1 n16Tjow 0\1
"CL\I(u\1 auyy\IWflTj\1 CXfla "COU"COU TCW<; ~\1 otjJ£ wcri)al !l~"CE flTjOE OflOLW<; flEflap-c6pYJXa E:xe:t\la<;
(moxch<.u n Maflfla-c 'Iouociixwc; ~aa"CcX~Oflal warce:pd xafle:~ ~<; €:xo:prcocpopt0l-1T}\I TIOAl"CEUOflaL
d ~ J.\.apw\1 "COLOU"CTj TIA~\1 EXcXO"COTE Xa"CcX Ea~awfl XEXATjpO\IOflTjXE\1 TCOOOU<; rco6 e:up(aw
rcp<.ut flEXpt<; farcapcrfle: i'u<; warce:p AEAa"COflYJaflE EX"CO<; pax&

90. oe:upo XOl\IW\IEEl olx-dpf.LW\1 6 tanapya\IWflE\10<; Eaw ov pappi

91. ~w; Ot6rce:p xo:flw<; ye:y~paxe:\1 XEXPYJflcl'ttaTaL utjJta"C0\1 l:Ol\IU\1 €:aTE\Icl~E"CO tr€xpt<; l:OLOUT0\1

92. XEXOl\IWXW<; ofle:\1 EX"CO<; W<; W\1 Ma{}flci-c GUXcXflt\10<; atowxe:\1 EX"CO<; ou Kauoa pa(3~£ Na~apT}\ITj\1
\louflnou\1 €ataaflat o~t a6flcpU'to\l ~\1 Kauoa EXEL\ITj xe:xaflap-cat nA~\1 'Etrtra"'ou~A

93. rcaTponap6:0o"COU 6£ Ae:Aa-c6t~TjflE\ITj<; flEflE:ptXO:at\1 trOt OAtywpouflE\IOU<; o~e:tc;

94. ~prcaXE"CE on(aw il Boa\IT}pytc; "Cfi EVAa(3e:t

95. xe:xwpTjXE\1 Otorce:p Xa"CcX cXAA~AOU<; Ol ot CitjJt\lflOL Tl\IE<; oaou<; EAe:ufle:p6e:-ce: E:rc6:\IW EXEL\IOU<;
xaux6:of.LW\11E<;

96. acpoOp&><; TCA~\1 oc; E:flTIO:lY!lO<; flTjOaflW<; am i){)ATjXE\1

97. fl~TCO"CE 0<; OAtywptn 0 Mafl-tla"C "CL\10<; YE\1\IOU\1 E:y~ye:p"Cat rctpa\1 ~ re:flaY)fla\1(L\la EflTCpoafle:\1
"COU TCEPltPTj!l<l"CO<; ·dx"CEL ouot ~ALX0\1 on(acv ou parc"Ct~W

98. TCOtO ~rcOpTjXE\1 XEXWPTjXE\1

99. e:he: XEXALXE\1 "COlOU"C~ OLXE"CEla che:p Ea~awfl EpW"CclE"Cal "COU"CO e:vnp6aOEX"CO\I fl<.uflclOflii\1

D.2 Semantic Sentence Generation Test Suite

1. y6:p fl~ fl~ <X)..)..ci &A)..a f..om6t<; rce:tpo:afl6t<;

2. on a~e:p0\1 yt\IO!lO:OflE\1 flE"Ccl bQtxa"CO<; aptflflOl<; ~ ~p(~l\1

3. ou €we; !l~n wan: xai E\1 XLW\IW\1 6p6oaouow

px~x (")1.3X>rlo"JA. J131\3AOI\orl mg,o~ nrlU.oor;o ?9 · r £

m1.d3A.~A.f ~ 1\~rlo)J'(QX> J31\U 10d31.i ?9 ·o£

~d1.0~ 31.0lL~rl ~'(()i J9dlL 13X~ 1\jl.Df QO '5(;

UX>r\<} llDX>lL~ 1\~'(lL 1\~ '(lL 3l.OlL?9QO 31.~rl11.9. '8(;

O()g 79"~ jl J9rlg,1d~ 1dX~ 1\0l.dX>l?l J(")l.QO · Ll

I\1D(")DD1;)1 ;u Jll?X19~ Q 1\()'(011 r\Or\9rli\~X ' 9(';

I\XlD(")1()0jd1 31QO 011\0)J(}X>X~ Xl111;)rl1 1;)1X>X ?9 '£(';

I\(")1.X>rlom799 1\(')1\ll jg 79'('(~ ~rl d79A. ·vz
X>H)099 JX>X 101'(JXD1XX>1r\3lL r\01Jdl I\UI\3rlorlp 1X>'(1;)11 11Q '£(';

)t30t)q 1XlDXl11~ fglJ.rJ ~9urJ 31QO ~rl d1;)A. '(';(;

(")d?1M1X>X ?1 SJg xf ;oog.A.Q)MJorlq ·rz

I\Xl1Q)p XJ13'(j11\()D ~d31DQ J)3 r\3X>rlOr\)Af J(")1()X>DC? 'Q(;

)oog.A.Q JU1931\ ~A.~)11\~ JQ ~9 3l011~rl ·51

md1.~rl 1Xl13XX>l r\~X)Jd1)~(}X>X X>(}3rlnop~ I\X>1Q 31D<J '81

1\01\,PX~ 1\0'(Q lixo~l\(} ?9 r\Urlo1;)1\rl1d3rl~ 1\X>l.Q 1\(J 119. · L 1

px~x "~)or\9rl nonrloi\}A S9r\1dg,d9 I\3(}PX~x ·gr

I\091Xli\Xl(}f 1\0X>rlOr\)Af 11i 1Xl1(")ljdX>X(")X I\X>DJ39QO Jf)AAf . s T

l\3(;t(")dd9lL jX>QO 1\3(}011\1;)11 jX>X no119. ()091 'l71

)J9 1dX~ I\('))DX>'(11Xllr\01X>X~ J1X1;)1.1\0XlJ.rlog~~ ?9QO)Jd1 J(")1QO '£1

X>nl.Xjg ~ no11g 1X>1Ur\?A3A ? 9llrl X>10X1AA~ 31~rl ·zr

I\3X39?9 11\11 Xi ~ I\3XUA9'(Q3 ?gU.rl . 11

1\3(}9. JX>X r\nX~11 QOXX>11\X>11 JX>QO ug '01

39<.2 1\Urlonrlor\)Af 131\3AOI\orlm13X>rlOr\)A 1r\)9~J ?1 ·5

r\O)DU'(11 !X> 1X>I\3XU'(~?~ X>1X>rl~o)~1.319 lX> 7919 ·g

~1()3'(31 "~ '(11 ?9 11~rl 3A.~rl 119. · L

1\flrlO)J'(QX> 1\3(}(1)1\~ (')i;? ~ 31QO JX>X ·g

~ 1\~X J)1 ~ J~11 r\()r\)01 . £

~.LIDS .LS~.L ·a XIGN~ddV

<;;<;;

1\3{}2 3~U C\Oll9. ;3gurl I\3{}D1ll<) JX>QO ·8<;;

~XlllXl'Q.Xl'(;00 1\~X ~ ~rl q,J.. "L<;;

~XlJDcr>J, C\O)Xdq 3l.Oll~rl jgurJ 3l.Oll~rl1l.Q ·gg

9. ~QAA~ JXlX (l)l.C\OXl'(X QO I\3{},!3~X ·gg

C\OI\l3X~ ;cr>3Dcr>J3'(3l. jg ~ ~~rJX>gQO :f9QO d~J.. ·pg

1\0l.Jdl. ;101.Xl9019o 3l.3XlnOI\)A ~10l.C\Ol. I\10Xlll~ j 9urJ "£<;";

101'(JXmxX>l.l\3ll X>~ 1\i ~l.Jdl. ~ ?9lt.rl ;cr>Jorlq ·zg

0'>d1oX XllXliDC\dX 3l.~rl Xll.I\OX~l.l\3ll Xll.I\OX~l.l\31! 1l.i 1\~ ~ "1£

1\QOl.Xlll ?9Qo (l)l.3X(I)Dj.O ~U'(~ ;~l. :fl. ·og

mrlor;d> j9lt.rl (I)(}.D3X>rlo)J'((IX> 3rl ?9 3l.Oll~rl ·6v

~ol.d:ol.jl. ;Jdl. ~1\P I\Ol.XlXj91\~ 9 ~cr>Jorlq "817

1\QOdU'(ll JX>X ~orl"9A ;QO'(ll19 Xl~ 1\QO~ 1\~nOI\JA 3l.~rl "Lfi'

C\01.019dox QOl. ;J9 191\P m.oUI\jA3A I\3{}23Xpx ·gp

I\3{}Q3ll\~ Xll.D1X~'(~ 191 JXl(IO 1\3{}9 QO~l) ·gp

OQ9 ~Ol.Xll\i ;1dXjrl ?9QO 1\(l)l.Xi 1\~l. "919 ~Ol.X>Xj91XlX3l.l\3ll ;J9 ~cr>l.QXl.OC? "fi't

l\3{}9dx:orl Jrlp Ul\9rl mg..o~l\jA3A ll'(9. ~ JX>X "£t

;~dxm ?9llrl 0->l.X>/\i ~l. Jllf ~pd1 ~l.ll3, ~(l)l.Qo ·zv

1Xll.I\ODU{}~O'(OXf ~cr>lQO X>X31\;J 10.0Q 1Xll.l\cr>g9 '(0X3X 3l..O~ j 9urJ . 1f7

m11dx?x U'(og ~ ?gurlm1.1dx?x n:fxllrl ·ov
~(l)l.I';}O j9QO 1\0l.Jdl. ~(l)i ~J9 ~(')l.QO "6£

(\0ll9, ()091 C\01L9. I\Orl11\9dro 91 391 "8£

~9rlou.d:o1L~ Ul\l3X:} ?9 3l.Oll~rl 00 ~rl ~.A. · LE

;oi\9ID ~9dmx :oxjg ~ ~~l.ll~ mlUI\jA3A 112 ·g£

1\3{}9. 1\31\0A:fA ~I\3AOI\On mg.o~ 1\lJ.Djrl px~x ·g£

l\19rlmN 1\UrloX>rlOI\)Af 3l.Oll~rl JX(IO 3l.Oll~rl ~J.. ·v£

C\01L9. mg.o~l\:fA3A ;:ol\9rl lX>/\31\0A:fA ::>e JX>X "E£

;prJq !X> X>(fD3.olJ.g.chrljllf ::>(')jg~ ;S2ll I\3{}13X~X "ZE

aLiflS .LS3.L ·a XIGNaddV

99

13l.1U)X 1\)l.O~ 3gi\ll.l 1\f ;u 1\~ "98

~<!">rJv. 1X>l.3X>rlOi\JA "9'(~~ ~rl ~gQo dYyA "l78

1X>'("91L 1dX~ X>l\<:">lX> "91X>X 1X>l.UI\~A3A ~('l)l.!)X>DC? "£8

~g 1\('l)ll!)/\ ~p JX>X 1X>l.I\Ui\?A3A ~('l)l.!)X>OC? "(j8

mdflloi mo9. ?900 1X>l.l\ooug.XJdUl.Di 3l.~rl 3l.QO 1\~'(ll "18

130!)9 cl">~'(X 01 X>rl~dXX>dX>ll 1X>l.UI\~A3J... 119. "08

Uoug.d~A~ 31Qo 3(}03X>rlo~J'(QX> 101X>X~ !o f9url "6L

~Jdl. !0 1\f 1\lOOXlJ ~Od3l.!)3g)('l)l.QO "8L

(10119. i\X>O('I)g.D3X>rlOI\JA X>i\9rl 1X>{;W~I\jA3A)(IOl.(IOl. Jll~ X>l.i\~ll JX>X 0 LL

100~'(A ~ 'Jdl. 1\0l.Jdl.)('')i 1X>l.i\OX>rlooi X>l\1ll"9~i X>i\), "9L

~9l.X~ ?9QO 39(J ... 3l.QO 3l.Q39 X>l.I\X>ll~ X>l\3rlno"9XAfll. JX>X ·gL

UdmX"9rl ?9QO p~x l\31\"9(}<hi "~ ?gurl ·v L

19rloudX>11".9 "9'(~ ?9 JXQo ~rl 119. "£L

i\(')llUl.93i\ l\9l.X>X~ 3(}0J...1d~10~ JX(\o ?9lJ.rl ?9QO "{jL

)~i\139 j1 X>l.I\OX~OgA<? 20 1\!)0))dl.)(')1!)X>D<? "TL

31Q3\7 jl. ml.d3A~Ai ~ rl~'(X>onod3t ?9 "OL

~01\l.X> ~O'(JXlOll ?9QO 3l.Oll~rl ~rl (\0 dYyA "69

)3i\("1'))0X>'(llX>l.I\01X>X~ !X> Xf)pdl.)pdl. ~('l)l.!)X>OC? "89

1orl7rJ... ~prlQ 1\~X ~ ufxurl dYyA "L9

~A9rl 3l.~rl)p 1\0l.Jdl. Jd3ll I\1D301rl~ ~J9 ~(')1QO ·99

~~Xmood11 ~o11\~ll 31o11~rl "9m ~rl ~A -~.m

31lJ.llj'(~ ?9 1X>rlfl3g)X>ll3ll ~Od("'')l.Xj'(".9 Xl11\0X~rlogg~ ~1X"9li\OXlJ.rlog~~ "J79

X>X39i\?, ~3dX>oofl.XlX3g ?1 ~OlX>I\i 11i ~Oi\3rlUI\?A3A ?1 "£9

X>X?g fl9l.fiX>11\~ 1X>I\3X('))X>'(X>ll3ll 3l.QO JXQO 3l.Oll~n "(j9

1\3(}9. 1X>li\OX>nODi ~13i\3AOI\Orl1X>I\3X(I3l?l ~X>OX>ll~ ?1 fl. "19

1\!)31\0A I\3Xudp 1\UlfiX>~ I\X>d3(f!)3'(il "9rl3'("~ QO ·og

3g.X>rld3A~Ail 319. 1\3(}1\i "~ ~odNXJd3ll ?gurl ·5g

~.LIDS .LS3.L ·a XIGN~ddV

APPENDIX D. TEST SUITE 57

86. ou"twc;; €xn)v bd "tp(c;; ot acp6opcx

87. o\hc: ll~ <itJ.cx x61.cxac:L<; (hcxv ElflOflEV<Xl

88. ou ou ~<ivcxyx<l~EV EcXV rrwc;; (hc:xvov

89. fl~ltOTE ou dvc:xc:v rrpii~El W..l.<l ELEL"t<Xl auv"tEAEl~ "tpl<:; "tphov

90. y<lp oux(ll~YE xilv ~ f.(npwv

91. xcixc:'t ~ElOUflTjV <irr6 ou TPL"tO<; "tplcXXOV'!<X

92. x<ixc:t~EV EOOfl<XOfl<XL T~c;; 'ffil<X<; opy~c;; ot t~UflTjOEW<;

93. X<XT<l ytvEm:t.c;; xtxpLxcxmv !l~"tE flTjXE'!l xpLvoumv xtxpLxcxmv

94. OTl rrpwt y(VOflW!lEVTjV EVOEX<X'!TJV ouot OcXXTUAOV

95. o'l t.uxvm E:v1:E~Ev <:>mv ytyovcx'!E ouw1:cx

96. '(vex tyyuc;; YEYEVTjVT<Xl EV<X EVVE<X ouM <Xtll<XT{vV

97. o\hwc;; 1:phov OEX<XTEaacxpE<; rrEp(o "tp(c;; ~~

98. (hl ou fl~1:l ot xilv A<XlA<XltO<; o{hc: flcXOTlYO<;

99. xcx(of. TJV E:xdvTJv y(vollilv flOVTjV y(vofl<XE'!E rrcivT~Ev

100. YEYEVTjO~€ XEXOflcrilE <ipdlfl6<; ouM 1:EOO<Xp€<; a1:po~(<X

Bibliography

[1] The Mnemosyne Project. The Mnemosyue Project, 2015.

[2] Rosetta Stone. Rosetta Stone Ltd, 2015.

[3] SuperMemo. SuperMemo World, 2015.

[4] BIRD, S., KLEIN, E., AND LOPER, E. Natural Language Processing with Python.
O'Reilly Media, Beijing, 2009.

[5] BLEDSOE, W. W., AND BROWNING, 1. Pattern Recognition and Reading by Machine.

[6] CHOMSKY, N. Three models for the description of language. IRE Transactions on
lnforrnation Theory 2, 3, '113-124', year=.

[7] COLLINS, :M. Natural Language Processing. Columbia University, 2014.

(8] ELMES, D. Anki. 2015.

(9] GOLDBERG, E., DRIEDGER, N., AND KITTREDGE, R. Using natural language pro
cessing to predict weather forecasts. IEEE Expert 9, 2 (1994), 45-53.

[10] HARRIS, Z. S. String Analysis of Sentence Structure. Mouton, the Hague, 1962.

[11] HOBBS, J. R. Resolving pronoun references. Lingua 44 (1978), 311-338.

[12] JURAFSKY, D., AND MANNING, C. Natural Language Processing. Stanford University,
2014.

[13] JURAFSKY, D., AND MARTIN, J. H. Speech and Language Processing: An Introduction
to Natur-al Language Processing, Computational Linguistics, and Speech Recognition,
2nd ed. Prentice Hall, Upper Saddle River, NJ, 2008.

[14] KLEENE, S. C. Representation of events in nerve nets and finite automata. In Automata
Studies, P. A. Griffiths, J. N. Mather, and E. M. Stein, Eds. Princeton University Press,
1956.

[15] LITMAN, D. J., AND SILLIMAN, S. ITSPOKE: An intelligent tutoring spoken dialogue
system. HLT-NAACL-04 (2004).

[16] LoGOS BIBLE SOFTWARE. SBL Greek New Testament Text and Apparatus. Logos
Bible Software, 2014.

58

BIBLIOGRAPHY 59

[17] Louw, J. P ., AND NIDA, E. A. Greek-English Lexicon of the New Testament: Based
on Semantic Domains. United Bible Society, London, 1999.

(18) MARCUS, Nl. P., MARCINKIEWICZ, M. A., AND SANTORINI, B. Building a large
annotated corpus of english: The penn treebank. Computational Linguistics 19, 2
(1993), 313 330.

[19] :rvlARIA MILOSAVLJEVIC, ADRIAN TULLOCH, R. D. Text generation in a dynamic
hypertext environment. In Proceedings of the 19th A ustalasian Computer Science Con
ference (Melbourne, Australia, 1996), pp. 417- 426.

[20] McCULLOCH, W. S., AND PITTS, W. H. A logical calculus of the ideas immanent in
nervous activity. Bullet·in of Nlathematical Biophysics 5 (1943), 115- 133.

(21] MORPHGNT. MorphGNT SBLGNT. MorphGNT, 2014.

(22] MosTELLER, F., AND WALLACE, D. L. Inference and Disputed Authorship: The
Federalist. Springer-Verlag, 1964.

(23] MouNCE, W . D. The Morphology of Biblical Gr·eek. Zondervan, Grand Rapids, MI,
1994.

(24] MOUNCE, W. D. Basics of Biblical Greek Grammar. Fortress, Philadelphia, 2003.

[25] PALMER, M., KINGSBURY, P., AND GILDEA, D. The proposition bank: An annotated
corpus of semantic roles. Computational Linguistics 31, 1 (2005), 71- 106.

[26] PERRAULT, C. R. A plan-based analysis of indirect speech acts. American Journal of
Computational Linguistics 6, 3-4 (1980), 167-182.

[27] PORTER, S. E., REED, J. T., AND O'DONNELL, M. D. Fundamentals of New
Testament Greek. Eerdrnans, Grand Rapids, Ml, 2010.

(28) QUARTZ HILL SCHOOL OF THEOLOGY. Ugarit and the bible, 2015.

[29] REITER, E. , AND BELZ, A. An Investigation into the Validity of Some Metrics for
Automatically Evaluating Natural Language Generation Systems. Computational Lin
guistics 35, 4 (2009) , 529- 58.

[30] REITER, E., AND DALE, R. Building Natural Language Generation Systems. Cam
bridge University Press, Cambridge, U.K., 2000.

(31) REITER, E., MELLISH, C., AND LEVINE, J. Automatic generation of technical docu
mentation. Applied Artificial Intelligence 9, 3 (1995) , 259- 287.

(32] RITCHIE, G. Computational mechanisms for pun generation. In Proceedings of the 1Oth
European Natural Language Generation Workshop (Aberdeen, 2005), pp. 125-132.

(33] RussELL, S. J., AND NORVIG, P. Artificial Intelligence: A Modern Approach, 3rd ed.
Prentice Hall, Englewood Cliffs, N J , 2009.

BIBLIOGRAPHY 60

(34] TRENCHARD, W. C. Complete Vocabulary Guide to the Greek New Testament. Zon
dervan, Grand Rapids, MI, 1998.

(35] VAUQUOIS, B. A survey of formal g,Tammars and algorithms for recognition and trans
formation in machine trauslation. Proceedings of the IFIP Congress-6 (1968), 254-260.

(36] WALLACE, D. B. Greek Grammar beyond the Basics: An Exegetical Syntax of the New
Testament with Scripture, Subject, and Greek Word Indexes. Zondervan, Grand Rapids,
MI, 1996.

[37] WALLACE, D. B. The Basics of New Testament Greek Syntax: An Intermediate Greek
Grammar. Zondervau, Grand Rapids, MI, 2000.

[38] WooDs, W . A. Semantics for a Question-Answering System. Harvard University,
19G7.

[39] Wu, A., AND TAN, R. Cascadia Syntax Graphs of the New Testament: SBL Edition.
Lexham Press, 2010.

[40] YOUNG, R. A. Intermediate New Testament Gr·eek: A Linguistic and Exegetical Ap
proach. Broadmau & Holman, Nashville, TN, 1994.

	Ouachita Baptist University
	Scholarly Commons @ Ouachita
	2015

	Natural Language Processing for Foreign Language Learning
	Jacob Kausler
	Recommended Citation

	tmp.1450733264.pdf.3o8mU

