
University of Dayton
eCommons

Computer Science Faculty Publications Department of Computer Science

6-2016

A Language-Based Model for Specifying and
Staging Mixed-Initiative Dialogs
Saverio Perugini
University of Dayton, sperugini1@udayton.edu

Joshua W. Buck
University of Dayton, jbuck1@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/cps_fac_pub

Part of the Graphics and Human Computer Interfaces Commons, and the Other Computer
Sciences Commons

This Conference Paper is brought to you for free and open access by the Department of Computer Science at eCommons. It has been accepted for
inclusion in Computer Science Faculty Publications by an authorized administrator of eCommons. For more information, please contact
frice1@udayton.edu, mschlangen1@udayton.edu.

eCommons Citation
Perugini, Saverio and Buck, Joshua W., "A Language-Based Model for Specifying and Staging Mixed-Initiative Dialogs" (2016).
Computer Science Faculty Publications. Paper 60.
http://ecommons.udayton.edu/cps_fac_pub/60

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dayton

https://core.ac.uk/display/232829848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cps?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cps_fac_pub/60?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu

A Language-based Model for
Specifying and Staging Mixed-initiative Dialogs

Saverio Perugini Joshua W. Buck
Department of Computer Science

University of Dayton
Dayton, Ohio 45429 USA

{saverio,jbuck1}@udayton.edu

ABSTRACT
Specifying and implementing flexible human-computer di-
alogs, such as those used in kiosks, is complex because of the
numerous and varied directions in which each user might steer
a dialog. The objective of this research is to improve dialog
specification and implementation. To do so we developed
a model for specifying and staging mixed-initiative dialogs.
The model involves a dialog authoring notation, based on con-
cepts from programming languages, for specifying a variety of
unsolicited reporting, mixed-initiative dialogs in a concise rep-
resentation that serves as a design for dialog implementation.
Guided by this foundation, we built a dialog staging engine
which operationalizes dialogs specified in this notation. The
model, notation, and engine help automate the engineering of
mixed-initiative dialog systems. These results also provide a
proof-of-concept for dialog specification and implementation
from the perspective of theoretical programming languages.
The ubiquity of dialogs in domains such as travel, education,
and health care with the increased use of interactive voice-
response systems and virtual environments provide a fertile
landscape for further investigation of these results.

ACM Classification Keywords
F.3.2. Semantics of Programming Languages: Partial Eval-
uation; H.5.2. Information Interfaces and Presentation (e.g.
HCI): User Interfaces

Author Keywords
currying; human-computer dialogs; lambda calculus;
mixed-initiative dialogs; mixed-initiative interaction; partial
evaluation; task modeling

INTRODUCTION
From automated teller machines (ATMs), airport and train
kiosks, and smart phone apps to installation wizards and intel-
ligent tutoring or training, human-computer dialogs are woven
into the fabric of our daily interactions with computer systems.
While supporting flexibility in dialog is essential to deliver a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
EICS’16, June 21–24, 2016, Brussels, Belgium
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4322-0/16/06. . . $15.00
DOI: http://dx.doi.org/10.1145/2933242.2933262

personalized experience to the user, it makes the implementa-
tion challenging due to the numerous and varied directions in
which a user might desire to steer a dialog, all of which must
be supported by an implementation. This problem is difficult
since dialogs range in complexity from those modeled after a
simple, fixed, predefined series of questions and answers to
those that give the user a great deal of control over the flow of
the dialog, where the user and system act as equal participants
by sharing and exchanging initiative, called mixed-initiative
dialog [14, 19, 26, 44].

Consider the mixed-initiative dialog between a user and a
flight reservation agent in Figure 1 that illustrates the rich
interaction possible through dialog and the complexities in-
volved in its implementation. The agent begins by soliciting
a departure airport (line 1) and the user responds directly by
saying ‘Chicago’ (line 2). In fixed dialogs, exchanges between
the participants proceed in this manner, where the system can-
not deviate from its pre-defined script and the user, therefore,
must respond to the prompts in the order in which they are
presented. Fixed dialogs are easy to implement because the
top-down, control flow of the program (see Figure 2) reflects
the only possible path through the dialog.

Dialogs become flexible, but more difficult to implement,
when a user is permitted to deviate from the system’s hard-
wired, one-size-fits-all motif. For instance, note that in line
4, the user, rather than responding directly to the agent’s so-
licitation for departure time (line 3), provides a destination
instead. To enable such unsolicited responses [1], the imple-
mentation must support multiple paths to dialog completion.
“A central problem for mixed-initiative dialogue management
is coping with utterances that fall outside of the expected se-
quence of the dialogue” [42]. Intractable approaches, due to
the combinatorial explosion in paths through a dialog, are to
re-order the prompts in Figure 2 multiple ways to model all
possible orderings/combinations of departure time, departure
airport, and destination airport, or to dynamically branch to
label L2 (from label L1) followed by a jump back to L1 in
processing the input ‘Brussels’ when soliciting for departure
time. “Authoring a dialogue is like writing a movie script with
many different endings” [23]. What we desire is the ability to
support all possible orderings/combinations from a script or
task model enumerating/modeling only one.

Lines 6–8 demonstrate a sub-dialog where the user must
determine an airline in another line of inquiry before she
can respond to the solicitation for departure time (line 3),

(1) Agent: Welcome to the Flight Reservation System.
From which airport would you like to depart?

(2) User: Chicago.

(3) Agent: What time of day would you like to travel: morning,
afternoon, or evening?

(4) User: Actually, I'm traveling to Brussels.

(5) Agent: Okay Brussels. Morning or afternoon departure?
(6) User: Well that depends on which airlines fly there when,
as I want to travelPwith a specific airline---the airline on which I
flew non-stop from New York to Cape Town. I can't remember
the name of the airline, but I do recall that they run that flight
everyday.(7) Agent: British Airways and South African Airways are the only

two airlines which do so.

(8) User: British airways is the one I want.
(9) Agent: They only fly non-stop from Chicago to Brussels in the
morning.

Figure 1. A mixed-initiative dialog.

L1:; prompt for departure time

; process departure time response

; prompt for departure airport

L2:; process departure airport response

; prompt for destination airport

; process destination airport response

Figure 2. A fixed-dialog script simplified for presentation.

which involves similar complexity in the control flow. Thus,
“[d]eveloping a mixed-initiative dialog system is a complex
task” [20] and “involves a very intensive programming ef-
fort” [17]. We address this problem through the development
of a model for specifying and implementing mixed-initiative
dialogs. The fundamental aspect of our model is our novel
use of program transformations (e.g., partial evaluation) and
other concepts from programming languages (e.g., functional
currying) to specify and stage mixed-initiative dialogs, sup-
porting this ‘model one path, yet support many paths’ theme.
Our model involves a language-based dialog authoring nota-
tion and a dialog management engine that can stage dialogs
represented with it. We seek to generalize the specification
of dialogs, and improve and automate the engineering of task-
based, dialog systems supporting this type of flexibility in
human-computer interaction.

SPECIFYING MIXED-INITIATIVE DIALOGS

Fixed- and Mixed-initiative Dialogs
Consider a dialog to purchase gasoline using a credit card.
The customer must first swipe the card, then choose a grade
of octane, and finally indicate whether he desires a receipt.
Such a dialog is a fixed dialog due to the fixed order of the
questions from which the user is not permitted to deviate in
his responses [1].

An enumerated specification is a set of episodes, and an
episode is an ordered list of questions to be posed and an-
swered from the start of the dialog to completion. Intuitively,

an enumerated specification is a set of all possible ways to
complete a dialog. Formally, a dialog specification is a set
of totally ordered sets. We use a Hasse diagram, a graphical
depiction of a partially ordered set, to represent a dialog spec-
ification. A relation R with the set S over whose Cartesian
product R is defined is a strict partially ordered set (or poset)
if R is an irreflexive, asymmetric, and transitive relation. This
means that some of the elements of S may be unordered based
on the relation R. On the other hand, a set S is a strict totally
ordered set according to a relation R if and only if for every
two elements (x,y) 2 S, xRy or yRx. Every totally ordered set
is also a partially ordered set, but the reverse is not necessarily
true.

An enumerated specification of this gasoline dialog is {�credit-
card grade receipt�}, and Table 1 (column a) illustrates the Hasse
diagram that specifies it. A Hasse diagram is read bottom-up.
Here, the set S of the poset is the set of the questions posed in
the dialog and R of the poset is the ‘must be answered before’
relation denoted with an upward arrow between the source and
target of the arrow.

Our authoring notation for dialog specification in a compressed
manner is based on concepts from programming languages. In
this notation a dialog is specified by an expression of the form
X
T , where X represents a program transformation or language
concept and T represents a list of terms, where each term
represents either a question (of the dialog) or a sub-dialog
expression (introduced below) in the dialog being specified.
Each expression represents a set of episodes (i.e., an enumer-
ated specification). The main thematic idea is that the set of
episodes specified by an expression of this form correspond to
all possible ways that a function parameterized by the terms
(e.g., dialog questions) in the denominator can be partially
applied, and re-partially applied, and so on, progressively,

complete,
 � (most rigid) fixed dialogs . mixed-initiative dialogs (most flexible) �!

ID a b c d e

En
um

er
at

ed
Sp

ec
ifi

ca
tio

n

{�credit-card grade receipt�} {�PIN transaction account amount�,
�PIN account transaction amount�}

{�receipt sandwich beverage dine-in/take-out�,
�dine-in/take-out sandwich beverage receipt�}

{�cream sugar eggs toast�,
�cream sugar toast eggs�,
�(cream sugar) toast eggs�,
�(cream sugar) eggs toast�,
�sugar cream eggs toast�,
�sugar cream toast eggs�,
�eggs toast cream sugar�,
�eggs toast sugar cream�,
�toast eggs cream sugar�,
�toast eggs sugar cream�,
�sugar cream (eggs toast)�,
�cream sugar (eggs toast)�,
�(eggs toast) (cream sugar)�,
�(cream sugar) (eggs toast)�}

{�(size blend cream)�,
�(size blend) cream�,
�cream (size blend)�,
�(blend cream) size�,
�size (blend cream)�,
�(size cream) blend�,
�blend (size cream)�,
�size blend cream�,
�size cream blend�,
�blend size cream�,
�blend cream size�,
�cream blend size�,
�cream size blend�}

Si
ze |C|= 1 |PE?|= Âq=3

p=1 p!⇥S(q, p) = 13

H
as

se
di

ag
ra

m

credit card

grade

receipt

account

PIN

transaction

amount receipt

sandwich

drink

sandwich

drink

dine−in/take−outreceipt

dine−in/take−out

sub−dialog 2

(eggs toast)

eggs toast

(cream sugar)

sugarcream

sub−dialog 1

(size blend cream)

(size cream)

(size blend)

(blend cream)

size blend cream

PL
N

ot
.

C
credit-card grade receipt

C

PIN SPE0
transaction account amount

C
receipt sandwich drink dine-in/take-out

[
C

dine-in/take-out sandwich drink receipt

SPE
0

PE?
cream sugar

PE?
eggs toast

PE?
size blend cream

Im
pl

em
en

ta
tio

n

[[mix]][[[mix]][[[mix]][f,size = . . .],blend = . . .],cream = . . .]

[[mix]][f,size,blend,cream],
[[mix]][[[mix]][f,size = . . .],blend = . . . ,cream = . . .],
[[mix]][[[mix]][f,blend = . . . ,cream = . . .],size = . . .],
[[mix]][[[mix]][f,blend = . . .],cream = . . . ,size = . . .],
[[mix]][[[mix]][f,cream = . . . ,size = . . .],blend = . . .],
[[mix]][[[mix]][f,cream = . . .],size = . . . ,blend = . . .],
[[mix]][[[mix]][f,size = . . . ,blend = . . .],cream = . . .],
[[mix]][[[mix]][[[mix]][f,size = . . .],cream = . . .],blend = . . .],
[[mix]][[[mix]][[[mix]][f,size = . . .],blend = . . .],cream = . . .],
[[mix]][[[mix]][[[mix]][f,blend = . . .],size = . . .],cream = . . .],
[[mix]][[[mix]][[[mix]][f,blend = . . .],cream = . . .],size = . . .],
[[mix]][[[mix]][[[mix]][f,cream = . . .],size = . . .],blend = . . .],
[[mix]][[[mix]][[[mix]][f,cream = . . .],blend = . . .],size = . . .]

Table 1. A spectrum of dialogs from fixed (column a) to complete, mixed-initiative dialogs (column e), encompassing a variety of unsolicited reporting,
mixed-initiative dialogs, in three representations: enumerated specification (second row), Hasse diagram (third row), and our notation (fourth row).
The last (fifth) row gives the expression, calling partial evaluation ([[mix]]), used to stage each dialog.

according to the semantics of the transformation operator or
language concept in the numerator.1

We use the concept of Currying [13] to specify a fixed dialog,
where only one fixed episode is permitted. Currying trans-
forms a function funcurried with type signature (p1⇥ p2⇥ · · ·⇥
pn)! r to a function fcurried with type signature p1! (p2!
(· · · ! (pn ! r) · · ·)), such that funcurried(a1,a2, · · · ,an) =
(· · ·((fcurried(a1))(a2)) · · ·)(an). Currying funcurried and run-
ning the resulting fcurried function has the same effect
as progressively partially applying funcurried , resulting in
a dialog spread across multiple stages of interaction (i.e.,
questions and answers), but still in a fixed, prescribed or-
der (e.g., Q: ‘Credit or debit?’ A: ‘Credit,’ Q: ‘What
grade octane?’ A: ‘93,’ Q: ‘Receipt?’ A: ‘Yes’). For
instance, a curried function representing the gasoline di-
alog gasolinecurried has type signature payment_type !
(grade_octane ! (receipt? ! dialog_complete)); evaluat-
ing it to completion requires three distinct steps or applica-
tions: ((gasolinecurried(Visa))(93))(yes). A specification of
the gasoline dialog in our notation is C

credit-card grade receipt = {�credit-card
grade receipt�}.

Flexible dialogs typically support multiple completion paths.
For instance, consider a dialog for ordering coffee. The par-
ticipant must select a size and blend, and indicate whether

1This notation was introduced in [7] and revised in [30]. Here,
we enrich it with additional concepts and modify its semantics.

room for cream is desired. Since possible responses to these
questions are completely independent of each other, the dialog
designer may wish to permit the participant to communicate
the answers in any combinations and in any order. For exam-
ple, some customers may prefer to use a C

size blend cream = {�size blend
cream�} episode:
SYSTEM: What size would you like?
USER: Small.
SYSTEM: Which blend would you like?
USER: Dark.
SYSTEM: Room for cream?
USER: No.

Others may prefer a C
blend cream size = {�blend cream size�} episode:

SYSTEM: Which blend would you like?
USER: Light.
SYSTEM: Room for cream?
USER: Yes.
SYSTEM: What size would you like?
USER: Large.

Note that, in this notation, the order of the terms in the de-
nominator matters (i.e., (C

a b c = {� a b c�}) , (C
b a c = {� b a c�})). Still

others might prefer to use a �(size blend) cream� episode, where
answers to the questions enclosed in parentheses must be com-
municated in a single utterance (i.e., all at once):
SYSTEM: What size and which blend would you like?
USER: Small, french roast.
SYSTEM: Room for cream?
USER: No.

We use the concept of Interpretation [13] to specify a dialog
where all the responses to all dialog questions must be com-
municated in a single utterance (e.g., Q: ‘What size and which
blend would you like?’ A: ‘Small, dark roast.’), such as I

size blend

= {�(size blend)�}, because interpreting a function requires that all
arguments be supplied at the time of the call, corresponding
to a complete evaluation. Our notation is expressive enough
to capture such dialogs involving sub-dialog(s) [1] by nesting
these expressions in the denominator. For instance, we model
this dialog as C

I
size blend cream

= �(size blend) cream�.

To accommodate all dialog completion paths we specify this
dialog with the enumerated specification shown in the cell at
the second row of column e in Table 1. Note that this spec-
ification indicates that answers to the set of questions in the
dialog may be communicated in utterances corresponding to
all possible set partitions of the set of questions, and using
all possible permutations of those partitions. The Hasse dia-
gram for this dialog is also given in column e. The absence
of arrows between the size, blend, cream, (size blend), (size cream), (blend
cream), and (size blend cream) elements indicates that the times at
which each of those utterances may be communicated are
unordered. Note that a specification of a dialog in our nota-
tion is a compressed representation capturing its requirements.
Moreover, the compression is lossless (i.e., the episodes in
the enumerated specification may be reconstructed from the
expression).

Giving the user more flexibility in how to proceed through
a dialog increases the number of episodes in its enumerated
specification. This coffee-ordering dialog is a mixed-initiative
dialog [1]. There are multiple tiers of mixed-initiative inter-
action; the tier considered in this article is called unsolicited
reporting—an interaction strategy where, in response to a
question, at any point in the dialog, the user may provide
an unsolicited response to a forthcoming question. When all
possible permutations (i.e., orders) of all possible partitions
(i.e., combinations) of responses to questions are supported,
we call the dialog a complete, mixed-initiative dialog. We use
the program transformation partial evaluation [22] to specify
complete, mixed-initiative dialogs. We first give the details
of partial evaluation, and then illustrate how to specify this
complete, mixed-initiative dialog in our notation using partial
evaluation.

Partial Evaluation
We use the symbol mix from [22] to denote the partial evalua-
tion operation because partial evaluation involves a mixture of
interpretation and code generation. The mix operator accepts
two arguments: a function to be partially evaluated and a static
assignment of values to any subset of its parameters. The
semantics of the expression [[f]]3 in the notation from [22] are
‘invoke f on 3’ or f(3). Consider a function pow that accepts a
base and an exponent, in that order, as arguments and returns
the base raised to the exponent. The semantics of the expres-
sion [[mix]][pow,exponent= 2] are ‘partially evaluate pow
with respect to exponent equal to two,’ an operation which
returns pow

exponent=2 that accepts only a base (i.e., a squaring

function). Therefore, [[

a partial evaluation, pow
exponent=2

z }| {
[[mix]][pow,exponent= 2]]]3 =

a complete evaluation
z }| {
[[pow]][3,2] = 9.

Only a single response Multiple responses
per utterance per utterance

Only one Confirmation dialog boxes Online forms with
utterance common in application software; multiple fields;

interpretation (I) interpretation (I)

Totally- Purchasing gasoline with a Providing a telephone,
ordered credit card; buying beverages credit card, or PIN number
utterances from a vending machine; through voice;

currying (C) (a) partial function
application n (PFA?

n)

Partially- ATMs, and airport or train kiosks; Ordering a coffee or pizza;
ordered single-argument partial evaluation (PE?) (e)
utterances partial evaluation (SPE 0) (b)

Table 2. Sample dialogs involving permutations or partitions of re-
sponses to questions. Parenthesized concept mnemonic in each cell in-
dicates the language-based concept in our notation used to specify the
dialog(s) in that cell. Bolded parenthesized letters (a), (b), and (e) con-
nect these dialogs to those in Table 1.

Given a ternary function f with integer parameters x, y, and
z: f

y=2 = [[mix]][f,y= 2] and [[f]][1,2,3] = [[[[mix]][f,y= 2]]][1,3]. In general,
[[[[mix]][f , inputstatic]]]inputdynamic = [[f]][inputstatic, inputdynamic].

Partial evaluation accepts a function of any arity as input and
is a closed operator over its domain (i.e., it takes a function as
input and returns a function as output). Here, we are interested
in a progressive series of applications of it that terminates at
a fixpoint. Therefore, we superscript a concept mnemonic X
in the numerator with a ?, where applicable, to indicate a pro-
gressive series of applications of the corresponding function
ending at a fixpoint. For instance, the expression PE?

size blend cream

which denotes the set of all six permutations of {size, blend, cream}
and all permutations of all set partitions of {size, blend, cream} or,
in other words, all thirteen, possible episodes to complete the
dialog given in Table 1 (second row, column e). Repeatedly
applying [[mix]] as shown the last row of column e in Table 1
realizes these episodes. Table 1 represents a space from fixed
to complete, mixed-initiative dialogs, encompassing a wide
variety of unsolicited reporting, mixed-initiative dialogs. Ta-
ble 2 identifies some practical, everyday dialogs that fall into
the cross product of permutations and partitions of responses
to questions.

Additional Language Concepts
There is a combinatorial explosion in the number of possi-
ble dialogs between the fixed and complete, mixed-initiative
ends of the spectrum in Table 1. Specifically, the number of
dialogs possible in this space is 2|PE?q | � 1 = Â

|PE?q |
r=1

�|PE?q |
r

� (i.e., all
possible subsets, save for the empty set, of all episodes in a
complete, mixed-initiative dialog PE?

q), where PE?
q represents

the enumerated specification of a complete, mixed-initiative
dialog given q, the number of questions posed in the dialog.
We use additional concepts from lambda calculus [13], namely
partial function application (PFA1), partial function application
n (PFAn), and single-argument partial evaluation (SPE), to enrich
our notation for specifying these dialogs. Partial function ap-
plication, papply1, takes a function and its first argument and
returns a function accepting the remainder of its parameters.
The function papplyn, on the other hand, takes a function
f and all of the first n of m arguments to f where n 6 m,
and returns a function accepting the remainder of its (m�n)

 � . . . dialogs between fixed dialogs and complete, mixed-initiative dialogs (D) . . . �!
ID f g h i j

PL N
ot

.

PFAn
size blend cream

PFA?n
size blend cream

SPE
size blend cream

SPE
0

size blend cream
PE

size blend cream

En
um

.
Sp

ec
.

{�(size blend cream)�,
�(size (blend cream)�,
�(size blend) cream�}

{�(size blend cream)�,
�size (blend cream)�,
�(size blend) cream�,
�size blend cream�}

{�size (blend cream)�,
�blend (size cream)�,
�cream (size blend)�}

{�size blend cream�,
�size cream blend�,
�blend size cream�,
�blend cream size�,
�cream blend size�,
�cream size blend�}

{�(size blend cream)�,
�size (blend cream)�,
�blend (size cream)�,
�cream (size blend)�,
�(size blend) cream�,
�(size cream) blend�,
�(blend cream) size�}

Si
ze |PFAn|= q = 3 |PFA?

n|= 2q�1=3�1=2 = 4 |SPE|= q = 3 |SPE 0 |= q! = 3! = 6 |PE|= Âq=3
p=1

�q
p

�
= 7

Im
pl

em
en

ta
tio

n

[[mix]][f,size = . . . ,blend = . . . ,cream = . . .],
[[mix]][[[mix]][f,size = . . .],blend = . . . ,cream = . . .],
[[mix]][[[mix]][f,size = . . . ,blend = . . .],cream = . . .]

[[mix]][f,size = . . . ,blend = . . . ,cream = . . .],
[[mix]][[[mix]][f,size = . . .],blend = . . . ,cream = . . .],
[[mix]][[[mix]][f,size = . . . ,blend = . . .],cream = . . .],
[[mix]][[[mix]][[[mix]][f,size = . . .],blend = . . .],cream = . . .]

[[mix]][[[mix]][f,size = . . .],cream = . . . ,blend = . . .],
[[mix]][[[mix]][f,blend = . . .],size = . . . ,cream = . . .],
[[mix]][[[mix]][f,cream = . . .],size = . . . ,blend = . . .]

[[mix]][[[mix]][[[mix]][f,size = . . .],cream = . . .],blend = . . .],
[[mix]][[[mix]][[[mix]][f,size = . . .],blend = . . .],cream = . . .],
[[mix]][[[mix]][[[mix]][f,blend = . . .],size = . . .],cream = . . .],
[[mix]][[[mix]][[[mix]][f,blend = . . .],cream = . . .],size = . . .],
[[mix]][[[mix]][[[mix]][f,cream = . . .],size = . . .],blend = . . .],
[[mix]][[[mix]][[[mix]][f,cream = . . .],blend = . . .],size = . . .]

[[mix]][f,size = . . . ,blend = . . . ,cream = . . .],
[[mix]][[[mix]][f,size = . . .],cream = . . . ,blend = . . .],
[[mix]][[[mix]][f,blend = . . .],size = . . . ,cream = . . .],
[[mix]][[[mix]][f,cream = . . .],size = . . . ,blend = . . .],
[[mix]][[[mix]][f,size = . . . ,blend = . . .],cream = . . .],
[[mix]][[[mix]][f,size = . . . ,cream = . . .],blend = . . .],
[[mix]][[[mix]][f,blend = . . . ,cream = . . .],size]

Table 3. Specifications of dialogs in our notation (second row) and as enumerated specifications (third row). The last (fourth) row gives the expression,
calling partial evaluation ([[mix]]), used to stage each dialog.

parameters. In single-argument partial evaluation, the input
function may be partially evaluated with only one argument at
a time. These concepts correspond to higher-order functions
that each take a function and arguments for some subset of its
parameters. All of these functions return a function. Like mix,
these functions are general in that they accept a function of any
arity as input, and the functions curry, papply1, papplyn,
smix (single-argument partial evaluation) are closed operators
over their domain. We can also superscript PFA1, PFAn, and SPE

with a ? symbol. For instance, repeatedly applying papplyn
to a ternary function f as (apply (papplyn (papplyn f
small) mild) no) realizes the episode �size blend cream� in
addition to the �size (blend cream)�, �(size blend) cream�, and �(size blend
cream)� episodes which are realized with only a single applica-
tion of papplyn. The second row of Table 3 shows specifica-
tions of dialogs for ordering coffee in our authoring notation
using only one concept mnemonic (and these dialogs are sit-
uated in the middle of the space depicted in Table 1). The
third row gives the enumerated specification each expression
represents.

Spectrum of Dialogs
These language-based concepts (and combinations of them)
within the context of an expression in our notation help spec-
ify dialogs between the fixed and complete, mixed-initiative
ends of the dialog spectrum shown in Table 1 and, thus, help
bring structure to this space. For instance, consider a specifi-
cation for an ATM dialog where PIN and amount must be en-
tered first and last, respectively, but the transaction type (e.g.,
deposit or withdrawal) and account type (e.g., checking or
savings) may be communicated in any order (see Table 1, col-
umn b): {�PIN transaction account amount�, �PIN account transaction amount�}.
We model this dialog, which contains an embedded, mixed-
initiative sub-dialog (i.e., {�transaction account�, �account transaction�})
as C

PIN SPE0
transaction account amount

.

Alternatively, consider a dialog for ordering lunch where re-
questing a receipt or indicating whether you are dining-in
or taking-out can be communicated either first or last, but
specification of sandwich and beverage must occur in that
order: {�receipt sandwich beverage dine-in/take-out�, �dine-in/take-out sandwich
beverage receipt�}. This dialog contains an embedded, fixed sub-
dialog (i.e., {�sandwich beverage�}) and, unlike the prior examples,
cannot be captured by a single poset or expression (see Ta-
ble 1, column c). To specify such dialogs in our notation we

use a union of expressions, called a compound expression:
C

receipt sandwich drink dine-in/take-out [
C

dine-in/take-out sandwich drink receipt .

Lastly, consider the dialog containing two embedded, com-
plete, mixed-initiative sub-dialogs whose enumerated speci-
fication is shown in the second row of column d in Table 1.
Here, the user can specify coffee and breakfast choices in any
order, and can specify the sub-parts of coffee and breakfast
in any order, but cannot mix the atomic responses of the two.
For instance, the episode �cream eggs sugar toast� is not permitted
because, if the user specifies ‘cream’ as the first utterance,
the system must not accept an indication as to whether sugar
is desired or not as the second utterance to be faithful to the
dialog specification; by specifying ‘eggs’ in the second ut-
terance, the user is pursuing the breakfast sub-dialog before
completing the coffee sub-dialog pursued first and that inter-
action is not supported in the dialog specification. This dialog
is represented as SPE

0

PE?
cream sugar

PE?
eggs toast

.

While the star (?) superscript permits repeated applications
(but does not require them), the prime (0) superscript requires
repeated applications of the operator until a fixpoint is reached.
For instance, the episode �size (blend cream)� is specified by

SPE?
size blend cream , but not by SPE

0

size blend cream . In dialogs containing two
or more terms in the denominator, where at least one of the
terms is a sub-dialog (e.g., dialogs ...

a C
b c

and ...
C
a b

PE?
c d

, but not ...
I

a b
),

each of the I, PFAn, PFA?
n, PE, and PE? concept mnemonics is not a

candidate for the numerator. This is because those concepts
require (in the case of I) or support multiple responses per ut-
terance and it is not possible to complete multiple sub-dialogs
in a single utterance or complete a sub-dialog and an indi-
vidual question in a single utterance. Only the PFA1 and SPE

concept mnemonics suffice for two categories of dialogs con-
taining sub-dialogs: those with no more than two terms in the
denominator, where one of the terms is a sub-dialog (e.g., PFA1

a PE?
b c

,
PFA1

PE?
a b

PE?
c d

, SPE
a PE?

b c
, and SPE

PE?
a b

PE?
c d

) and those with more than two terms
in the denominator where only the first term is a sub-dialog
(e.g., PFA1

PE?
a b c d e f

and SPE
PE?
a b c d e f

). This is because when used as the
numerator in an expression whose denominator contains more
than two terms, one of which is a sub-dialog not in the first
position, PFA1 and SPE require multiple responses in the second
and final utterance. Hence, C is the only concept mnemonic
that can always be used in the numerator of an expression
containing any arbitrary number of sub-dialogs in the denom-

inator. However, C only supports fixed orders of responses.
Thus, we need a mnemonic for a concept that restricts utter-
ances to one response and only permits one sub-dialog to be
pursed at a time, but also permits all possible completion or-
ders. Such a concept could be used to specify a dialog with
more than two terms in the denominator, any of which can be
a sub-dialog, that can be completed in any order. The concept
represented by the mnemonic SPE 0 is ideal for this purpose
(see column i in Table 3). Note that C

PE?
a b

PE?
c d

PE?
e f
, SPE

0

PE?
a b

PE?
c d

PE?
e f

, but
C

PE?
a b

PE?
c d

PE?
e f
⇢ SPE

0

PE?
a b

PE?
c d

PE?
e f

; the episode �(c d) f e a b� is supported by
the latter, but not by the former where there is a fixed-order on
the sub-dialogs.

The row labeled ‘Size’ in Tables 1 and 3 provides for-
mulas for the number of episodes in dialogs specifi-
able using only one concept mnemonic. Note that
I [C [PFA1 [PFAn [PFA?

n [SPE [SPE 0 [PE ⇢ PE?2 indicat-
ing that partial evaluation subsumes all other concepts in this
model. The implication of this is that any dialog specified
using this notation can be realized through partial evaluation
(see last row of Tables 1 and 3).

We denote the space of dialogs possible given q, the number
of questions posed in a dialog, with the symbol Uq. Let X

denote a concept mnemonic in this model (e.g., C or PE?).
We use the symbol Xq to denote a class of dialogs (e.g., Cq

or PE ?
q), where a class is a set of dialogs where each dialog

in the set can be specified with only the concept mnemonic
corresponding to the class. The number of dialogs possible
given a value for q is |Uq|= 2|PE?q |�1 (i.e., all subsets, save for the
empty set, of episodes in a complete, mixed-initiative dialog).
Of those dialogs, there are 2|PE? |q �3q!�q�5 dialogs that cannot
be specified with a single concept (e.g., dialogs b, c, and d
in Table 1) whose class we refer to as D. For instance, U3 =
8,191 (= 2|PE?

3 |�1 = 213�1) and D3 = 8,1653 (= 2|PE?
3 |�1�

3q!�q�5= 8,192�3(3!)�3�5). However, we can specify
each dialog in D using our authoring notation as a compound
expression (e.g., dialog c in Table 1, or I

x y z [
PFA1
x y z = {�(x y z)�, �x

(y z)�}) or with sub-dialogs through nesting (e.g., dialogs b and
d in Table 1), or both (e.g., C

size SPE
blend cream

[C
blend SPE

cream size
[C

cream blend size).

An attractive consequence of this language-based notation
for dialog specification is that the (nested) structure of the
expression, and the language concepts used therein, provide a
design pattern for staging (i.e., implementing) the dialog.

STAGING MIXED-INITIATIVE DIALOGS
Our notation for specifying mixed-initiative dialogs lends itself
to two methods of dialog implementation: using i) partial
evaluation [22] or ii) a set of rewrite rules [2] to stage the
interaction. We use an example to illustrate how dialogs can
be staged with partial evaluation. Consider the ternary Scheme
function shown within a dotted border in Figure 3.4 Note

2When the denominator is irrelevant to the discussion at hand we
drop it and simply use only the concept mnemonic to refer to a set of
episodes.

3U4 = 3.7⇥1021 and D4 = ⇠ 3.7⇥1021.
4An expression of the form <...> is used to represent a list

of valid choices (e.g., <sizes> could represent the list ‘(small

that it only models one dialog episode: �size blend cream�. We
define this function without the intent of ever invoking it, and
rather only with the intent of progressively transforming it
automatically with partial evaluation to stage the interaction
of a mixed-initiative dialog. Thus, we only use this function
as a malleable data object, and when it has been completely
consumed through transformation, the dialog is complete.

The top half of Figure 3 demonstrates how the �size blend cream�
episode is staged. This function can be used to realize a com-
pletely different episode than the one which it naturally reflects.
For instance, the bottom half of Figure 3 demonstrates how
the �cream blend size� episode is staged, with the same function.
While the control flow models only one episode (in this case,
�size blend cream�), through partial evaluation we can stage the in-
teraction required by thirteen distinct episodes. In general, by
partially evaluating a function representing only one episode,
we can realize Âq

p=1 p!⇥S(q, p) distinct episodes (i.e., |PE?
q |), where

q is the number of questions posed in a dialog, and S(m,n) is
size of the set of all partitions of a set of size m into exactly n
non-empty subsets, where n is a positive integer and n6m (i.e.,
the Stirling number of a set of size m [25]). This ‘model one
episode, stage multiple’ feature is a significant result of our
approach to dialog modeling and management, and the main
theme around which our model for specifying and staging
mixed-initiative dialogs is centered.

The dialog I
size blend cream = {�(size blend cream)�} can be staged

with partial evaluation as [[mix]][f,size = . . . ,blend = . . . ,cream = . . .].
Similarly, the dialog PFA1

size blend cream = {�size (blend cream)�} can be
staged with partial evaluation as [[mix]][[[mix]][

PFA1
size blend cream ,size = . . .],

blend = . . . ,cream = . . .]. The last row of Tables 1 and Table 3 details
how dialogs specified using only one concept mnemonic in an
expression are staged by partial evaluation, which subsumes
all of the other concepts based on the supplied arguments. For
instance, PFA?

n is achieved by progressively partially evaluat-
ing with any prefix of arguments (see last row, column g of
Table 3).

Given a specification expression, an alternate implementa-
tion approach involves the use of rewrite rules to stage the
interaction [2]. The concepts I and C are primitive in that
any dialog modelable with our notation can be represented
using only the I or C concept mnemonics in an expression.
In particular, to specify any dialog in the spectrum shown in
Table 1 we can simply translate each episode in its enumer-
ated specification as a sub-expression with either an I or C in
the numerator and the entire specification as a union of those
sub-expressions. For instance, {�(x y z)�, �x y z�, �y z x�, �z x
y�, �x (y z)�} = I

x y z [
C

x y z [
C

y z x [
C

z x y [
C

x I
y z

. Therefore, we defined
rewrite rules, not shown here, akin to those in [30], and can
progressively apply them after every utterance, rather than
partial evaluation itself, to transform the representation of the
dialog, to stage it. For instance, the above dialog PFA1

size blend cream

can be staged with term rewriting as PFA1
size blend cream = C

size I
blend cream

(first rewrite), and [C
size I

blend cream
,size = . . .] = C

I
blend cream

= I
blend cream (sec-

ond rewrite), and [I
blend cream , blend = . . . ,cream = . . .] = ⇠ (i.e., dialog

medium large)). Moreover, the functions being partially evaluated
in Figure 3 omit else (exceptional) branches for purposes of succinct
exposition.

Staging the dialog episode �size blend cream�= C
size blend cream

by partial evaluation ([[mix]]).

[[mix]] [(lambda (size blend cream)
(if (member? size <sizes>)
(if (member? blend <blends>)
(if (member? cream <cream>)
(retrieve item))))))

, size=small]=
(lambda (blend cream)

(if (member? blend <blends>)
(if (member? cream <cream>)
(retrieve item)))))

[[mix]] [(lambda (blend cream)
(if (member? blend <blends>)
(if (member? cream <cream>)
(retrieve item)))))

, blend=mild] =
(lambda (cream)

(if (member? cream <cream>)
(retrieve item))))

[[mix]] [(lambda (cream)
(if (member? cream <cream>)
(retrieve item))))

, cream=no] = (lambda ()
(retrieve item))

Staging the dialog episode �cream blend size�= C
cream blend size

by partial evaluation ([[mix]]).

[[mix]] [(lambda (size blend cream)
(if (member? size <sizes>)
(if (member? blend <blends>)
(if (member? cream <cream>)
(retrieve item))))))

, cream=yes]=
(lambda (size blend)
(if (member? size <sizes>)
(if (member? blend <blends>)

(retrieve item)))))

[[mix]] [(lambda (size blend)
(if (member? size <sizes>)
(if (member? blend <blends>)

(retrieve item)))))

, blend=dark] =
(lambda (size)
(if (member? size <sizes>)

(retrieve item))))

[[mix]] [(lambda (size)
(if (member? size <sizes>)

(retrieve item))))
, size=large] = (lambda ()

(retrieve item))

Figure 3. Staging dialog episodes by partial evaluation, explicitly illus-
trating the intermediate output of each partial evaluation. Dotted boxes
reinforce that both series of transformations, top half and bottom half,
start with the same function.

complete). Similarly, [SPE
0

PE
a b

PE
c d

,d = . . .] = SPE
0

PE
c

PE
a b

= SPE
0

C
c

PE
a b

= C
c PE

a b
, and

[C
c PE

a b
,c = . . .] = C

PE
a b

= PE
a b , and [PE

a b ,b = . . .] = PE
a = C

a = I
a , and finally

[I
a ,a= . . .] = ⇠.

While complete, mixed-initiative dialogs can be staged effi-
ciently using this approach, they represent only a fraction of
all possible dialogs. Most dialog specifications contain less
episodes than those that can be modeled by an expression with
a PE? in the numerator. However, since partial evaluation can
be used to partially apply a function with respect to any subset
of its parameters (i.e., it supports the partial application of
a function with all possible orders and combinations of its
arguments), we can stage any unsolicited reporting, mixed-
initiative dialog in this space using only partial evaluation. For
instance, note that the last row of Tables 1 and 3 demonstrates
how to stage dialogs conforming to only a single language
concept. However, while partial evaluation subsumes all other
language concepts considered here, it does not discriminate
against any of the possible partial assignments of arguments to
parameters of the function being partially evaluated. A specifi-
cation expression containing a concept mnemonic other than
PE? represents a particular type of restriction on partial eval-
uation (corresponding to restrictions on the ways of mixing
initiative). Implementing dialogs with partial evaluation that
cannot be specified with a single concept (e.g., dialogs b and
d in Table 1) or with a non-compound expression (e.g., dialog
c in Table 1) requires additional attention. To be faithful to
a specification, we require a controller, we call a stager, to
coordinate the judicious invocation of partial evaluation, with
respect to the different orders and combinations of arguments
that reflect the permissible episodes of a dialog, to realize or
‘stage’ the progressive interaction of the dialog (in all dialogs

interpreter input

dialog specification in
domain−specific language

"I’m traveling to Brussels."

PE*

deprt. time dest.
"When would you like to depart?"

transformed dialog script

evaluator

rewrite rules

partial

compiler for

initial dialog script

User

language

domain−specific

Dialog Dialog Stager

Figure 4. Conceptual design of prototype implementation.

Dialog Toolkit
 Dialog Management

Dialog
Designer

Generation
Engine

Staging
Engine

XML
specification

.xml

Dialog
User

high-level
dialog

specification
visual or

textual (.txt)

tree,
hash table

data structures utterance

prompt
converter

ta
sk

 m
od

eli
ng

Figure 5. Dialog toolkit and resulting dialog system design and execu-
tion.

except complete, mixed-initiative dialogs—those conforming
entirely to the PE? concept).

Grounded in these theoretical principles, we prototyped this
model for mixed-initiative dialogs, as a proof-of-concept, by
building a system in Scheme which, given a specification of a
mixed-initiative dialog in our notation, automatically generates
a stager to execute the dialog (see Figure 4). The system
includes a compiler (i.e., translator) from our dialog authoring
notation to a stager in Scheme. Running the resulting stager
enables the interaction depicted in Figure 1.

IMPLEMENTING MIXED-INITIATIVE DIALOGS
Guided by these principles, we built a cross-platform imple-
mentation of our model for mixed-initiative dialogs, including
a dialog staging engine, using XML, C++, and Qt. Given an
implementation-neutral representation of a specification of a
mixed-initiative dialog in our notation, our system realizes
the dialog. While a majority of the implementation details
are beyond the scope of this paper, we make some remarks
to convey the implementation strategy. Figure 5 provides an
overview of the approach.

XML Specification of Dialog
The specification of a dialog is represented as an XML doc-
ument using a variety of attributes to capture necessary in-
formation. The tree structure of the XML document mirrors
the structure of the dialog specification expression. The eval
attribute, whose value is the concept mnemonic (e.g., C or
PE?) corresponding to the desired interaction policy [39] (e.g.,
system initiated or mixed-initiative), restricts the scope of
responses and supports sub-dialogs. The XML specification
is automatically generated from the specification expression,
and a list of valid responses, synonyms, and other pertinent
(contextual) information, in an ASCII text format.

Data Structures for Dialog Representation
The dialog generation engine converts the XML document
into a tree. Figure 6 illustrates a dialog tree, where nodes are

Brussels

Berlin

morning

afternoon

Chicago

New York

Dallas

evening

keys
00

01

02

03

04

05

06

07

buckets

paths: 2
Brussels

paths: 8
New York

paths: 1
Berlin

paths: 7
Dallas

paths: 6
Brussels

paths: 5
Berlin

paths: 4
New York

paths: 3
Dallas

Berlin
paths: 9 paths: 10

Brussels
paths: 11

Dallas
paths: 12

New York

paths: 1 2 3 4
morning

paths: 5 6 7 8
afternoon

paths: 9 10 11 12
evening

paths: 1 2 3 4 5 6 7 8 9 10 11 12
Chicago

Evaluation

Dialog
User

morning

hash
function

13

00 04 08

01 05 09

02 06 10

15

14

12

03 07 11

1312 14

08 111009

07060504

03020100

15

Brussels

Berlin

Chicago

New York

Dallas

keys

01

02

03

04

07

buckets

paths: 2
Brussels

paths: 1
Berlin

paths: 4
New York

paths: 3
Dallas

paths: 1 2 3 4
Chicago

hash
function

00

01

02

15

03
03

02

01

00

15

Figure 6. Conceptual transformation of data structures that represent a dialog in processing a user response (here, ‘morning’).

annotated with path vectors, and hash table from the flight
reservation scenario. The edges of the tree5 represent system
solicitations and node labels represent valid user responses.
For instance, in Figure 6, the bidirectional edge connecting
‘Chicago’ to ‘afternoon’ represents the solicitation ‘What time
of day would you like to travel?’ When the user supplies a
(solicited or unsolicited) response, the staging engine (dis-
cussed below) must identify all of the paths from the root to
leaves containing a node(s) labeled with that response in ap-
proximately constant time. We build a response-to-nodes hash
table, where each key corresponds to a valid response (e.g.,
‘morning’) and each value is a pointer to all nodes6 in the tree
labeled with the key string for the purpose of identifying all
of the nodes that need to be accessed when processing a user
response. For instance, when the term ‘morning’ is accessed
through the hash table, the result is a pointer to node 12 in
Figure 6 that has the value ‘morning.’ We also annotate the
nodes with vectors to support processing responses efficiently.
To identify all paths that involve a node labeled with the user
response efficiently, we assign an unsigned integer to each leaf
node, and associate a path vector, with each non-leaf node,
which contains the unsigned integers from each of its descen-
dant leaves. In Figure 6, the node that represents the response
‘morning’ has four valid paths (i.e., [1,2,3,4]) that represent the
four remaining ways to complete the dialog (i.e., by making
a choice among the remaining possibilities for destination:
Berlin, Brussels, Dallas, and New York).

Staging Engine
The staging engine processes user responses and stages the
turns of the dialog. Upon user entry, the prompt that corre-
sponds to the current root node is displayed to the user and
the engine awaits a response. The current root node represents
the user’s place in the dialog. Any edges below the current
root node represent solicitations which have yet to be made to
the user, but will at some point in the dialog, unless the user
provides an unsolicited response to any of those solicitations
first. The staging engine captures an utterance from the user
as a string of text which it parcels into a set of responses to
the current or forthcoming solicitation(s). Words that are not

5Though not shown in Figure 6, the presence of crosslinks (i.e.,
encoded with id and refid attributes in XML) to model dependencies
between responses (e.g., there is only evening flight from Dallas to
Chicago and, thus, departure time need not be solicited) make this
structure a directed acyclic graph.

6Note that some responses/keys (e.g., ‘Berlin’) label multiple
nodes in the tree.

discerned as English or lookup keys are ignored. Synonyms,
if given, are then replaced with the corresponding keys. The
string is then parsed for node labels, which are the keys to the
hash table. Note that the interaction flow policy (e.g., C or PE?)
determines the scope of responses to any given solicitation.
Once a response is made and determined to be within scope,
the resulting path vector(s) is accessed through the hash table.
We compute the path vector of the new root node as the union
of the intersection of each of the path vectors of all nodes
labeled by the user response with the path vector of the current
root node. As the user provides (additional) responses, the
path vector of the root node shrinks in size commensurate
with the reduction in the remaining paths leading to dialog
completion.

Consider an example of this process from the flight reservation
scenario. Assume the first user utterance is ‘Chicago.’ Fig-
ure 6 illustrates an example tree and hash table for that single
departure airport. Assume the second utterance is ‘morn-
ing.’ Since the path vector of the node labeled ‘morning’ is
[1,2,3,4], and since it has at least one path in common with
the path vector of the current root node labeled ‘Chicago’
[1,2,3,4,5,6,7,8,9,10,11,12], it is a valid response. The path
vector of the new root node labeled ‘morning’ is computed
as the intersection of the path vector for the node labeled
‘morning’ and the path vector for current root node labeled
‘Chicago’; that intersection is [1,2,3,4]. If the next utterance
is ‘New York’, then the path vector of the new root node only
contains one path, [3], which means that there is only one
leaf node left, though multiple paths to it might still exist. (In
this example however, it is the end of the dialog.) If there is
more than one node labeled ‘morning’ left in the dialog tree
with at least one path in common with the path vector of the
current root node, then the path vector of the new root node is
the union of the intersection of each node labeled by the user
response with the path vector of the current root node.

The purpose of the path vector mechanism is to determine
which nodes and edges have been (effectively) removed from
the current (state of the) tree. The path vector associated
with the current root node only contains the unsigned integers
from each of its descendant leaves; we can think of these
integers as enumerating the paths remaining in the dialog.
If the path vector of a node does not have at least one such
integer in common with the path vector of the current root
node, then all paths from that node are ignored. The hash table
and path vectors precomputed in the generation phase both

provide a fast evaluation and obviate the need to traverse the
tree or extract or prune entire paths when processing a user
response. If multiple responses are given in a single utterance,
the process above is repeated for each response.

Sub-dialogs: Staging dialogs (in the D class) that involve sub-
dialogs requires additional consideration. Once a sub-dialog
is started, it must be completed before responses outside of its
scope are available for use again. Thus, staging such dialogs
involves not only supporting the particular interaction policy
for the sub-dialog, which often is different from the parent di-
alog, but also coordinating entry to and exit from sub-dialogs.
To support this requirement, the dialog label of each node are
compared to each other. The dialog label is the unique identi-
fier that is assigned to the first node in a dialog or sub dialog.
Every node in a dialog or sub dialog has the same dialog label.
Once a sub-dialog is started, the current node becomes the
first unanswered node in the sub-dialog temporarily. Then,
only other responses with the same dialog label as the current
node are valid. Once the sub-dialog is completed, the current
node becomes the first node in the parent dialog leading to
solicitations for which a response has not been supplied.

Practical Considerations: We have implemented other fea-
tures into our dialog engine, but due to space constraints, we
only make some cursory remarks. Using first-class continua-
tions [13] as the theoretical basis, we have implemented undo
and redo operations available to the user between utterances.
We also have added weights to the edges of the dialog tree
and applied search and other optimization algorithms (e.g.,
shortest path in the flight reservation scenario) to support the
user in metadialog inquiry. The data structures were designed
to be immutable so that multiple staging engine threads could
safely access them concurrently.

EVALUATION
Evaluating models for mixed-initiative dialog is itself an un-
solved problem for a variety of reasons including the extremely
limited nature of existing data and the ambiguity of the very
definition of initiative [17]. One way to capture the efficacy
of a model is to evaluate how well the model fits data. In the
context of our model, this means evaluating the frequency of
dialogs that can be captured by our notation and how well it
captures each. Given any value for q, the number of questions
per episode, every dialog in the space Uq can be specified
using our dialog authoring notation. Since the specification
expression of a dialog serves as a design pattern for imple-
menting it, the number of sub-expressions in the specification
is an evaluation metric for how well the notation captures
the specification. A complete, mixed-initiative dialog can be
captured by one expression: e.g., PE?

size blend cream . If we remove
only one—�(size blend cream)�—of the thirteen episodes from this
dialog, specifying it requires five sub-expressions: SPE

0

size blend cream [
SPE

size blend cream [
C

I
size blend cream

[C
I

blend cream size
[C

I
size cream blend

. We specified each
of the 8,191 dialogs in U3 using our notation and computed
the frequency that could be captured by 1, 2, ..., and 13 sub-
expressions. Our results are shown in Figure 7 (e.g., there are
46 dialogs that can be specified with one expression, and 2,977
that can be specified with four sub-expressions).

0	

500	

1000	

1500	

2000	

2500	

3000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	

Fr
eq

ue
nc
y	
of
	D
ia
lo
gs
	

Number	of	Sub-expressions	

Frequency	of	Dialogs	without	compression	

Frequency	of	Dialogs	with	compression	

Figure 7. Histogram illustrating the frequency of dialog specifications in
U3 (y-axis) that can be represented with 1–13 sub-expressions (x-axis).

0	

200	

400	

600	

800	

1000	

1200	

0	 12	 14	 16	 20	 22	 25	 28	 30	 33	 36	 37	 40	 42	 44	 45	 50	 54	 55	 57	 58	 60	 62	 63	 66	 70	 71	 75	 83	 92	

Fr
eq

ue
nc
y	
of
	D
ia
lo
gs
	

Percentage	of	Compression	

Figure 8. Histogram illustrating the frequency of the dialog specifica-
tions in U3 (y-axis) that can be compressed to the observed percentages
(x-axis).

Since there are no dialogs in U3 that require greater than seven
sub-expressions to model, and there are dialogs in the space
with greater than seven episodes (e.g., the maximum number
of episodes in any one dialog is thirteen for q=3), the use of our
notation provides a compressed dialog specification. However,
what is not illustrated in Figure 7 is the number of episodes in
each dialog that can be represented with a particular number
of sub-expressions or, in other words, the magnitude of the
results given in Figure 7. For instance, if all 46 dialogs that can
be represented with only one sub-expression only contain one
episode, then there is no compression. To measure the efficacy
of the compression, we computed the frequency of dialogs
which can be specified at the observed compression percent-
ages. For instance, 533 dialogs of the 8,191 could not be
compressed at all (i.e., there is a one-to-one relation between
the number of episodes and the number of sub-expressions).
However 1,197 dialogs can be compressed 33% (e.g., a dialog
that involves nine episodes which can be specified with six
sub-expressions), and 975 can be compressed 50%. Figure 8
presents these compression results: over 20% of the dialogs
(1,692/8,192) can be compressed 50% or more. While we
cannot characterize the dialog specifications comprehensively
beyond q=3 because it is not possible to enumerate and sim-
ulate [21, 26, 29, 33] all of them, we can say intuitively that
the results for q > 3 are better than q=3 because the oppor-
tunities for compression increase as the number of questions

posed in an episode increases. Therefore, both the number
of sub-expressions required to specify a dialog as well as
the percentage of dialogs being compressed to a high degree
increase.

RELATED RESEARCH
Our work lies in the dialog management area of dialog-based
systems. The dialog management component plays a central
role in the architecture of a traditional dialog system, and is
primarily concerned with controlling the flow of the dialog,
while maintaining discourse history, sometimes referred to as
system-action prediction, and coordinating with other (typi-
cally input/output) components of the system (e.g., automatic
speech recognition, spoken language understanding, and pre-
sentation of results). In this paper, we focus on the dialog
management independent of the input and output modalities
(e.g., text or voice) and mechanisms that can be used in our
framework.

There are two main approaches to dialog management: task-
based and data-driven. Our research targets task-based dia-
log systems whose goal is to support the user in satisfying
clearly-defined goals by completing highly-structured tasks.
Therefore, we compare to and distinguish our work from other
task-based approaches. While the data-driven approaches
are not directly comparable to our task-based approach, they
are complementary to our work. We focus rather on frame-
works for (automatic) construction for their relatedness to our
work [11, 23, 33].

The task-based approach involves modeling a collection of
tasks to be supported by the system, using a modeling nota-
tion or language, and discerning how the user can be most
effectively afforded (the desired) interaction flexibility in com-
pleting those tasks. Finite state automata (FSA), and other
transition networks, context-free grammars (CFG), and events
have been used as general task structures to model dialog [16].
While these models are sound, and can be used to prove math-
ematical proprieties, tasks often need to be over-specified to
model a rich and flexible form of human-computer interac-
tion. Moreover, since dialogs can contain arbitrarily nested
sub-dialogs, FSA are less effective as general discourse struc-
tures [12]. Similarly, CFGs might be appropriate if the evolu-
tion of a dialog was something known a priori [12].

Sometimes the task-based approach is referred to as
knowledge-based because it often relies on a dialog designer
with domain-specific knowledge (e.g., travel, health care) [26]
to model the dialog (and because the dialog itself helps provide
the user access to a knowledge base in the targeted domain).
These structures and this approach, therefore, can be time-
consuming and expensive to use because the design process
must be repeated when developing a similar application for
a new domain, thus inhibiting domain portability. Therefore,
a formidable challenge in the task-based approach to dialog
management is determining the level of granularity at which
to factor the system architecture to most effectively navigate
the delicate balance between which dialog/task-modeling no-
tation to use and operationalizing that model to factor domain-
dependent and -independent aspects from each other to pro-

mote domain portability; this is one way of distinguishing
frameworks for the construction of dialog-based systems.

One level of decomposition involves using specialized task
structures for modeling complex tasks as a collection of sub-
tasks [18, 44] and realizing the modeled dialog using a dialog
engine to capture the control logic and manage the dialog
flow. The specialized task structures are typically variations
of hierarchical structures for modeling interactions (i.e., task
modeling) [40]. “The task hierarchy constitutes a plan for the
dialog” [20]. Discourse modeling, uses data and knowledge
structures (e.g., scripts, plans, and goals) [41]. There has
been some work on integrating discourse models with user
models [24].

The dialog task specifications used are chosen and designed
to capture the aspects of the dialog specific to the targeted
domain and the dialog engine is domain-independent and,
thus, reusable, and acts as an interpreter, in the programming
languages sense, for the given dialog specification. This ap-
proach attempts to provide a clean separation of the domain-
dependent and -independent aspects (e.g., control logic and
dialog flow) [3] as well as separation of other relevant con-
cerns [8]. “In principle no operation to do with domain in-
formation should take place within the dialog manager” [39].
This approach is used in the RavenClaw dialog management
framework [5, 6]. RavenClaw uses an agenda-based approach
to task modeling [39, 40]. Our framework is an instantiation
of this ‘separation of task model and dialog engine’ approach
to dialog management (see Figures 4 and 5).

To address the costly manual design and construction of task
structures by domain experts, techniques for mining knowl-
edge sources, such as dialog corpora [4, 45, 46] and web-
sites [11, 14, 33], for automatic modeling have been developed.
While there are multiple dialog management frameworks that
instantiate this approach to task-based dialog systems, some
emphasize automatic construction [23] and use logic-based,
language approaches (i.e., reactive planning) [12].

Rather than agenda [40], rule-oriented [12], and the myriad of
other task structures and task modeling approaches used for
task-based dialog management, we use programming language
theory. We designed a notation based on lambda calculus that
serves as an authoring notation for specifying dialogs and also
suggests implementation ideas. This is our main contribution
and distinguishes our model from other knowledge/task-based
approaches which use hierarchical task/agenda models. Us-
ing program transformations [31], including partial evalua-
tion [22], and language concepts, to specify dialogs and to
intensionally model multiple paths through a dialog without
extensionally hardcoding each into the control flow of the im-
plementation, is a fundamentally different approach to dialog
modeling, management, and implementation.

Program transformations and other languages concepts have
been used for similar purposes. For instance, researchers [35]
have used first-class continuations [13] to maintain state in
web dialogs, and program slicing [37] and source-to-source
rewrite rules [38] to restructure web interactions. Using first-
class continuations, researchers have developed an approach

to automatically restructure batch programs for interactive use
on the web [15]. Researchers have explored the idea of using
currying and continuations to postpone, save, and resume
dialogs in application software [34]. The common theme of
these efforts, and our research, is the appeal to concepts from
programming languages to engineer a rich and expressive
form of a human-computer interaction. The novel use of
these language concepts provides the theoretical basis for
elegant implementation solutions, without which might require
developers to enumerate code in an ad hoc manner to trap and
accommodate special situations.

Since our approach factors the domain-dependent (i.e., task
structures) and the -independent (i.e., control logic) aspects
from each other in the dialog manager, all of the peripher-
al/auxiliary techniques for domain-knowledge acquisition (au-
tomatic or otherwise) or other aspects for automatic dialog sys-
tem construction are applicable in our approach and can be in-
tegrated into it. For instance, any of the automatic knowledge
acquisition mining techniques from dialog copra or human-
human conversations dovetail with our approach. Our dialog
toolkit also includes a preprocessor, dialog mining component,
not discussed here due to space limitations, that given (observ-
able or other) dialog episodes can identify opportunities for
mixing initiative (i.e., it mines a minimal specification of the
dialog in our language-based notation).

While prior research projects have approached engineering
interactive computing systems from the perspective of (func-
tional) programming languages [15, 28, 34, 35], only few
have sought to marry human-computer dialogs with concepts
from programming languages [7, 32, 36]. Due to the con-
ceptual analogs between natural languages and programming
languages, viewing human-computer dialog modeling, man-
agement, and implementation from the perspective of program-
ming language theory suggests a natural, yet under-explored,
approach to dialog representation and reasoning. The concepts
from programming languages are not just helpful metaphors
for dialog specification, but also lend insight into operational-
izing dialogs.

DISCUSSION
Dialog is essential to providing a rich form of human-computer
interaction [9]. We summarize the contributions of our re-
search as: we i) developed a language-based model for speci-
fying and staging mixed-initiative, human-computer dialogs,
ii) generalized and automated the activity of building a dialog
system, and iii) evaluated its descriptive and staging capabili-
ties by demonstrating that it can succinctly capture and stage a
wide variety of dialogs, including those involving sub-dialogs.
While “[c]reating an actual dialog system involves a very in-
tensive programming effort” [17] and “complete automation in
creating . . . dialog applications remains an extremely difficult
problem” [11], given a specification of a dialog in our dialog
authoring notation, from among a variety of mixed-initiative
dialogs, our system automates the implementation of the dia-
log. Designers of task-based dialog systems can use our dialog
authoring notation and staging engine as a dialog modeling
and implementation toolkit to explore, prototype, and eval-

uate [23] a variety of unsolicited reporting, mixed-initiative
dialogs.

While the use of simulation for evaluation of dialog systems
is common [21, 26, 29, 33], the application of our results will
benefit from a formal usability evaluation. We intend to con-
duct studies with users to evaluate the interface through which
users experience the human-computer dialog (i.e., Figure 1) as
well as the interface for task modeling used by dialog designers
to specify the dialog as part of future work. Evaluating the in-
terface through which dialog participants experience the dialog
will help us discern whether mixed-initiative dialogs resulting
from our language-based model have desirable qualities (i.e.,
How effective and efficient are they? Does mixed-initiative
dialog help the user in an information-seeking activity and
how, e.g., time-to-task completion, satisfaction? For which
types of dialogs or tasks is mixed-initiative interaction most
effective?). We desire “computational agents carrying out our
dialog theory to produce conversations with desirable qual-
ities” [17]. To this end, we plan to conduct a study similar
to [11] and, in a more broad context, using the results of [43].

Usability (i.e., the speed of use and ease of use) from the de-
signers’ perspective is also an important issue that we plan to
address in a formal evaluation study as part of future work.
We are exploring the idea of using a visual graphic design
tool with a split-screen using drag-and-drop elements (e.g.,
solicitations and responses) on one side and the corresponding
XML dialog specification on the other side, which are synchro-
nized in situ, allowing the dialog designer to use either or both
at her discretion for task modeling and dialog specification.
Through this tool, a dialog designer can craft the solicitations
and responses of a dialog, establish relationships supporting
fixed or flexible dialog completion orders, and customize the
features and layout of the end-user client used for processing
this dialog during staging. A split-screen user interface is
terser than a purely textual modality, and may be easier to use.

The advent of virtual, immersive environments in cyberlearn-
ing has attracted the attention of researchers [10] and provides
a new landscape and opportunity to research models for en-
gineering flexible human-computer dialogs [27]. We are cur-
rently studying the use of our model in a university course
schedule application in an immersive, virtual environment
through a verbal modality. Applications on platforms, such as
smart phones, gaming consoles, airport kiosks, ATM machines,
interactive, voice-response systems, and cyberlearning envi-
ronments, whose success relies on flexible, mixed-initiative
dialog can benefit from a model for engineering dialogs in a
more systematic and simplified way. We envisage the long-
term practical implications of our work involving the incor-
poration of stagers based on partial evaluation and rewrite
rules into these platforms whose ubiquity in service-oriented
domains, such as education, health care, and travel provide
a fertile landscape for further exploration of our model for
mixed-initiative interaction.

ACKNOWLEDGMENTS
The research was supported in part by grants from the Ohio
Board of Regents, University of Dayton Research Council,
and the University of Dayton College of Arts and Sciences.

We thank John Cresencia, Shuangyang Yang, and Brandon
Williams at the University of Dayton for assisting in the im-
plementation of the dialog modeling toolkit, and for helpful
discussions and insight.

REFERENCES
1. J.F. Allen. 1999. Mixed-Initiative Interaction. IEEE

Intelligent Systems 14, 5 (1999), 14–16.

2. F. Baader and T. Nipkow. 1999. Term Rewriting and All
That. Cambridge University Press, Cambridge, UK.

3. T. Ball, C. Colby, P. Danielsen, L.J. Jagadeesan, R.
Jagadeesan, K. Läufer, P. Mataga, and K. Rehor. 2000.
Sisl: Several Interfaces, Single Logic. International
Journal of Speech Technology 3, 2 (2000), 93–108.

4. F. Bechet, G. Riccardi, and D. Hakkani-Tür. 2004.
Mining Spoken Dialogue Corpora for System Evaluation
and Modeling. In Proceedings of the Association for
Computational Linguistics (ACL) Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics,
Stroudsburg, PA, 134–141.

5. D. Bohus and A.I. Rudnicky. 2003. RavenClaw: Dialog
management using hierarchical task decomposition and
an expectation agenda. In Proceedings of the Sixth
Annual INTERSPEECH Conference. International Speech
Communication Association.

6. D. Bohus and A.I. Rudnicky. 2009. The RavenClaw
Dialog Management Framework: Architecture and
Systems. Computer Speech and Language 23, 3 (2009),
332–361.

7. R. Capra, M. Narayan, S. Perugini, N. Ramakrishnan,
and M.A. Pérez-Quiñones. 2003. The Staging
Transformation Approach to Mixing Initiative. In
Working Notes of the IJCAI 2003 Workshop on
Mixed-Initiative Intelligent Systems, G. Tecuci (Ed.).
AAAI/MIT Press, Menlo Park, CA, 23–29.

8. J. Chu-Carroll. 2000. MIMIC: An adaptive mixed
initiative spoken dialogue system for information queries..
In Proceedings of the Sixth Conference on Applied
Natural Language Processing (ANLC). Association for
Computational Linguistics, Stroudsburg, PA, 97–104.

9. A. Dix, J. Finlay, G.D. Abowd, and R. Beale. 2010.
Human-Computer Interaction (third ed.). Prentice Hall,
Harlow, England, Chapter 16: Dialog Notations and
Design.

10. A. Dubrow. Seven Cyberlearning Technologies
Transforming Education. Huffington Post, 6 April 2015.
Available: http://www.huffingtonpost.com/aaron-dubrow/
7-cyberlearning-technolog_b_6988976.html [Last
accessed: 6 May 2016].

11. J. Feng, D. Hakkani-Tür, G. Di Fabbrizio, M. Gilbert,
and M. Beutnagel. 2006. Webtalk: Towards
Automatically Building Spoken Dialog Systems Through
Mining Websites. In Proceedings of the IEEE
International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE Computer Society
Press, Los Alamitos, CA, 573–576.

12. R. Freedman. 2000. Using a Reactive Planner as the
Basis for a Dialogue Agent. In Proceedings of the
Thirteenth International Florida Artificial Intelligence
Research Society Conference. 203–208.

13. D.P. Friedman and M. Wand. 2008. Essentials of
Programming Languages (third ed.). MIT Press,
Cambridge, MA.

14. J. Glass and S. Seneff. 2003. Flexible and Personalizable
Mixed-initiative Dialogue Systems. In Proceedings of the
North American Chapter of the Association for
Computational Linguistics (ACL): Human Language
Technologies (NAACL-HLT) Workshop on Research
Directions in Dialogue Processing. Association for
Computational Linguistics, Stroudsburg, PA, 19–21.

15. P. Graunke, R. Findler, S. Krishnamurthi, and M.
Felleisen. 2001. Automatically Restructuring Programs
for the Web. In Proceedings of the Sixteenth IEEE
International Conference on Automated Software
Engineering (ASE). 211–222.

16. M. Green. 1986. A Survey of Three Dialogue Models.
ACM Transactions on Graphics 5, 3 (1986), 244–275.

17. C.I. Guinn. 1999. Evaluating Mixed-initiative Dialog.
IEEE Intelligent Systems 14, 5 (1999), 21–23.

18. E. Hagen and B. Grote. 1997. Planning Efficient
Mixed-initiative Dialogue. In Proceedings of the
Association for Computational Linguistics (ACL)
Conference on Interactive Spoken Dialog Systems on
Bringing Speech and NLP Together in Real Applications
(ISDS). Association for Computational Linguistics,
Stroudsburg, PA, 53–56.

19. S. Haller and S. McRoy (Eds.). 1997. Proceedings of the
AAAI Spring Symposium on Computational Models for
Mixed Initiative Interaction. Number SS-97-04. AAAI
Press, Menlo Park, CA.

20. J. Hochberg, N. Kambhatla, and S. Roukos. 2002. A
Flexible Framework for Developing Mixed-initiative
Dialog Systems. In Proceedings of the Third Association
for Computational Linguistics (ACL) SIGDIAL Workshop
on Discourse and Dialogue. Association for
Computational Linguistics, Stroudsburg, PA, 60–63.

21. R.B. Inouye. 2004. Minimizing the Length of Non-mixed
Initiative Dialogs. In Proceedings of the Association for
Computational Linguistics (ACL) Workshop on Student
Research. Association for Computational Linguistics,
Stroudsburg, PA.

22. N.D. Jones. 1996. An Introduction to Partial Evaluation.
Comput. Surveys 28, 3 (1996), 480–503.

23. P. Jordan, M. Ringenberg, and B. Hall. 2006. Rapidly
Developing Dialogue Systems that Support Learning
Studies. In Proceedings of Intelligent Tutoring Systems
(ITS) Workshop on Teaching with Robots, Agents, and
NLP. 1–8.

24. A. Kobsa. 1988. User Models and Dialog Models: United
They Stand. Computational Linguistics 14, 3 (1988),
91–94.

25. D.L. Kreher and D.R. Stinson. 1999. Combinatorial
Algorithms: Generation, Enumeration, and Search. CRC
Press, Boca Raton, FL.

26. C. Lee, S. Jung, K. Kim, D. Lee, and G.G. Lee. 2010.
Recent approaches to dialog management for spoken
dialog systems. Journal of Computing Science and
Engineering 4, 1 (2010), 1–22.

27. A. Leuski and D. Traum. 2011. NPCEditor: Creating
Virtual Human Dialogue Using Information Retrieval
Techniques. AI Magazine 32, 2 (2011), 42–56.

28. S.N. Malkov. 2010. Customizing a Functional
Programming Language for Web Development.
Computer Languages, Systems and Structures 36, 4
(2010), 345–351.

29. T. Misu, K. Georgila, A. Leuski, and D. Traum. 2012.
Reinforcement Learning of Question-answering Dialogue
Policies for Virtual Museum Guides. In Proceedings of
the Thirteenth Annual Meeting of the Special Interest
Group on Discourse and Dialogue. Association for
Computational Linguistics, Stroudsburg, PA, 84–93.

30. M. Narayan, C. Williams, S. Perugini, and N.
Ramakrishnan. 2004. Staging Transformations for
Multimodal Web Interaction Management. In
Proceedings of the Thirteenth International ACM World
Wide Web Conference (WWW), M. Najork and C.E. Wills
(Eds.). ACM Press, New York, NY, 212–223.

31. H. Partsch and R. Steinbrüggen. 1983. Program
Transformation Systems. Comput. Surveys 15, 3 (1983),
199–236.

32. M.A. Pérez-Quiñones. 1996. Conversational
Collaboration in User-initiated Interruption and
Cancellation Requests. Ph.D. dissertation. The George
Washington University.

33. J. Polifroni, G. Chung, and S. Seneff. 2003. Towards the
Automatic Generation of Mixed-Initiative Dialogue
Systems from Web Content. In Proceedings of the Eighth
European Conference on Speech Communication and
Technology (EUROSPEECH). International Speech
Communication Association, 193–196.

34. D. Quan, D. Huynh, D.R. Karger, and R. Miller. 2003.
User Interface Continuations. In Proceedings of the
Sixteenth Annual ACM Symposium on User Interface
Software and Technology (UIST). ACM Press, New York,
NY, 145–148.

35. C. Queinnec. 2000. The Influence of Browsers on
Evaluators or, Continuations to Program Web Servers. In
Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (ICFP). ACM
Press, New York, NY, 23–33. Also appears in ACM
SIGPLAN Notices, 35(9), 2000.

36. N. Ramakrishnan, R. Capra, and M.A. Pérez-Quiñones.
2002. Mixed-Initiative Interaction = Mixed Computation.

In Proceedings of the ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program
Manipulation (PEPM), P. Thiemann (Ed.). ACM Press,
New York, NY, 119–130. Also appears in ACM SIGPLAN
Notices, 37(3), 2002.

37. F. Ricca and P. Tonella. 2001. Web Application Slicing.
In Proceedings of the International Conference on
Software Maintenance (ICSM). IEEE Computer Society
Press, Los Alamitos, CA, 148–157.

38. F. Ricca, P. Tonella, and I.D. Baxter. 2001. Restructuring
Web Applications via Transformation Rules. In
Proceedings of the First International Workshop on
Source Code Analysis and Manipulation (SCAM). IEEE
Computer Society Press, Los Alamitos, CA, 150–160.

39. A. Rudnicky, E. Thayer, P. Constantinides, C. Tchou, R.
Stern, K. Lenzo, W. Xu, and A. Oh. 1999. Creating
natural dialogs in the Carnegie Mellon communicator
system. In Proceedings of the Sixth European Conference
on Speech Communication and Technology
(EUROSPEECH). International Speech Communication
Association.

40. A. Rudnicky and W. Xu. 1999. An agenda-based dialog
management architecture for spoken language systems.
IEEE Automatic Speech Recognition and Understanding
Workshop 13, 4 (1999).

41. R.C. Schank and R.P. Abelson. 1977. Scripts, Plans,
Goals and Understanding: an Inquiry into Human
Knowledge Structures. L. Erlbaum, Hillsdale, NJ.

42. D. Stallard. 2001. Dialogue management in the
Talk‘n’Travel system. In Proceedings of the IEEE
Workshop on Automatic Speech Recognition and
Understanding (ASRU). IEEE Computer Society Press,
Los Alamitos, CA, 235–239.

43. M. Walker, L. Hirschman, and J. Aberdeen. 2000.
Evaluation for DARPA communicator spoken dialogue
systems. In Proceedings Second International
Conference on Language Resources and Evaluation.
European Language Resources Association.

44. M. Walker and S. Whittaker. 1990. Mixed-initiative in
dialogue: An investigation into discourse segmentation.
In Proceedings of the Twenty-eighth Annual Meeting on
Association for Computational Linguistics (ACL).
Association for Computational Linguistics, Stroudsburg,
PA, 70–78.

45. W. Wong, L. Cavedon, J. Thangarajah, and L. Padgham.
2012. Mixed-initiative Conversational System Using
Question-answer Pairs Mined from the Web. In
Proceedings of the Twenty-first ACM International
Conference on Information and Knowledge Management
(CIKM). ACM Press, New York, NY, 2707–2709.

46. X. Yao, E. Tosch, G. Chen, E. Nouri, R. Artstein, A.
Leuski, K. Sagae, and D. Traum. 2012. Creating
conversational characters using question generation tools.
Dialogue and Discourse 3, 2 (2012), 125–146.

	University of Dayton
	eCommons
	6-2016

	A Language-Based Model for Specifying and Staging Mixed-Initiative Dialogs
	Saverio Perugini
	Joshua W. Buck
	eCommons Citation

	tmp.1477938221.pdf.mcDOF

