
Ouachita Baptist University
Scholarly Commons @ Ouachita

Honors Theses Carl Goodson Honors Program

2018

Project Emerald: Designing a Language to be Fun
Addison Bostian
Ouachita Baptist University

Follow this and additional works at: https://scholarlycommons.obu.edu/honors_theses

Part of the Programming Languages and Compilers Commons

This Thesis is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly Commons @ Ouachita. It has been accepted
for inclusion in Honors Theses by an authorized administrator of Scholarly Commons @ Ouachita. For more information, please contact
mortensona@obu.edu.

Recommended Citation
Bostian, Addison, "Project Emerald: Designing a Language to be Fun" (2018). Honors Theses. 600.
https://scholarlycommons.obu.edu/honors_theses/600

https://scholarlycommons.obu.edu?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F600&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.obu.edu/honors_theses?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F600&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.obu.edu/honors?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F600&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.obu.edu/honors_theses?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F600&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F600&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.obu.edu/honors_theses/600?utm_source=scholarlycommons.obu.edu%2Fhonors_theses%2F600&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mortensona@obu.edu

SENIOR THESIS APPROVAL
This Honors thesis entitled

"Project Emerald: Designing a Language to be Fun"

written by

Addison Bostian

and submitted in partial fulfillment of
the requirements for completion of
the Carl Goodson Honors Program

meets the criteria for acceptance
and has been approved by the undersigned readers.

J~ Mlatocha, thesis director

Steve Hennagin second reader

Johnny Wink, third reader

Dr. Barbara Pemberton, Honors Program director

April 24, 2018

Project Emerald
Ouachita Baptist University

Addison Bostian

April 24, 2018

Contents

1 Origins
1.1 The Idea .
1.2 Language Influences

1.2.1 Object Oriented .
1.2.2 Functional Programming .
1.2.3 Collection Manipulation
1.2.4 Hybrid Language

2 Language Documentation
2.1 Variables ..
2.2 Data Types . .

2.2.1 Int ...
2.2.2 Double .
2.2.3 Float .
2.2.4 Long .
2.2.5 Char .
2.2.6 String
2.2.7 Bool

2.3 The Object Class
2.3.1 Methods .
2.3.2 Properties

2A User Defined Objects
2.4.1 Access Modifiers
2.4.2 Object Declaration
2.4.3 Creating Properties .
2.4.4 Creating a Constmctor .
2.4.5 Adding Methods to Objects
2.4.6 Overloading Operators

1

4
4
4

5
6
6

7
7
7
8

12
16
21
20
29
39
41
41
42
43
43
43
43
44
45
46

Project Emerald

2.5 Extending Existing Objects
2.5.1 Inheriting from Another Object
2.5.2 Extension Methods

2.6 Control Structures ...
2.6.1 If Statements . .
2.6.2 If Else Statement
2.6.3 Else If Block . . .
2.6.4 Switch Sta-tement
2.6.5 Loops

2.7 Lambdas
2.7.1 Calling Lambdas
2.7.2 Ac{:epting Lambdas as Parameters

2.8 Built-in Libraries .
2.8.1 Collections .
2.8.2 Arrays
2.8.3 List ..
2.8.4 Map ..
2.8.5 System .
2.8.6 File ...
2.8. 7 Convert

3 Code Examples
3.1 Summing All Items in an Array
3.2 Retrieving All of the Even Elements From an Array
3.3 Find the Surn of All Digits in a List .
3.4 Find the Highest Number in a File
3.5 Summing Letters
3.6 CD Organizer .

3.6.1 Java ..
3.6.2 Emerald

47
47
49
50
50
50
51
52
52
55
56
56
57
57
58
62
68
69
71
72

74
74
75
75
7G
76
77
78
84

4 Conclusion 90
4.1 Additions That Did Not Happen 91

Addison Bostian 2

Introduction

I designed the language described here to be, first and foremost, fun. I
wanted it to be a programmer's go-to language, the language that you pick
up for personal projects or utilities. I felt the way to make this happen
was to make it fun to write in. In order to accomplish this, the language
derives from several existing languages, taking what I believed were the best
parts of each of them. Combining principles from multiple languages sounds
like a good idea, I quickly ran into problems that would make developing
a compiler extremely difficult, if not impossible. Because of this, I had to
rn<1.ke choices between certain features. Therefore, this language is not exactly
how I originally envisioned it; It repreoents, rather, my compromise between
functionality and the compiler.

Chapter 1

Origins

1.1 The Idea

The idea for thi:; langua.ge started when I was working on a project in Java.
I got to a portion of the projeet thut lent itself to the usc of la.mbdaH. How
ever, in Java, lambdas arc not a particularly easy thinp; to do, and l started
wishing that I had started the project in Ruby, where lambdas are extremely
easy. I considered starting again in Ruby but then realized that, if I changed
to Ruby, while I would make certain things easier, I would also make other
things harder. This made me start thinking about a language that had all
of the fcaturffi I was looking for.

At the time, I was in a P rogramming Lanp;uages class where we were
talking about the beginnings of compilers. I realized that writing a compiler
was not as far out of reach as I had originally thought, <J.nd it was something
thl::l.t T could conceivably do rny:;elf. Because of that, I started wondering if T
could create my own language.

1. 2 Language Inft uences

During the design process, l drew hel:l.vily from languages such as Ruby, Javl:l.,
and C# because most of my programming had been done in those language::;.
Other influences included Python, .lavm;cript, and F#. When I started I
had several goals. I wanted the language to be object oriented, which would
~:~.llow data and actions to be e~:~sily grouped together. I wanted functional

4

Projeet ErnerCI.ld

prograrruning in the language to be easy, the ability to pass functiom; as
parameterH is a very powerful tool. I wanted collection manipulation to be
easy, as this is one the most common things to do when programming. I aloo
WCI.nted the language to be a hybrid language, meaning it would corn pile down
to an intermediate language, and that compiled program could be distributed
to multiple type~ of ::;ysterns without recompilation.

1.2.1 Object Oriented

While all the languages that influenced me were object-oriented in some way,
my favorite was the Ruby implementation: Everything is an object, including
numbers and letters. This extreme object-oriented stance made the most
sense to rne because you must only learn one set of rules. For example,
in Java there is often confusion associated with new programmers learning
the difference between pa.sr:;ing bF.t.o.;c t.yp<~s and passing objects as parameters,
where ao in a language such as Ruby, where everything is an object, you only
have to learn how objects a.re passed. To eliminate this problem, as well as
to facilitate some other ideas I had such as operator overloading, I chose to
rnake everything an object.

1.2.2 Functional Programming

Functional programming, at a basic level: is the ability to pClss functions as
parameters, and evaluate them inside the function. One of my favorite things
about languages like C#, Javascript, and Ruby is that they make functional
programming exceptionally easy. Functional programming i::; not something I
nece~oa.rily do all the time, but when a problem comes along that lends itself
to functional programming, having a language that, makes it. easy is worth it.
1 feel like Java handles functional programming exceptionally badly. In .Java
there is too much extraneous ~yntax when using lambdas, and this usually
makes it quicker and easier to approach whatever problem you are trying to
solve in a different manner. 1 chose to model C# in regards to lambdas and
functional programming. C# has much cleaner Hyntax when using lamhdaH,
and !.heir use feels very natural when programming.

Chapter 1 Addison Bor:;tian 5

Project Emerald

1.2.3 Collection l\llanipulation

Much of programming deals with manipulating collections of objeets, so one
goal of emerald b to rnake the~e manipulations easy. Ruby and C# both
have excellent collection manipulation eapabilities, a.ud are in fact extremely
similar in the way they implement it. 1 choo.se to use the ber:>t part~ of both,
with a slightly bigger influence from Ruby than C#. Ruby and C# both have
built in methods for manipulating collections. Ruby is dynamically typed,
and therefore declaring a lambda and passing it to a function is extremely
ea~y, with barely any syntax required. C# required slightly more syntax,
and uses the '=;,' operator in these function.c;. I took the minimal syntax
from ruby and combined it with the '=;.'operator from C#.

1.2.4 Hybrid Language

One of the downsides to Ruby is tha.t it is interpreted, meaning evaluated at
runtime, which makes Ruby programs relatively slow. On the other hand Cis
a compiled language, meaning evaluated at compile time, not runtime, which
makes C programs extremely fast to run after compilation. Unfortunately,
compilation hampers cross-platform compatibility. Java and C# fit between
these two, and as such arc hybrid languages. Hybrid languages provide a
balance between C and Ruby, a program written in a hybrid language will
have execution tirne a.nd portability between those of C and Ruby.

They are faster then Ruby but slower than C, but they make cross
platform compatibility much easier than C. Based on my goals for the lcm
gaage, I chose to make it a hybrid language. I also chose to compile toIL: the
Microsoft Intermediate Language, which is what all of the .NET languages
compile to. This means that, a program written in rny language would be
able to run anywhere a .NET application eould, which i1> almo1>t everywhere.

Chapter 1 Addison Bostian 6

Chapter 2

Language Documentation

This chapter documents the syntax and semantics of Emerald. It should
describe everything you need to start using the language) then through more
advanced topics like collections, control structures, objects) lambdas, and
collection manipulation.

2.1 Variables

A variable in Emerald holds !:1. reference to an object. Therefore all variables
a.re reference variables, which has implications for copying va.luel:i, cornpa.ring
values, and passing values as parameters. Variables are initializ::ed by declar
ing the type of the va.ria.ble followed by the name) for example Int x; creates
a variable named x of type Integer. Declaration and assignment may also be
done in one line (e.g. Int x = 42;)

2.2 Data Types

Programmers typically usc many data type:::: to reprer:;ent information. Ev
erything is an object in Emerald, we do not. have base types, and therefore
will not Ul:ie that terminology to refer to them. Emerald's common types
include: Int, Char, Double, Float, Bool, Long, and String.

When objects arc assigned a value without the new keyword, Emerald
invokel:i the objects eopy constructor. String str = "hello"; is converted
to String str = new String("hello"); because String(String string) is

7

Project Emerald

the stling com:ltructor that matches the list of parameters. This featme will
be discussed further in the Objects section.

2.2.1 Int

The type Int represent:; an Integer, a whole number. It is also the base class
for most other number types such as Float and Double. An Integer is a 32-
bit value and by default can store any whole number from -2147483648 to
2147483647.

Initialization

An Integer can be initialized in any of the following ways.

1 Int a= 421
2 Int b = n.er,.;r In:t (4'2) ;
I Iilit c = 47-1:1!*'2.;

Multiple Integers can be initialized at once in the following ways.

t Int a = 41, b = 42~ c = 43; I I a #=> 41, b #=> 42, c #=> 43
2 Int d, e, f = 42; II d #=> 42, e #~> 42, f #=> 42

Binat·y Operators

There are several operators available to the Int class such as: +, -, I, *, %,
**, ==. These operators all function in the normal mathematical way, with

the double equals representing equality checking. These are binary operators
which work on two operands of the Int type or a subclass of Int.

The + operator arithmetically adds its two operands numeric value to
gether and evaluates to the result. The + operator is a binary infix operator.
For example, after the following code has executed, c contains 42.

1 rn:t a = 30;
2 Int b = 7;
;: Int c = a + b; I I c #=> 42

The - operator arithmetically subtracts the numeric value of operand 2
from the numeric value of operand 1 and evaluates to the result. The -

Chapter 2 Addison Bostian 8

Project Emerald

operator is a binary infix operator. For example, after the following code has
executed, c contains 42:

1 Int a : 56 ;

·· In.t b = 14;
;l Int c = a - b; I I c #=> 42

The * operator arithmetically multiplies its two operands' numeric values
together and evaluates to the result. The * operator is a binary infix: operator.
For example, after the following code has executed, c contains 42.

1 Int a = 7 ;
• I nt b = 6;
a Int € = a * b; If c #=> 42

The I operator arithmetically divides the numeric value of operand 1 by
the numeric value of operand 2 and evaluates to the result. The I operator is
a binary infix operator. For example, after the following code has executed,
c contains 42.

1 I:n.t a = 126;
2 ! nt b = 3;

'' I nt c = a I 'm; e #=> 4!2

The return type of I is the type of its most precise operand. An Int
divided by and Int is always an Int, however and Int divided by a Double
evaluates to a Double. The second operand may not he zero. For example,
after the following code has executed, c contains 1, and c contains 1.5.

1 Iht a : t2 ~ b "' :2; ;
:z DGlillbl~ •: = fJi b ; 1/ c #: > 1
a

4 Double d = 8' ;

5 Bo:.:1ble ~ = a/d ; lie #=> 1.5

The Y. operator is the modulus or mod operator. It evaluates to the
remainder of the numeric value of operand 1 divided by the numeric value of
operand 2. The % operator is a binary infix operator. For f'JCatnple, after the
following code has executed, c contains 2.

1 I nt a = 14 , p = 3;
a Int c = a % b; I I c #=> 2

Chapter 2 Addison Bm;tian 9

Project Emerald

The ** operator raises the numeric value of operand 1 to the power of
the muneric value of operand 2 and retmns the result.. The ** operator is a
binary infix operator. For example, after the following code has exeeuted, c
contains 32.

1 Int a = 2, b = 5;
2 Int c = a**b; II #=> 32

Unary Operators

There are several unary operators available to the Tnt class such as ++,
These unary operators work on a single Int.

The -- operator decrements the numeric value of the operand. The -
operator takes one operand in either of the following ways: operand-- and
--operand, which are post-decrement and pre-decrement, respectively.

a Int a = 43;
~ a--; //a#=> 42

When post-decrementing, the value of the variable is used before it is
decrementing, when pre-decrementing, the value of the variable is used after
it is decrementing.

1 Int x:,y = 42;
2 Int a = --x; I I a #=> 41
3 Int b = x--; I I b #=> 42

The ++ operator increments the numeric value of the operand. The ++
operator takes one argument in either of the following ways: operand++ and
++operand, which are post-increment and pre-increment, respectively.

1 Int a = 41;
2 a++ ; I I a #=> 42

When post-incrementing the value of the variable is used before it is
incremented, when pre-incrementing the value of the variable is used after it
is incremented.

1 I nt x,y = 42;
2 Int a = ++x; I I a #: > 43
:1 Int b = x++; I I b #=> 42

Chapter 2 Addison Bostian 10

Project Emerald

Methods

These methods are available to the Int class, as well as all subclasses of Int due
to inheritance. Methods generally start with a lowercase letter, continuing
in camel case. They are called with the conventional dot (.) operator, with
parentheses after the name. For example, the following code uses the .copy()
method to put a copy of x into y.

I ;Fnt X = 42;
Int y = x . copy(); II y #=> 42

public void copy() The .copy() method returns a new instance of the Int
class that is the same as the calling object.

1 tnt x = 42;
2 Int y = x. e,opyO;
3 II at this point x andy ha~e the same value
l '){++;

" I I at th~s point x = 43, y = 42

public Bool equals(Int i) The .equals(Int i) method returns a Bool (doc
umented lated) indicating whether or not the calling object and the param
eter have equal v-<:~.lues. This method rctmns false if the parameter is nulL

1 Int x 1 y = 42;
2 Bool a = :·~ . e:f:J.l.lala-(y). ; I I a c true

<1 Int z = ~~;

;; Bool b = ::" · "'ctUa:l s(z) : 11 b"" f a lse
6

, Int i ;
1.< !'O'ol ~ = :;;.·e:~jnals(i) ; I lc = false

public String toString() The .toString() method returns a String (doc
umented later) containing the numeric value of the Int.

Chapter 2 Addison Bostian 11

Project Emerald

Properties

Int's properties are read and write, and are accessed with the dot(.) operator,
similar to methods, with the difference being that. properties never have
parentheses at the end or parameters. Properties generally start with a
capital letter and continue in camel ca~e.

public Bool PositiveOnly: Po~itiveOnly is used to set he range of values
a particular Int may hold. If true, the Int may contain whole numbers from
0 to 4,294,967,296, if false it may contain whole numbers from -2,147,483,647
to 2,147,483,647. Thi~ property has a default value of false. If this property
is set to true while the calling object has a value less than 0, the value of the
object is set to 0, otherwise the value is unaffeeted.

public Int Value: Value is used to get the value of the Int. Usually used
when creating extension methods.

2.2.2 Double

The type Double represents a floating point number, a decimal. A Double
is a 64 bit floating point value. Double is a subclass of Int, so it inherits
Ints operators, methods, and properties. I describe here only the operator~,
methods, and properties that are overrode or added in the Double class.

Initialization

An double can be initialized in any of the following ways.

, Double a = 4Q . 0;
2 Double b = new Double (42. 69);
:J Double e = 47+12*2; II c #=> 71

Multiple Double~ can be initialized at once in the following ways.

• Double a = 4-1 , b = 42, c = 43. 9; II a #=> 41. 0, b #=> 42 .0, c #=>
43 . 5

IDouble d, e, f = 42; /1 d #=> 42.0 , e #=> 42.0, f #=> 42 . 0

Chapter 2 Addison Bostian 12

Project Emerald

Binary Operators

There are .several operator~ available to the Double das:; .such as: +, -, I,
*, %, **, ==. These operators all function in the normal mathematical way,
with the double equals representing equality checking. These operators be
used between any two Doubles or other subda.s.se1; of Int.

The + operator arithmetically adds its two operands Immeric value to
gether and evaluates to the result. The + operator is a binary infix operator.
For exa.rnple, after the following code haR executed, c contains 42.5.

1 Double a = 35;
2 Double b 7 .5;
1 Double c = a + b; I I c #""> 42. 5

The - operator arithmetically subtracts the numeric value of operand 2
from the numeric value of operand 1 and evaluate:; to the result. The -
operator i:; a binary Double operators. For example, after the following code
has executed, c contains 42.5.

1 Double a = 56.5;
Double b 14;

·' Double c = a - b; II c #=> 42.5

The * operator arithmetically multiplies its two operaiub' numeric values
together and evaluates to the result. The * operator is a binary infix operator.
For example, after the following code has executed, c contains 42.

1 Double a = 7;
2 Double b = 6.4;
:< Double c = a * b; II c #=> 44.8

The I operator arithmetically divides the numeric va.lue of operand 1. by
the numeric value of operand 2 and evaluates t,o the result. The :;econd
operand may not be ,~~;ero. The I operator is a binary infix operator. For
example, after the following code hat> executed, c contains 42.

1 Double a = 126. 0;
·1 Double b = 3.0;
:J Double c =a I b; II c#=> 42

The return type of I is the type of its most precise operand. An Double

Chapter 2 Addison Bostian 13

Project Emerald

divided by and Double is always and Double, and an Int divided by a Double
evaluates to a Double.

1 Elc:mble a = 12, b = 8;
2 Double c = a/b; //c #=> 1. 5

4 D0uble d = 8;
5 Double e = a/d; I /e #=> 1. 5

The % operator is the modulus or mod operator. It evaluates to the
remainder of the numeric value of operand 1 divided by the numeric value of
operand 2. The % opera.tor is a binary infix operator. For example, after the
following code ha..<; executed, c contain~ 2.5.

1 Oeuble a = iY:.&, b = $;
Double c = a ·(q .b.; II c #=> 2. 5

The ** operator raises the numeric value of operand 1 to the power of the
numeric value of operand 2 and evaluate!:l to the re!:iult. The ** operator is a
binary infix operator. For example, after the following code has executed, c
contains 32.

1 Peuble a = 2, b = 5;
2 D<:>ub1.e t = a**b; /1 #=> 32.0

Unary Operators

There are several unary operators available to the Double class such as ++,

--. These unary operators work on a single Double.
The -- operator decrements the numeric value of the operand. The -

operator takes one argument in either of the following ways: operand-- and
--operand, which are post-decrement and pre-decrement, respectively.

• Deuble a = 43.125;
2 a--; I Ia #=> 42.125

When post-decrementing, the value of the variable is used before it is
decrementing, when pre-decrementing, the value of the variable is used after
it is decrementing.

Chapter 2 Addison Bostian 14

, Double x,y = 42;
~ Double a= --x; II a#=> 41.0
~ Double b = x-- ; II b #=> 42.0

Project Emerald

The ++ operator increments the numeric value of the operand. The ++
operator takes one argument in either of the following ways: operand++ and
++operand, which are post-increment and pre-increment, respectively.

1 Oouble a = 41 ;
a++ ; /I a#=> 42 .0

When post-incrementing the value of the variable is used before it is incre
mented, when pre-incrementing the value of the variable is used after it is
incremented.

1 D0uble x,y = 42;
z Double a = ++x; IV a#="> 43.0
3 Double b = x++; I I b #=> 42. 0

Methods

These methods are available to the Double class, as well as all subclasses of
Double due to inheritance. Methods generally start with a lowercase letter,
continuing in camel case. They are called with the conventional dot (.)
operator, with parentheses after the name. For example, the following code
uses the .copy() method to put a copy of x into y.

1 Double x = .;-~ ;

z Double y = :.: . C!SF'~' O ; I ly = 42 . o

public void copy() The .copy() method returns a new instance of the
Double class that is the same as the calling object.

1 Double :x; = 42;
• fkmble y = x. copy();
:; I I at this pol.llt x and y have the same value
4 x++;
;; II at this point x = 43.0, y = 42 .0

Chapter 2 Addil:lon Bostian 15

Project Emerald

public Bool equals(Double i) The .equals(Double i) method returns a
Bool indicating whether or not the calling object and the parameter have
equal values. This method returns false if the parameter is null.

t Doub1e x, ~1 = Ll2 ;
2 Boo1 a = :.: . ·eet'CiaJ.s (:: ~ ; I I a = true
3

·J Double z = 43;

~ BoQl b = :.- . etpJ,alsf.<;: ~ ; If b = f<~.lse

6

7 Double i;

~ B,aol c = ;.: . e:ctu~l s{ i L I fc false

public String toString() The .toString() method returns a String con
taining the numeric value of the Double.

Properties

Doubles' properties are accessed with the dot (.) operator, similar to meth
ods, with the difference being that properties never have parentheses at the
end or parameters. Properties generally start with a capital letter and con
tinue in camel case.

2.2.3 Float

The type Float represents a floating point, number, a decimal. A Float is a 32
bit floating point value. Float is a subclass of Int, so it inherit~ Ints operators,
methods, and properties. I describe here only the operators, methods, and
properties that are overrode or added in the Float class.

Initialization

A Float can be initialized in any of the following ways.

1 Float a = 42. 0;
'1 Float b = new Float (42. 69) ;
:1 Float c = 47+12*2; I I c #=> 71

Chapter 2 Addison Bostian 16

Project Emerald

Multiple Floats can be initialh;ed at once in the following ways.

' Float a= 41, b = 42, c = 43.5; II a#=> 41.0, b #=> 42.0, c #=>
43.5

Float d, e, f = 42; II d #=> 42.0, e #=> 42.0, f #=> 42.0

Binary Operator::;

There are several operators available to the Float dass such a~: +, -, I, *,
%, **, ==. These opera.tors all function in the normal mathematical way,

with the double equals representing equality checking. These operators be
u~;ed between any two Floats or other subda.-;seH of Int.

The + operator arithmetically adds its two operands numeric value to
gether and evaluates to the result. The + operator is a binary infix operator.
For example, after the following code has executed, c contains 42.5.

1 Float a = 35;
z Float b = 7.5;
:J Float c = a + b; I I c #;> 42. 5

The - operator arithmetically subtracts the numeric value of operand 2
from the numeric value of operand 1 and evaluates to the result. The -
operator is a. bina.ry infix operator. For example, a.ft.er the following cocle has
executed, c contains 42.5.

Float a = 56.5;
~ Float b = 14;
:.< Float c = a - b; II c #=> 42.5

The * operator arithmetically multiplies its two operancb' numeric values
together and evaluates to the result. The * opcrat.oris a binary infix opera.tor.
For example, Ct.fter the following code has executed, c contains 44.8.

1 Float a = 7;
! Float b 6.4;

:J Float c = a* b; II c #=> 44.8

The I operator arithmetica.Jly divides the numeric value of operand 1 by
the numeric value of operand 2 and evaluatet; to the result. The second
operand may not be zero. The I OJ.>Crator is a binary infix operator. For

Chapter 2 Addison Bostian 17

Project Emerald

example, after the following code has executed, c contains 42.0.

, Float a = 126.0;
~ Float b = 3 . 0•;
a Float c = ·a I b: I I c #=> 42 . 0

The return type of I is the type of its most precise operand. A Float
divided by a Float is always a Float , and an Int divided by a Float evaluates
to a Float , and a Float divided by a double evaluates to a Double.

1 Float a = 12' , b = 8;
2 Floa:t .c:: = alb; I l e #=> 1. 5

•I Float d = S·;
5 F1oat e· = <!.ld; / /e #=> 1. 5

The % operator is the modulus or mod operator. It returns the remainder
of the numeric value of operand 1 divided by the numeric value of operand
2. The % operator is a binary infix operator. For example, after the following
code has executed, c contains 2.5.

1 Flc:>at a= l:4.5. b = 3;
2 Float t:: "' a % b; I I c #=> 2. 5

The ** operator raises the numeric value of operand 1 to the power of the
numeric value of operand 2 and evaluates to the result. The ** is a binary
infix opera~or. For t-..xample, after the following code has executed, c contains
32.

1. Float a = 2, b = 5;
2 Float c "' a>+=~~ ; , I I #=> 3.2. 0

Unary Operators

There are several unary operators available to the Float class such as ++,
These unary operators work on a single Float.

The -- operator decrements the numeric value of parameter 1, The -
operator takes one argument in either of the following ways: operand-- and
--operand, which are post-decrement and pre-decrement, respectively.

Chapter 2 Addison Bostian 18

Project Emerald

1 Float a = 4a.125;
'l a--; //a#""> 42.125

When post-decrementing, the value of the variable is used before it is
decrementing, when pre-decrementing, the value of the variable is used after
it is decrementing.

1 Float x,y = 42;
2 Float a= --x; II a#=> 41 .0
.~ Float b = x-- ; I I b #=> 42 .0

The ++ operator increments the numeric value of the operand. The ++
operator takes one argmnent in either of the following ways: operand++ and
++operand, which arc post-increment and pre-increment, respectively.

1 Float a = 41 .;
2 a++; I I a #=> 42 . o

When post-incrementing the value of the variable is used before it is
incremented, when pre-incrementing the value of the variable is used after it
is incremented.

1 Float x,y = 42;
2 Float a = ++x; I I a #=> 43.0
:1 Float b = x++; I I b #=> 42. 0

Methods

These methods are available to the Float class, as well as all subclasses of
Float due to inheritance. Methods generally start with a lowercase letter,
continuing in camel case. They are called with the conventional dot (.)
operator, with parentheses after the name. For example, the following code
tL.<;es the .copy() method to put a copy of x into y.

• Float x = 42;
:! Float y = x.copy(); / /y = 42.0

Chapter 2 Addison Bostian 19

Project Emerald

public void copy()

The .copy() method returns a new instance of the Float class that is the
exact same as the calling object.

1 Float x = 42;
1 Float y = x.cop~();
:1 I I at this point x and y have the same value
·• x++;

I I at this point x = 43.0, y = 42 .0

public Bool equals(Float i)

The .equals(Float i) method returns a Bool indicating whether or not the
calling object and the parameter have equal values. This method ret.urns
false if the parameter is null.

t Fl0at x, y = 42;
2 B00.l a : x. eql).a·l s ,(y) ; I I a = trn,e

~ Float z = 43;
G B0ol b = x. equals.(z); I I b = fal.se
G

7 Floa~ i;
!I Bool c = x.equals(i); lie = false

public String toString() The . toString() method returns a String con
taining the numeric value of the Float.

Properties

Floats' properties are accessed with the dot (.) operator, similar to methods,
with the difference being that properties never have parentheses at the end
or parameters. Properties generally start with a capital letter and continue
in camel case.

Chapter 2 Addison Bostian 20

Project Emerald

2.2.4 Long

The type Long represents an Integer, a whole number. A Long is a 64 bit
value and by default can store any value from -9.223372e+ 18 to 9.223372e+18.
Long is a subclass of Int, so it inherits Ints operators, methods, and prop
erties. I describe here only the operators, methods, and properties that are
overrode or added in the Long class.

Initialization

An Long can be initialized in any of the following ways.

1 Lol?,g a = 42 ;
2 Long b = new Long(42 ~;
:J LoiJ:g ·c = 47+12*2; I I c #=> 71

Multiple Longs can be initialized at once in the following ways.

1 Long a = 41, b = 42, c = .!1:3; I I a #=> 41 , b #=> 42, c #=> 43
l L<t>ng d, e , f = 42; I I d #=> 42, e #:> 42 , f #=> 42

Binary Operators

There are several operators available to the Long class such as: +, -, I, *,
%, ==. These operators all function in the normal mathematical way, with

the double equals representing equality checking. These operators be used
between any two Longs or subclasses of Int.

The + operator arithmetically adds its two operand numeric value to
gether and evaluates to the result. The + operator is a binary infix operator.
For example, after the following code has executed, c contains 42.

1 Le~g a= 35;
Lo.iig b = 7;

~ Long ·c = a + b; II c #=> 42

The - operator arithmetically subtracts the numeric value of operand 2
from t.he numeric value of operand 1 and evaluates to the result. The -
operat.or b; a binary infix operator. For example, after the following code has
executed, c contains 42.

Chapter 2 Addison Bostian 21

Long a = 56;
2 Long b = 14;
1 Long c = a - b; I I c #=> 42

Project Emerald

The * operator arithmetically multiplies its two operands' numeric w:~.lues
top;ether and evaluates to the result. The * operator is a binary infix operator.
For example, after the following code has executed, c contains 42.

, Long a = 7;
Long b = 6;

:1 Long c = a * b; I I c #=> 42

The I operator arithmetically divides the numeric value of openmd 1 by
the numeric value of operand 2 and evaluates t.o the result. The I operator iH
a binary infix operator. For example, after the following code hm; executed,
c contains 42.

1 Long a "' 126;
). Long b = 3;
:J Long c = a I b; I I c #=> 42

The return type of I is the type of its most precise parameter. An Long
divided by and Long is always and Long, however a.nd Long divided by a
Double evaluates to a Double .

1 Long a = 12. b = 8;
:1 Double c = alb; I lc #=> 1

1 Double d = 8;

c. Double e = aid; I Ia #=> 1.5

The % operator is the modulu~ or mod operator. It returns the remainder
of the numeric value of operand 1 divided by the numeric value of operand
2. The % operator is a binary infix operator. For example, after the following
code has executed, c contains 2.

, Long a = 14, b = 3;
~ Long c = a % b; I I c #=> 2

The ** operator rai~e~ the numeric value of operand 1 to the power of
the numeric value of operand 2 and returns the result. The ** takes two is
a binary infix operator. For example, after t.he following code ha~o; executed,

Chapter 2 Addison Bost.ian 22

Project Emerald

c contains 32.

, Long a = 2, b = !!; ;

·• L<mg c = a**b; I I ~=> 32

Unary Operators

There are several unary operators available to tho Long class such as ++,
These unary operators work on a single Long.

The -- operator decrements the numeric value of the operand. The -
operator takes one argument in either of the following ways: operand-- and
--operand, which are post-decrement and pre-decrement, respectively.

1 Long a = 43;
a- ; I /a #=> 42

When post-decrementing, the value of the variable is used before it is
decrementing, when pre-decrementing, the value of the variable is used after
it is decrementing.

t L0ng x,y = 42;
2 L0ng a:= - -x; II a#=> 4 1
;J L0ng b = x.-- ; I I b #=> 42

The ++ operator increments the numeric value of the operand. The ++
operator takes one argument in either of the following ways: operand++ and
++operand, which arc post-increment and pre-increment, respectively.

t Long a= 41;
1 art+ ; I I a #=> 42

When post-incrementing the value of the variable is used before it is
incremented, when pre-incrementing the value of the variable is used after it
is incremented.

, Long x., y = 42 ;
2 Long a = ++x; I I a #=> 43
1 Long b = x++; I I b #=> 42

Chapter 2 Addison Bostian 23

Project Emerald

Methods

These methods are available to the Long class, as well as all subclasses of
Long due to inheritance. Methods generally start with a lowercase letter,
continuing in camel case. They are called with the conventional dot (.)
operator, with parentheses after the name. For example, the following code
uses the .copy() method to put a copy of x into y.

t Long x = 42;
~ Long y, = x. c·opyO ;

public void copy()

The .copy() method returns a new instance of the Long class that is the
exact same as the calling object.

t Lc:>ng X = 42;
2 Long y ~ x . copy();
:1 I I at this point x an:d y have the same value
4 x+t;

5 ll at this point x "'43, y =- 42

public Bool equals(Long i)

The .equals(Long i) method returns a Bool indicating whether or not the
calling object and the parameter have equal values. This method returns
false if the parameter is null.

• Lc:>ng x, y = 42 ;
z Bc:>ol a = x.equals(y); II a = true
3

4 Long 2 = 4@;
r, Bool b = x.equals(z); II b =false

Long i;
s Bo.ol c = x.equals(i); lie = false

Chapter 2 Addison Bostian 24

Project Emerald

public String toString() The . toString() method returns a String con
taining the numeric value of the Long.

Properties

Longs' properties are accessed with the dot(.) operator, similar to methods,
with the difference being that properties never have parentheses at the end
or parameters. Properties generally start with a capital letter and continue
in camel case.

public Bool PositiveOnly: PositiveOnly is used to ~et he range of values
a particular Long may hold. If true, the Long may contain whole num
bers from 0 to 1.8446744e+19, if false it may contain whole numbers from
-9.223372e+18 to 9.223372e+18. Thi~ property h~ a default value of false.
If this property is set to true while the calling object has a value less than 0,
the value of the object is set to 0, otherwise the value is unaffeeted.

2.2.5 Char

The type Char represents a single ASCII character.

Initialization

An Char can be initialized in any of the following ways.

1 Char ,a = ·ra: ' ;
1 Char 19- = :ae·w Char('~·') ;
:1 Ghar c = 77 ; I I c #=> M

Multiple Chars can be initiali:t:ed at once in the following ways. A char
acter initialized with a number will be assigned the appropriate character
based on the numeric values in the ASCII table.

1 €bar a = ' a', b = 'f', '"= 1-03 ; / / a#=> a, b #=> f, c #=> g
2 Char d , e, f = 1 A' ; I I d #=> A~ e #=> A, f #=> A

Chapter 2 Addi~on Bostian 25

Project Emerald

Binary Operators

There are several operators available to the Char class such as: +, -, I,
*, % **, ==. These operators all function in the normal mathematical way,
with the double equals representing equality checking. These operators be
used between any two Chars or a Char and and Int., or subclass of Int. When
using mathematical operators on a Char, the numeric value of the Char based
on the ASCII table is used.

The + operator arithmetically adds its two operands numeric value to
gether and evaluates to the result. The + operator is a binary infix operator.
For example, after the following code code hru:; executed, c contains the char
acter 'h'.

1 €har a = ·<a' ;
2 ehar b = 7;

:l Char c = a + b ; I I ·c #=> h

The - operator arithmetically subtracts the numeric value of operand 2
from the numeric value of operand 1 and evaluates to the result. The -
operatoris a binary infix operator. For example, after te following code has
executed, c contains the character 'b'.

1 Char a= ' d>.;
2 Char b = 2;
a ehar c = a - b; I I c #=> b

The * operator arithmetically multiplies its two operands' numeric values
together and evaluates to the result. The * operator is a binary infix operator.
For example, after the following code has executed, c contains the character
'F'.

' Char a= 7;
2 Char b = 10;
:1 Char c = a * b; I I c #=> F

The I operator arithmetically divides the numeric value of operand 1 by
the numeric value of operand 2 and evaluates to the result. The I operatoris
a binary infix operator. For examples, after the following code has executed,
c contain~; the character '('.

Chapter 2 Addison Bostian 26

Project Emerald

1 Char a
z Char b

:; Char c

'z';
3;
a I b; // ~ #~> (

I

2

j

The % operator is the modulus or mod operator. It evaluates to the
remainder of the numeric value of operand 1 divided by the numeric value of
operand 2. The % operator is a binary infix operator. For example, after the
following code has executed, c contains the character '1 '.

Char a. = 'p ; ;
caar b ''P;
Ohar [; = 5; ~~ b; II c #=> 1

The ** operator raises the numeric value of operand 1 to the power of the
numeric value of operand 2 and evaluates to tho result. The ** is a binary
infix operator. For example, after the following code has executed, c contains
the character '@'.

1 Char a = 2 , b = 6 ;

2 Ghar c = a-**b; I I c #=> <0

Unary Operators

There are several unary operators available to the Char class such as ++,
These unary operators work on a single Char.

The -- operator decrements the numeric value of the operand. The -
operator takes one argument in either of the following ways: operand-- and
--operand, which are post-decrement and pre-decrement, respectively.

1 Char a = c v ' ;
a- -; //a#=> u

When post-decrementing, the value of the variable is used before it is
decrementing, when pre-decrementing, the value of the variable is used after
it is decrementing.

1 Char x ,-y = B·;
2 Char a: = --x; I I a #=> A
3 Char b = x-- ; I I b #-=> B

Chapter 2 Addison Bostian 27

Project Emerald

The ++ operator increments the numeric value of the operand. The ++
operator takes one argument in either of the following ways: operand++ and
++operand, which are post-increment and pre-increment, respectively.

t Char a = "a' ;
~ a++; I I a #=> b

When post-incrementing the value of the variable is used before it is
incremented, when pre-incrementing the value of the variable is used after it
is incremented.

1 Char x,y = <F';

·l Chfll' a = ++x; II a #=> G
1 Char b = x++; I I b #=> F

Methods

The below methods are available to the Char class, as well as all subclasses of
Char. Methods generally start with a lowercase letter, continuing in camel
case. They are called with the conventional . operator, with parentheses
after the name. For example, the following code uses the .copy() method to
put a copy of x into y.

1 Char x = 42 ;
'! Char y = x.co-py(); 1/y #=> 42

public void copy()

The .copy() method returns a new instance of the Char class that is the
exact same as the calling object.

1 Char x = 42;
2 Char y = x..c0pyO;
:1 II at thi s point x and y have the same value
•l :x++;
~ I I at this point x #=> 43 , y #=> 42

Chapter 2 Addison Bostian 28

Project Emerald

public Bool equals(Char i)

The .equals(Char i) method returns a Bool indicating whether or not the
calling object and the parameter have equ~l values. This method returns
false if the parameter is null.

1 Char x:, :.-· = -l'Z' ;
2 Boo1 a = ;.< . ~u·als(y). ; I I a = t'rue

4 Cllar z = 43 i
5 8001 b = ~~ .. equ.ah f z:) ; I I b • false
6

1 Char i;
8 8001 e • ~-e~uals(i) ; //c =false

public Int tolnt()

The .tolnt() method returns the numeric ASCII value of the character.

public String toString()

The toString method returns a String containing a single character repre
senting the Char's value.

Properties

Chars' properties are accessed with the dot (.) operator, similar to methods,
with the difference being that properties never have parentheses at the end
or parameters. Properties generally start with a capital letter and continue
in camel case.

2.2.6 String

The type String represents a sequence of characters such as "abc" or "hello
there" .

Initialization

Strings ean be initiali:1.ed in any of the following ways.

Chapter 2 Addison Bostian 29

Project Emerald

1 String a = "hello worl d11 J

2 String a = new String(t1goodbye 11' } ;

Multiple Strings can be initialized at once in the following ways.

' Strin:g a: = 11 ijello 11
, i7. = '1woitld 11

, c = 11 G0odbye 11
.;

Strj,ng "lil, e , ;f = "HellG 'il'orld" ;

Operators

The String class provides several operators such as: +, - , *, <, > , .. ,., • [] .
These operators may be used between any two Strings or a String and any
other object that has operators defined for working with Strings, such as the
Char class. In these cases t.he Char is converted to a String via the t.oString()
method before the operation is performed.

The + operator is the concatenation operator. It evaluates to a new
string containing operand 1 concatenated with operand 2. The + operator is
a binary infix operator. For example, after the following code has executed,
c contains "Hello World".

• String a = 11 Hello '1
;

2 String b = "world! " ;
:~ String c = a + b; I I e #=> "Hell9 W0rld" ;

The < operator compares strings alphabetically. This operator evaluates
to true if operand 1 comes alphabetically before operad 2, and ev.:~.luates to
false otherwise The < operator is a binary infix operator. For example, after
the following code has executed, bool contains true and b contains false.

1 String a = "'a,b·c '' ;
2 String b = "abd'' ;
:; Bool b0ol = a < b; I I bool #=> true
4 bool = o, < a; I I bool #=> false

Capital letters appear earlier in the ASCII table than lower case letters.

1 Stri ng a = ''abc ";
2 String b = "XYZ'' ;
3 Bool bool =a< b; II bo0l #=> false
4 bo0l = b < a ; I I b0ol #=> true

Chapter 2 Addison Bostian 30

Project Emerald

The > operator compares Strings alphabetically. This operator evaluates
to true if operand 1 comes alphabetically after operand 2, and evaluates to
false otherwise. The > operator is a binary infix operator. For example, after
the following code has executed, boot contains false and b contains true.

t String a = "abc" ;
z String b = ''abd" ;
3 Bool b'o,pl =- a > b,; I I bool #=> false
" bool = b > a; I I bool #=> true

Capital letters appear earlier in the ASCII table than lower case letters.

1 String a = ''abc'' ;
2 Stri~g }::> = "XYZ";
:J Bool booi = a > b; I I bool #=> true
4 bool = b > a; I I bool #=> false

The == operator checks for equality between two strings. If the operands
are exactly the same, it evaluates to true. Otherwise it evaluates to false.
The ="" operator is a binary infix operator.

1 String a = "hello" , b = "goodbye" , c = uHello" , d = "goodbye" ;
2 Bool bool = .a == b; I I bool #=> false
3 bool = a == ~; I I bool #=> false
4 bool = b = .d; I I bool #=> true

The - operator is overloaded and accepts two parameters. If used with
a String s and au integer n, it returns s with n characters removed from the
right-hand side of the string.

1 String ~ = ·~'Hello World!'' ;
~ String b = s - 4; I I b #=> 11Hello Wo"

If used with two Strings s and r, it returns s minus all instances of r.

t String s = "Goodby.e I " ;
2 String r = "o·" ;
,. String a = s-r; I I a #-=> ''Gdbye!"
' a = s - "odb"; II a #=> "Goye! 11

~ s '"' "Test ttt" ;
1 a = s - "tt''; I/ a #=> Test t

Chapter 2 Addison Bostian 31

Project Emerald

The * operator takes a String as operand 1 and an integer as operand 2.
It evaluates to a String containing n copies of operand 1, where n =operand
2.

1 String a = "abc 11
;

z Strin~ b = a*3; I I b #=> 11 abcabcabc 11
;

The [] operator takes a String as parameter 1 and an integer as parameter
2 in this way: parameter! [parameter 2] . This operator returns the character
at index parameter2. This operator is an alias of charAt method described
below.

1 String str = "Hell0 Worldl 11
;

2 Char c = stT[O]; II c #=> H
:~ c = str [4] ; I I c #=> o
4 //str[4] is equivalent to str.charAt(4)

Methods

These methods are available to the String class, as well as all subclasses
of String. Methods generally start with a lowercase letter, continuing in
camel-case. They are called with the conventional dot (.) operator, with
parentheses after the name. For example, the following code uses the .copy()
method to put a copy of x into y. The collection methods map, reduce, and
select are al~o available to String, for more information see the collections
reference.

public void copy()

The .copy() method returns a new instance of the String class that is
the exact same as the calling object.

1 String x = "Hel1o 11
;

1 String, y = x. c0py();
.1 II at this point x and y have the same value

public Bool equals(String s)

The .equals(String s) method returns a Bool indicating whether or not

Chapter 2 Addison Bostian 32

Project Emerald

the calling object and the parameter have equal values. This method returns
fal~e if the parameter is null.

1 String x, f >=
11hellc:> '1 ;

2 Bool a = :~ , 131q_ua1s: t.Y} ~ I I a = true

4 String z = ''' world'';
5 Bo:ol b :-: . EKij~~.ce.(::) ; I I b = false

St;ring ·s;
s Bool c = ~. eiEriJ,al:a. ~ i) ; I I c = false

public String[] split(String delimiter) The .split(String delimiter) method
returns an array containing the contents of the String, split at every instance
of the delimiter.

1 String s = 11hello,there,world" ;

3 String [] arr = s. spi.it .(", ").;
• I /arr #=> ["hello" , "there", "world"] ;

public String[] split(Chat• delimiter) The .~plit(Char delimiter) method
returns an array containing the contents of the String, split at every instance
of the delimiter.

1 String s = "hello, there, world" ;

3 StringO .arr = s.split.(',');
4 //arr #=> ["hello·" , ''there", "w0rld"J l

public String subString(Int b, Int e)

The .subString(Int b, Inte) method returns a String that is a subsection of
the original string from the character at index b and up to but not including
the character at. index e. The first character is index zero.

Chapter 2 Addison Bostian 33

' String a = "Hello W.orld l '' .;
2 String b. = a. subStringp, 5); I I b #=> ello
., b = a. ~ubString(l, 9); I I a #=> ello Wor

public void subString! (Int b, Int e)

Project Emerald

The deRtructive .subString(Int b, Int e) method keeps a subsection of the
calling String from the character at index band up to but not including the
character at index e. The first character is index zero.

1 St~ing a = ''Hello Wol;'ld! " ;
1 a.suoS'tring!(1,5); II a#=> ello
:} a· = ''Hello World! " ;
., a. subString! (1 , 9); /1 a #=> ello Wor

public Char charAt(Int i)

The .charAt(Int i) method returns a Char, the char~ter at the specified
index. The first character is index zero.

1 String st;r = "Hello Wolild! '' ;
2 Char c = str. Ghar-At(~) ; I I c #=> o
:1 c = st:r.charAt(O) II c 3 #o:> H

public Int length()

The .length() method returns an Int representing the number of characters
in the String.

1 S:tring st:r = "Hell o \o!orld! '' ;
2 Int i = s~ .l&ngtln.O r I I i #=> 12
3 i = "abc " .le!);gtiirO ; II i #=> 3

public String concat(String str)

The .concat(String str) method returns a String that is the calling String
concatenated with the parameter String.

Chapter 2 Addison Bostian 34

Project Emerald

1 String str = ''Hel lo" ;
~ String c = '' World! '1 ;

1 String r = str. Gpncat (c); I I r #=> Helle Worldl
1 r = 11 Stri~g 1 11 • con cat (1' Strin& 211

); I I r #=> String !String 2

public void concat!(String str)

The destructive .concat(String str) method concatenates the parameter
String onto the end of the calling String.

t String str = '1Helloh;
'1 String c = " Werld! " ;
1 str. cencat l (d ; I/ str #=> Hello World!
1 r = 11 String 1" + "Stri ng 2 11

; I I r #=> String 1St ring 2

public Bool contains(String str)

The .contains(String str) method returns true if the calling String con
tains an instance of the parameter String.

1 String str = '18ome e:xamp1e text" ;
2 Stiring s = "Some" ;
3 Beol b0ol = str. c:::0ntains (s); I I boo::!. #=> true
4 b9ol str. cqntains (''Some text 11

) ; I I bool #=> false
•, bo0l = str. contains ("t") ; I I b0ol #=> true

public Bool contains(Char c)

The .contains(Char c) method returns true if the calling String contains
an instance of the parameter Character.

1 String str ~ "Some exampl e text 1' ;

2 Char ch = 'S 1
.;

3 Bool bool = str. contains (ch) ; II bool #=> true
·I bool = str. contains (c 'E') ; I I boel #=> false
5 bool = str.eQntains('t'); II b.ool #=>true

Chapter 2 Addison Bostian 35

Project Emerald

public Int indexOf(String str)

The .indexOf(String str) method returns an Tnt, the index of the first
character ,of the parameter String in the calling String. It returns null if it
does not exist.

1 String str = "Hel l o W<:>rld !" ;
2 Int i = str. index0f'("Hello '1); I I i #=> 0
.3 i = .st:r. inclexOf ("Woir'1) ; I l i #=> 6
, i = str. indexOf ("Word 11

) ; II i #=> null

public Int indexOf(Char c)

The .indexOf(Char c) method retmns an Int, the index of the parame
ter character in the calling String.

' String str = "Hello Worl d!" ;
2 Char ~ = 'W ' ;
:1 Int i = str. :i!ndexOf (e) ; II i #>=> 6
., i = str . inde:lCOf (' a ') ; I I i #=> null

public Bool isEmpty()

The .isErnpty() method returns a Bool, true if the string contains no char
acters, false if it contains at least one character.

• Sting str = "%'' ;
2 BooJ. b = ·st~ . i sEm:pty () ; // b #=> false
:1 str = '' " ;
4 b = str. isEmpty(); I I b #=> true

public String replace(Char old Char, Char newChar)

The .replace(Char oldChar, char newChar) method returns a string where
all instances of the Char oldChar in the String have been replaced with the
Char newChar.

Chapter 2 Addison Bostian 36

Project Emerald

I String ·St r = "Hello v/orl dl 11
;

1 String r = str. repl ace('1' I 'w'); II r #=> Hewwa Wor1>1d!
• r = str. repl ace.(' ' , '_ .,); II r #=> Hello_Worldl

public void replace!(Char oldChar, Chat· newChar)

The destructive .rcplacc(Char oldChar, Char newChar) method replaces
all instances of the Char oldChar in the String with the Char newChar.

1 String M;r : "Hello \·l·o;rld1 11
;

2 s~r.replace (1 1 : , 4 W' t ~; II str #=> Hewwo Worr.od'!

public String replace(String oldString, String newString)

The .replace(String oldString, String newString) method returns a string
where all instanceB of the String oldString in the String have been replaces
with the String newString.

1 String str = ''This is goodbye l l " ;
2 String r = str. replace (11 is 11 , "watermelon 11) ;

:1 I I r #=> Tb.wate,rmelon watermelon goodbye ! !

public void replace! (String oldString, String newString)

The destructive .replace(String oldString, String newString) method re
places all instances of oldString in the String with newString.

l String s t:.r = "Thi s is gooel.bye r! II;

2 str. r .epiLaea I (11 is '1
,

11'-,qate.rraelon:") ;
ll str #=> Tl:lwaterrnelon 'ilatermelon goodpye ! l

·I str. Depla~e.(u·~atermelon" , '1 11
); I I str #=> "l'h goodbye I I

public String trim()

The . trim() method returns the calling String with all of the leading and
trailing whitespace removed.

Chapter 2 Addison Bostian 37

Project Emerald

1 String str = 11 Hello World 11
;

2 String r = str.trim(); I I r #=>Hello World

public void trim!()

The destructive .trim() method removes all leading and trailing whites
pace from the calling String.

1 String s t!T." = " Hel10 World OJ •

'
1 str. t t"J:m! 0 ; II str #=> Hello Werld

public String toUpper()

The .toUpper() method returns a String where all of the lowercase al
phabet characters in the calling String have been uppercased. All other
characters are unchanged.

1 String str = "Hell<:> Werld 1 '';
2 S.tring r = str. to.Upper 0 ; I I r #=> HEllO WO.RLO!

public void toUpper!()

The destructive .to Upper() method uppercases all lowercase alphabet char
acters in the calling String. All other characters are unchanged.

' String s,tr = "Hel1<:> World! ";
2 stt . t'fi'Jp]lall." ~ 0 ; I I str #=> HELLO WO~D!

public String toLower()

The .toLower() method returns a String where all of the uppercase alpha
bet characters in the calling String have been lowercased. All other characters
are unchanged.

1 String str = "Hello W0rld I '' ;
~ S~ring :t = str. toL<:>wer 0; I I r #=> hell<:> w<:>rld!

Chapter 2 Addison Bostian 38

Project Emerald

public void to Lower!()

The destructive .toLower() method lowercases all uppercase alphabet char
acters in the calling String. All other characters are unchanged.

' String str = "Hello World! " ;
., str.:toLower ! (v ; II st r #=> hello w0rld l

Properties

Strings' properties are accessed with the dot(.) operator, similar to methods,
with the difference being that properties never have parenthese..<; at the end
or parameters. Properties generally start with a capital letter and continue
in camel case.

public Bool UpperCaseOnly: If UpperCaseOnly is true all lowercase
characters in the String will be uppercaRed. UpperCaseOnly is false by de
fault.

public Bool LowerCaseOnly: If LowerCaseOnly is true all uppercase
characters in the String will be lowercased. LowerCaseOnly is false by de
fault.

2.2.7 Bool

The Bool type repre~:~ents a binary value, either true or false;

Initialization

Bools can be initialized in any of the following ways.

t Boel a = true ;
2 B00l b = 1 > 4; II b #=> fals.e

Multiple Bools may be initialized in the following ways.

J B0:ol ·a, b , ..; = false ; // a , b , and e are f alse
·1 Bool 4 = true , e = false , f = false ;

Chapter 2 Addison I3ostian 39

Project Emerald

Operators

There are several operators available t.o the Bool class such as { !, ==, &&,
II}. These operators may be used between any two Bools or expressions that
evaluate to a Bool.

The ! operator evaluates to the inverse of the calling Bool.

• Bo0.1 b : false ;
i Bool :t = !b; I lr #=> true
'' r = ! r; II r #=> false

The binary AND operator (&&)evaluates to true if both it's operands are
true, and evaluates to false otherwise.

1 Bool a = true , b = true , <:.> = false;
2 Bool r = a && b j I I r #=> true
.3 r = ,a && c ; I I r #=> false

The binary OR operator (II) evaluates to true if either of it's operands
are true, and evaluates to fal'le if both operands are false.

' Bool a = true , b = true , c = false., ~ = false ;
2 Bool r = a I I b; I I r #;:> true
.1 r = a I I c; I I r #=> true
"' r = c II d; ll r #=> false

The """' is the equality operator. It is a binary infix operator. It evaluates
to true if it is two operands have the same value, and evaluates to false
otherwise

' String a, b = false ;
·2 String c = a == b; I I c 1#=> true
.1 String d = d == a; I I d #=> false

Methods

These methods are available to the Bool class, as well as all subclasses of Bool.
Methods generally start with a lowercase letter, continuing in camel-case.
They are called with the conventional dot (.) operator, with parentheses
after the name. For example, the following code uses the .copy() method to

Chapter 2 Addison Bostian 40

Project Emerald

put a copy of x into y.

1 Bool x = true ;
·t Bool y = b. c<:>py(); I I y #=> true

public void toString() The .toString() method returns a String based on
the value of the Bool. It returns ''true" if the Bool is true, "false" if it is
false.

1 Bool b = true ;
z String str = b. toString () ; I I str #=> tr>ue
:; b = false ;
4 str = b. toS'tringO; II str #=> false

2.3 The Object Class

The Object class is the base for all other classes. Each of the built in types
extend the object class, and all user-created classes implicitly extend the
Object class. This means that all user created objects inherit the basic
methods and properties provided by the object class. Some of these may be
overridden by the sub-objects, but they will always exi1.{t.

2.3.1 Methods

The following methods are available to all objects, and perform the following
actions unless stated otherwise in the documentation for that sub-class.

public String toString()

The toString method returns a String containing the memory address of the
Object. This is meant to be overridden by sub-classes, but in the case that
it is not, it allows reference equality checks.

a Object o1 = new Object();
< Object o2 = o.L ref ;
·1 Db j ect o3 = new Obj e_ct 0 ;

:; String str = o1. toString('); I I str #=> 2F45A92B

Chapter 2 Addison Bostian 41

Project Emerald

1 Bool b = o1. t0StringO == o2. toStringO; I I b #""> true
~ b = 0l.toStringO == o3.toString(); II b #=> false

2.3.2 Properties

The following properties are available to all objects, and perform the follow
ing actions unless stated otherwise in the documentation for that class.

public Object Ref:

This property is read-only and contains a reference to the calling object. It
allows multiple references to the same object. The following example will use
the Int class, but because all objects extend the Object class it will work in
the exact same way with any object.

, Int i = 10;
2 Int b = i. A.ef ; A I b #=> 10
a 1;:> = 12;
~ I I at this point i and b equal i2
~ i--;

" II at this point b and i equal 11

public Stdng Type

The Type property is read-only and contains the type of the calling object.
It can be used to check if two objects have the same type.

l Int i = 10;
~ String st:r = 1' 10 '' ;
:s Bo<:>l b = i. Type = str. Type; I I b #=> false
4 b = i . toStri.ng 0 . Type == s•tr. Type; I 1 b #=> true
., b = ·stli'. Type := Int ; I I b #=> fa,lse

Chapter 2 Addison Bostian 42

t>roject Emerald

2.4 User Defined Objects

Below is the documentation for creating your own objects.

2.4.1 Access Modifiers

AcceHs Modifiers are how we set who can acce~s certain thingH. AccesH mod
ifiers can be used with Fields, Classes, Methods, etc. There are t.hree accesH
modifiers, which each rorrcHpond to an ar:n~.ss level. Tf the access modifier in
a dedaration is left empty, it default~ to protected. The access modifiers are:

• public - AllowH accesH to the world

• protected - Allows access within the containing dass or subclasses

• private - Allows aceess within the containing class

2.4.2 Object Declaration

Class declaration <XmHiHts of <a.ccess modifier>class <identificr><hlock>.
The following class declaration is for a public class named Book, with an
empty code block.

1 public class Book{

:l }

This example depict~ the simplest forrn of a. class declaration. In order to usc
this object we need to be able to create one, or 'new' one. We have not added
a con::;tructor yet, but when a class lacks a constructor a default constructor
that. is automatically generated. The default constructor has the following
structure: public void <da.ss identifier>(). To usc this constructor we use
the new keyword followed by the con~tructor name.

' Book b = nell Book();

2.4.3 Creating Properties

A property is just a variable that i~; ~;tored in an object. A property's ac
cessibility can be altered with the use of access modifiers such as public

Chapter 2 Addison Bostian 43

Project Emerald

and private keywords. To declare a field, simply declare a variable in the
class's code block. Properties conventionally start with an uppercase letter
and continue in camel-case. The following example adds a title property to
our book object.

1 public c1ass Book{
public String Title = "Pr<:>g;x;ammi;ng f<:>r Dummies" ;

a }

To access fields you use the dot (.) operator similar to how you access
Properties.

I B'll•~ ~ = ne~ svo(Dl: \.) ;,
l Std ng s t.r = a .Ti1.;le; // str #=>Programming for Dummies
·' b .!'it ile = "The Biography· of Michael Stall:nan";
., str = b. 'J;'itJ.e0 I I str #=> 'Fh.e ~liegraphy of Michael Stallman

Objects may have as many fields as necessru-y provided they arc uniquely
named.

2.4.4 Creating a Constructor

A user-defined constructor accepts any information needed and set up the
object for use. In almost all cases we will want to create our own constructor.
For example, in our Book class we arc currently setting the title of the book
when we declare the variable. This is something that will usually be done in
the constructor. A constructor's accessibility can be altered with the use of
access modifiers. (e.g. public and private keywords).

, public ·cl ass B•"':'l~-{

l String Tlt14.;
:; public BoJZ~ 0 ·{

':'i t4·e = "P;rogrammillg for 9t)l1.J.l!!ies "·;
.; }

ij }

This is functionally no different than our previous example, but we can now
build on this to create books with dift'erent titles. Up until now, no matter
how many books we create, they all have the same name. This is undesired
behavior, and we would rather be able t.o create Book objects with different
titles from the same class. To do this we need to pass a parameter containing

Chapter 2 Addison Bostian 44

Project Emerald

our desired book title to the constructor. Constructors accept parameters in
the same way methods do.

, public <::lass Bo<!>k{
String Ti.t l e;

:1 public Book(String tH
Title =- t;

5 }

6 }

We may now create books with different titles:

1 Book a = new B0ok(I'The Biography of Mj_chael Stallman 1
');

Boo)! l!> = ne.w B0ok(11Programming for Dummies'');
~ /1 Note that we no longer ha~e a default constructor, there-fore
4 II we cannot do Book c =new 80ok(); anymore, we must provide
5 I I a Stri.Dg parame'ter

2.4.5 Adding Methods to Objects

Whereas Properties add memory to a Class, methods add behavior. In gen
eral, most interaction with an object will be through method calls. A func
tion's accessibility can be altered with the use of access modifiers such as
public and private keywords. Method declaration consists of <access mod
ifier><return type><name>(<parameter List>)<code block >. In the fol
lowing example we create a public method that returns a String and accepts
no parameters.

1 pul>lic cl.ass B00k{
·~ Stx:ing Titl e ;
:1 public Book (String t) {
4 Titl e = t ;

T public String ge'tTitleO{
s return Ti tle ;
!) }

10 }

Methods are called with the dot (.) operator on an instance of au object.

Chapter 2 Addison Bostian 45

Project Emerald

1 Book b = ne'W' Book("Tales of Arkansas");
2 String str = b.getTitle(); // str #=>Tales of Arkansas

Methods that return nothing use the return type void.

1 public class Book{
2 String Title;

(;

public Book(String t){
Title = t;

}

public void setTitle(String t){
~ Title = t;

}
tu }

2.4.6 Overloading Operators

Overloading operators allows user created objects to be compared or aeted
on via. the standard operators, as well as allowing u~er.s to reddine how an
operator cm~cts or acts on an existing object. This can be done with similar
syntax to a method: <access rnodifier><return type><operator><object
type><code block>.

' public class Book{
2 String Title;
:1 Int Rating;

8

public Book(String t){
Title "' t;
Rating = 0;

}

,, //implements the < operator baaed on the alphabetic order of the
books titles.

w public Bool < Book b2 {
11 return Title < b2. Title
12 }

11 //implements the -= operator to decrement the rating of a book
·; public void -= lot H

Chapter 2 Addison Bostian 46

Project Emerald

w 'Rating = Rating - i;
17 }

LB }

2.5 Extending Existing Objects

Existing objects may be extended in order to add functionality to an object,
or to take advantage of functionality that already exists in an object while
creating a more specific class by adding Properties and methods.

2.5.1 Inheriting from Another Object

Inheriting from another object allows the subclass to access any of its parent
class's methods and fields that are not marked private. Sub-classing is also
referred to as extending a class. To inherit from an object, the extends
keyword is u!:ied. In the following example we have our super-class Employee
and sub-class Manager.

1 publ:Lc class Empl oyee{
z String Name;

public Emp1oy.ee(String n){
tfame = n;

5 }

ti }

7

~ pabliG class Manager extends Employee{

ll) }

Available Methods

Any method in the super-class that is not marked private is directly available
to the sub-class. The sub-class also has access to the super-class's construc
tors through the super() function. In the following example the sub-class
uses the super-clas!:i'!:i constructor, to avoid repeating code.

1 public class Employee{
String ·name;

Chapter 2 Addison Bostian 47

Project Emerald

3 public:: Employee(String nD{
4 name = n;

}

1 public String getName(){
return name;

}

10 }

1 • public class Manager extends Employee{
12 public Manager{ String. n) {
J:} super (n); /1 calls Employee ~ s c::onstru,c::tor
1·1 }

!,; }

In the following example we use the two classes above. In it you can see
Manager using one of Employees methods.

• Manager m = new Manager("Steve Hennagin");
2 String str = m.get~ame(); II using one of Employee's methods

Overriding Methods

While sub-classes have access to their super-class's methods, they also have
the ability to override them. This means new functionality can be assigned
to a sub-class with a method that has the same signature as a method in it
is super class.

, publh: •Class fuployee{
2 String nam.e;
:1 public Employ·ee ~Str:i:ng nH

name = n;
.; }

' public String getName 0 {
8 returp. name·;

}

10 }

', public class Manager extends Employee{
1.2 public Manager CString n) {
13 sup~r (n); //calls Employee's constr uctor

Chapter 2 Addison Bostian 48

Project Emerald

14 }

15

1ij //Overriding the getName method in Empl oyee
1• public String getName(){
l<i return. name + 11 , Manager 11

;

19 }

~0 }

2.5.2 Extension Methods

Extension Methods allow you to add functionality to an object without ex
tending the whole object. Extension Methods can be created for any ob
ject, including the built in objects. Extension Method declaration looks like
<access rnodificr><ret.urn type><method name><parameter list>extends
<class to be extended>. The this keyword is used to access the calling ob
ject. In the following example we add an extension method to the Int class
to allow us to square an Int.

1 public Int square 0 extends Int{

x:eturn this .Val.ue~~<this . 'lalue;

Int i = 4;
o Int s = i. square 0 ; I I s #=> 16

Extension Methods may also be used to override methods that already
exist in a class.

1 public cl ass ~lc~~e{

String :firs1~Nam€, l astNe.n:.e ;,

publ ic l:::Jtr-1:~)r $.'~(S:trring :BJame, S'tring li·TZii!!.eH
4 :firs:t<TI ane .= :f!iiCIT!e;

l a:sVIooL'3 = lNa.rriS'i.
u }.

7

& pwblic String gett1~ c.rll~0{
9 returm firstxa.:ne;

10 }

11 }

Chapter 2 Addison Bostian 49

Pro jcct Emerald

tJ I I extension method f<Dr Employee
14 public String getNameO extends Employee{
1;; return this . firstName + " " + this .lastName;
lG }

2.6 Control Structures

Control structures provide a mechanism for non-sequential access of instruc
tions. For example, an if statement is a control structme that allows for a
specific set of instrudiom; to be chosen based on the results of a test.

2.6.1 If Statements

An if statement executes code based on it's boolean condition. If the con
dition is true, it execut~~'l a section of code; if it is false it does not. The
condition of an if statement must evaluate to a boolean value. The code
portion can contain any other code.

• Bool a = true ;
2 Int X = 7;
~ if(a H
4 X = 42;
5 }

" //at this peint x = 42
7

>J if (xl>lOO){
9 X = - 1;

to }

II

12 I I at this point x = 4'2

2.6.2 If Else Statement

Sometimes you want to execute a certain piece of code when some condition
is true, and a completely separate piece of code when the condition is false.
This is what an if-else statement is for. An if-else statement is a normal if
statement followed by an else statement.

Chapter 2 Addison Bostian 50

1 Bool x = 42;
1 String str;
, if (x < 100){

str = "hello" ;
, } else{

str = "world" ;
}

,; //at this point str • hello
•)

II) if (x < 100){
1• str = "hello" ;
~~ } else{

"·' str = "world" ;
1•1 }

"' I /at this point str • world

2.6.3 Else If Block

Project Emerald

The else-if block is used when you have multiple related conditions corre
sponding with multiple pieces of code. An else-if block is an if-else block
followed by another if. This pattern may he continued indefinitely.

l Int x = 42;
2 String str;
:1 if (x == 10){

str = "Logan" ;
~, } else if (x > 30){

atr = "Spencer" ;
} else{

., str = "Nolan" ;
'J }

1,; //at this point str • Spencer
II

1:1. if (x > 9000){
1:1 str = "Porcupine" ;
14 } else if (str == "Spencer"){
1:, X = -1;
_,; }

·, //at this point x ., -1

Chapter 2 Addison Bostian 51

Project Emerald

2.6.4 Switch Statement

A switch statement is used in similar cases to if-else-if block8. It allows only
one expression's value to be compared. A switch ~tatement may also have a
default ca~e. A switch statement compares a value with a set of when clauses,
executing the code after that when and stopping at the next when or the end
of the switch statement, whichever comes first. Switch statements have no
fall-through. The conditions of a switch statement may contain logical &&: or
II operators.

1 Int i = 42;
2 String str;
:1 switch(iH
4 when 7:

str = "hello" ;
when 18 II 0:

.str = '' goodbye" ;
8 default :
v str = "I didn ' t see y;0u" ;

10 }

11 //at this point str #=> 1 didn ' t see you

The < and > operators m~y be used in a switch statement as well.

1 Int .i = 4:2;
2 Char c.;
:1 switehUH
4 when >§.0 :
.-. c = lA' i
I; when <=<42:
7 c = ' E'·) i

!I delfault :
a = 'Z';

10 }

u //at t his p0 t nt c #=> B

2.6.5 Loops

A loop i8 a way of executing a piece of code multiple times. There arc three
types of loops in Emerald: While, do-while, and foreach. Emerald lacks the

Chapter 2 Addison Bostian 52

Project Emerald

typical for loop found in most languages due to the enhanced functionality
of the foreach loop.

While Loops

A while loop is a top tested loop that is used when a piece of code needs to
he executed repeatedly while a certain condition is true. The condition for
a while loop can he anything that evaluates to a Bool. The code inside of a
while loop will never execute if the condition is false initially.

1 Int i = 0;
2 while (i. <.10) {
:} i=i+l;
4 }

s I /this loop executes 10 times and at this point i = 10

i :; 0;

!l ~tri,:1g s:tr = "start 1' ;

!l while(i > 1){
w str = ''end" ;
11 ri = itl;
12 }

13 I / the e<:>de inside this lo<:>p never exeeutes and str "' start

The boolean operators may also be used in loop conditions.

1 Inrt i = 42, j = too;
·2 wh.ile(i == 42 && j >= O){
.1 j--;
4 }

Do While Loops

A do-while loop is a bottom tested loop that is used when a piece of code
needs to be executed repeatedly while a certain condition is true. The condi
tion for a do-while loop can be anything that evaluates to a Bool. The code
in the body of a do-while loop will always execute at least once, even if the
condition is false to begin with.

Chapter 2 Addison Bostian 53

Project Emerald

1 Int i = 0;
2 do{

i--;
4 } while (i >. 0)
s // at this point i = -1

The boolean operators m~y also be used in loop conditions.

1 Int i = 0;
2 B<i>ol b ~ false ;
~ do{

i++;
s } while (i < 100 II b)
o I /this loop executes 100 times

Foreach Loops

A foreach loop executes a piece of code a certain number of times, or iterates
through a collection. The body of a foreach loop may not be executed if
the collection ha.'l a size of zero. A foreach loop has the following structme:
foreach(<iterating variable> in <collection><code block>).

, Int [] ar.r = {~2, 99. 102-,·87} ;
2 Int sum = 0;
:1 fol:each (Int i in arr~ {

s\lln = sum + i;
5 }

6 I I at this point sum .,. 330

A foreach loop can also be used in a way similar to a traditional for loop,
with indexes. This is possible because when an Int is used in this context it
evaluates to a collection of all integers from 0 to the Int.

• Int x = 6. ;
., String s;tr = '' " ;
3 ioreach<Int J. in xH

str = str + i + '1
" ;

5 }

6 I /at this point str = 0 1 2 3 4 5 6 7

A foreach loop may also be used to iterate to a negative number.

Chapter 2 Addison Bostian 54

Project Emerald

, Int x "" -10;
:.~ String str = "" ;
1 foreach (Int i in x){

str = str + i + " " ;
,; }

., //at this point str ~ 0 -1 -2 -3 -4 -5 -6 -7 -8 -9

A foreach loop may also be U!)ed to iterate down to 0.

1 Int x = 10;
1. String str = "" ;
~ foreach (Int i ni x) {

str = str + i + " " ;
}

" //at this point str • 10 9 8 7 6 5 4 3 2 1 0

2.7 Lambdas

A Lambda i1l an anonymous function, and can be written in-line or assigned to
a variable. Lambda variables do not do strict type checking, and are therefore
more prone to runtime errors due to incompatible types. BecauHe strong
type checking is not done, however, any type that supports the operations
the lambda will perform on it way be passed into a lambda.

1 I Ia single line l ambda that returns two times the value passed into
it.

Lambda 1 = (Int x) => return 2*x;
:J

1 //a single line lambda tb,at accepts two numbers a:o.d returns the
product of them

Lambda 1 = (!nt x, Int y) => return X*y;

7 //a multiline l ambda that returns the larger of the two values
passed to it

>!. Lambda higher = (Int x, Int y) => {
" if (x>y){

1 ,, return x;
,, } else{
,... return y;

Chapter 2 Addi:-;on Bostian 55

Project Emerald

1!1 }

11 }

2. 7.1 Calling Lambdas

Lambdas can be invoked by providing expressions to match it's parameter
list.

1 Lambda 1 = (Int ~) => return 2'!<x;
2

;; Int m = 1(5} ; /I m #=> 10

4

5 Lambda .higher = (Int ~. Int y) => {
if(x>y){

.. return x;
1! } else{
II return y;

10 }

II }

12

1:1 Int larger = higher(10, 50); //~a;rge-r #=> 50

2. 7.2 Accepting Lambdas as Parameters

A Lambda may be passed to a function just as like other variable. Any
lambda may be passed to a function that accepts a lambda.

1 t..ambda dou,ple ~ (Int x) =) return 2*x;
2

;; lnt result = math (fb, d<:>uble·) ; II result #=> 20
4

~ Lambda beginning = (String x~ => l'etul?n x. su:bs·tring.(O·, 2};
(j

' result = m.a:th(19, beginning).;
>.1 I I this <;rashes because substr ing cannot be used on Int

w public Int llfat,h(Int x, Lambda 1) {
u return .l6d ;
12 }

Chapter 2 Addison Bostian 56

Project Emerald

2.8 Built-in Libraries

This section contains the built in libraries and utilities for the language such
as the array and li1;t utilities and the system library

2.8.1 Collections

The Collection class extends the object class and is the base class for all
data storage collections such as arrays and lists. The Collection dass itself
is abstract and therefore cannot be instantiated or used directly. It may,
however, be sub-classed. The Collection cla.o;;s contains functions that must
he implemented by sub-classes, ensuring that all collections have some base
set of functions. The Collection class conte~.ins the following methods:

• public Int si7.e()

• public void sort()

• public llool contains(Object o)

• public Bool remove(Object o)

• public void concat(Object o)

• public Collection slice(Int start, Int end)

• public void slice!(Int start, Intend)

• public Int indexOf(Object o)

• public Object get(Int i)

• public Collection map(Lambda l)

• public void map! (Lambda l)

• public Collection select(Lamhda 1)

• public void select!(Lambda l)

• public Collection reduce(Object initialValue, Lambda l)

• public void reduce!(Objeet initialValue, Lambda 1)

• public void each(Lambda l)

Chapter 2 Addison Bostian 57

Project Emerald

2.8.2 Arrays

An Array is a constant time, indexable collection of object1:1. An Arrays
may be created for any type, including user created types. Arrays should
be u1:1ed when access time is important. Accessing an element in an array
takes constant time. By default, Arrays are re-sizable. This behavior may
be disahled with the setResizeable method. Arrays may be declared in the
following ways:

1 Int 0 arr = new Int [50] ;
// arr is an Array to hold integers with an ini tiq.l s i ze of 50 .

~ Str ingO strAr::;ray = [1,2,4,5,4.2,.7];
1 I I strArray is an array holdi ng Strings , with an initial size of 6

public Int size()

The .size() method returns the number of elements in the Array.

• Char [] S:r r : [' A' , ''8 ' , 1 b. ; • J t '] ;
J I n.t i = ar,r .t~ i2e 0;

public void sort()

The .Bort() method sorts the Array from lowest to highest value. Any object
that has the <, > , and ""= operators defined may be sorted.

1 I nt [] .arr = [5, 2, 0, 3, 42, 7] ;
2 arr . soi'·tO; II arr #=> [0,2,3,5 , 7,42]

4 String[] s "' ["abc" , "zxy11 "John"];
.., s. sort 0; I I s #=> ["abc" , "John11

, "zocy"]

public Bool contains(Object o)

The .cont.ains(Object o) method is used to check if an Array contains a
specific valm:. Thi1-1 fund.ion may take up to O(n). If the array is known to
be sorted then this operation takes O(log(n)). The ohject must have the ==
operator defined on it.

Chapter 2 Addison I3ostian 58

Project Emerald

I Int 0 arr = ro' 1, 5, 7 • 42) ;
2 Bool b = arr. cont.ains \2); I I b #=> false
:! b = <irr. eontains ~7) ; I I b #-=> true

public Bool remove(Object o)

The .remove(Object o) method is used to remove an object from an Array.
Returns true if the object existed, false if it did not. The object must have
the "'"" operator defined on it.

1 String 0 arr = ["hello" , "world" , 11goodbye 11
];

2 Bool b = arr.remove~ 1 ' hello"); /1 b #=>true
~ b = an; . rem<:>ve ("Airplane") ; I I b #=> false

public void concat(Object o)

The .concat(Object o) method adds an object to the end of the Array.

1 Int [J arr = t1, 4, 7, 2] ;
:1 arr. eonea.t (3) ; I I arr #=> (1,4, 7 ,2,3]

public Collection slice(Int start, Int end)

The .slice(Int start, Int end) method returns a new array containing the
elements of the original array starting at index start and up to but not
including index end.

1 Int [) a:rr = new [0,5.,4,7,12];
·• Int [] a:r:r2 = arr . slice'(i ,4); I I arr2 #=> [5.4, 7)

public void slice!(Int start, Int end)

The destructive .slice(Int start, Int end) method takes the elements in the
Array from index start up to but not including index end, discarding the
other elements.

1 Int [] arr = [2 , 6 , 12, 9 , 5, 7] ;
• a!t'r.s1icel(2,5); II arr #=> [12,9,5,7]

Chapter 2 Addison Bostian 59

Project Emerald

public Int indexOf(Object o)

The .indexOf(Object o) method returns the index of Object o in the Array.
If the object doesn't exist, -1 is returned.

' St:ring D a-t .!' = ["hello", " gooljtiye 't,, 11 wo.rld:" ,• "beav-er"]
2 Int i = ~h·.i-n.ds!.;:flf ("hellP. world ")~ // i #:> - !l
a i = ax.r. iaote~·:Of< "woxld") 1 // i #=> 2

public Object get(Int i)

The .get(Int i) method returns the object at index i. The get method can
also be accessed with the [] operator.

I Char [) arr = [>a> 1 'b', 'd' > 1 6 1
· , 'f' > 'g ' , 'b') j

'J Char c = arr . get (3); I I c #=> e
a c = ar;r. get (O); I I c #=> a

Char c2 = arr[0]; /1 ~2 #=>a

public void set(Int i, Object value)

The .set(Int i, Object value) method sets the value of a particular index of
an array. The set method can also be accessed with the [] operator.

, Char U ·arr = (• ~' , 'b.t , '.d • , ' e ' , 'f 'J ;
2 a.x-r. se·t CO, 'z') ; I I arr #=> [' z 1 • 1 b 1 , 1 ~P , 1 e' , • f ']

4 ax-r [1] =- 'x' ; / / arr #=> [' z ' , 1 x' , 'd' , 'e' , 'f 7]

public Collection map(Lambda I)

The .map(Lambda 1) method applies a function to each element in the array
and returns a new Array containing the new values, the original Array re
mains unaltered. Map acceptl:l a lambda as a parameter. This lambda must
accept one parameter and the return type must match the type of Array the
result is being stored in. Map accepts either an in-line or declared lambda.

1 Int [] arr = [1 , 2,3,4,5];
Int (J arr2 = arr.map(i => return i *2) ; II arr2 #~> [2,4,6 ,8,10]

Chapter 2 Addison Bostian 60

Project Emerald

The map method does not necessarily have to return an Array with the
same type as the initial Array.

• Int O arr = [1,.2,3,4,5] ;
String O ~r2 = arr .map(i => {

a if (i%2 == 0){
return 11 EVEN" ;,

} else{

}

ll }) ;

ret Ul!'n "ODE>" ;

9 I / at this point arr2 #=> ["OBD" , "EVEN" , "ODD", "EVEN'', "000"]

public void map!(Larnbda 1)

The destructive .rnap(Lambda I) method applies a function to each element
in the array. Map accepts a lambda as a parameter. This lambda must
accept one parameter and the return type must match the type of the Arr~y.
Map accepts either an in-line or declared lambda.

' Stril!-g D arr = [1'hello", 11warld" , "fiigain" , "porcupine''];
2 arr . .map! (s => return s.+=" . ") ;
:~ II arr #=> ["hello . ", "worl d. " , " ~gain ." , "porcupine . "]

public Collection select(Lambda I)

The .select(Lambda 1) method returns a subset of items from the Array where
all items in the subset satisfy a particular condition. Select accepts a lambda
as a parameter. This parameter must accept one parameter and return a
Bool. Select accepts either an in-line or declared lambda.

• String[J :a:rr = [11 hella,'' , ''worl.d" , "hat" , ''happy"] ;
l St.ri ng 0 t"S@!JlU = &"'!' . s.e·I:e.c t (s => re'turn =. . .:;rmt a in;> (I a : n ;
:1 I I at th:is point result contai ns ["hat " , "happy"]

public void select!(Lambda l)

The .seiect(Lambda l) method returns a subset of items from the Array where
all items in the subset satisfY a particular condition, with the result being

Chapter 2 Addif)on Bostian 61

Project Emerald

stored in the original Array. Select accepts a lambda as a parameter. This
parameter must accept one parameter and return a I3ool. Select accepts
either an in-line or declared lambda.

• I nt [] ~r = [1,2,4,&,7,1Q,14,2~.];
,. arr. sel·ect (J:c => return x%2 == ·o) ;
1 //at t his point arr contains [2,4,10,14]

public Object reduce(Object initialVaiue, Lambda I)

The .reduce(Object initialValue, Lambda l) method is used to reduce an
Array to a single value. Reduce accepts a lambda. This lambda must ac
cept two values: the accumulation value and the enumerated value. Reduce
accepts an in-line or declared lambda .

• Int [J ~J.;' = [i. 2 ,4 , 5., 7.a ,13~ ;

2 In:t s· = arl." .rceduce..{(}• t S:JJ...11 , i~) =-> return eum+x) i I I s #=> 42
:! s = arT . reduro C :ILOO , (S'JJ:.-,J ., x) => :t'etu.tn. !?'IEt+x) ; I I s #=> 142

public void each(Lambda I)

The .each(Lambda l) method iterates through each item in the Array, and
applies the lambda 1 to each element.

2.8.3 List

A List is a doubly linked List of object~. A List may be created for any
type, including user created types. A List may be indexed, with an average
retrieval time of O(n). Insertion at the head or tail takes 0(1), a~ does
deletion from the head or tail. A linked list ha.s no set size Limit. A List may
be initialized in the following way~:

• /I nate that no initial s i ze is r equir ed for a List, unlike an
Array

2 String{} 1st = new String{};
, Int{} i : {1, 2, 3, Q, rr, 19, 42};

Chapter 2 Addison Bostian 62

Project Emerald

public void push(Object o)

The .push(Object o) method adds an object to the end of a list. The push
method can also be accessed with the += operator.

1 Int{} 1st = {1,2,3,5.,8:} ;
2 1st ._push(13);
a //at this point 1st #=> {1,2 ,3,5,8,13}
1 lst+=q ;
s //at this point lst #=> {1,2,3,5,8,t3,5}

public Object pop()

The .pop() method removes the object at the end of the list and returns it.

1 Int{} l st = {1,2,3,$,8,13};
2 Int i = lst.pop() ; II i #=> i3
:1 //at thd.s point 1st #=> {1,2,3,4,5,7}

public void shift(Object o)

The .shift(Ohject o) method inserts an object at the beginning of the list.

• Int{} l st = {1, 2 ,3, 4, 5};
2 1st. shift (0);
3 //at this point lst #=> {0,1,2,3,4,·5}

public Object unshift()

The .unshift() method removes the first item in the list and returns it.

, Int{} lst = {1,2,3,4,5};
·1 Int ·X = lst. unshift 0 ; I I x #=> 1

a //at this point 1st #=> {2 , 3,4,5}

public Int size()

The .si:1.e() method returns the number of elements in the List.

Chapter 2 Addison Bostian 63

r Char{} 1st= {'A', '0', 'h', 't ' };
2 Int i = 1st. size() ;

public void sort()

Project Emerald

The .~:~ort() method sorts the List from lowest to highest value. Any object
that has the <, >, and == operators defined may he sort.ert.

1 In'1:{} 1st = {5,2,0,3,42,1};
2 lst.s<:>rtO; II lst #=> {0 , 2 , 3 , 5,7,42}
J

<~ Str~ng{} s = {}"abc", "zxy '' "Jolm" };
" s.sortO; I I s #=>{"abc ", "John" , "z xy"}

public Bool contains(Object o)

The .contains(Object o) method is used to check if an List contains a specific
value. This function may take up to O(n).

r Int{} 1st "' {0, 1,5, 1,4_2};
2 B.ool b = 1st. oont.ai.ns·(2~ ; I I b #=> false
:1 b = 1st. Gontains (7) ; I I b #=-> true

public Bool remove(Object o)

The .remove(Object o) method is used to remove an object from an List.
Returns true if the object existed, false if it did not ..

1 St;ring{-} Il.a'\; = {}''hel lo", n.world" ,"gQ.O:dbye"}l
2 Boo1 b = 1st. r ,aml.ri<J€1 ('1hello") ; I I b #=> t rue
;,~ b .,. 1-st . lf''e·lilE"'\' e ("Airplane ") ; I I b #=> false

public Collection slice(Int start, Int end)

The .slice(Int start, Int end) method returns a new List containing the ele
ments of the original Li~t starting at index start and up to but not including
index end.

Chapter 2 Addison Bostian 64

Project Emerald

1 lnt{} 1~t = new {0,5,4,7,12};
2 Int{} 1st2 = lst.sli<::e(1,4) .; II 1st2 #::::> {5,4,7}

public void slice!(Int start, Int end)

The destructive .slice(Int start, Int end) method takes the elements in the
List from index start up to but not including index end, discarding the other
elements.

, mtO 1 2.t ::::; {~:, 6 . 1~,:9r, s ,7J;

2 lst . eJ.ic e! {2 ,, 5•) i II 1811: #:=:> {12,-9,5 , 7}

public Int indexOf(Object o)

The .indexOf(Object o) method returns the index of Object o in the List. If
t.he object doesn't exist, -1 is returned.

1 String{} 1st = {i'hello", "goodbye'' , "wo.rld'' , "bea~er " };

• Int i = 1st. indexOf{"hello world")'; 1/ i #=> - 1
3 i = 1st. injiexO.f ("world") ; I I i #=> 2

public Object get(Int i)

The .get(Int i) method returns the object at index i. The get method can
also be accessed with the [1 operator.

1 CharO 1st= {'a' , 'b', 'd', 'e', 'f', ·•g•, 'h'};
2 Char c = 1st.get (3); 1/ c # => e
J c = lst. get (0); I I c #=>a
1 c = 1st [2] ; I I <:: #=> d

public void set(Int i, Object value)

The .set(Int i, Object value) method sets the value of a particular index of a
List. The set method can also be accessed with the [1 operator.

, Char{} iU':I' = {'a', 'b', ' d', ' e', ';f ' };

2 arr. set (O, 'z'} ;II arr #=> {'z ' 1 ' b ' , ' d ' 1 'e', ' f'}

Chapter 2 Addison Bostian 65

Project Emerald

4 arr [1] 'x'; II arr #=> {'z', 'x', 'd', 'e', 'f'}

public Collection map(Lambda l)

The .map(Larnbda l) method applies a function to each element in the List
and returns a new List containing the new values, the original List remains
unaltered. Map accepts a lambda rus a parameter. This lambda must accept
one parameter and the return type must match the type of List the result is
being stored in. Map accepts either an in-line or declared lambda.

1 Int{} lst = {1,2,3,4,6};
; Int{} lst2: lst , map{i => return i*2); II lst2 #=> {2,4 ,6,8,10}

The map function does not necessarily have to return an List with the
same type as the initial List.

1 In.t{} 1st= {1,2 , 3,4,6} ;
2 String{} lst2 = 1st . map (i => {

if(i%2 =.= OH
return. "EVEN" ;

} else{

}

8 }) ;

retlR'n '10DD";

9 I /at thi s point lst2 #=> {"ODD", "EVEN", "ODD" , "EVEN''', ' 'ODD"}

public void map! (Lambda 1)

The destructive .map(Lambda I) method applies a function to each element
in the List. Map accepts a lambda as a parameter. This lambda must accept
one parameter and the return type must match the type of the List. Map
accepts either an in-line or declared lambda.

1 Stri:r.lg{} lst = {"hello '' . ''world'" , "again". "porcupine"} ;
2 1st .mii!ip! 's => return 'a+= '' . 11

);

J / /1st#=> {"hello . " , "world.","aga;i·n.'', '''porcupine . "}

Chapter 2 Addison Bostian 66

Project Emerald

public Collection select(Lambda I)

The .select(Lambda l) method returns a subset of items from the List where
all items in the subset satisfy a particular condition. Select accepts a lambda
as a parameter. This parameter must accept one parameter and return a
Bool. Select accepts either an in-line or declared lambda.

' Stri ng{} l ?;t = { 1'aello " , ' ' ~(.orld" , 11)lat '' 1 "happy ''} ;
·• String;{} :t:""S•E'ul t = l~t , se le~·:;t { s =~· return s , •::x:;fit:&Jns<(' ~')) :
;; I I at this poi.n-c result centains {"hat", "happy"}

public void select!(Lambda 1)

The .select(Lambda l) method returns a subset of items from the List where
all items in the subset satisfy a particular condition, with the result being
stored in the original List.. Select accepts a lambda as a parameter. This
parameter must accept one parameter and return a BooL Select accepts
either an in-line or declared lambda.

1 Int{} l~t = {1 ,2,4,5,7,10, 14,21} ;
1 1SJ~.S<ela·:1; .(x => return x?/.2 == @)';

" I /at this point 1st contains {2,4 , 10 ,14}

public Object reduce(Object initialValue, Lambda I)

The .reduce(Object initialValue, Lambda l) method is used to reduce a List
to a single value. Reduce accepts a lambda. This lambda rnul:lt accept t.wo
values: the accumulation value and the enumerated value. Reduce accepts
an in-line or declared lambda.

, Int -'J l st = {:!. , Q . ·~ . fJ, 7,:10, 13};
Int s = lfi'tt . r~~clll·~~(n, ~~l.:llll }:) ==t' return •B'u:m+;:z J ; I I s #=> 42

:~ s = 1st . ~u.e:e (1.0.0 , (sum;;~) => return atwn+:{) ; // s #<=> 142

public void each(Lambda 1)

The each method iterates through eacll item in the List and applies the
lambda l to each element.

Chapter 2 Addison Bostian 67

Project Emerald

2.8.4 Map

A Map is a key-va.lue pair that may be indexed in constant time. All of the
keys must be of the same type, and all of the values must be of the same type.
A Map with Object keys means any object may be used as a key, similarly
a map with object value1::> means and object may be used as a value. A map
may be initialized in the following ways:

1 Map<String , Int> m = new Map 0; I I a map with String keys and Int
values

2 Map, m'2 = new Hal!l'{J ; 1 I a . map with Object keys and values
:, Map<String ~ Jnt> m3 = ·~"red11 => G,, 11 blue" => t~Z"} ;

public void set(Object key, Object value)

The .set(Object key, Object value) method is used to add a key-value pair
to the map. If the key passed to set already exists in the map, it's value is
overwritten with the new value. May al'lo be accessed with the {] operator.

, Map<Char, String?> m = ne.w Map();
2 m . set ('A' , 11 Appile '1) ;

:J m. set ('B·' 1 "Butter");
., I /at this point m #=> {'A' => "Apple'', 'B' => "Butter"}
~ lll['T'] = "T<:>as:t" ; //m #=>{'A'=> "Apple,
~> 1 I 'B' => ".Butter",
1 1/'T' =>"Toast")

public Object get(Object key)

The .get(Object key) method returns the value associated with the given key.
If no value is exists for that key, null is returned. May al~o be accessed with
the [J operator.

1 t~ap<Srtrillg, 'Bool> m = ~" Ar.ka:n$~s " => true ,
11 Alabama" =3> false ,
1'Florida11 =?> true};

4 B<:>ol b = :1 . get ('' Alabama") ·'; I I b #=> fal se
~ b = tt. get{"Arkansas 1'); // b #=> true
(j

, lil = rn '["Atkansas ''}; II b #=> true

Chapter 2 Addison Bostian 68

Project Emerald

public List keys()

The .keys() method returns a List containing all of the keys in the map.

' Map<Str:Lng., Boo~· ... rr; = { "Arkansas " =>· tru~,
2 "Alabamau =)- false ,
:1 ''f1Grida 11 ="> true};
~ String{} s = :.!t. k•3ys 0 ; If s #=> {"Arkans as11

, "Al abama " , "Florida"}

public List values()

The . values() method returns a List containing all of the unique values in
the map.

1 Map<String, Bool> m = {''Arkansas" => true ,
z "Alabama" => false ,
:; "Florida'' =>. true};
4 Bo.el {} b = m. values () ; I I b #=> {true, false}

2.8.5 System

The system library contains methods for interacting with the host operating
system for things such as reading input, writing output, and changing sys
tem settings. Objects in the system object are accessible directly from the
standard namespace.

public File Standardin:

Tho Standa.rdln property contains the current standard in File, which by
default is the command prompt. Any file can be assigned to this property.

public File StandardOut:

The StandardOut property contains the current !::ltandard out File, which by
default is the command prompt. Any file can he a.c;signed to this property.

public void resetStandardln()

Resets standard in to the command prompt.

Chapter 2 Addison Bostian 69

Project Emerald

public void resetStandardOut()

Resets standard out to the command prompt.

Console

The Console object is used to read user input from as well as write output
to standard in and out.

public Bool hasNext() The .hasNext() method returns true if standard
1n has more input, false if not.

public void write(String s) The .write(String s) method writes the string
s to standard out. By default, standard out i::; the command prompt.

public void writeLine(String s) The .writeLinc(String s) method writes
the string s to standard out after appending a new line. This functions as a
line break in the output. By default, standard out is the cornrnand prompt.

public String readLine() The .rea.dLine() method reads standard in up
to the next new line character and returns that string. By default, standard
in is the command prompt.

public String readAll() The .ree~.dAll() method reads all input from stan
dard in and returns that string. By default, standard in is the command
prompt.

public String read() The .read() method reads input from standard in
up to the next whitespacc character and returns that string. By default,
standard in is the command prompt.

public Int readlnt() The .reet.dlnt() method reads input from standard
in up to the next whitespace, parses it to an Int, and returns it. I3y default,
standard in is the command prompt.

public Char readChar() The .readChar() method reads the next charac
ter from standard in and returns it. 13y default, standard in is the command
prompt.

Chapter 2 Addison Bostian 70

Project Emerald

public String readTo(String s) The. readTo(String s) method reads
input from ~;tandard in up to the next occurrence of s, and returns it. If s is
not found, all input from standard in is returned. By default, standard in is
the command prompt.

2.8.6 File

The file library is used to interact. with filc.s. If the fi.k do(·!H not ~!xist., it
will be created. A Files contents me left intact. A file is initialized in the
following way:

1 File in = new File ("input. txt") ;

public Bool hasNext() The .hasNext() method returns true if you have
not reached the end of the file, false if not..

public void write(String s)

The .writc(String s) method writes the string B to the file.

public void writeLine(String s)

The .writcLinc(String s) method write.s t.he strings to the file after appending
a new line. This functions as a line break in the output.

public String readLine()

The .readLine() method reads the file up to the next new line dmrad.cr and
returns that string.

public String readAll()

The .rcadAH() method rcadH all input. from t.he file and returns that st.ring.

public String read()

The .read() method read~; input from the file up to the next whitespace
character and returns that string.

Chapter 2 Addison Bostian 71

Project Emerald

public Int readlnt()

The .readint.() method reads input from the file up to the next whiteHpace,
parses it to an Int, and returns it.

public Char readChar()

The .readChar() method reads t.he next character from the file and returns
it.

public String readTo(String s)

The .readTo(St.ring s) method reads input from the file up to the next oc
currence of s, and returns it. If s is not found, all input from standard in is
returned.

public void clear()

The .clear() method deletes the entire contents of the file.

2.8. 7 Convert

The convert library is used to convert between one type and another.

tolnt(String s)

The .tolnt(String s) method accepts a String containing only a number and
returns the integer value of that number.

1 String s = "42" ;
2 Int oc = Convertc.t0.Int(s); /1 x #=> 42

tolnt (char s)

The .tolnt(char s) method accepts a character that represents a a number
and returns the integer value of that number.

, Char c = '7' ;
2 Int x = C0mrert. tolnt (c~; I I x #=> 7

Chapter 2 Addison Bostian 72

Project Emerald

toFloat(String s)

The .toFloat(String s) method accepts a String containing only a number
and returns the floating point value of that number.

1 String ? = ''3 . 14159" ;
J Float x = Oonvert.toint(s); // x #=> 3 . 14159

toDouble(String s)

The .toDouble(String s) method accepts a String containing only a number
and returns the floating point value of that number.

1 String s = "3.14159" ;
~ 9oub~e X= €onvert.toint(s); //X #e> 3 . 14159

Chapter 2 Addison Bostian 73

Chapter 3

Code Examples

This section contains example code written in Emerald, as well as similar code
written in Java and/or Ruby. The code is written using the conventions and
idioms from the language it is written in.

3.1 Summing All Items in an Array

Emerald

1 lnt[J .Cl.!lSX = [1,2, 3 , 41, , 5, ·~)

2

:1 I:nt mm =- M"X. redurce (·@ ,, (aWl!!~ x.) => return ~unr+=x.) ;

\\at this ~~i~t .m£m = 21

Java

1 Inti] a rr = [1 1:2 ,3 ,•1,5, 6]'
2 Int S\l,lf. = ID ;
3 fi:>d i:rat :.. = 0; i < arr.l-:;n:J:gj::'li; i++){
4 s.uar+=arr [iJ ;

}

74

Project Emerald

3.2 Retrieving All of the Even Elements From
an Array

Emerald

a ln't [j evens = arr . ·&e19!:tb: =)' return 1<1%.2 = @~ ;

1 I /evens #=> [2 , 4 ,6 ,8]

Java

' Int (] arr = [1, 2, 3, 4, 5, 6, 7, 8, 9] ;
2 List<Int> evens = new List<Int>O;

4 for (Int i = 0; i < arr.length; i++){

5 if~arr [i] % Q = O){

6 evens.add(arr[i]);
1 }

8 }

9 II evens #=> [2 ,4-, 6, 8]

3.3 Find the Sum of All Digits in a List

The input string will come from standard in.

Emerald

1 I.nt [] i:up1::1,t = Qp..;ns el_e. r ·so.d.Ld;;Qa() .tltiJ.y (:~ => return O ·il~VEiit't . ~0,:Iut (:-~)) ;
2 Int s11.rm = irrput. re.(auc,s{'O, Qsum, x} => return ·s~mt=x} ;
3 Gonsol,e. :..-ri te!:.irte (Sll!:l:,) ;

Java

, S<::anner in = ne~ Sca:tu:"ts·rt: ~S?f, S'ten:. ini' ;
String [] inf!nt = in . hea-~'tLine ~ } . Stp-l i 't{ " ") ;

:J Int sum = 0;
4

Chapter 3 Addison Bostian 75

Project Emerald

6 sum+= Integer. pars,eint (i,nput [i]) ;
7 }

~~ Syst'em. oult . println (sum) ;

3.4 Find the Highest Number in a File

The File is named 'input. txt' and contains a comma separated list of positive
numbers. The result of the program will be printed to standard out.

Emerald

, IntO iiruput ;:: new FHe ("input . txt1'). readLiue O .•map (..: => return
C0<n~ert . t oiiJi-t (:-:).J ;

~ Int bcLgp.eBt = inpat. r ad:uc.e .(el,
(lri,s•b:est, :.;) => return "" > hig\last ? x h~ghest);

., Com~o~~. ,,.~i~~i.in~h·ig'll.est.) ;

Java

Scanner in = new e,c~e.;dnew Pile (II input. txt II)) ;
2 St ring[] input= in.l!J:cexttine().split (", ");

G for{rnt i = 'G; i < it!l:p1At .len:g;;th; i H)'(
, if ('Imege;r .. par:se irtft (j.l.TJ;[Jtlt [i]) > ni~ast-) {
K highest = Integ•e.x .pa).~s:ei)f;t Cinp11t [i] 'l

}

lO }

u ~fl'S t;.eu •. ou:t . prin;I~J..t'I(il:i~eat:) ;

3.5 Summing Letters

Input will come from a file, 'input. txt', and each line will consist of a character
and an integer value for that character, separated by a comma. The program
will output the sum of 'a', 'r', 'k', 'a', 'n', 's>, 'a', 's'.

Chapter 3 Addison Bostian 76

Project Emerald

Emerald

, t11ap<String, tnt> n:.aJ• = new ~,ta.pO j

2 File : = new .FLle (11 i.nput . txt ll ~ ;

:}

-1 Strlng0 [] arr = r . r•B.adJ·.llO . sp.li-z,, ''\n11 ?. . map (:~: => return ~.spli't

(1 "I J) ;

~ art . .ea.,;~(:.: =-> :ney [2::0~. J = x [1]) ;

li).t sum = "arkansas" .r-3d~lce (O., (sum , ;.:) => :retila:n SUJ'tllf-= 'l':lap{J~]).;

il

,, (Wl!Ie.."\l.e . w-.r±t,eLine(s!Mn'~ ;

Java

Scpnner in = new ScamLeJ:t (new Eile ("input . txt t• H ;
:~ HashMap<String, ~te-ge,t> !Leap, = new Uashll.av-<>0;

~ while (in .~.<J,SNe~t,Lin;e:O) {

" String Ii:me = in . M~tL:ktl.e 0 i
6 String ke y, = U.ne. sube~tdng(6 , L) ;
1 Int value = Im~sger . ~l;;,l'I"sei7l:t (ii~e . s1llp~t+ing (2~) ;

map .,put (}::ey , value);
~ }

tO

11 Stricng 0ut =- "arkansas" ;
12 IDJt SIUllL = G ;
a:1 forUnt i = ·O; i < out .Q.Sillt@t DJ.{); i ++)',{
1~ s·nnli-= m.ap. get (out. eo:betri~.§(i, i+1n ;
I~ '\.

16 Sys:tem. out . ?-rifl:t·i~ (~) ;

3.6 CD Organizer

CD Organizer is a program that keeps track of a CD collection. It allows
users to view their collection, add new CO's to it, remove CO's from it, and
search for CD's.

Chapter 3 Addison Bostian 77

3.6.1 Java

Main class

1 import java.io.File;
import java.io.FileNotFoundException;

~ import java.io.PrintWriter;
1 import java. util. Scanner;

r; public class Main {

Project Emerald

public static String [] genres = { "Classical 11
, "Rock" , 11 Jazz" , 11

Country" , "Latin" , "Pop" , "Gospel" ,
" "Contemporary" };
9 public static Scanner in ~ new Scanner (System. in) ;

Ill

u public static void main(String[J args) throws
FileNotFoundException {

12

,, Link head = new Link(null , null);

,> read!n (head) ;
lv

•1 showMenu () ;
~~ Int choice= in .nextint();
,, in.nextLineO;
'2ll

21 boolean stale = false ;

"'> while (choice != 9) {

21 switch (choice) {
~., case 1;
~·; enterNew (head) ;
27 viewAll(head);
21; stale = true ;
2'l break;

·'" case 2:
:Jt view All (head);
:n break;
a;; case 3:
,, search(head);

Chapter 3 Addison Bostian 78

Project Emerald

.IT

Ill

II

12

break ;
case 4:

delete(head);
viewAll(head);
stale = true ;
break;

case 5:
save(head);
stale = false ;
break;

default :
System. out .println("Please enter a valid command.");
break;

}

.HJ

GU if (choice == 9) {
System. out .println("Save your changes? (y/n); 11

);

if (in.nextLineO.toUpperCase().equals(11Y11
)) {

save(head);
}

}

.)6

'' showMenuO;
.;" choice = in .nextintO;
~;, in. next Line 0 ;
l"i(l }

Iii

1)2 }

711

"i I

private static void enterNew(Link head) {
System. out. println("Enter the artist:");
String artist= in.nextLine().toUpperCase();
System. out .println(11 Enter the title:");
String title= in .nextLine().toUpperCase();
System. out .println("Enter the year: 11);

Int year= in.next!nt();
printGenresO;
Int genre= in .next!nt();
in.nextLine();
CD next= new CD(title, artist, year, genre);

Chapter J Addison Bostian 79

Project. Emerald

•r; while (head. getNext 0 ! = null &&: (head. get Next() . get CD() .
getArtist().compareTo(next.getArtist()) < 0 I I (head.getNext() .
getCD().getArtist().compareTo(next.getArtist()) -- 0 &&: head.
getNext().getCD().getYear() > next.getYear()))) {

'l" head = head.getNextO;
7" }

<~o Link l = new Link (next, head. get Next()) ;
~I

R2 head.setNext(l);
~:; }

'" private static void viewAll(Lin.k head) {
,;, System. out .println("ARTIST TITLE GENRE YEAR");
~· while (head.getNext() != null) {
~~ head= head.getNext();
s~ System. out .println(head.getCD());
()0 }

!I r System. out . println 0 ; I I for extra line after output

!>·• private static void search(Link head) {
~i System. out .println("Search by (1) Artist or (2) Genre?");
!Jfi Int choice = in.nextintO;
r,., in.nextLineO ;// eat new line after input

<>D if (choice == 1) {

roo System. out .println(11Enter Artist (all or partial name):");
w 1 searchArtist (in. nextLine () , head) ;
~~ } else {
IU:: System. out .println(1'Enter Genre:");
llh searchGenre(in.nextintO, head);
!m; in .nextLineO;

10', }

l•.lS

tn!l private static void searchGenre (Int genre, Link h) {
r.o while (h.getNextO != null) {
11: h = h.getNextO;

Chapter 3 Addison Bostian 80

Project Emerald

·12 if (h.getCD() .getGenre() == genre) {
. I'!· System. out .println(h.getCD());
1.1 }

1.:, }

1u; System. out .printlnO;
117 }

111'1

11,1 private static void searchArtist(String artist, Link h) {
.2u while (h.getNextO != null) {
121 h = h.getNextO;
122 if (h .getCD 0. getArtist ().contains (artist)) {
12:1 System. out .println(h.getCD());
12~ }

t2o }

~~" System. out . println () ;
127 }

l?.u private static void delete(Link head) {
1 ;;o System. out . println ("Enter the title and artist of the CD to

delete 11
);

~~; System. out .println("Title: 11);

~~·1 String title = in.nextLineO. toUpperCase();
1s:< System. out .println("Artist: 11);

~'J·I String artist = in . next Line() . to UpperCase() ;
;:s;,

1u> while (head.getNextO != null) {
~,,~ if (head.getNextO .getCD() .getArtist() .equals(artist) &&

head.getNext().getCD().getTitle().equals(title)) {
1:<~ head.setNext(head.getNextO .getNext());
1:~~) }

:n1 head = head.getNextO;
l~) }

ll2 }

ttl private static void save(Link head) throws FileNotFoundException
{

11:; PrintWriter p = new PrintWriter(new File("collection. txt"));

: 1• while (head.getNextO != null) {
1 ·~ head = head. get Next 0 ;

Chapter 3 Addi~on Bostian 81

Project Emerald

1'"1 p.println(bead.getCDO .toFile());
t,;a }

1,;1 p. close();
1,;z }

J:,:;

1;;., private static void readln(Link bead) throws
FileNotFoundException {

~"·> Scanner f = new Scanner(new File("collection. txt"));

,,;7 while (f.basNextLine()) {
,,,~ String(] input= f.nextLine().toUpperCaseO.split(", 11);

11;o CD n = new CD(input (0] , input [1] , Integer. parselnt (input
[2]), Integer.parselnt(input(3]});

lf"i.

bead.setNext(new Link(n, null));

I(< I bead = bead.getNextO;
I();) }

1(;7 }

um private static void showMenuO {
Fn System. out.println(11CD Organizer -- Enter your choice\n." + "

171

17'~

17:;

17 I

F~

.. 'if.i

~ 77

1':"~

1 r~J }

1. Enter a New CD\n" + "2. View all CDs\n" + "3. Search for a CD
\n" + "4. Delete a CD\n" + "5. Save\n" + "9. Exit the program\n"
) ;

}

private static void printGenres() {
System. out .println("Genre Number Genre Type");
for (Int i = 0; i < genres.length; i++) {

System. out . println (i + 1 + " " + genres (i]) ;
}

}

Chapter 3 Addison Bostian 82

Pro jcct Emerald

CD class

1 public class CD {
private String title, artist;
private Int genre, year;

public CD(String title, String artist, Int year, Int genre){
& this .title = title;
~ this .artist = artist;
~ this. year = year;

this .genre = genre;
IU }

II

12 public String toString(){
·~ return title + " " + artist + " 11 + genre + 11

" + year;
.I }

public String toFile() {
J•; return title+ ", 11 +artist+
I>' }

211 public String getTitleO {
21 return title;
22 }

II if ,

2:1 public void setTitle(String title) {
2·! this, title = title;
2o }

~;; public String getArtist () {
To return artist;
2~ }

+ genre +

~v public void setArtist(String artist) {
Jo this .artist = artist;
;JI }

n public Int getGenre () {
:11 return genre;
H }

;,, public void setGenre (Int genre) {
:;,, this . genre = genre;
.17 }

,, public Int getYear() {

Chapter 3 Addh;on Bostian

U II , + year;

83

:s>) return year;
~ll }

41 p~blic void se~Year,(Int y.ear) {
~2 this . year =- year;
4:! }

4~

45 }

Link class

• public class Link {
private L±n.k ne~ ;
private GID cd;

4

o public L:i,n:k(CD <'ld , Link aeJ:e.tH
6 this .cd = cd;

t his .next : next;
ll

9

10

ll

12

l:l

14

15

16

17

l>:i

19

20

21 }

pubHc Liinlt getNextO t
return ne.*t.;

}

public eo getGDO {
return cd;

}

public void setNext(L.ink 1) {
p.ext = 1;

}

3.6.2 Emerald

Main program

Project Emerald

1 String (] &.;mr•;;s = { H(llassioall't , '1Rocku , 11 Ja:zz'1 , "Gcmntry" , "Latin '1

, ''Pep" , "Gospel1' , "Co'ntemporarry '' };

.1 (.1}[] cde: = new CiY[03 .;

Chapter 3 Addison Bostian 84

Project Emerald

, readin();

7 Bool stale false ;

~ do{
10 show Menu() ;
• 1 Int choice = Console. readint () ;
, , Console. readLine () ;

"'
11 switch(choice){
1.·. when 1:
1" enterNewO;
" when 2:
1>~ viewAllO;
.9 when 3:
211 search();
2: when 4:
22 delete();
2~ when 5:
<4 save();
<c· default :
J.(; Console. wri teLine ("Please enter a valid conunand. ");

" }
'li'j.

·w } while (choice != 9);
'JIJ

" public void enterNew(){
:$>. Console.writeLine("Enter the artist:");
:11 String artist Console .readLine(). toUpper();
:." Console, writeLine("Enter the title:");
"' String title = Console.readLine(). toUpper();
"'; Consol.writeLine("Enter the year:");
'F Int year = Console. readint () ;

:•~ Console. writeLine("Genre Number Genre Type");
;:1

;I

Int counter = 1;
genres.each(x => Console.writeLine(counter+-1- + "
x));

Chapter 3 Addison Bostian

" +

85

Project Emerald

11 Int genre = Console. read!nt 0 ;
11 Console.readLine();
-b cds+= new CD(title, artist, year, genre);
•h

cds.sort();
-li< }

w

·,,) public void view All 0 {
:,t System. out .println("ARTIST TITLE GENRE YEAR");
c>J cds.each(x => Console.writeLine(x));

.·,,:, public void search 0 {
Console.writeLine("Search by
if (Console.read!nt() == 1){

, .. , Console.readLineO;

(1) Artist or (2) Genre?");

:.t~ Console. writeLine ("Enter Artist (all or partial name):'');
"" String artist = Console. read,Line 0 . to Upper 0 ;
"' cds. each(x => {
1;2 if (x.Artist. contains(artist)){
I> I Console. wri teLine (x);
().•1 }

(j(, }) ;

,;n } else{
1;~ Console.writeLine("En.ter Genre:");
ti1' Int genre = Console. readlnt 0 ;
r;!l Console. readLine 0 ;
ro cds.each(x => {
?l it (x .Genre == genre) {
·~ Console.writeLine(x);
<:1 }

7) }) ;

75 }

7G }

77

?~ public void delete(){
?'' Console. wri teLine ("Enter the title and artist of the CD to

delete");
;;:1 Console. wri teLine ("Title: 11) ;

~~ String title= Console.readLine().toUpper();

Chapter 3 Addison Bostian 86

Project Emerald

>.~?. Console.writeLine("Artist: ");
~~ String artist Console.readLineO.toUpperO;

~.:. cds. each(x => {
if (x.Artist ==artist && x.Title

cds.remove(x);
-'!~ }

8!) }) ;

\>0 }

!I'J public void save() {

title){

,,1 File output = new File("collection. txt");
!H output. clear 0 ;

~ll cds. each (x => output. wri teLine (x. to File()));
!l'.' }

'>!> public void read In 0 {
li>o File f = new File("collection. txt");
101

102 f .readAll(). spli t("\n") .each(x => {
1oJ String[] parts = x.split(', ');
'~'~ cds+= new CD(parts[O], parts(1], Convert.to!nt(parts[2]),

Convert.toint(parts[3]));
1():, }) ;

)()(, }

111.~ public void showMenu(){
11.1~ Console.writeLine("CD Organizer -- Enter your choice\n" + "1.

Enter a Ne.., CD\n" + "2. View all CDs\n" + "3. Search for a CD\n"
+ "4. Delete a CD\n" + "5. Save\n" + "9. Exit the program\n");

1111 }

CD class

1 public class CD {
• private String title;

:1 property String Title{
get{

return title;

Chapter 3 Addil:>on Dostian 87

Project Emerald

/; }

set{
title = value ;

!I }

10 }

11 private String artist;
12 property String Artist{
•:1 get{
t-1 return artist;
L.:; }

w set{
17 artist = value ;
1~ }

]\) }

·,o private Int genre;
.,, property Int Genre{
-n get{
2:J return genre;
2-1 }

25 set{
'Ui genre = value;
27 }

21\ }

2~ private Int year;
:~o property Int Year{
:11 get{
:12 return year;
33 1
34 set{

year value ;
:JG }

:J7 }

:J!) public CD(String t, String a, Int y, Int g){
~ title = t;
11 artist = a;
4't year = y;
n genre = g;
44 }

Chapter 3 Addison Dostian 88

4G

47

48

4D

,;o

Sl

G2

~l.'J

5··

!).5

~6

57

~\$

.)\)

60

61

1>2

6:~

64

()5

Project Emerald

pW>lic Strin·g t:{i$.b~i,ng0{

retwn td,tllli + '1
'1 + artist + " " + g·enre + " " + 1r.ear ;

}

public String :;afi'i le (J {
Ji'SttU:"n title + ", '' "- artist +

}

public Bool < CO. cd{

II II , + .genre +

return artist < od.Aa·t:ist ~:Jl y:ear: < cd .Vear;
}

public Bool > GD -::-.d.{
return arti s't. > c~l . .?;:lrtis·t ~.et y~~<u: > cd . ',LG:ar ;

}

public 80~1 ~ CD ~6{

U II

'

r&turn ;a;rtis .t == cd.A::rtist && year cd. Year.;
}

}

Chapter 3 Addison Bostian

+ ye_ar;

89

Chapter 4

Conclusion

After I completed the doeumentation for Emerald, I wrote the code for the
examples section. This was something I had been looking forward to, and
I was not dioappointed. I found that the language wa.o;; easy to write, made
logical sem;e, and most of all, was extremely fun. I didn't tackle any huge
problems, but I feel like I wrote enough code to say that there arc no huge
mistakes or problems in the language.

During the process of designing Emerald I had to make several difficult
decisions regarding what to put in the language. One of the things I found
most challenging was not making the language feel cluttered. I wanted the
language to be flexible yet clean and uncluttered. Making it flexible was
fairly easy: just h!:!.ve larger built-in libraries and multiple options to perform
the same task, eaeh with certain advantages. However, this quickly starts
to feel cluttered. Making the language uncluttered Wl:IS fairly easy as well:
just reduce the size of the included libraries and make one way to do things.
However, this can be limiting to the programmer. I worked very hard to
try to find tlu~ right balance between these two extremes, although I fed
as if I wasn't completely successful. There are oorne parts of the language
such as the Collections, where I feel like there should be more options and
more functionality in the built-in libraries. Overall, the language is clean and
uncluttered, though T think it could have benefited from a bit more duU.er
in order to he even more flexible.

One of the other areas I ended up not being completely happy with is
the operator overloading. Operator overloading is something th!:l.t can be
extremely powerful, and I wanted to ensure that it was acces~ible to pro
gramrnen>; however, l could never get it to feel right. Whenever I would use

90

Project Emerald

it, I always felt like something was wrong, or off. 1 believe part of that is
becam;e I haven't done much operator overloading in other languages, and so
the whole concept is new, but I think part of it aJ!:lo came from an imperfect
implementation of the concept.

The lambda section was one that I put off for aH long as poHsible. I have
seen too marty terrible implementations and didn't want to end up with one
in my language. In the end, the lambda section serves its purpose, but it's
not perfect. To reduce the chance of creating something awful, T stripped
the lambdas down to the bare minimum. 1 did not implement any checking,
such as when passing a lambda to a function theres no way to know if you
were passed a lambda matching what you're expecting. This, as well as many
other common lambda fcatureH, I found extremely difficult to implement well,
and opted to instead remove them from the language. I am not particularly
happy with the way this section turned out, and if I were to do it again this
would be one of the sections that I'd Hpend more time on.

4.1 Additions That Did Not Happen

There are several things that I wanted to be in the language that, for one
reason or another, ended up not making the cut. Some were for technical
reasons, some were simply from a lack of time.

Array slicing is something that 1 always fonnd annoying in Java, yet ex
ceptionally easy in Python and Ruby. Despite this, 1 ended up implementing
a method-based version, similar to Java, rather than an operator based ver
sion, similar to Ruby. l do still feel like my implementa.tion is better than the
Java implementation, but not as nice as the Ruby irnplernenta.tion. I cho~e
to do the method-based version because there was no precedent in Emerald
for any operator-based slicing: and the Array would have been the only place
it was used. So, instead of adding a new operator and a new set of rules to
go with it, I decided it would be simpler to just use a method.

I originally wanted to add many more included utilities for the eomrnon
types. I wanted to add thinp;s such as a math library for the number types,
dictionary /word libraries for Strinp;s, as well as a few other features. I ended
up just, not. having enough time to implement these libraries.

Exceptions were a beast I did not even attempt to conquer. I had sev
eral ideas about how I wanted to handle exceptions, starting with how Java
handles exceptions a.nd making alterations to fix t.he many annoying aHpects.

Chapter 4 Addison BoHtian 91

Project Emerald

I realized very early on that, because exception1l are embedded into almost
every part of a language, implementing an exception system could take just
as long as developing the rest of the language, so I put them on the shelf and
never was able to get hack to them.

Chapter 4 Addison Bostian 92

	Ouachita Baptist University
	Scholarly Commons @ Ouachita
	2018

	Project Emerald: Designing a Language to be Fun
	Addison Bostian
	Recommended Citation

	tmp.1552931446.pdf.Vs6XO

