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DIRECTIONAL RINGLET INTENSITY FEATURE TRANSFORM FOR TRACKING 

 

Evan Krieger, Paheding Sidike, Theus Aspiras, Vijayan K. Asari 

 

The University of Dayton, Dayton, OH 45469, USA 
 

ABSTRACT 

 

The challenges existing for current intensity-based histo-

gram feature tracking methods in wide area motion imagery 

include object structural information distortions and back-

ground variations, such as different pavement or ground 

types. All of these challenges need to be met in order to 

have a robust object tracker, while attaining to be computed 

at an appropriate speed for real-time processing. To achieve 

this we propose a novel method, Directional Ringlet Intensi-

ty Feature Transform (DRIFT), that employs Kirsch kernel 

filtering and Gaussian ringlet feature mapping. We evaluat-

ed the DRIFT on two challenging datasets, namely Colum-

bus Large Image Format (CLIF) and Large Area Image Re-

corder (LAIR), to evaluate its robustness and efficiency. 

Experimental results show that the proposed approach yields 

the highest accuracy compared to state-of-the-art object 

tracking methods.    

 

Index Terms— object tracking, Kirsch mask, Gaussian 

ringlet, image enhancement, feature extraction 

 

1. INTRODUCTION 

 

Object tracking in low resolution wide area motion imagery 

(WAMI) datasets is a challenging task. The challenges for 

tracking in WAMI data include object occlusion, rotation, 

scaling, illumination changes, and background variations. 

Most object tracking algorithms intend to tackle these chal-

lenges using various feature extraction techniques. Several 

feature extraction methods use intensity-based histograms 

that perform only by using intensity information and creat-

ing a histogram of features for classification. The feature 

extraction methods that use intensity-based histograms dif-

fer in how they partition the image for constructing the his-

togram. Scale invariant Feature Transform (SIFT) and 

Speeded Up Robust Features (SURF) methods are scale 

invariant feature descriptors [1,2]. SIFT and SURF have 

been shown to be improper choices for the small object 

tracking in WAMI data. The Histogram of Oriented Gradi-

ents (HOG) descriptor uses simple gradient filters, such as 

Prewitt filters, to create a gradient image [3]. The gradient 

orientation of localized sections of the image is then used to 

compute the feature descriptor. The Local Binary Pattern 

(LBP) method is a texture descriptor that creates a de-

scriptor for each pixel based on its neighboring pixels [4]. 

 
The Rotation Invariant Local Binary Pattern (RILBP) cre-

ates a rotation invariant feature descriptor by using the mag-

nitude of the discrete Fourier transform of the histogram [5]. 

The Rectangular Grid (RECT) method uses a rectangular 

grid pattern to partition the image for feature extraction [6]. 

The equal distance circular grid (CIRC-ED) method is cre-

ated by partitioning the image into different equal distance 

circular rings [7]. This method is illumination and rotation 

invariant and can also handle partial occlusions. The equal 

area circular grid (CIRC-EA) method is similar but the im-

age is partitioned by circular rings with equal areas [8]. The 

use of square ring histograms was proposed as an improve-

ment of the RECT method in [9]. Improved features can be 

created using center weighted histograms as proposed for 

the rectangular grid in [10]. The circular grid methods can 

also weighs the different rings (WCIRC-ED and WCIRC-

EA) with an emphasis on the center ring to obtain a stronger 

feature [11].  Recently, a feature tracking algorithm, named 

Gaussian ringlet intensity distribution (GRID) [11], is pro-

posed which showed robustness for rotationally invariant 

tracking. Due to background variations, such as different 

pavement or ground types, and object structural information 

distortions, the abovementioned feature based tracking 

methods may encounter problems. The main reason is that 

the intensity changes around the target objects causes fea-

ture mismatching. These challenges necessitate a stronger 

feature descriptor to be constructed. Therefore, we propose a 

Gaussian ringlet masking strategy that utilizes rotational 

invariance of the Gaussian ringlet and directional edge in-

formation of the Kirsch kernel. The proposed technique, 
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Figure 1. Proposed DRIFT scheme. 
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Directional Ringlet Intensity Feature Transform (DRIFT) as 

seen in Fig. 1, weighs the intensity and edge information of 

the reference object with the ringlet features to be robust to 

object distortions and background variations.  

 

2. PROPOSED METHOD 

 

The proposed algorithm can be described from four aspects; 

feature extraction, intensity limitation, Kirsch masking, and 

nonlinear enhancement. These aspects robustly handle ob-

ject tracking challenges including occlusion, rotation, orien-

tation, and illumination.   

 

2.1. Feature extraction: Occlusion and rotation handling 
The proposed object tracking scheme is depicted in Fig. 2. 

In the first frame, the center point and the radius of the ref-

erence object is selected.  The method uses a Kalman filter 

to estimate where the center of the object will be in the next 

frame. The estimation is determined using the previous in-

formation of the object to predict its trajectory. This estima-

tion is then used to determine the search area for the object. 

The search area is determined through properties of the 

camera setup and the estimated properties of the object. 

These properties are used to determine the maximum dis-

tance, in pixels, the object can travel in one frame. This dis-

tance is used as the radius of the search area. The feature 

extraction method is then used to find the features in the 

search area. Classification is used to determine the most 

likely center point candidate from the extracted features. 

The classification used in this tracking method is determined 

by the minimum Earth Mover’s Distance [12]. The most 

likely point is obtained along with a confidence factor. A 

threshold is used with the confidence factor to determine if 

the obtained point is valid. If the confidence is high the ob-

tained point will be considered the new center pixel of the 

object. If the confidence is low, the estimated point from the 

Kalman filter will be used as the new center pixel of the 

object. If an occlusion occurs, the Kalman filter will be used 

as the location estimator until the object exits the occlusion. 

The final step of the tracking process is to use the new cen-

ter point information to update the Kalman Tracker and the 

reference object features.  

In the first step of feature extraction we use intensity-

based histograms on an image that is partitioned using 

Gaussian ringlets [11]. A ring method like in CIRC [7] is 

used except that each ring is not a discrete filter but a Gauss-

ian ring function. The center Gaussian ring is the Gaussian 

function 

 𝐺1(𝑥, 𝑦) =  𝑐𝑒
−

(𝑥−𝑥𝑜)2+(𝑦−𝑦𝑜)2

1
2
(𝑅𝑖−𝑅𝑖−1)

2

                    (1) 

where 𝑐 is a constant, 𝑥𝑜 and 𝑦𝑜 are the coordinates of the 

center points, and 𝑅𝑖 is the radius of ring 𝑖. The other Gauss-

ian rings are computed as 

 

 
Figure 2. Object tracking method.        

       𝐺𝑖(𝑥, 𝑦) = 𝑐𝑒
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1
2
(𝑅𝑖−𝑅𝑖−1))2

1
2
(𝑅𝑖−𝑅𝑖−1)

2

       (2) 

A histogram is calculated for each ring with respect to 

the Gaussian ring as a mask. These histogram are normal-

ized using  

𝑁𝑖 = ∑𝐻𝑖(𝑣)

𝑉

𝑣=0

                                (3) 

where 𝑁𝑖 is the normalization factor for ring 𝑖, 𝐻𝑖  is the his-

togram for ring 𝑖, and 𝑉 is the number of bins in the histo-

gram. Each value of the histogram is divided by this normal-

ization factor to equally weight each ring of the histogram. 

Additional weighting can also be applied to the histograms 

to emphasize the central rings. For this evaluation, a total of 

four rings each having 32 bin histograms were used to re-

duce the feature size without a loss of accuracy.  

 

2.2. Intensity limitation: Speed improvement 

The second proposed aspect of the feature extraction method 

is to limit the search area of the image. In the GRID algo-

rithm, each pixel of the search area is computed for feature 

matching. This can be computationally intensive, especially 

as the search area increases. By limiting the search area, the 

computation time can be decreased significantly with little 

effect on the accuracy of the tracker. Therefore, we use an 

intensity based pixel selection method to remove areas that 

have a large illumination difference compared to the refer-

ence object.  This is achieved by first finding the average 

value of the test area of each point in the search area ex-

pressed by 

𝐼𝑎𝑣𝑔(𝑥, 𝑦) =
1

𝑑𝑜
2 ∑ ∑ 𝐼(𝑛,𝑚)

𝑦+𝑑𝑜

𝑚=𝑦−𝑑𝑜

𝑥+𝑑𝑜

𝑛=𝑥−𝑑𝑜

                 (4) 

where 𝐼𝑎𝑣𝑔(𝑥, 𝑦) is the image of averaged test objects, 

𝐼(𝑥, 𝑦) is the search area image, and  𝑑𝑜 is the object diame-

ter for a square object.  The search area is then computed by 

comparing 𝐼𝑎𝑣𝑔(𝑥, 𝑦) to a set of low and high limits. These 

Search area selection 

Next frame  

  

Object center selection (initial frame) 

 

Feature extraction 

 

Center point selection 

 

Kalman tracker updated  

 



limits are based around the average of the reference image 

computed as 

𝑙𝑖𝑚𝑖𝑡ℎ𝑖𝑔ℎ =
1

𝑑𝑜
2 ∑ ∑ 𝐼𝑟𝑒𝑓(𝑛,𝑚) + 𝑙

𝑑𝑜

𝑚=0

𝑑𝑜

𝑛=0

               (5) 

𝑙𝑖𝑚𝑖𝑡𝑙𝑜𝑤 =
1

𝑑𝑜
2 ∑ ∑ 𝐼𝑟𝑒𝑓(𝑛,𝑚) − 𝑙

𝑑𝑜

𝑚=0

𝑑𝑜

𝑛=0

                (6) 

where 𝑙 is the limiting intensity difference factor. The value 

of 𝑙 will determine the amount of undesired search area 

points that will be removed. A higher 𝑙 will decrease the 

speedup potential while reducing the likelihood of removing 

the best matched object. 

It was found through experimentation that the accuracy 

for most objects will not be affected until the limiting factor 

𝑙 is small (~15 for an 8 bit image). This is due to the proper-

ties of the Gaussian ringlet algorithms and the Kalman 

based tracking method. The GRID algorithm is affected by 

large illumination changes and will be unable to match ob-

jects that have gone under global illumination changes. In 

addition, the tracker will use the Kalman filter results for 

insufficiently matched objects. A large global illumination 

change will result in a mismatched object with or without 

the limiting factor. The only real risk is for partially occlud-

ed objects.  A large enough limiting factor is needed to re-

tain the partially occluded objects as valid search points. 

 

2.3. Kirsch masking: Orientation handling 

The third part of the proposed algorithm is the inclusion of 

features from Kirsch operator filtered images into the fea-

ture descriptor. It is observed from the results of the tracked 

cars using GRID method that the vehicles are lost when 

there is a change in intensity in the background around the 

target object. This occurs because the reference object is a 

square around the vehicle center which results in pavement 

and nearby objects being included as part of the reference 

object. As the vehicle drives, the area around the car can 

drastically change in intensity. In order to reduce this effect, 

some edge information of the object can be utilized as part 

of the feature descriptor.  This will be accomplished using 

Kirsch compass kernels to filter the input frame. 

The Kirsch compass kernels are non-linear edge detec-

tors [13]. The Kirsch operator includes a single kernel mask 

that is rotated in eight directions. This rotation finds the 

maximum edge strength in 45 degree increments. The ker-

nels are seen in Fig. 3. It is found that not all eight directions 

were needed to have a positive impact of the accuracy of the 

tracker. It is determined that by only using four kernels the 

accuracy is increased significantly while the computation 

time is kept low.  

The implementation of the Kirsch compass kernels into 

the tracking algorithm is to first filter the frame with each of 

the four kernels. The four filtered images are used with the 

Gaussian ring masks to create the feature histograms. The 

four histograms are then added together and vertically con-

catenated with the Gaussian ringlet histograms of the unfil-

tered image to create the final 8 by 32 feature descriptor as 

shown in Fig. 1.  

 
To create the feature histogram with the Kirsch filtered im-

age, the image should be normalized first to be between     

[0 255].  The normalized filtered image can be expressed as  

𝐼𝐾𝑛𝑜𝑟𝑚 = {

  0                                          𝐼𝐾𝑖𝑟𝑠𝑐ℎ ≤ −127
𝐼𝐾𝑖𝑟𝑠𝑐ℎ + 127,     127 < 𝐼𝐾𝑖𝑟𝑠𝑐ℎ < 127
255,                                    𝐼𝐾𝑖𝑟𝑠𝑐ℎ ≥ 127

     (7) 

This normalization will allow the filtered images to be 

used like the 8-bit intensity images as inputs for the feature 

extraction.  To reduce the amount of information that is cut-

off in this normalization, the filtered image may be ex-

pressed as   

𝐼𝐾𝑖𝑟𝑠𝑐ℎ(𝑥, 𝑦) 

= ∑ ∑ 𝐾𝑖𝑟𝑠𝑐ℎ𝑖(𝑚, 𝑛)
1

𝑏
𝐼(𝑚 + 𝑥, 𝑛 + 𝑦)

1

𝑛=−1

1

𝑚=−1

      (8) 

where 𝐾𝑖𝑟𝑠𝑐ℎ𝑖is the Kirsch kernel in the 𝑖th direction and 𝑏 

is a constant that reduces that maximum and minimum value 

of 𝐼𝐾𝑖𝑟𝑠𝑐ℎ(𝑥, 𝑦).  The value of 𝑏 should be selected to reduce 

the amount of information cutoff in the normalization in Eq. 

7. The value for 𝑏 selected for evaluations is 𝑏 = 10 which 

gives a better feature descriptor by increasing the range of 

the typical vehicle edge. The four Kirsch kernel filtered im-

ages of a reference object can be seen in Fig. 1. 
 

2.4. Nonlinear enhancement: Illumination handling 

The fourth part of the proposed algorithm is to use a nonlin-

ear image enhancement function to improve the illumination 

in the imagery. The image enhancement will allow object in 

underexposed or overexposed regions to be more visible. It 

also allows better features to be obtained by the feature ex-

traction. The self-tunable transformation function (STTF) 

enhancement algorithm was selected as the preprocessing 

algorithm [14-15]. The algorithm using image enhancement 

will be referred to as DRIFT-STTF.   
 

3. EXPERIMENTIAL RESULTS AND DISCUSSION 

 

Database: The DRIFT algorithm introduced in this paper is 

tested by finding its tracking ability in an object tracking 

scenario in WAMI data. The datasets used in this experi-

mentation are the Columbus Large Image Format (CLIF) 
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Figure 3. Kirsch compass kernels 
  



  

 

CLIF 1 CLIF 2 CLIF 3 CLIF 4 LAIR 1 LAIR 2 LAIR 3 LAIR 4 Average 

HOG [1] 40.10 8.05 16.11 11.35 9.94 13.98 5.26 22.99 15.97 

LBP [2] 46.45 8.50 5.00 47.30 5.26 17.43 10.09 16.11 19.52 

RILBP [3] 58.00 7.55 9.17 8.70 9.36 24.26 5.26 14.37 17.08 

RECT [4] 82.40 75.40 61.39 6.60 47.69 73.85 81.08 24.65 56.63 

CIRC-EA [6] 65.90 75.25 83.06 68.30 35.61 81.58 77.69 55.90 67.91 

CIRC-ED [5] 69.90 69.25 83.06 68.50 39.38 49.75 79.12 68.06 65.88 

GRID-EA [7] 18.00 69.35 84.72 60.50 37.23 76.23 76.69 42.57 58.16 

GRID-ED [7] 18.00 69.10 81.53 69.70 38.47 73.11 76.77 26.04 56.59 

WCIRC-EA [7] 75.35 72.75 81.53 67.60 36.19 75.49 77.51 40.69 65.89 

WCIRC-ED [7] 70.00 67.85 81.53 70.65 38.73 79.69 84.43 67.50 70.05 

WGRID-EA[7] 73.25 68.80 81.67 69.90 37.75 76.23 83.91 37.78 66.16 

WGRID-ED[7] 80.30 68.35 81.53 73.40 38.21 78.37 82.12 85.21 73.44 

DRIFT 85.70 68.25 88.06 79.30 61.40 86.51 83.86 85.28 79.80 

DRIFT -STTF 82.60 58.10 94.31 71.90 68.81 90.21 88.86 86.32 80.14 

          

[16] dataset and the Large Area Image Recorder (LAIR) 

public released dataset.   

Test Setup: The sequences used in this experimentation are 

registered to remove shifts caused by the moving sensors 

[17]. The data is captured at approximately two frames per 

second.  The eight object sequences that are used in the ex-

perimentation are selected for their challenging aspects. 

These challenges include object turning, similar objects in 

scene, small object (8-10 pixels across), changes in pave-

ment, and changes in lighting. These sequences can be seen 

in the yellow line in Fig. 4. The sequences used were be-

tween 10 and 20 frames.  The initial search area around the 

object has radius of 15 pixels for each method. This search 

area was determined using object and dataset information to 

make sure the object will be within the search area. The 

evaluation is performed by comparing the truth data to the 

testing results.  The truth data is a collection of center points 

of the object in the sequence. The evaluation performed 

using this information is the Frame Detection Accuracy  

             

 

 

 

 

 

 

 

 

 

 

 

 

(FDA) [18]. The FDA in each frame is the overlap of the 

truth object with the testing result object. These results are 

averaged over all frames of the sequence to obtain the aver-

age area detection result.   

Results and Comparison: The evaluation is performed 

using many different tracking methods. We also investigated 

the performance of the proposed method without image en-

hancement, i.e., DRIFT, and with image enhancement, i.e., 

DRIFT -STTF, as shown in Table 1. The timing results for 

some of the methods are summarized in Table 2. From Ta-

ble 1, it is evident that the proposed DRIFT and DRIFT-

STTF methods give overall better results compared to the 

alternate tracking methods. The tracking paths for sequences 

in Table 1 using DRIFT and DRIFT-STTF are shown in Fig. 

4 with the red and green lines, respectively. It can be seen 

from these results that the proposed method tracks the ob-

jects more accurately. The timing results from Table 2 indi-

cate that the processing speed of DRIFT is faster than 

WGRID-ED algorithm. However, the DRIFT-STTF has an 

increased computation time because of the image enhance-

ment preprocessing. The computing platform is an Intel 

Core i7-3630QM CPU – 2.4GHZ dual core processor and 

8GB RAM. The operating system is Windows 7 Profession-

al Edition. All evaluations were implemented in MATLAB. 
 

Table 2. Processing speed comparison 

 WGRID-ED DRIFT DRIFT-STTF 

Average Time 

(sec./ frame) 
1.827 1.186 2.227 

 

4. CONCLUSIONS 

 

We presented a novel object tracking algorithm that can 

handle the challenges of background variations and object 

distortions. The proposed method, DRIFT, constructs a 

stronger feature descriptor by utilizing methods including 

Gaussian ringlet masking and Kirsch kernel filtering. Test 

results show that that the proposed method improved the 

accuracy of the tracking process while having a positive 

effect on the computation time. 

Figure 4.  Object tracking: i) Car 1 in set CLIF 4; ii) Car 2 in 

set LAIR 1; iii) Car 3 in set LAIR 2; iv) Pedestrian in set CLIF 

3. Yellow-ground truth, red-DRIFT, and green-DRIFT-STTF. 

i) ii) 

iii) iv) 

Table 1. Object Tracking Frame Detection Accuracy (%) 
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