
University of Dayton
eCommons

Electro-Optics Faculty Publications Electro-Optics Program

6-4-1991

Investigation of Real-Time Optical Scanning
Holography
Bradley D. Duncan
University of Dayton, bduncan1@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/eop_fac_pub

Part of the Controls and Control Theory Commons, Electromagnetics and Photonics Commons,
Optics Commons, and the Other Physics Commons

This Dissertation is brought to you for free and open access by the Electro-Optics Program at eCommons. It has been accepted for inclusion in Electro-
Optics Faculty Publications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu,
mschlangen1@udayton.edu.

eCommons Citation
Duncan, Bradley D., "Investigation of Real-Time Optical Scanning Holography" (1991). Electro-Optics Faculty Publications. Paper 39.
http://ecommons.udayton.edu/eop_fac_pub/39

http://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Feop_fac_pub%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/eop_fac_pub?utm_source=ecommons.udayton.edu%2Feop_fac_pub%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/eop?utm_source=ecommons.udayton.edu%2Feop_fac_pub%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/eop_fac_pub?utm_source=ecommons.udayton.edu%2Feop_fac_pub%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=ecommons.udayton.edu%2Feop_fac_pub%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=ecommons.udayton.edu%2Feop_fac_pub%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=ecommons.udayton.edu%2Feop_fac_pub%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=ecommons.udayton.edu%2Feop_fac_pub%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/eop_fac_pub/39?utm_source=ecommons.udayton.edu%2Feop_fac_pub%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu


Investigation of Real-Time Optical Scanning Holography 

by 

Bradley Dean Duncan 

Dissertation submitted to the Faculty of the 

Virginia Polytechnic Institute and State University 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

in 

Electrical Engineering 

APPROVED: 

Dr. Richard 0. Claus Dr. Guy J . lndebetouw 

1 
Dr: madSafaa:JaZi 

June 4, 1991 

Blacksburg, Virginia 



Investigation of Real-Time Optical Scanning Holography 

by 

Bradley Dean Duncan 

Dr. Ting-Chung Poon, Chairman 

Electrical Engineering 

(ABSTRACT) 

Real -time holographic recording using an optical heterodyne scanning technique was proposed 

by Poon in 1985. The first part of this dissertation provides a detailed theoretical treatment of the 

technique, based on a Gaussian beam analysis. Topics to be addressed include the derivations of the 

optical transfer function (OTF) and impulse response of the scanning holographic recording system, 

reconstructed image resolution and magnification, methods of carrier frequency hologram generation 

and experimental verification of the recording technique based on careful measurements of a hologram 

corresponding to a simple transmissive slit. Furthermore, computer simulations are presented 

pertaining to the incoherent nature of the scanning holographic process and it is shown that this new 

technique can be used to reduce the effects of bias buildup common in conventional incoherent 

holographic methods. 

The reconstruction of holograms generated by the heterodyne scanning technique is then 

considered in the second part of the dissertation. The primary concentration is on real-time 

reconstruction using an electron beam addressed spatial light modulator (EBSLM). For comparison, 

experimental coherent reconstruction methods are presented as well. Additional topics to be addressed 

are the spatial frequency limitations of the EBSLM and the derivation of the overall incoherent point 

spread function (PSF) for the holographic imaging (recording/reconstruction) system. Based upon the 

derived overall PSF, the reconstructed real image of a simple slit object is formulated, compared to, and 

shown to be consistent with experimental observations. 
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1.0 INTRODUCTION 

Scanned holographic recordings of spatial information have traditionally been achieved 

only with long wavelength sources (such as in scanned acoustical holography [1], or as in 

standard microwave holography [2,3]) . This is because detectors capable of measuring the 

amplitude oscillations of low frequency radiation are commonly available, allowing amplitude 

and phase information to be directly extracted from long wavelength signals. Recently, 

scanning techniques to generate optical holograms have also been proposed and studied 

[4,5] . 

In 1985, Poon [4] first proposed a technique by which holography by optical heterodyne 

scanning could be achieved as a direct application of a defocused incoherent image 

processing arrangement employing acousto-optic heterodyning and two-pupil optical transfer 

function (OTF) synthesis [6,7] . In this presentation, the original analysis is extended to include 

calculations based on Gaussian beam theorY [5]. This is accompanied by detailed 

presentations of the scanning image processor, its associated OTF and the experiments 

performed to verify and evaluate the optical scanning holographic method. 

Among the advantages/motivations of the optical scanning holographic technique is the 

potential capability of producing holograms of large scale objects without the need for large 
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optical elements. Another advantage is that holographic information recorded by the 

scanning technique manifests itself as a modulated electrical signal capable of being directly 

displayed on a device such as an intensity modulated oscilloscope or an electron beam 

addressed spatial light modulator (EBSLM) [4,5,8,9) . In fact, as has been previously reported 

[8 , 10), real-time recording and reconstruction of optically scanned holographic data can be 

achieved with the technique by using an EBSLM and coherent readout methods. 

It is also interesting to note that though this technique of optical scanning holography is 

incoherent in nature, many shortcomings of previously described incoherent holographic 

techniques can be alleviated . In 1961, Mertz and Young pointed out that coherent illumination 

is not a necessary condition for the production of a hologram [11]. They showed that it was 

only necessary for each source point to produce a unique two-dimensional intensity pattern 

which encodes the position and intensity of the source. Throughout the late 1960's several 

methods of incoherent holography were proposed [12,13,14,15), though, by the early 1970's 

most research in the area had died out. This was likely due to several severe limitations 

inherent to incoherent holographic techniques of the time. Among the most serious limitations 

was the loss of fringe contrast in incoherent holograms of continuous objects through the 

rapid accumulation of background light [15) . Kozma and Massey [16), however, proposed a 

clever technique using a narrow band phase modulation in one arm of a modified Linnik 

interferometer to reduce this bias build-up by imposing a temporal carrier which separated 

the background light from the spatially varying fringe information. Other limitations were the 

difficulties of producing holograms of other than two dimensional objects (i.e., depth 

information was often severely distorted [15)) and the fact that it was often difficult to produce 

carrier frequency holograms except by indirect methods [17). As will be shown in chapter 

three, however, the heterodyne optical scanning technique allows active and selective bias 

buildup reduction, thereby yielding increased fringe contrast. It will also be shown that the 

technique can be used to generate carrier frequency holograms of 3-D objects . It is felt that 

these advantages, combined with the possibilities for real-time holographic recording and 
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reconstruction [8,10] make the scanning heterodyne technique for optical holography quite 

attractive. 

Before proceeding, it should be mentioned that in conventional (single-pupil) incoherent 

scanning or imaging systems, limitations exist on the potential image processing capabilities 

due to the resulting nonnegative intensity spread function [incoherent point spread function 

(PSF)], which in turn imposes severe constraints on both the amplitude and the phase of the 

optical transfer function (OTF) - essentially allowing only low-pass spatial filtering operations 

to be performed [18] . Such limitations are avoided by introducing a two-pupil system [6, 19], 

as is done in the work described within, which allows flexibility in pupil-function specification 

for a desired synthesized PSF. As a result, any bipolar point spread function can be 

synthesized by using two-pupil methods, as long as the pupil functions can be arbitrarily 

specified and the interactive {bipolar) and noninteractive (unipolar) PSF terms can be 

separated on the basis of either spatial [20,21] or temporal [22,7] carriers . In addition, as we 

will see in chapter 3, when two-pupil processing systems are operated under defocused 

conditions [4,7], their applications include the production of optical holograms - a process 

clearly requiring that an input image be processed by a bipolar PSF. 

It should also be mentioned that in the contexts of either real-time holography through 

the use of spatial light modulators or, possibly, the transmission of holographic data for 

television applications, the spatial resolution of holographic data presented on real-time 

display devices must be reduced . The problem of holographic information reduction has 

previously been addressed [23,24]. As will be evident later, the technique of optical 

heterodyne scanning holography suggests a practical method for reducing the information 

content to be recorded in holograms, somewhat reminiscent to the heterodyne scanning 

technique by Enlow [24]. 

To begin, chapter 2 provides a general review of one and two-pupil scanning image 

processing and discusses the equivalence between scanning and other incoherent image 

processing methods. The defocused two-pupil OTF used extensively in subsequent work is 
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then developed . In chapter 3 an introduction to optical scanning holography is provided, after 

which a detailed description of the OTF and impulse response of the heterodyne scanning 

holography system, formulated on the basis of interacting Gaussian beams is presented. This 

is followed by a discussion of the resolution and holographic magnification properties of the 

technique. Chapter 3 then ends with a description of experiments performed to verify the 

theoretical expectations of the scanning holographic recording technique, and some 

simulations which emphasize the bias reduction capabilities of the method. Chapter 4 

subsequently provides additional details on the work performed on the real-time 

reconstruction of scanned holographic images using an EBSLM, and a comparison is made 

for a slit object reconstructed by both real-time and coherent methods. To conclude, chapter 

5 provides a summary of relevant achievements and results as well as a discussion of present 

research directions and goals. 
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2.0 OPTICAL TRANSFER FUNCTION SYNTHESIS 

In this chapter the defocused optical transfer function (OTF) for the two-pupil scanning 

image processor used in optical scanning holography is developed according to reference [4]. 

As detailed analyses leading to the results of this chapter are presented in reference [4]. only 

the general framework leading to the results relevant to the optical scanning holography 

technique will be presented here. 

To begin, the OTF for a single pupil scanning image processor is developed. The 

equivalence between the scanning image processor and an incoherent imaging system is then 

shown. Next, the in-focus two-pupil OTF for a scanning system employing acousto-optic Bragg 

diffraction is developed, and subsequently the chapter concludes by extending this analysis 

to the defocused case . 
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2.1 One-Pupil OTF Synthesis by Scanning 

Refering to the system of Figure 1, where coherent illumination is assumed, we see that 

lens l, forms, in plane 1, the Fourier transform U1' of the optical field Uo. A beam shaping 

transparency r, then multiplies U1' to create the pupil function U1 , and lens l 2 forms the 

Fourier transform U2 of U1 in plane 2. Subsequently, the field U2 is used to scan the 

transparency r 2• The photodiode (PD), which responds to the intensity of the incident optical 

wave , then accepts the entire field r2 U2 and generates a DC signal, written here in voltage 

form as 

(2.1.1) 

where the (x2. Y2) coordinate system is defined in Figure 1 and x and y are delay variables 

introduced by scanning U2 about r 2. 

Equation (2.1.1) is readily recognized as the correlation of the two functions I r2 I 2 and 

I U2 I 2 (25] . By taking the Fourier transform of equation (2 .1.1). the result 

/ 
(2.1.2) 

is obtained, where * denotes the complex conjugate, F denotes the Fourier transform 

operation given as 

F{g(x,y)} = J00 J00 

g(x,y)exp(-j2-rr(fxx + fyy))dxdy 
-oo -oo 

(2.1.3) 
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and where fx and fr denote the spatial frequencies. The OTF of the scanning system is then 

simply defined as 

(2 .1.4) 

or 

(2 .1.5) 

where 

(2.1.6) 

and .t is the source wavelength [25]. One then finds, after performing the necessary 

simplifications [4], that 

OTF(fx, fy) = J00 J00 

U1(x1, y1) ut(x1 - .t f2 fx, y- .t f2 fy) dx1 dy1 
-oo -oo (2.1.7) 

where ® denotes a correlation. We thus see that the OTF of the single pupil scanning system 

is the autocorrelation of the pupil function of the scanning field. Equation (2.1.7) is , of course, 

well known; it is presented here only to establish the context for the acousto-optic scanning 

system to be discussed later. 
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2.2 Equivalence Between Scanning and Incoherent Image 

Processing 

For a conventional coherent optical system, as shown in Figure 2, the complex field in 

the image plane U1(x1, y,) is found by convolving the field in the object plane Uo(Xo, Yo) with the 

impulse response h(x1, y,; x0 , y0), or the coherent point spread function (PSF). For a spatially 

invariant system, we have 

U1(x1, y1) = r><> f 00 U0 (x0 , y0 ) h(x,- X0 , Y1- Y0 ) dx0 dy0 
-oo -oo (2.2.1) 

where h is the complex amplitude at image coordinates (x;, y,) in response to a point source 

object at (x0 , y0 ) and * denotes the convolution operation. 

Fourier transforming equation (2.2.1), we have 

(2.2.2) 

The coherent transfer function of the imaging system is defined then, under properly focused 

conditions, as 

(2 .2.3) 

However, since 

h(x,y) = F{p(x,y)} I __ k = P(- ~~ x, - ~~ y) 
kx,y - ).f x,y 

(2.2.4) 
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where p(x,y) is the pupil function of the imaging system, F{p(x,y)} = P(kx. ky) and kx,y = 2-rrfx,y. 

equation (2 .2.3) becomes [25] 

(2.2.5) 

Notice that H(kx. ky). which is specified according to the pupil function p(x,y), characterizes the 

performance of the coherent imaging system. 

For the case of a spatially incoherent source illuminating the system of Figure 2, the 

image intensity is given as 

(2.2.6) 

where I h 12 is the unipolar (i.e., positive and real) intensity PSF [25]. Expressing equation 

(2 .2.6) in the frequency domain yields 

(2.2.7) 

The optical transfer function (OTF) of the incoherent imaging system is then defined as 

(2.2.8) 

Using equations (2.1 .3), (2.2.3) and the inverse Fourier transform, defined as 

F-1{G(kx,ky)} = J00 J00 

G(kx,ky) exp(+j(kxx + kyY))dkxdky 
-oo -oo 

(2.2.9) 

where kx = 2-rrfx and ky = 2-rrfy, we find from equation (2.2 .8) that 
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OTF = J J h h *exp( -j(kx x + kyY)) dx dy 

= JJJJJJ H(k/,ky')H*(k/', ky'') exp(j(kx'x+ky'y)) 

x exp( -j(kx'' x + ky'' y)) exp( -j(kx x + ky y)) 

x dkx' dky' dkx'' dkx'' dx dy 

= I I I I H(kx'. ky') H*(kx'', ky'') c5(kx' - kx'' - kx) c5(ky' - ky'' - ky) 

X dk I dk I dk II dk II x y x y 

Expressing the OTF in terms of the pupil function p(x,y), we have 

OTF(fx , fy) = I Ip( ;: kx', ;: ky') p *[ ;: (kx' - kx), ;: (ky' - ky)] 

x d( ;: kx')d( ;: k/) 
= J J p(x' , Y') p *<x' - ..t ffx, y' - ..t ffy) dx'dy' 

= p@p 

(2.2.10) 

(2.2.11) 

where the limits of integration of all integrals in the last two equations are from - oo to oo and 

where nonessential constants have been left out of the derivation . We thus see that for 

incoherent imaging systems, the OTF is simply the autocorrelation of the system pupil 

function. By then comparing equations (2.2.11) and (2.1.7) the equivalence between scanning 

and incoherent imaging systems is established. Again , there is no novelty in deriving this 

equivalence. Its derivation does, however, aid in understanding the material to follow. Also, 

notice that due to the autocorrelation operation, the OTF of equation (2 .2.11) is low-pass in 

nature, indicating the processing limitations of one-pupil scanning systems discussed in 

chapter 1. 
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2.3 In-Focus Two-Pupil OTF Synthesis by Acousto-Optics 

A simple two-pupil scanning image processing technique exhibiting both spatial and 

temporal frequency offsets brought about by acousto-optic Bragg diffraction is shown 

schematically in Figure 3 [4]. As seen, a laser directs a beam of light onto an acousto-optic 

modulator (AOM) - a device which in essence creates two identical light beams differing in 

temporal frequency by Llv and in propagation angle by a~ (A/V,)Llv, v. being the velocity of 

sound in the AOM. Next, lens t 1 forms, in its back focal plane, the Fourier transforms U1', V1' 

of the fields U0, Vo exiting the AOM. A beam shaping transparency r 1 then acts on U1' and 

V1' to create U1, V1, after which a second lens l 2 forms the Fourier transforms U2, V2 in its back 

focal plane. The total field U2 + V2 is then used to scan the transparency r2. In contrast to the 

one pupil scanning technique discussed in the preceding sections, in which the photodiode 

(PD), and associated electronics, delivered a DC signal, the PD now delivers a heterodyne 

signal at the beat frequency Llv of the two fields U2 and V2. This signal is given in voltage form 

by 

v(x,y,t) = r)() J()() I [V2(X2 -x, Y2 -y) + U2(X2 -x, Y2 -y) exp( -j 2n Llv t)] 
-oo -()() ' (2 .3.1) 

2 
x r 2(X2, Y2) I dx2 dy2 

where the time varying part of equation (2.3.1) containing the pupil interaction information is 

expressed simply as 

V (x,y,t) ~ Re[f ..:J_: U2(x, -x. y2 - y) v: (X, -x, Y2 -y) x il 2(x,. Y2) 1
2 

dX, dy, 

x exp( -j 2n Llv t) J 
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with an nonessential constant left out. 

In terms of a phaser V(x,y), such that 

v(x,y,t) = Re[V(x,y) exp( -j 2n ~v t)] (2.3.3) 

we find from equation (2.3.2) that 

(2.3 .4) 

The phase and amplitude of the photodiode signal, as a function of x and y, constitute the 

scanned and processed version of the transparency r 2. From the analysis of the one-pupil 

scanning OTF synthesis (i.e., from equation 2.1.1 - 2.1.5) we can immediately write down the 

OTF of the two-pupil system as [4] 

OTF = 

by which is meant 

F{v(x,y)} 

F{ lr 2 1
2
} 

OTF = J00 J00 

U1(X1,Y1) vt(x1 - ..l. f2 fx I Y1 - ..l. f2 fy) dx1 dy1 
-oo -oo 

(2.3.5) 

(2.3 .6) 

We thus see that the OTF of the two-pupil system is the cross correlation of the pupil functions 

U1 and V1, and that the two-pupil system is incoherent in the sense that its operation is 

described by the same general formalism leading to equation 2.2.11, even though the system 

uses coherent light and its output (a heterodyne current readily separated from the 
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noninteraction DC terms of equation (2 .3.1) through electronic bandpass filtering centered at 

~v) is characterized by the amplitude and phase (i.e., the OTF is not necessarily low-pass, 

thus allowing bipolar PSFs) - a characteristic generally indicative of coherent optical systems. 

We now extend the result of equation (2.3.5) to the more general defocused case. 

2.4 Defocused Two-Pupil OTF Synthesis by Acousto-Optics 

Refering to Figure 3, r 2 is now placed in an out-of-focus plane, plane 2', a distance z from 

the in-focus plane, plane 2. Following the procedure leading to equation (2.3.5) we have 

OTF = 
F{V(x,y;z)} 

F{ lr2 l
2

} 

(2.4 .1) 

where U2' and V2' are obtained through the Fresnel diffraction of U2 and V2, respectively, and 

U2 and V2 are related to U1 and V1, respectively, through the action of lens l2. The explicit 

relations are [25] 

(2.4 .2) 

and 
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U2'(x2'· Y2') = exp0 2kz (x/ + Y2'2)) 

x Joo Joo U2(X2, Y2) exp~ 2kz (x~ + y~) J -oo -oo 
(2 .4.3) 

where k = 2rr/A., f2 is the focal length of lens l2 and identical expressions exist for V2 and V2'. 

Using equations (2.4.2), (2.4.3) and the similar expressions for V2 and V2' in equation 

(2 .4.1) it has been shown (4] that the defocused OTF is 

OTF(fx, fy;z) = expDrrA.z(fx
2 + r/)] 

x J00 J00 

U1(x1. Y1) V:(x1 - A.f2fx · Y1 - A.f2fy) -oo -oo (2 .4.4) 

x exp[-j 
2~2 (x1'x + Y1'y)J dx1 dy1 

In the next chapter we will see how the two-pupil scanning image processor, described by the 

OTF of equation (2.4.4) can be used in holographic applications. 

/ 
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Figure 1. One-pupil optical scanner [4]. 
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Figure 2. Conventional coherent optical image processing system. 
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Figure 3. Idealized acousto-optic heterodyne Image processor [4]. 
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3.0 OPTICAL SCANNING HOLOGRAPHY 

In this chapter the basic concepts involved in optical scanning holography are presented, 

along with an analysis of the technique based on a Gaussian beam interaction approach. 

3.1 Basic Concepts 

This section begins with a presentation of the heterodyne scanning image processor 

used in the experimental work to be described later. Provided next is a description of how this 

image processor can be used for generating optical holograms. The reconstruction of 3-D 

surfaces and the compatibility of the image processor with real-time spatial light modulators 

is then discussed, and finally, section 3.1 concludes with a simple heuristic description of the 

general principles involved in optical scanning holography. 
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3.1.1 Heterodyne scanning image processor 

The experimentally implemented OTF synthesis system based on the acousto-optic 

two-pupil approach is shown schematically within the shaded lines of Figure 4, where the 

notation (including subscripts) describing the various lenses, pupil functions, etc., has been 

chosen to allow direct cross referencing between the material in this chapter and that of 

chapter 2. 

From Figure 4 we see that the Fourier transforms of the pupil functions U1 and V1 are 

superposed on the mirror of an x-y scanning device. Notice that the contribution due to pupil 

U, is upshifted in temporal frequency according to the operating frequency fc (in our case, 

fc = 40 MHz) of the indicated acousto-optic modulator (AOM) and that pupil U,, in general, can 

be subject to intraplanar translation, with respect to V1, by a distance d. After propagating a 

distance z, the Fresnel diffraction pattern of this composite beam is used to scan the object 

amplitude transparency r2. Lens l; then images r2 onto a PIN photodiode such that after 

scanning all light passing through r 2 is collected and converted to a corresponding scanned 

electrical signal. Subsequent bandpass filtering centered at fc yields a processed signal of the 

form 

v(x,y,z,t) = Re{V(x,y;z) exp( -j2nfcf)} (3 .1.1) 

where V is the voltage phaser at the output of the radio-frequency (RF) amplifier and it is 

assumed that the bandpass filter passes the entire signal spectrum imposed on the carrier 

without distortion. Note that in equation (3.1.1), x and y are in general functions of time 

determined by the scanner's motion. 

As shown in section 2.4, the spectrum of the voltage signal produced by the photodiode 

and its associated circuitry is related to the spectrum of the object intensity I r 2 I 2 by 
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(3.1.2) 

where OTF is the defocused optical transfer function of the incoherent processing system and 

the explicit form of the OTF is 

OTF(fx.fy;z) = exp( jnA.z(f/ + r/)) J00 J00 

U1(x - d, y) vt (x - A.f2fx, y - A.f2fy) 
-oo -oo 

x exp ( -j 
2~2 (xfx + yfy)) dxdy 

' (3.1 .3) 

where * indicates the complex conjugate, fz is the focal length of the lens l 2, d is the 

intraplanar translation of pupil U1 (with respect to pupil V1). A. is the wavelength of the laser 

source and z is the depth parameter which equals the distance from the scanning mirror to 

rz. Note that equation (3 .1.3) is identical to equation (2.4.4). except that the intraplanar 

translation of the pupil function U1 is made explicit in equation (3.1.3). Also note that incoherent 

bandpass spatial filtering based on this approach has been demonstrated (26] and that a 

similar system has also been used recently for applications in textural edge extraction [27] . 

3.1.2 Fundamentals of opticaJ scanning holography 

The system of Figure 4 can be used in holographic recording applications because the 

amplitude and phase of v(x,y,z,t) can be preserved [8] by either homodyning or heterodyning 

the scanned electrical signal v at the output of the RF amplifier. In Figure 4 the heterodyne 

detection scheme is employed, where the scanned signal is mixed with a sinusoid of 

frequency fo + fc . The mixed signal , after bandpass filtering at f0 , is then amplified and added 
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to a DC bias voltage to give an output signal from the entire system. Using equations (3.1.1) 

and (3.1.2) the form of this signal is 

(3 .1.4) 

where the DC bias is needed to preserve the phase of the AC signal. The total signal can now 

be fed into the intensity modulating input of a two dimensional display device, whose electron 

gun (for example, in the case of an electron beam addressed spatial light modulator (EBSLM) 

[9]) is synchronized with the x and y scanning frequencies of the scanner. If we assume that 

scanning takes place in a raster fashion such that f,,,, the x-scanning frequency, is much greater 

than fy, the y-scanning frequency, while also assuming that r. is an integer multiple of fx. then 

the temporal carrier frequency f0 [s-1] directly translates to a spatial carrier frequency 

f0 /vx [m-1], where Vx is the electron gun velocity of the display device in the x direction. 

Equation (3.1.4) can now be written in the form of a two dimensionally displayed signal as 

(3.1.5) 

where the temporal carrier frequency f0 in equation (3.1.4) has been translated to a spatial 

carrier frequency f
0
/vx. with Vx denoting the electron gun velocity of the display device in the 

x direction. Note that as written, equation (3.1.5) is a general description, for planar objects 

I r2 I 2 located a distance z from the scanning mirror, of the output of the scanning image 

processor shown in Figure 4 (3-D objects will be discussed later). By judicious selection of the 

pupil functions U1 and V1, one can synthesize desired OTFs. The discussions here, however, 

will be restricted to the values of U1 and V1 which will result in equation (3.1 .5) reducing to a 

form representing the holographic recording of I r21 2. (Recall that in incoherent holography 

the intensity distribution of the input object I r 2 I 2 is recorded rather than the amplitude 

distribution r2. as would be the case in coherent holography. This should pose no conceptual 
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difficulty when one realizes that all objects seen by the human eye, for example, are seen as 

intensity objects; i.e., the human eye is a square law detection device.) 

To show that equation (3.1 .5) can indeed be used to represent holographic information, 

consider the case when U, = b(x, y) and V1 =1 . This situation is shown in Figure 5. We will 

see that this choice of U, and V1 results In a complex Fresnel zone plate (FZP) impulse 

response for the heterodyne scanning system. Recall that a FZP Is the hologram of a point 

source. One can then imagine that it is through the action of scanning that this impulse 

response is convolved with a general object I r2 I 2 such that the hologram of I r2 I 2 is 

generated. 

Through the direct application of equation (3.1 .3) we see that the OTF when U1 = b(x,y) 

and V1=1 is 

( 
. 2 2 ) ( . 2rczd ) OTF(fx, fy;z) = exp JrcJ.z(fx + fy) exp -1--r;- fx (3.1 .6) 

Completing the square and combining terms yields 

(3.1.7) 

where K = 2rcf. k = 2rc/J. and we see that the translation of U1 by d has introduced a spatial x,y x,y , 

carrier offset in the OTF of an amount fxo = d/).f2 • This is easily visualized In Figure 5 where the 

Fourier transform of the displaced point source results in a plane wave with a constant spatial 

frequency offset of fxo = (k/2rc) sin(B) ~ d/).J2 , in the paraxial approximation. 

The impulse response of the system V6 is found by inverse Fourier transforming equation 

(3.1.7). Upon performing the inverse Fourier transform operation we find that 

_ exp( j ~ ) ( { ]2 }) 
V6(x,y;z) = ---'-A.-z.=.....;_ exp -j ;z [x - d ~ + y2 (3 .1.8) 
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where V6(x,y;z) is recognized as a complex chirp-type impulse response, or complex FZP. To 

more fully investigate this result we let I r 2 I 2 = o(x,y) and use the impulse response of 

equation (3 .1.8) to evaluate equation (3 .1.5). We anticipate that this will result in the generation 

of a real FZP which is characteristic of point source holograms. With I r 2 I 2 = o(x,y) equation 

(3 .1.5) then becomes 

v(x,y;z) = Voe+ Re{ V6 exp( -j2n ~: x)} (3 .1.9) 

It is evident from equations (3.1.7) and (3.1 .9) that due to the low frequency temporal carrier 

fo and the intraplanar translation d, the total effective spatial frequency carrier becomes 

(3.1.10) 

We thus see that spatial frequency carriers associated with the signal v(x,y;z) can be 

introduced by either providing a low frequency temporal carrier through electronic mixing or 

by displacing pupil U1 with respect to V1 by an amount d. 

Continuing with our calculations, we insert equation (3.1.8) into equation (3.1.9) and 

perform the appropriate simplifications to yield the displayed signal corresponding to the 

result of scanning a point object. When U1 and V1 are chosen as previously described, the 

result is 

v(x,y;z) = C1 + C2 cos( rz {Cx - x0 )
2 + y2} - </>) (3 .1.11) 

where 
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(3 .1.12) 

and where a possible relative phase difference </>uv between pupils U1 and V1 has been 

introduced . The constant A will account for the intensities of the light passing through the 

pupils. We see that equation (3.1.11) is a real off-axis Fresnel zone plate (FZP), characteristic 

to an off-axis point source hologram, where z is the depth information of the point source and 

Xo is the spatial offset of the FZP [28,29]. Physical insight to these parameters can be gained 

by once again referring to Figure 5 and assuming that I r2 I 2 = o(x,y) . We see that the depth 

information z is the distance from the scanner to the point source. We also see that the center 

of the interference pattern at the object plane is located at x = - zd/f2. Considering now that 

fo = 0, (i.e., homodyne detection) and that I r 2 I 2 is being scanned in the + x direction, it is seen 

that the light passing through I r 2 I 2 = o(x,y) will not correspond to the center of the 

interference pattern until x = +zd/f2, as expected from equation (3.1.11) when f0 = 0 and 

The next parameter for consideration in equation (3 .1.11) is the phase term <f>. This term 

is constant for a given source point and only influences the phase of that point upon 

holographic reconstruction. As our eyes would not be able to detect this phase information 

upon viewing the reconstructed image, the phase term </> is essentially irrelevant. However, 

as will be seen later, </> influences the holographic fringe structure. 

The last interesting term of equation (3.1.11) is the bias level C1. The requirement on this 

value is that it must be large enough such that v(x,y;z) ~ O for all x, y and z. By adjusting C1 

so that v(x,y;z)m1n = 0, fringe contrast can be maximized by minimizing the effective 
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background light buildup encountered in conventional incoherent holography (15] . This will 

become more evident in a later section when computer simulated holograms are discussed. 

3.1.3 Reconstruction of incoherent 3-D surfaces 

Though indicated as a planar object in Figure 4, I r 2 I 2 can in general be three 

dimensional in nature. This is easily verified for the two transverse dimensions x and y if one 

considers that the previous analysis leading to equation (3 .1.11) could be similarly applied to 

any object point located in the plane of I r 2 I 2. This, of course, is not a terribly remarkable 

statement, considering that most incoherent holographic methods to date have been capable 

of recording planar information (14, 15]. Consider now the three dimensional representation 

of the planar object I r2 I 2 of Figure 4. We have 

2 2 Ir 2(x,y,z) I = Ir 2(x,y) I b(z - Zo) (3.1.13) 

where z0 is the distance from the scanner to r2. We can then write the processed signal 

corresponding to I r 2 I 2, using equation (3 .1.5), as 

(3.1.14) 

where we have left the z dependence out of the left hand side of equation (3 .1.14) in order to 

emphasize that the recorded holographic data remain two-dimensional. Using the sifting 

property of delta functions, equation (3.1.14) can be written as 
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v(x,y) ~ V DC + R •{ f-1 
[ ( t: OTF(f,, t,;z) O(z - z0) dz) f { I r 2(x ,y) 1

2
} J 

x exp( -j2rr ;: x)} 
(3.1.15) 

Rearranging terms we have 

v(x,y) ~ V DC + R •{ F-'[ L: 0 TF(f,, F,,;z) F {Jr 2( x,y) 1
2 
0( z - z,)} dz J 

x exp( -j2rr ~: x)} 
(3.1.16) 

or 

(3 .1.17) 

where equation (3 .1.17) can be taken to represent the generalized output, for 3-D objects, of 

the image processor of Figure 4 and the limits of integration are chosen, as shown in Figure 

6, to correspond to the region in which the scanned object exists. (We note that, strictly 

speaking, equation (3.1.17) is valid for only reflective or weakly scattering transmissive 3-D 

objects .) From Figure 6 we see that z0 is now taken as the point on the 3-D object 

I r 2(x,y,z) I 2 closest to the scanning mirror, while {Jz is the total depth of the object. Equation 

(3 .1.17) can be used to represent the hologram of a 3-D object if the OTF is chosen as in 

equation (3 .1.7). This technique contrasts with many earlier incoherent holographic techniques 

(15] whose optical arrangements allowed only the holographic recording of planar objects -
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i.e., depth information was often severely distorted. We also note that our methods are not 

limited to transmissive type objects. As shown in Figure 6, if the collecting lens t 1 is used to 

image I rz I 2 onto a highly sensitive photodetection device, such as a photomultiplier tube 

(PMT), then holograms of reflective objects can be made as well . 

We now turn our attention to the reconstruction of holograms recorded by the 

heterodyne scanning method. Consider, for instance, that an on-axis hologram was recorded 

(i.e., d = f0 = 0). Also consider that reconstruction is now taking place with monochromatic, 

infinite uniform plane wave illumination. For a single plane of an object the recorded 

hologram can be written, according to equation (4.1.14), as 

* 
v(x,y;z) =Voe+ ; f-1{orFxf{1r2 12

}} + ; [F-1{orFxf{1r2 12
}}] ,(3.1 .18) 

where we recall that A +A*= 2Re{A} (refer to equation (3.1.5)) and the OTF is 

(3 .1.19) 

with nonessential constants left out and where we take the plane under consideration to be 

located a distance z0 in front of the scanner. The first term of equation (3 .1.18) is simply the 

background bias term, while the second and third terms correspond to, respectively, the real 

and virtual reconstructed image terms, as will be evident shortly. 

Using the second term of equation (3.1.18), the reconstructed real image intensity seen 

by the observer can be written as 

Ir~ j F-1{0TF x Hzx F{ 1r2 12
}} j

2 
(3.1.20) 

where Hz is the free space spatial transfer function indicating the propagation of the diffracting 

field resulting in the reconstructed real object a distance z = Zo in front of the hologram. (We 
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assume unity magnification of the holographic information so that reconstruction takes place 

at the same distance in front of the hologram as the distance the original object was in front 

of the scanning mirror.) Since Hz(Z = 2 0 ) is given by 

(3 .1.21) 

with an nonessential constant left out, we see immediately that equation (3.1.20) reduces to 

(3.1.22) 

A reconstructed virtual image would be obtained, a distance -z behind the hologram, if the 

third term of equation (3.1 .18) was used in conjunction with H,(z = -zo) in equation (3 .1.20). 

From equation (3.1 .22) we see a further difference of incoherent holography, as 

compared to conventional coherent techniques. Whereas r2 is recorded and I r 2 I 2 is viewed 

upon reconstruction in coherent holography, we find that I r21 2 is recorded and I r2 I 4 is viewed 

upon reconstruction in incoherent holography. Object points of relatively low intensity (as 

compared to bright object points) will thus tend to be supressed upon reconstruction using 

incoherent techniques. This limitation, combined with the possible bias buildup problems 

mentioned earlier, indicates that objects of choice for minimal distortion in incoherent 

holography are high contrast objects with only moderate spatial detail. If, however, one is 

willing to accept a loss of spatial resolution (through effective spatial low pass filtering due to 

bias buildup) and contrast upon reconstruction, more complicated objects could be used. 

Note that the need for these considerations is not made evident through the discussion of only 

point source holograms, as both coherent and incoherent holography perform equally well for 

point objects. 
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3.1.4 Compatibility with real-time spatial light modulators 

Just as with coherent holography, incoherent holograms incorporating spatial frequency 

carriers cause a spatial separation of the real and virtual objects, and the throughput light. 

If we measure this separation as the angular deviation ed of the real reconstructed object from 

the throughput light {which generally can be considered as propagating normal to the 

hologram surface upon reconstruction), we find with the aid of equations (3.1.10)-(3.1.12) that 

( % - l ~: ) [radians] (3.1.23) 

where the paraxial approximation is assumed, and z describes the reconstruction distance 

from the hologram. Note that the angular deviation can be adjusted by varying the 

displacement d between the scanning fields U1 and V1. Most importantly, however, is the ability 

to create an angular deviation through the choice of fo. which can be adjusted electronically. 

Since the choice of the temporal carrier f0 is essentially only limited by the spatial frequency 

limitations of the display device, such as commercially available EBSLMs [9], this aspect of 

angular deviation adjustment tends to make the scanning system compatible with real-time 

display devices. 

Another important advantage of the heterodyne scanning technique is the introduction 

of the constant bias during recording . In standard holographic recording, I 0 +RI 2 is 

recorded, where 0 and R represent the wavefronts of the object and the reference waves, 

respectively. Note that 

(3.1.24) 
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where the first two bias terms are spatially variant and produce annoying effects in on-axis 

holography. They also cause unnecessary information content to be recorded, which is 

undesirable in off-axis holography. In contrast, the bias term in the heterodyne scanning 

system is constant (see equation (3.1.17)). This in turn leads to a reduction of the spatial 

resolution required of the recording medium - an issue of major concern when spatial light 

modulator applications in holography are considered . The effect of constant bias buildup is 

further investigated in section 3.2.4. 

3.1.5 Heuristic description 

To conclude this section we mention that equation (3.1.17) has a relatively simple 

physical interpretation in that the principle of holographic recording is to cause the 

convolution of a Fresnel zone plate, or FZP (the impulse response of the scanning holography 

system), with some general object through scanning. The FZP can in essence be visualized 

as emanating from the scanning mirror as the plane and spherical waves propagate and 

interfere. It is then by scanning this FZP across the object that the convolution takes place. 

Convolving this FZP with a general object yields the hologram of that object. Though this 

description is somewhat simplistic, it aids in understanding the general concepts. We also 

note that, based on this description, it is possible to formulate our techniques based on the 

fields at the scanning mirror instead of U1 and V1. We shall refrain from doing this so that the 

more general formalism developed in reference [4] is preserved. 
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3.2 Gaussian Beam Theory 

This section begins with a Gaussian beam analysis of the defocused OTF. The scaling, 

magnification and resolution properties of the scanning holographic process are then 

investigated under the Gaussian beam assumption . This is followed by a discussion of 

experiments performed to verify the theoretical expectations. The section then concludes with 

a discussion of the bias reduction properties of the technique. 

3.2.1 Gaussian beam analysis 

Generally speaking it is impossible to choose U1 and V1 such that at the scanner we have 

the superposition of a true uniform infinite plane wave and a true point source. Since the 

spatial distribution of the scanning laser beam is in general taken to be Gaussian, we 

therefore consider the superposition of a broadened and a focused Gaussian beam. This can 

be accomplished experimentally by removing lens t 2 from the propagation path of pupil U1 and 

by altogether removing any physical pupils at both planes u, and v,, as shown in Figure 6. In 

order to employ equation (3.1 .3), effective values for u, and v, have to be determined under 

this condition . The effective pupil function V1, by direct inspection of Figure 4, is given by 

(3 .2.1) 

where rov = McvWo , Mcv is the magnification of the collimator in the path of V1 and roo is the 

Gaussian waist of the laser source beam. 
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As for the specification of pupil function U1, since lens l 2 has been removed, as shown 

in Figure 6, we find the effective pupil function U1 by specifying the broadened Gaussian 

distribution at the scanning mirror and equating this distribution to the Fourier transform of 

U,. Mathematically, this is written as 

(3.2.2) 

where f,, = x/).fz , fy = y/U2 are the spatial frequencies employed in the Fourier transformation 

in equation (3.2 .2). Solving for U1 gives 

(3 .2.3) 

Notice that due to the phase flattening properties of the coll imators, equations (3.2.1) and 

(3 .2.3) represent real Gaussian functions . Also notice that u, and V1 have been chosen to be 

normalized Gaussians; i.e., 

f oo f oo '¥1 dxdy = 1 
-oo - oo 

(3.2.4) 

where '1'1 represents either U1 or V1• Now, taking fz = 17.Scm, A = 633nm, Mcu = Mcv = 10 and 

wo = 1mm, as is the case in our actual experimental set-up, we find that Wu= 3.526µm and 

w, = 1.0cm. As expected, wu < < w,. A somewhat more quantitative description of how the 

relative sizes of wu and w, effect the hologram generation process will be presented later, 

though for now simply note that the condition wu < < w, is required so that we may most 

closely model the pupil interaction discussed in the previous section (i.e ., V1 = 1 and 

u, = b(x,y)). 
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Before calculating the OTF of the scanning helographic system we make one further 

observation. That is, for generality, we still consider that U1 is subject to a possible intraplanar 

translation by a distance d, though with U1 existing only as an effective pupil function, as in 

our experimental system, causing this translation directly is impossible. One method of 

causing an effective translation of pupil U1 in this case is to slightly misalign the system such 

that the mirror following the collimator in the propagation path of U1 is positioned at an angle 

slightly greater or less than 45° from the direction of the incident collimated light (see Figure 

4) . Taking em as the incremental misalignment angle from 45°, the effective displacement de,, 

is then found through simple geometrical considerations to be 

(3 .2.5) 

where em is expressed in radians, and where an analogy has been drawn between the 

propagation angle e of the plane wave in Figure 5, when U1 is translated by d, and the 

propagation angle of the collimated beam when the mirror under consideration is misaligned 

by em. 

We now calculate the OTF by inserting equations (3.2.1) and (3 .2.3) into equation (3 .1.3). 

Performing the required calculations and simplifications we obtain the result 

(3.2.6) 

where 
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{ 
Af2 nz } H =rid -+j- [m] 

2 f.2 Wv 
(3.2.7) 

t/ = 

and where an nonessential constant has been left out of equation (3.2.6). In addition, by 

inverse Fourier transforming equation (3.2.6), the impulse response is found to be 

- 1 ( n
2 

{( . H )
2 

2}) V6(x,y;z) = G exp( -K) exp - G x + J -.;r + y (3.2.8) 

with an nonessential constant left out. As a check, letting wv-+ oo and wu-+ 0, we readily see, 

for the ideal case, that ">1 -+ 1 , G-+ -jnJ.z, H-+ jdnz/'2, K-+ 0 and equations (3.2.6) and (3.2.8) 

reduce to equations (3.1 .7) and (3.1.8), respectively. 

Notice that both G and H are complex quantities. If we now expand the argument of the 

second exponential term in equation (3.2.6) and collect the real (decay) and imaginary (phase 

and frequency) terms, we can calculate the spatial carrier offset to be 

(3.2.9) 

where G, and G1 are the real and imaginary parts of G, respectively, and where the 

contribution of the temporal frequency carrier f0 has been included. Again, under the condition 

that wv-+ oo and Wu-+ 0 we find that equation (3.2.9) reduces directly to equation (3.1 .10). 

In order to aid in visualizing the results expressed in equations (3.2.6) - (3.2.8) we provide 

Figures 7 - 17. Figure 7 shows a simulation of equation (3 .1.9), when I 12 I 2 = o(x,y), fxo = 0 (i.e., 

d = fo = 0), A= 633nm, Wu= 3.526µm, Wv = 1.0cm, z = '2 = 17.Scm, cf>uv = - n/2 and when v6 is 
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chosen as described in equation (3.2.8). The choice of z = f2 was made because in actual 

experiments, at z = f2 (see Figure 4) the collimated and diverging beams coinciding at I rz I 2 

most completely and uniformly overlap - ultimately yielding optimal fringe contrast. In fact, it 

Is easily shown that as z - oo, the OTF described by equation (3.2.6) approaches zero. We 

will thus take z ~ f2 as a generally applicable operating requirement (i.e. , I r 2 I 2 located 

nominally at z ~ f2 and the total depth of I 1 2 I 2 much less than f2). We also mention that Figure 

7, as with Figures 8 - 11, has been normalized so that the maximum value is unity and 

Voe= 0.5, and that </>uv is chosen to be - -rr/2 so that on-axis impulse response simulations 

have a central maximum .. 

Figure 7 is readily identified as a Fresnel zone plate, characteristic of on-axis point 

source holograms. We only begin to notice the effects of the Gaussian wave Interaction when 

we inspect Figure 8 which shows a one dimensional slice through Figure 7 when y =O. Note 

the apodization of the FZP as Ix I increases. As this effect would not be present in the case 

of true spherical and plane wave interaction, we attribute this apodization to the Gaussian 

nature of the interfering beams. Figure 9 is a cross section plot of a carrier frequency 

hologram with d =O and fo/Vx = -3.2 c/mm (i.e., 2-rrfxo = 20 radians/mm) in equation (3.2.8) . Note 

the shift in the central fringe and the apparent contrast reversal. 

To investigate the importance of the relative sizes of wu and wv. we increased Wu in our 

simulation from 3.526µm to 40µm and generated Figures 10 and 11. As in Figure 9, the spatial 

carrier frequency in Figure 11 is 2-rrfxo = 20 radians/mm, with d =O and fo/Vx = -3.2 c/mm. 

Notice the more drastic decay of the fringes in these plots caused by increasing wu. Notice 

also that the fringe spacings in Figures 10 and 11 do not perceptibly differ from those in 

Figures 8 and 9. These effects are verified by closely inspecting equation (3.2.8), when, for 

simplicity we take d = f0 = H = 0. It is seen that fringe decay is proportional to Re{1/G} while 

fringe spacing is inversely proportional to lm{1/G}. It can be shown by inserting various values 

for Wu and wv into the expression for G, that if wu < < wv, then as Wu increases, Re{1/G} 

increases, causing a more distinct decay, while lm{1 / G} and thus the fringe spacing remain 

3.0 OPTICAL SCANNING HOLOGRAPHY 35 



essentially unchanged. If, however, Wu increases so that wu ~ wv, we find that lm{1/G} 

decreases rapidly, causing the fringe spacing to increase accordingly. Furthermore, it can 

be shown that if Wu= 3.526µm and wv = 1.0cm, as in our experiments, then the fringe spacing 

is imperceptably different from the ideal case when Wu= 0 and wv = oo (i.e., '1t' 2lm{1/g} is 

approximately equal to the parameter 'lt'/).z in equation (3.1 .11)). It thus becomes apparent that 

the requirement wu < < wv is necessary so that equation (3.2.8) most close ly resembles the 

ideal impulse response of equation (3.1.8). 

The necessity of requiring wu < < wv is further emphasized by inspecting Figures 12 - 15. 

Here we have plotted the width of the point source hologram, wH. defined as the radial location 

where the apodization envelope falls to the value 1/e, and the number of fringes N within the 

hologram out to wH. for various values of wu and wv. All four figures are plotted assuming 

d = fo = 0 (i.e., on-axis),).= 633nm, z = fi = 17.Scm and <Puv = - n/2. Figures 12 and 13 assume 

Wu<< wv while Figures 14 and 15 assume Wu~ wv. Specifically, from equation (3 .2.8) we find 

that 

1 (3 .2.10) 

where G;nv = 1/G. The number of fringes within WH is also found from equation (3.2.8) by 

considering only the imaginary (or oscillatory) terms and by setting x2 + y2 = r 2 = WH
2
· We 

then evaluate the expression 

(3.2.11) 

where </>Ginv is a phase term arising from the 1/G factor which precedes the exponentials in 

equation (3 .2.8) and the right hand side of equation (3 .2.11) was chosen in order to count the 

number N of minimums through which the oscillatory terms pass. It is easily shown that 
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</>G;nv ~ n:/2 if Wu<< wv (see, for example, the ideal </> term of equations (3.1.12)). Inserting 

equation (3 .2.10) into equation (3.2.11) we find that 

(3.2.12) 

From Figures 12 and 13 we see that if Wu<< wv. then as Wu increases, we expect fewer 

fringes within WH· This is verified by reinspecting Figures 8 and 10 and is due primarily to the 

increasing decay factor Re{1/G}. As per the previous discussion, change in fringe spacing 

essentially does not influence the results of Figures 12 and 13. On the other hand, Figures 14 

and 15 show that though the hologram width WH remains appreciable if wu~Wv, the number of 

fringes within wH falls essentially to zero. (Note that Figure 15 represents five overlaping 

curves, one each for the five values of wu. Again, as per the previous discussion, this loss of 

fringes is due to the increased fringe spacing as wu approaches wv (i.e., as lm{1/G} 

decreases). As it is well known that several fringes are necessary for a FZP to exhibit a 

proper lens-like focusing action, it is clearly unacceptable if wu is chosen comparable to <»v· 

Thus the earlier statement that wu < < wv is a necessary requirement for proper hologram 

generation is further reinforced. In fact, Figures 12 - 15 give us guidelines by which to choose 

wu and wv such that a certain number of fringes within the hologram is maintained. 

Consider now the spatial carrier frequency fx0 expressed in equation (3.2.9). We have 

plotted equation (3.2.9) as fxo vs. d in Figure 16 under the assumptions that <»v = 1.0cm, 

Wu= 3.526µm, A.= 633nm, f0 = 0 and f2 = 17.5cm. Notice that if wu < < wv. then regardless of the 

depth parameter z (Figure 16 shows five overlapping plots), the slope of the resulting line is 

constant. In fact, this slope is negligibly close to the value 1/A.f2 , as predicted under ideal 

conditions (wu-+ 0, wv-+ oo) by equation (3.1.10). (It should be mentioned that though Figure 

16 is plotted for widely varying values of z, this is done merely to show that equation (3.2.9) 

is essentially independant of z when wu < < wv, as expected. In general, we will require 

z~f2, as previously discussed.) Note, however, that as d increases, the exp(-K) terms in both 

3.0 OPTICAL SCANNING HOLOGRAPHY 37 



equations (3.2.6) and (3.2.8) begin to decay, as is expected, since when d :f:. O the 

interferometer configuration of Figure 4 becomes misaligned. This decay is illustrated in 

Figure 17, where the relative OTF amplitude is plotted for all fx and fy as a function of the 

misalignment factor d. The parameters of interest again are z = f2 = 17.Scm, ;. = 633nm, 

wv = 1.0cm and where wu is variable. Once again notice that the curves are independant of 

wu if wu < < wv (i.e ., Figure 17 also contains five overlaping curves). We now turn our attention 

to a few topics of interest regarding holographic reconstructions under the Gaussian beam 

assumption. 

3.2.2 Scaling, magnification, resolution and distortion 

Let us first consider the reconstruction of a simple on-axis (d = fo = 0) point source 

hologram recorded by our method. From equation (3.1.20), with I 12 I 2 = o(x,y), we see that the 

real object can be expressed as 

I -1 12 Ir = F {OTF x Hz} (3.2.13) 

where the OTF and Hz are expressed in equations (3 .2.6) and (3.1.21), respectively. Performing 

the required calculations we find 

(3.2.14) 

where a constant phase term has been ignored and where 

~ M2 Wu z 211'Z 
4G' = 11'2 ( Wv ) + ~(--,;-) - j-11'-(~ -1) 

( 

2 2 ) 
(3.2.15) 

3.0 OPTICAL SCANNING HOLOGRAPHY 38 



Under the assumptions that z ~ f2 and wu < < w., it is clear that '1~1 and that the first two 

terms of equation (3.2.15) dominate. For the system then, when Mcv = Mcu, we find from 

equations (3 .2.1) and (3.2.3) that wu = )J2/nwv so that 4G'~2wt. Equation (3.2.14) then reduces 

to 

(3.2.16) 

We thus see that our reconstructed object is a Gaussian function whose intensity width at the 

1/e point is no smaller than wu. Figure 18 shows a simulated on-axis reconstructed point 

source when Wu= 3.526µm. Therefore, it is evident that the choice of wu will influence the 

resolution of the scanning holographic system. So in addition to requiring that wu < < w •. Wu 

should also be made small so as to maximize resolution. We will now investigate these 

effects further. 

Consider the holographic recording of an object consisting of three distinct point sources 

such that 

Ir 21
2 

= b(x,y;z - Zo) + b(x - Xo, y,z - Zo) + b(x,y;z - (Zo + ~Zo)) (3.2.17) 

as shown in Figure 19, where z0 is the distance from the scanner to points 1 and 2, ~Zo is the 

relative depth between points 1 and 3, and x0 is the intraplanar translation from point 1, in the 

x direction of point 2. We then find that F { jr2 I 2} is 

(3.2.18) 

Considering on-axis recording with wu < < w. (i.e ., 11 ~ 1), we can write the OTF of 

equation (3.2.6) as 

(3 .2.19) 
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where 

(3.2.20) 

and .A.1 is the recording wavelength. Typically, e will be approximately one. In fact for our 

system e = 1 exactly, since as previously mentioned Wu= A.1fdnwv. 

Once again we look for the reconstructed object by evaluating equation (3 .1.20), when 

the OTF is now given as in equation (3.2.19) . However, we now write the spatial transfer 

function as 

(3 .2.21) 

where .A.2 is the wavelength of the incident plane wave used to reconstruct the hologram of 

I rz I 2, and t is the distance, yet to be determined, at which each point in I rz I 2 reconstructs 

to a real image. For the first term of equation (3.2 .18) we can write 

2 
(3 .2.22) 

where G(zo) indicates that the parameter G is evaluated at z = Zo, and scale factors Sx and Sy 

have been introduced into the OTF of equation (3.2.19). Scale factors arise because the area 

over which I rz I 2 is scanned may not be equal to the area of the device which displays the 

resulting hologram, and we recall that 
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(3.2.23) 

where t/! is some function , Sx and Sy are the scale factors and F{t/!} ='I'. For example, if an 

object is scanned over a 2 cm x 1 cm area and its hologram is subsequently displayed on a 

3 cm x 2 cm display device, then Sx = 2/3 and Sy= 1/2 (note that Sx. Sy< 1 results in 

magnification , suggesting the use of this technique in holographic microscopy). He is, of 

course, not subject to scaling and, for simplicity, we will from now on assume Sx =Sy= S. 

Continuing with the evaluation of equation (3 .2.22) we have 

2 (3 .2.24) 

The real object, then, is found where the phase term of equation (3 .2.24) is cancelled . This 

can be understood by recalling that when a lens focuses a collimated (or phase flat) Gaussian 

beam, the minimum waist occurs where the phase curvature returns to zero. In equation 

(3 .2.24) this occurs at a distance l 1 from the hologram given as 

(3 .2.25) 

The evaluation of l,1 is then completed to yield 

(3 .2.26) 

where 
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(3 .2.27) 

Proceeding in a similar fashion for the second and third terms of equation (3 .2.18) we find the 

locations l 2 and /3 and the widths ro2 and ro3 of the reconstructed images of points 2 and 3, 

respect ively, to be l 2 = l1, ro,1 = wr2. 

(3.2 .28) 

We also find that point 2 reconstructs in the plane z = l2 at a point trans lated in the x direction 

byt2x = Xo/S from point 1. 

The longitudinal (z directed) magnification M1ong of the reconstructed image is then found 

to be 

(3 .2.29) 

while the lateral (x directed) magnification M1at is 

(3 .2.30) 

Combining equations (3 .2.29) and (3.2.30) we obtain the well known result (28,29] 

(3 .2.31) 

The preceding results are graphically depicted in Figure 19 where the input and reconstructed 

point objects are represented together in relative proportion when S ~ 1. 
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Consider now the lateral and longitudinal resolutions possible with the scanning 

holographic system. We will take the longitudinal resolution as the minimum value of dzo 

(which we will call dz) such that upon reconstruction, the real images of points 1 and 3, in 

Figure 19, overlap where their intensities both equal 1/e. This is found by setting co,1 + cor3 

equal to /3 - l1. Solving this equality we find that 

dz= A.2 cou {( z2 )+ ( (z + dz)
2 

) ~} ,-S r;;- e+-,- + e+ 
2 11.1 ...; 2 12 f2 

(3 .2.32) 

where the nominal depth parameter z0 has been replaced with the more general variable z, 

to emphasize that the ability to resolve any two points on an extended object I r2 I 2 depends 

on the nominal distance from those points to the scanning mirror - not the distance Zo of the 

closest object point and the scanner as shown in Figure 6. Assuming that the minimum 

resolvable distance dz is much smaller than the nominal depth parameter z, we can solve for 

the resolution dz explicitly to find 

dz= (3.2.33) 

The lateral resolution is found in a similar fashion by finding the minimum value of Xo 

(which we will call dx) such that upon reconstruction the real images of points 1 and 2, in 

Figure 19, overlap where their intensities both equal 1/e. Now the equality to be solved is 

con+ co,2 = l2x· Solving this equality· we find directly that the lateral resolution is given as 

(3.2.34) 
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Figures 20 - 23 provide a graphical representation of the lateral and and longitudinal 

resolutions, respectively, of the system as a function of z, for several small values of wu. 

Additionally, Figure 21 is plotted for S = 1, while Figures 22 and 23 are plotted for S = 5 and 

S =0.2, respectively . Other parameters of interest are A.1 = l 2 and fz = 17.Scm, Notice that 

t::.x and t::.z are in micrometers while z is in centimeters . Also notice from Figures 20 and 21 

that if the scaling factor S is unity, then the lateral and longitudinal resolutions are 

imperceptably different, resulting in minimal distortion in reconstructed holographic images. 

This result is verified by noting that the denominator of equation (3.2.33) is approximately unity 

for S = 1, ..t, = l2 and wu small. Under these conditions then, equations (3.2.33) and (3 .2.34) are 

approximately equal. However, as the scaling factor S changes, the lateral and longitudinal 

resolutions are no longer the same, as shown by inspecting Figures 22 and 23, since only t::.z 

is a function of the scaling factors. Thus, for example, as I r 2 I 2 increases in size with respect 

to the area of the display device (i.e., S increasing) there is a loss of spatial detail along the 

z direction in the reconstructed holographic images. Furthermore, from Figures 20 - 23 we see 

that in order to resolve any neighboring points along z, the relative distance between them in 

I r2 I 2 must increase as z increases, indicating that as z increases it becomes more difficult 

to resolve fine spatial detail. It should be noted that none of the above mentioned effects are 

evident under the previously discussed ideal assumptions of u, = o(x,y) and v, = 1, since with 

these assumptions both t::.x and t::.z both approach zero for all z and S. A/so note that the 

preceeding analysis does not account for resolution limits resulting from displaying a scaled 

hologram on a device with limited spatial bandwidth. 

Before continuing, two further comments are necessary concerning other distortion 

factors introduced by the practical experimental conditions. First, it is essential for distortion 

reduction purposes that objects 'be scanned in a linear fashion. This is most easily 

accomplished by using ramp signals to deflect the scanning mirrors, though, sinusoidal 

signals can also be used if the object is overscanned in such a way that during the central 

portion of the scan the object is scanned approximately linearly. (Note that if sinusoidal 
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scanning is used, then large objects will have to be placed farther from the scanner than small 

objects in order for linear scanning to take place. This will in turn require judicious selection 

of the focal length f2 of lens ( 2 in Figure 4 so that fringe contrast is optimized - see the 

discussion in section 3.2.1.) 

Also, it is reasonable to question whether or not there is phase distortion introduced into 

the detected signal by the non-parallel scanning nature of most scanning devices and the fact 

that the Fourier transforms of U1 and V1 are in effect created on the tilted Fourier plane of the 

scanning mirror, as indicated in Figure 4. In essence, neither of these factors result in 

noticable phase distortion . This is manifest by keeping scan angles small (eit.her I 1 2 I 2 small 

or z large) so that paraxial scanning can be assumed and by noticing that light illuminating 

the scanning mirror is essentially the superposition of a point source and a plane wave. It is 

then easily seen that reflection at 90° (or small variations thereof) yields no phase distortion 

in the reflected plane wave. Furthermore, by causing the focused point due to the Fourier 

transformation of pupil V1 to occur at the center of the scanning mirror (the only stationary 

point) , no phase distortion is produced in the resulting spherical wave. We now turn our 

attention to experimental verification of the technique and some further simulations which aid 

in understanding the bias buildup reducing properties of the system. 

3.2.3 Experimental verification 

In order to experimentally verify the technique, precise measurements have been made 

of the signal representing the hologram of a 50 µm by 1 cm slit. As previously described, the 

experimental parameters of interest were Wu= 3.526µm, wv = 1.0cm, A.= 633nm and 

z = '2 = 17.5cm. The slit can then be expressed as I r 2 I 2 = rect(x/a, y/b) where a = 50 µm and 

b = 1.0 cm and where we define 
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rect( ~ , ~ ) 
= {1; -;a ~ x ~ ~ , -;b ~ Y ~ ~ 

0 ; elsewhere 
(3.2.35) 

Using this description of I r2 I 2 and letting d = fo = 0, equation (3.1.5) was first simulated using 

the OTF of equation (3 .2.6) . The result of this simulation is shown in Figure 24 for the y=O 

cross section. Again, this plot is normalized to a maximum value of unity with Voe= 0.5 Notice 

the appearance of the side lobes in the envelope apodising the fringe pattern in Figure 24, and 

that fringe visibility quickly drops off after Ix I ~1.Bmm. To aid in interpreting this result, 

consider a Fresnel zone plate which is truncated in the radial direction after only a few fringes . 

Upon illunination, this FZP will exhibit poor focusing properties, yielding only a broadened 

spot, or line in one dimension, in its focal plane. Thus since a slit is in essence a broadened 

line, we expect its ·hologram to have fewer visible fringes, as in Figure 24, while retaining the 

basic FZP shape. 

To measure the corresponding electrical signal representing the hologram of our slit, the 

signal just after the last amplifier of Figure 4 was directly fed into one of the vertical amplifiers 

of an oscilloscope. In order to ensure that we only looked at the y=O cross section, the 

superposed scanning beams at the slit (I r2 I 2) were vertically centered, while the y scanning 

rate was set to zero. The displayed signal was then averaged 100 times to increase the 

signal-to-noise ratio. 

The appropriate scale factor of our displayed signal was then determined by the 

following procedure. First the peak-to-peak excursion D from x=O which the superposed 

scanning beams experienced was measured, In the plane of r2. when the scanner was 

operating. As we used sinusoidal scanning signals, D was set large enough such that the 

scanning beam velocity was approximately constant over the 50 µm opening in r2. The 

instantaneous velocity v. of the scanning beam as it passed the center of r 2 (in the region of 

the 50 µm opening) was then determined, assuming sinusoidal scanning, to be 

3.0 OPTICAL SCANNING HOLOGRAPHY 46 



(3.2.36) 

where f$ is the scanning frequency and T is the scanning period. We then multiply v$ by the 

TIM/DIV setting of the oscilloscope to obtain the scale factor s. For example, for this work 

D = 1.2 cm , r. = 20Hz and TIM/DIV = 0.5 ms/div, yielding a scale factor S=0.377 mm/div. By 

then selecting a point on the oscilloscope trace located some number of divisions from the 

origin and multiplying its position {in oscilloscope divisions) by S, the corresponding location 

on , say, Figure 24 could be determined. 

Several experimentally measured points were mapped onto the slit hologram simulation. 

The results are shown in Figure 25 where the scale has been enlarged from that of Figure 24 

in order to emphasize the central fringes. We also mention that an assumed bias of 

Voe= 0.5 was added to the experimental data after the amplitudes of the various points were 

normalized such that the maximum deviation from zero {the average value before adding the 

bias) was 0.5. 

The data shown in Figure 25 proves to be quite repeatable, although averaging is usually 

necessary to reduce the noise. It is believed that the primary source of noise in our system 

is vibrat ion induced by the oscillating scanner mirrors. Also, the interferometer arrangement 

in Figure 4 is not phase compensated to correct for errors such as thermal drift, and 

occasional signal fading has been observed as the room temperature fluctuates. Other 

contributions of noise likely arise due to the processing electronics and due to the fact that the 

composite scanning beam is usually not precisely azimuthally symmetric in the I rz I 2 plane 

{as a result of various aberrations. in the optical arrangement) , although these contributions 

are relatively small. By carefully redesigning the optical arrangement of Figure 4, possibly to 

include heterodyned fiber optic techniques (30,31] and a higher precision scanning device, 

substantial reduction of all noise factors could be achieved. 
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3.2.4 Bias reduction 

We now refer back to the earlier claim that this techn,ique allow the effects of background 

bias buildup to be reduced from that normally encountered in incoherent holography. This is 

made visually evident with the aid of Figures 26-28. Figure 26 shows the y =O cross section 

of the simulated on-axis hologram of a 200 µm x 1.0 cm slit. For comparison, Figure 27 shows 

experimentally measured hologram cross sections for 50 µm x 1.0 cm and 115.5 µm x 1.0 cm 

slits . As with previous simulations, Figure 26 has been normalized such that the peak value 

is unity and Voe= 0.5 with Wu= 3.526µm, w. = 1.0cm, A.= 633nm and z = f2 = 17.5cm. This 

normalization technique in essence represents the results which would be obtained by 

traditional incoherent holographic methods [15] , where the bias level has equal contributions 

from each source point. This is seen by considering for a moment the incoherent hologram 

IH of a collection of several point objects, as recorded by Cochran 's method [15] . Quite simply 

the hologram would be 

N 

IH = 2~ L {1 +cos( :Z (<x-x0/)2+(Y-Yoi))} 
1= 1 

(3.2.37) 

where C is a constant, (x0 ; , y01) is the location of each point at a common distance z from the 

recording plane, and where each point is equally radiant (as is the case with a uniformly 

illuminated slit). We see that the maximum and average intensity levels of this hologram are 

C and C/2, respectively, where C is chosen such that the maximum intensity level just 

reaches the saturation level of the recording medium. For simplicity, we set C = 1. 

From Figure 26 we see that this method results in a relatively high bias level as the 

object becomes continuous. As the fringes are what give rise to the focusing action of the 

hologram when the recorded object is reconstructed, we only need a bias such that IH is 
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always non-negative. This can be achieved in our system by proper selection of Voe and the 

audio amplifier gain (see Figure 4), and is depicted in Figure 28. In the simulation of Figure 

28 the normalization was done as follows. First, the minimum value Im of the data of Figure 

24 was determined and subsequently subtracted from every data point. The difference 

Io= 1 - Im was then divided into each data point, and since Io~ 1 we see that fringe visibility 

has been increased and the bias level reduced. (Again this normalization process is in 

practice carried out by properly adjusting the audio amplifier gain and Voe as shown in Figure 

4, where the maximum value output to the display device wou ld be adjusted for maximum 

intensity modulation. 
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2). 
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Figure 9. Cross section of a point source hologram: (with a small spatial carrier frequency 
included when Wu= 3.526µm). 
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Figure 10. Cross section of a point source hologram: (generated with cou = 40µm). 
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Figure 11. Cross section of a point source hologram: (with a small spatial carrier frequency 
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Figure 18. Point source hologram reconstruction: (when wu = 3.526µm and the intensity has 
been normalized to unity). 
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Figure 24. Simulated hologram cross section of a 50 micrometer slit. 
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Figure 27. Experimentally measured slit hologram cross sections: a) 50 µm x 1.0 cm, b) 115.5 
µm x 1.0 cm. 
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4.0 RECONSTRUCTION OF SCANNED OPTICAL 

HOLOGRAMS 

In this chapter the principles of real-time optical holography are presented as they relate 

to the active heterodyne scanning (recording) technique used in conjunction with holographic 

reconstruction methods employing an electron beam addressed spatial light modulator 

(EBSLM) [8]. Results of experiments performed to verify these principles are also presented 

[10] . 

4.1 Principles of Real-Time Optical Scanning Holography 

In this section the techniques by which holographic recording and reconstruction can be 

achieved using the heterodyne scanning image processor in conjunction with an EBSLM [9,32) 

are described. To begin, a brief description of the EBSLM and a discussion of its application 
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as a real-time display device in holographic reconstruction is presented [10]. This is followed 

by a description of the spatial frequency resolution capabilities of the EBSLM, after which the 

overall incoherent point spread function (PSF) of the recording/ reconstruction system is 

developed. Finally, based on the calculated PSF, the size of the reconstructed real image of 

a simple slit object is predicted so as to provide a basis of evaluation for experimental 

measurements presented in the following section. (It should be noted that though methods 

of recording carrier frequency (off-axis) holograms were proposed and ana lyzed for the 

scanning image processor in the previous chapter [5,33). the discussions in this chapter wi ll 

be limited to on-axis holographic methods (i.e., d = fo = 0 in equation (3.1 .5)), as only on-axis 

holograms have been produced and evaluated experimentally.) 

4.1.1 Electron beam addressed spatial light modulator 

A schematic diagram of the EBSLM as it is used in a coherent light conversion system 

is shown in Figure 29 [9,32]. As seen, a serial video signal is the required input to the EBSLM 

controller (Hamamatsu model # C3737) . The controller in turn provides the signa l which 

intensity modulates the emission from the electron gun within the EBSLM head (Hamamatsu 

model # X3636) . This electron beam is then two-dimensionally scanned onto the surface of a 

55-degree cut LiNb03 crystal with a deflection coil. As a result, electric charges accumulate 

on the surface of the crystal. Through the Pocke ls effect then, the field associated with the 

charges changes the refractive inqex of the crystal on a point-by-point basis . To read out 

these results, a linearly polarized laser is used to illuminate the crystal from an external 

source. In the coherent light conversion technique, a pointwise varying elliptical polarization 

due to the corresponding pointwise change in refractive index change of the crystal is 
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manifest within the reflected light. By passing this reflected light through an analyzer, a 

converted coherent image is obtained [9]. 

In order to display a holographic image generated through the scanning process 

described in chapter 3, an arrangement such as that shown in Figure 30 is used. In this set-up, 

a storage oscilloscope is used as an intermediate display device. This is accomplished by 

feeding the x and y scanning signals driving the scanner of Figure 4 in parallel to the external 

trigger and vertical amplifier inputs of the oscilloscope, respectively, while also feed ing the 

electrical signal v(x,y;z) (see equations (3.1.5) and (3.2.6)) correspond ing to the scanned 

hologram into the intensity modulating input (z-axis) of the oscilloscope. In this way the 

electron gun of the oscilloscope is synchronized with the x and y scanning rates of the scanner 

of Figure 4 and the hologram is mapped in a two-dimensional fashion onto the oscilloscope 

screen . A closed circuit television (CCTV) camera then views the hologram on the 

oscilloscope and provides a serial video signal output which is in turn amplified and sent to 

the EBSLM controller. 

We mention that this intermediate display step is necessary because, in general, the rate 

at which an object is scanned with the heterodyne scanning image processor does not 

correspond to video standards. In fact , in most of the experimental work, objects are scanned 

very slowly so as to reduce mechanical jitter which tends to introduce undesirable phase 

noise into the Mach-Zehnder interferometer type configuration shown in Figure 4. We also 

mention that after being written onto the EBSLM, the hologram in essence appears as a 

coherently back illuminated transmitance function in the plane of the analyzer of Figure 30. 

The reconstructed real object image then can be found a distance zM1ong in front of the 

analyzer, where z is the distance, shown in Figure 4, at which the object I 1 2 I 2 is initially 

scanned and M1ong is the longitudinal magnification of the holographic imaging system (see 

equation (3 .2.31)) arising from various scaling factors which will be discussed later. 

In order to investigate the spatial frequency resolution of the EBSLM, the CCTV camera 

was used to "look" directly at a linear chirp grating. The image of this grating was then written 
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onto the EBSLM and viewed on a smoked glass screen placed just after the analyzer of Figure 

29. Using a magnifying eye loupe with a reticle graduated in 50 micrometer increments, it 

was observed that under optimum conditions the lines on the image of the chirp grating 

became barely distinguishable when the separation between the lines was between 150 - 200 

micrometers. This translates to a spatial resolution of between 5 - 6.6 Ip/mm. In order to verify 

that the EBSLM was the limiting factor in this measurement, the output of the CCTV camera 

was displayed directly on a video monitor. As expected, the most closely spaced lines on the 

chirp grating were easily resolved on the video monitor screen, indicating that the CCTV 

camera did not influence the observed SLM resolution. In the next subsection we will show 

how this resolution limit affects reconstructed holographic images. 

4.1.2 The overall point spread function 

In order to develope the incoherent point spread function (PSF) for the overall 

holographic recording/reconstruction system, consider that an on-axis hologram is recorded 

for a single point object; that is, I r 2 I 2 = b(x,y). From equation (3 .1.5) the recorded point 

source hologram can then be written as 

(4.1 .1) 

where the OTF is given as in equation (3.2 .6) when d = K = H = O and we recall that 

* A+ A = 2Re{A}. Simplifying equation (4.1 .1) yields 

1 - 1 - * 
v(x,y;z) = Voe + 2 Vc5 + 2 Vc5 (4.1 .2) 
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where V6 is given in equation (3 .2.8), again when d = K = H =O. As in conventional holography, 

equation (4.1.2) represents, in essence, the effects of three lenses. The first term of equation 

(4.1.2) represents a flat lens with focal plane at infinity. The second and third terms 

correspond, respectively, to positive and negative lenses of foca l length '6 = z, under unity 

magnification (i.e ., the distance at which the hologram was originally recorded - see equations 

(3 .2.8) and (3 .1.8) for Gaussian beam and standard plane and spherical wave formulations of 

-V6 , respectively), which upon reconstruction yield the real and virtual images of the 

reconstructed point object. 

As it is easier to experimentally investigate the reconstructed real image, only this 

image will be discussed in further analyses. Using the second term of equation (4.1.2) then, 

the reconstructed real image intensity 1,6 is written as 

(4.1.3) 

where the beam illuminating the hologram in the reconstruction process is assumed to be a 

broad, collimated real Gaussian (i.e., w 1 is large with respect to a) and where the circular 

apodization is included to account for the limited number of fringes, or Fresnel zones, 

available to contribute to the reconstruction process; the limited number of fringes being in 

turn due to the limited spatial resolution of the EBSLM. Note that in equation (4.1.3) it is 

assumed that the EBSLM has the same spatial resolution in all radial directions. In addition, 

note that, mathematically, circ(r/a) is defined as 

{

1 · 
circ( ~ ) = 

0
; 

r::;;, a 
(4.1.4) 

r>a 
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where r = Jx2 + y2 and a is in practice limited to the radial size of the EBSLM crystal {in our 

case the crystal diameter is about 1.2 cm) . Finally, Hz in equation (4.1.3) represents the spatial 

transfer function of equation (3.1.21), rewritten here as 

(4.1.5) 

where an nonessential constant has been left out and where z is the propagation distance to 

the reconstruction plane of the field emerging from the illuminated hologram, and exactly 

equa ls (under unity magnification) the distance at which the point object lead ing to equation 

(4.1 .2) was origina lly scanned. We thus recogn ize equation (4.1.3) as the overa ll incoherent 

PSF for the scanning holographic imaging system. In general, though , the form of equation 

(4.1 .3) must be investigated through numerical simulations. Such simu lations will be 

presented shortly; however, we must first further investigate the circ{r/a) function and 

determine how it is influenced by the EBSLM resolution . 

The instantaneous spatial frequency p at any radial location from the origin can be 

determined for a FZP by first identifying the phase term of V6 by rewriting equation (3.2.8) 

under on·axis assumptions as 

(4.1.6) 

where 

(4.1.7) 

and the factor M has been included to account for any magnification of the FZP which would 

occur during the recording and display process. {We introduce this magnification factor now 

simply because it is convenient to do so, though, a detailed discussion of the precise 

mechanisms leading to holographic magnification will be deferred to the following, 
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experimental section . Notice also that the magnification factor M exactly equals 1/S, where 

S is the scaling factor introduced in section 3.2.2.) The instantaneous spatial frequency p is 

then found to be 

1 a<1> .s 
p=--- = 

2Tr or (4.1.8) 

Generally speaking then, the value of the parameter a in equations (4.1 .3) and (4.1.4) is found 

by setting r =a in equation (4.1.8) while p is set equal to the spatial resolution of the EBSLM. 

That is, 

a= 
n Im{ ~ } 

(4.1.9) 

We thus see that the effective size of a point source hologram displayed on an EBSLM is 

directly proportional to the EBSLM spatial resolution, where by effective we mean to indicate 

that due to the limited available spatial resolution, the size a of the displayed hologram can 

be less than the size of the EBSLM crystal. 

It is also of interest to estimate the number of observable fringes expected in a displayed 

FZP as a function of EBSLM resolution . Using the imaginary (oscillatory) term of equation 

(4.1.6), the location rn of the n1h fringe (or maximum) is found to be 

[m] ; n = 0,1,2 ... (4.1.10) 

where n =O corresponds to the central maximum. Setting r = rn in equation (4.1.8) and 

rearranging terms we then find that the number n of observable fringes as a function of p is 

simply 
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n = 
2~ Im{~ } 

(4.1.11) 

where, strictly speaking, one must round n to the next lowest integer. For example, in our 

work Wu= 3.526 µm, Wv = 1.0 cm, z = f2 = 17.5 cm and A. = 633 nm. In addition, the 

characteristic size of the reconstruction beam was w1 = 3.0 cm and the maximum spatial 

resolution of the EBSLM was specified by the manufacturer to be 20 Ip/mm [9] . Using these 

parameters we find under unity magnification (M = 1) that 

and 

Im{ ~ } = 2.8735 x 106 [m] 

a = 2.215 [mm] 

n = 22 fringes , 

(4.1.12) 

(4.1.13) 

where, as discussed in section 3.2.1, the choice of z = f2 was made because in actual 

· t lr2l 2 
experiments , at z = f2 (see Figure 4) the collimated and diverging beams coinciding a 

most completely and uniformly overlap - yielding optimal fringe contrast. 

The parameters of equations (4.1.12) were in turn used in equation (4.1.3) to simulate 

1,6 when M = 1. The result of this simulation is shown in cross section by the solid line in 

Figure 31, where for comparison, an idealized simulation (dotted line) of 1,6 when p =a-+ oo 

(i.e., all fringes are available in the reconstruction) and w 1 -+ oo (i.e., infinite uniform plane 

wave reconstruction beam) is also provided. Note that both curves in Figure 31 have been 

normalized to unity peak intensity and that the radial width of the idealized simulation at the 

1/e point is approximately equal to wu. The simulation of Figure 31 can in fact be taken as the 

PSF of the overall holographic imaging system when the primary limiting factors are the 

EBSLM resolution p (solid line) and the size wu of the focused scanning beam (dotted line). 
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Note that as p, a and w 1 approach infinity, it is readily shown, using equations (3.2.8) and 

(4.1 .3). that 1,6 is in fact Gaussian with waist equal to Wu. 

To further investigate the PSF, the full width half maximum (FWHM) of 1,6 was calculated 

as a function of the number of fringes used in the reconstruction. The results of these 

calculations are plotted in Figure 32, where the horizontal dotted line indicates the minimum 

FWHM if all fringes are available in the reconstruction process (i.e., p ~ oo) and 

wu = 3.526µm (note that the FWHM of a Gaussian is found by multiplying the waist value by 

2.Jii1(2)) . The vertical dotted line, on the other hand, indicates the practical limit on the 

number of fringes available in the reconstruction process based on the manufacturer specified 

EBSLM resolution [9] of 20 Ip/mm, (corresponding to about 22 fringes, or zones, on the 

hologram). As in the calculation of equations (4.1.12) and (4.1 .13), Figure 32 was plotted 

assuming M = 1, (2 = z = 17.5 cm, A.= 633 nm, Wu= 3.526 µm, Wv = 1.0 cm and w 1 = 3.0 cm. Note 

that, as expected, the FWHM of the PSF gets smaller as the number of fringes in the 

reconstruction process increases. Also note that, strictly speaking, Figure 32 gives the FWHM, 

for unity magnification, of the incoherent PSF as a function of the number of reconstructing 

fringes, without requiring that the fringes be limited only by the EBSLM resolution. 

Furthermore, as we will see in the experimental section, a convenient way of measuring the 

EBSLM resolution is to display a FZP on an EBSLM and measure the number of visible fringes. 

Once the magnification factor M is determined, equation (4.1.4) can be used to find pstM. the 

EBSLM resolution . 

As we will discuss in some detail in the next section the holographic recording and 

reconstruction of a simple transmissive slit object, it will be helpful if we now discuss the form 

of the reconstructed slit image, based on the predicted PSF. Strictly speaking, we see from 

Figure 31 that as the number of fringes used in the reconstruction process is limited, the PSF 

is broadened and takes on some side lobes. However, for our purposes it is much easier 

mathematically and computationally to model the PSF as a Gaussian function with waist 

{J = (FWHM)/2.Jii1(2) ~ 0.6(FWHM), where the FWHM is determined from Figure 32 and the 

4.0 RECONSTRUCTION OF SCANNED OPTICAL HOLOGRAMS 83 



number of reconstruction fringes is known. Modeling the PSF in this manner will, of course, 

introduce some error in the predicted shape and size of the reconstructed slit, though as we 

will see in the next section, for the previously described system parameters the Gaussian PSF 

approximation proves to allow an accurate and convenient estimate of the size of the 

reconstructed slit image. 

Using the Gaussian PSF approximation, the reconstructed slit image Irs is then simply 

written in normalized form as 

where 

rect( ~ ) = {1; lxl -5.rx/2 
0 ; elsewhere 

(4.1 .14) 

(4.1.15) 

rx is the width of the slit, 1,,,(0) is the (maximum) value of I,,, at r=O, M accounts for 

magnification of the PSF after display on the EBSLM and where * now denotes convolution 

along the x direction. Upon performing the convolution in equation (27) and making the 

required simplifications, we find in the x-direction that 

lr5 (x) = [err(-1 (~-x)) + err(-1 (~+x))]-1 M/3 2 M/3 2 lr5 (0) 
(4.1.16) 

where erf(x) is the error function (3.4] defined as 

erf(x) = ;__ Jx exp( - t2
) dt 

-JTr: 0 

(4.1.17) 

4.0 RECONSTRUCTION OF SCANNED OPTICAL HOLOGRAMS 84 



Of course, I ,. will be uniform in the y-direction . As we will see in the next section, equation 

(4.1.16) will prove useful in comparing experimental measurements with theoretical 

predictions, where for simulation purposes it is mentioned that a simplified algebraic 

expansion of erf(x) can be written as [34] 

where 

t = 1 
1 + px 

p = 0.47047 

a1 = 0.3480242 

a2 = -0.0958798 

83 = 0.7478556 

4.2 Size Of The Reconstructed Slit: Experimental 

Verification 

(4.1 .18) 

(4.1.19) 

Refering to Figure 4, in the following experimental work a narrow transmissive slit 

object such that I r 2 I 2 = rect(x/cx), where ex= 50µm was scanned. (To aid in visualizing the 

discussion to follow, we mention that as discussed in section 3.2.3, the scanned hologram of 

such a narrow slit, when w. > > wu (see equations (3.2.1) and (3.2.3)) and the distance z from 

the scanner is much larger than the slit width ex, qualitatively looks like a truncated one 

dimensional FZP (see equation (3.1.11)) , with true fringe spacing and visibility varying only 

slightly from that of an ideal FZP (see Figures 8 and 24) . This of course, is due to the fact that 
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a narrow slit in essence approximates a one-dimensional spatial delta function.) The scanned 

electrical signal representing the hologram of the slit was then sent in synchronism and 

displayed on a storage oscilloscope as shown in Figure 30. With the ultimate intent of 

' 
maximizing the diffraction efficiency of the slit hologram in the reconstruction process, and 

as the location and focal plane of the CCTV was arranged such that its field of vision was 

completely filled by only the oscilloscope screen, the time/div setting of the oscilloscope was 

adjusted such that when displayed on the EBSLM, the fringes of the slit hologram were just 

barely resolvable at the outermost edges of the EBSLM display area. In other words, by proper 

adjustment of the equipment in Figure 30, when displayed on the EBSLM, the scanned slit 

hologram filled the display area with fringes, all of which were at least minimally resolvable. 

Notice also that this procedure ensured that the maximum number of resolvable fringes were 

displayed on the EBSLM, further increasing the reconstruction diffraction efficiency. Figure 

33 shows a photograph of the hologram recorded for the 50 µm slit. This picture was taken 

with an oscilloscope camera just after the holographic image was stored on the oscilloscope 

and just before the CCTV camera was used to send the corresponding hologram video signal 

to the EBSLM controller. 

Notice the nonuniformity of the fringes in Figure 33. This is primarily due to phase noise 

introduced by scanner vibration into the Mach-Zhender interferometer type configuration 

shown in Figure 4. As we will see, this, as well as other factors, will limit the resolution of 

reconstructed images. Notice also the binary nature of the hologram of Figure 33 - that is, no 

smoothly varying brightness between fringes, as would be expected. This is due to the facts 

that only above a certain minimum threshold voltage does the oscilloscope provide 

appreciable intensity modulation of the displayed signal and that beyond the threshold 

voltage, only minimal increases in modulation intensity are possible except for very large 

z-axis input voltage levels. It is thus primarily due to the fact that the oscilloscope limits us to 

only two gray levels that we are able to only investigate holograms of very simple objects, 

such as narrow slits, where the fringe amplitudes are mostly uniform. Furthermore, in addition 
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to the fact that the finite spatial resolution limits the complexity of objects whose holograms 

are suitable for display on the EBSLM, the EBSLM also limits the complexity of holographic 

objects due to its limited number of grey-levels (the manufacturer predicts ~ 10 grey levels 

in the EBSLM [9]) . 

In order to predict the size of the slit image after reconstruction, we must determine the 

magnification factor MsLM resulting from displaying the hologram of Figure 33 on the EBSLM. 

This is accomplished by modeling, for simplicity, the slit hologram lhs as a scaled one 

dimensional FZP, written as (see equation (3.1.11)) 

(4.2.1) 

MsLM is then determined by measuring the location Xn of the nth maxima, or fringe, when the 

hologram is viewed on a screen placed after the analyzer shown in Figure 29. Analytically, 

MsLM is given as 

MsLM = ~ , n = 1,2,3 ... 
..J2n..lz 

(4.2.2) 

where the central fringe (n =O) provides no useful information. By measuring the location of 

the first 10 fringes as just described, it was thus found that on average MsLM ~ 2.574. 

Furthermore, as in Figure 33, it was observed that as many as 20 fringes or fringe fragments 

were displayed on the EBSLM; the fragmentation of the higher order fringes, we feel, being 

primarily a result of the intermediate display process. (That is, as seen in Figure 8, due to the 

Gaussian nature of the scanning beams, the voltage signal v(x,y;z) of equation (3 .1.11) is in 

effect pre-multiplied by a broad Gaussian apodization, thus reducing the amplitude of the 

signal corresponding to the higher order fringes to near the threshold level needed to clearly 

display them on the oscilloscope.) Using the average value for MsLM, and assuming that the 

EBSLM resolution limits us to 20 visible fringes, equation (4.1 .11) was used to determine that 
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the spatial resolution of the EBSLM was approximately PsLM ~ 7.4 Ip/mm, where for this 

calculation Im{1/G} is given as in equation (4.1.12). Notice that this value for psw is slightly 

larger than the measured EBSLM resolution range mentioned in section 4.1 .1. It is believed 

that this new value for the EBSLM resolution is more representative of the EBSLM 

performance and that the lower, previously presented EBSLM resolution values can be 

attributed to our initial observation of the EBSLM output on a smoked glass viewing screen -

itself a mildly distorting medium. 

Notice now that Msw represents the lateral magnification of the slit hologram displayed 

on the EBSLM, as well as the magnification of the reconstructed image. Recalling the well 

known result (28] of equation (3 .2.31) when the holographic recording and reconstruction 

wavelengths are the same (i.e., Mtong = M1~t) , we see that the expected distance from the 

analyzer to the reconstruction plane is 

2 2 
z M1ong = z Miat = z MsLM = 116.0 cm (4.2.3) 

where the initial scanning distance was z= 17.5 cm and Msw is given above. In order to 

magnify the reconstructed image to a more manageable size , within a distance from the 

hologram plane comparable to that expressed in equation (4.2.3), the configuration shown in 

Figure 33 was used when reconstructing the real image of the slit object. 

In Figure 34 we see that a long focal length lens t1 is placed against the analyzer of 

Figure 29. This in effect increases the curvature of the light emerging from the analyzer (i.e., 

the effective hologram plane), and causes the reconstructed image to occur at a shorter 

distance f' from the hologram. A short focal length lens tm is then used to magnify the 

reconstructed image to a measurable size, after which the magnified real image is recorded 

on film . In order to then determine the overall magnification of the reconstructed real image, 

we begin by writing the wave emerging from lens t1, in complex form, as 
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'I't1 exp(-1 -7!__ {-x }2

) exp(-j _!I_ x2
) 

..tz MsLM Ar1 
(4.2.4) 

where 'I'e1 represents the complex amplitude of the wave emerging from lens t 1, f., is the focal 

length of lens t 1 and the first and second exponential terms of equation (4.2.4) represent, 

respectively, the approximate complex representation of the slit hologram (i.e., the on-axis, 

magnified version of v6 given in equation (3.1.8)) and the complex phase transformation of a 

thin lens in the x-direction (28]. Combining the arguments of the exponentials in equation 

(4.2.4) we find that 

where 

2 
MsLM f1 

f' = Z = Z M 
1 
tong 

z M~LM + f1 

(4.2.5) 

(4.3.6) 

and M '1ong is now the effective longitudinal magnification of the reconstructed real image. The 

overall lateral magnification of the real slit image in the film plane is then 

2 
MsLM f1 

Mtot = MtmJM'1ong = Mtm __ 2 __ _ 

Z MsLM + f1 

where Mem = i/o is the magnification due to the imaging lens tm. 

(4.2.7) 

For this work f., ~ 1.0m, z = 17.5 cm and MsLM ~ 2.574, indicating f' ~ 53.7cm (as opposed 

to the measured value f' = 53.1cm, the difference from the predicted value of being primarily 

due to the imprecise value off., and a slight displacement of lens t 1 from the analyzer in Figure 

34). Using a lens of focal length fm ~ 6.9cm, we adjusted lens tm so that o=7.6 cm and i =74.1 
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cm, yielding Mem = 9.75. Using the measured value off', the total lateral magnification of the 

reconstructed real slit image was thus 

= 16.82 (4.2.8) 

Using M = Mrot in equation (4.1.16) where in the same equation the PSF width pis determined 

using Figure 32, for a PSF with 20 fringes (recall that a slit hologram approximates a FZP), to 

be p = 0.6(28.0µm) = 16.8µm, we can find the expected shape of the reconstructed real slit 

image. A plot of equation (4.1 .16) when 11. = 50µm, P = 16.8µm and M=16.82 is shown in 

Figure 35. We see that the overall width of the reconstructed real slit image is roughly 

expected to be 1.1 mm. 

Figure 36a shows the results of a real-time reconstruction of the slit image. As 

measured directly on the film, the bright central line, corresponding to the reconstructed 

image is approximately 0.9 mm wide. (It should be mentioned that by "real-time" an ability to 

capture object motion is not implied - though in future work this may be possible . In the 

context of this work, therefore, we will take "real-time" holography to imply that a single, static 

hologram is recorded and reconstructed in quick succession . The time lapse till the 

reconstructed image is produced is essentially limited only by how fast the object is scanned 

and by how quickly the operator can then press the write switch on the EBSLM controller. This 

process is, of course, aided by the fact that no intermediate photoprocessing is necessary and 

that only electronic signal processing is required to produce the holographic image in the 

EBSLM.) 

For comparison purposes, a silver positive transparency of the polaroid photograph of 

Figure 33 was produced, where through photographic reduction the width of the reduced 

hologram was made to be 1.2 mm (the diameter of the EBSLM crystal) in the dimension 

perpendicular to the fringe information. This ensured that magnification of the hologram 

transparency was about the same as that originally encountered when the slit hologram was 
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displayed on the EBSLM. The magnification in the dimension parallel to the fringe information 

is, of course, less critical and was not the same as the value in the real-time reconstruction. 

The holog ram transparency was then reconstructed using conventional coherent techniques 

by placing it in front of lens / 1 in Figure 34 and then illumina ting it coherently. The resulting 

reconstructed real slit image is shown in Figure 36b, where the central line was measured on 

the recording film to be approximately 1.0 mm wide. 

Note the similarity of Figures 36a and 36b. This would indicate that, at least for simple 

objects, the EBSLM does not introduce excess distortion into the reconstructed image, though 

as previously discussed, for more complicated objects, the grainesess of the SLM due to finite 

resolution and the li.mited gray levels will likely introduce some level of distortion. The 

nonuniformity of the central line in Figures 36a and 36b then is believed primarily to be due 

to the previously discussed phase noise introduced by the scanner. As mentioned in chapter 

3, in future work we hope to eliminate this phase/vibrational noise by incorporating well known 

fiber optic technology into the interferometer of Figure 4 [30,31) . Physically isolating the 

mechanical scanner from the rest of the set-up in Figure 4, or the incorporation of 

acousto-optic scanners, will also aid in reducing vibrational noise. 

Other background noise seen in Figures 34a and 34b are likely due to several factors . 

For instance, numerous unexpected vertical and horizontal fringes are observed other than 

the bright central line. These extraneous fringes are in part due to the fact that the hologram 

of Figure 33 is essentially illuminated through a rectangular aperture. That is the recorded 

slit hologram is finite in both the x and y dimensions. Furthermore, since the actual PSF has 

sidelobes, for finite EBSLM spatial resolution, we expect some background fringe information 

in the reconstructed image parallel to the central maximum. To a lesser extent, as Figures 

36a and 36b represent the reconstruction of on-axis holograms, some extraneous noise due 

to the virtual (twin) image and throughput light may be present. 

Finally, note that the sizes (0.9 mm using the real-time approach and 1.0 mm using 

coherent read out methods) of the reconstucted images of Figures 36a and 36b are somewhat 
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smaller than the predicted size of 1.1 mm due primary to the fact that it can be shown [5] that 

the fringe spacing for a narrow slit hologram is a bit wider than for an ideal FZP. Thus MsLM 

is probably less than estimated by measuring the fringes in the slit hologram, indicating our 

prediction of 1.1 mm is probably an over estimate. 
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Figure 29. Schematic diagram of the EBSLM: (electron beam addressed spatial light modulator) 
[4). 
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Figure 30. Intermediate display technique: (used to convert slowly scanned holographic data 
into a corresponding standard video image). 
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Figure 31. Point spread function of the holographic system: (when the maximum expected 
EBSLM spatial resolution limit of 20 Ip/mm (solid line) and the focused scanning beam 
size (dotted line) are the primary factors contributing to PSF broadening). 
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Figure 33. Hologram recorded for a 50 micrometer slit. 
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Figure 34. Lens configuration used in the reconstruction process: (implemented to reduce the 
distance from the hologram at which the real image is viewed). 
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(a) 

(b) 

Figure 36. Reconstructed real slit images: produced; a) in real-time and, b) by coherent 
methods. 
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5.0 CONCLUSION 

We have seen a detailed description, both theoretically and experimentally, of the 

principles and applications of scanning holography in the optical regime. In addition, the 

advantages which this method posesses over conventional incoherent holographic techniques 

have been presented. Specifically, the method is capable of producing carrier frequency 

holograms of three dimensional objects. The technique also allows the active and selective 

adjustment of background bias buildup for increased fringe contrast and suggests a practical 

method for the reduction of the information content to be recorded holographically. 

In addition , a theoretical analysis and the first experimental results for determining the 

appropriateness of using an electron beam addressed spatial light modulator as a real-time 

holographic display device have been provided. Also investigated was the size and shape of 

the point spread function for the overall active optical scanning holographic imaging system 

based on both the EBSLM resolution and the number of fringes used in the reconstruction 

process. Furthermore, real-time holography using an EBSLM in conjunction with the scanning 

holographic recording technique was performed and the results were found to be consistent 

with corresponding coherent reconstruction methods. The spatial resolution of the EBSLM 

was also investigated . 
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Our findings indicate that indeed the EBSLM affords the advantage of coherent real-time 

display of holographic images. This is possible since the holographic information recorded 

by the heterodyne scanning technique manifests itself as a modulated electrical signal. Thus, 

all processing of the scanned holographic information is electronic, eliminating the need for 

time consuming photographic processing. However, due primarily to low spatial resolution 

{about 7.4 Ip/mm), only holograms of simple objects are suitable for display and subsequent 

reconstruction using the EBSLM. This limitation is further compounded by the fact that 

scanned holographic data does not usually conform to video standards, thus requiring that 

intermediate display techniques employing a storage oscilloscope be used, which in turn 

reduce the number of available grey levels in the displayed hologram to approximately two. 

These limitations will likely be alleviated to some degree by eliminating the intermediate 

display steps and by providing a direct, electronic interface between the scanned data and the 

EBSLM controller. In fact, continuing work on this project is presently centered on designing 

such an electronic interface while also investigating techniques for stabilizing the 

interferometer configuration of Figure 3 using fiber optic technology. Advances in these areas 

should allow holograms of more elaborate objects can be recorded and studied. 

Finally, it should be mentioned that among the potential applications of the scanning 

holographic technique is the generation of holograms of large scale objects, without the need 

for large optical elements, for example. Other potential applications could include holographic 

microscopy, particle sizing and velocimetry. 
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5.1 Present Research Directions and Goals 

1. Development of a fiber optic based acousto-optlc modulator (30] for implementation in the 

two-pupil scanning image processor of Figure 4. 

2. Incorporation of fiber-optic technology [31] into the two-pupil scanning image processor as 

a means of actively eliminating distortion in recorded holograms due to spurious external 

disturbances. 

3. Direct electronic synchronization of the scanned holographic signal and the EBSLM so that 

the intermediate display process discussed in section 4.1.1 may be eliminated. 

4· Determination of the bandwidth requirements for a medium (e.g .: free space, optical fiber 

or coaxial cable) over which scanned holographic information is transmitted, in terms of: a) 

the scanned object's spatial information content, b) the x and y scanning frequencies of the 

heterodyne sca nning image processor, and c) the tempora l carrier frequency fo shown in 

Figure 4. 

5. The investigation of alternate pupil functions U1 and V1 such that the defocused two-pupil 

scanning image process ing technique can be used to perform image process ing functions in 

addition to the generation of optical holograms. 

103 
5.0 CONCLUSION 

/ 



5.2 Summary of Original Contributions 

1. Experimentally verified the principles of scanning holography in the optica l regime first 

proposed by Poon [4] in 1985. 

2. Extended Poon's original theory to include a Gaussian beam analysis (a practical 

consideration) and as a result, described the longitudinal distortion introduced into a 

reconstructed object when the holographic magnification is other than unity - a result not 

evident without performing the Gaussian beam analysis . 

3. Described a method of actively reducing the bias buildup encountered in conventional 

incoherent holography. 

4. Demonstrated a method of reducing the recorded holographic information content (an 

important consideration for displaying holographic information on practical spatial light 

modulators). 

5. Demonstrated, for the first time, the real-time reconstruction of optica lly scanned 

holograms using the first commercially available (outside of Japan) prototype of a room 

temperature operated EBSLM. 

5. Described a convenient method of generating carrier frequency holograms of incoherent 

3-D surfaces. 

5.0 CONCLUSION 104 

/ 



REFERENCES 

References set in bold face type indicate articles written in conjuction with the 

preparation of this dissertation which have either been published or submitted for publication. 

1. R.K. Mueller: "Acoustic Holography," Proc. IEEE, Vol. 59, No. 9, pp. 1319-1334, 
September 1971. 

2. N.H. Farhat and W.R. Guard: "Millimeter Wave Holographic Imaging of Concealed 
Weapons," Proc. IEEE, pp. 1383-1385, September 1971 . 

3. R.W. Larson, J.S. Zelenka and E.L. Johansen: "A Microwave Hologram Radar 
System," IEEE Transactions of Aerospace and Electronic Systems, Vol. AES-8, No. 2, 
pp. 202-217, March 1972. 

4. T.-C. Poon: "Scanning Holography and Two-Dimensional Image Processing by 
Acousto-Optic Two-Pupil Synthesis, " J. Opt. Soc. Am. A, Vol. 2, No. 4, pp. 521-527, 
April 1985. 

5. B.D. Duncan and T.-C. Poon: "Gaussian Beam Analysis of Optical Scanning 
Holography," (Submitted to) J. Opt. Soc. Am. A. 

6. A.W. Lohmann and W.T. Rhodes: "Two-Pupil Synthesis of Optical Transfer 
Functions," Applied Optics, Vol. 17, No. 7, pp. 1141-1151, 1 April 1978. 

7. T. -C. Poon and A. Korpel: "Optical Transfer Function of an Acousto-Optic 
Heterodyning Image Processor," Optics Letters, Vol. 4, pp. 317-319, 1979. 

REFERENCES 105 



8. T.-C. Poon, B.D. Duncan, M.H. Wu, K. Shinoda and Y. Suzuki: "Real-Time Optical 
Holography Using a Spatial Light Modulator," Japanese Journal of Applied Physics, 
Vol. 29, No. 10, pp. L 1840-L 1842, October 1990. 

9. Product information sheet for EBSLM model X3636, provided by Hamamatsu 
Photonics K.K., Japan, and Hamamatsu Corp., Bridgewater, NJ, 1989. 

10. B.D. Duncan, T.-C. Poon, M.H. Wu, K. Shinoda and Y. Suzuki: "Real-Time 
Reconstruction of Scanned Optical Holograms Using an Electron Beam Addressed 
Spatial Light Modulator," (submitted to) Journal of Modern Optics. 

11. L. Mertz and N.O. Young: Proceedings of the ICO Conference on Optical Instruments, 
Chapman and Hall, London, p.305, 1961 . 

12. G.W. Stroke and R.C. Restrick Ill: "Holography with Spatially Noncoherent Light," 
Applied Physics Letters, Vol. 7, No. 9, pp. 229-231, 1 Novemver 1965. 

13. A.W. Lohmann: "Wavefront Reconstruction for Incoherent Objects,'" Journal of the 
Optical Society of America, Vol. 55, pp. 1555-1556, November 1965. 

14. H.R. Worthington, Jr.: "Production of Holograms with Incoherent Illumination," 
Journal of the Optical Society of America, Vol. 56, No. 10, pp. 1397-1398, October 
1966. 

15. G. Cochran: "New Method of Making Fresnel Transforms with Incoherent Light," 
Journal of the Optical Society of America, Vol. 56, /no. 11, pp. 1513-1517, November 
1966. 

16. A. Kozma and N. Massey: "Bias Level Reduction of Incoherent Holograms," Applied 
Optics, Vol. 8, No.2, pp. 393-397, February 1969. 

17. C.B. Burckhardt and E.T. Doherty: "Formation of Carrier Frequency Holograms with 
an On-Axis Reference Beam," Applied Optics, Vol. 7, No. 6, pp. 1191-1192, June 1968. 

18. W. Lukosz: "Properties of Linear Low-Pass Filters for Nonnegative Signals," J. Opt. 
Soc. Am., Vol. 52, pp. 827-829, 1962. 

19. D. Goerlitz and F. Lanzi : "Methods of Zero-Order Non-Coherent Filtering," Opt. 
Comm., Vol. 20, pp. 68-72, 1977. 

20. A.W. Lohmann: "Incoherent Optical Processing of Complex Data," Applied Optics, 
Vol. 16, pp. 261-263, 1977. 

21. W. Stoner: "Incoherent Optical P Via Spatially Offset Pupil Masks," Applied Optics, 
Vol. 17, pp. 2454-2466., 1978. 

22. W.T. Rhodes: "Bipolar Pointspread Function Synthesis by Phase Switching," Applied 
Optics, Vol. 16, pp. 265-267, 1977. 

23. L.H. Lin: "A Method of Hologram Information Reduction by Spatial Frequency 
Sampling," Applied Optics, Vol. 7, No. 3, pp. 545-548, 1968. 

REFERENCES 106 

/ 



24. L.H. Enloe, W.C. Jakes and C.B. Rubinstein: "Hologram Heterodyne Scanners," Bell 
Sys. Tech. J., pp. 1876-1872, 1968. 

25. J.W. Goodman: Introduction to Fourier Optics, McGraw-Hill, New York, 1968. 

26. T.-C. Poon: "Method of Two-Dimensional Bipolar Incoherent Image Processing by 
Acousto-Optic Two-Pupil Synthesis," Optics Letters, Vol. 10, No. 5, pp. 197-199, 1985. 

27. T.-C.Poon, J. Park, and G. lndebetouw: "Optical Realization of Textural Edge 
Extraction," Opt. Comm., Vol. 65, No. 1, pp. 1-6, 1988. 

28. P.P. Banerjee and T.-C. Poon: Principles of Applied Optics, Aksen Associates, 
Boston, MA, 1991. 

29. F.T.S. Yu: Optical Information Processing, John Wiley & Sons, New York, NY, 1983. 

30. B.Y. Kim, J.N. Blake, H.E. Engan, and H.J. Shaw: "All-Fiber Acousto-Optic Frequency 
Shifter," Optics Letters, Vol. 11, No. 6, pp. 389-391, June 1986. 

31 . D.A. Jackson, R.G. Priest, A. Dandridge and A.B. Tveten: "Elimination of Drift in a 
Single-Mode Optical Fiber Interferometer Using a Piezoelectrically Stretched Coiled 
Fiber," Applied Optics, 

32. K. Shinoda and Y. Suzuki: "Electron Beam Addressed Spatial Light Modulator," SPIE 
Vol. 613 Nonlinear Optics and Applications, pp. 158-164, 1986. 

33. T.-C. Poon: " Optical Heterodyne Scanning Holography," paper Thdd6, 1989 OSA 
Annual Meeting. 

34. Handbook of Mathematical Functions, M. Abramowitz and I. Stegun (eds.), Dover 
Publications, New York, 1970. 

REFERENCES 
107 

/ 



Vita 

Bradley D. Duncan was born in Bristol, Tennessee, on June 4, 1963 and attended 

Abingdon High School in Abingdon, Virginia. He received the S.S., M.S. and Ph.D degrees in 

Electrical Engineering From Virginia Polytechnic Institute and State University in June (1986), 

May (1988) , and June (1991), respectively. His research interests include holography, 

scanning and non-linear image processing, waveguide analysis, fiber optic sensor techniques 

and optical fiber sensor system design. 

\ )< · / M( Duncan is a member of the IEEE Lasers and Electro-Optics Society and the Optical 

Society of America. His personal interests include scuba diving, motorcycling, camping, hiking 

and other outdoor activities as well as involvement in community service projects. 

Vita 
108 


	University of Dayton
	eCommons
	6-4-1991

	Investigation of Real-Time Optical Scanning Holography
	Bradley D. Duncan
	eCommons Citation


	tmp.1447350821.pdf.ZZaI4

