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INTRODUCTION 
Since there are many more muscles than degrees 
of freedom in the human skeleton, muscle forces 
producing a given motion cannot be uniquely 
calculated using rigid body dynamics. 
Optimization methods resolve this redundancy by 
assuming that human movement is produced by 
optimizing a performance criterion. Two main 
approaches are used to solve the resulting 
optimization problem. The first approach, “static 
optimization”, neglects muscle-tendon dynamics, 
whereas the second approach, “dynamic 
optimization”, takes muscle-tendon dynamics into 
account. Though dynamic optimization 
approaches are more consistent with muscle 
physiology than static optimization approaches, 
solving the resulting non-convex dynamic 
optimization problem is challenging. 
 
Two main approaches have been proposed for 
solving the dynamic optimization problem. The 
most commonly used approach is direct shooting, 
which performs forward integration of the dynamic 
equations to evaluate the cost function. A 
disadvantage of this approach is the high 
computational cost of repeated forward 
integrations, while an advantage is the ability to 
solve ‘difficult’ systems. Given the discontinuities 
in many muscle-tendon model descriptions, it is 
therefore not surprising that shooting methods 
make up the majority of the proposed methods. 
 
More recently, direct collocation has been 
proposed as an alternate solution approach [1-
3]. Direct collocation is based on a 
discretization of the dynamic equations. The 
discretized state equations then act as 
constraints when optimizing the performance 
criterion while the discretized states are 
optimization variables. Collocation methods are 
often computationally more efficient than are 
shooting methods. However, solving the 
underlying non-linear problem using gradient-
based optimization methods requires at least 
first order continuity of the dynamic equations. 

Therefore, De Groote et al. presented a 
sequential approach that approximates the 
discontinuous non-linear dynamic equations by 
a linear discretization that is updated in every 
iteration. They applied this approach to 
calculate muscle excitations that could 
reproduce inverse dynamic joint torques from 
gait [3]. Ackerman et al. used direct collocation 
to solve a trajectory tracking problem during 
gait for a simple planar musculoskeletal model 
with continuous dynamics [1]. 
 
This study evaluates several possible optimal 
control problem formulations for solving the 
muscle redundancy problem with the goal of 
identifying the most efficient and robust 
formulation. One novel formulation involves the 
introduction of additional controls that equal the 
time derivative of the states, resulting in very 
simple dynamic equations. The nonlinear 
equations describing muscle dynamics are then 
imposed as algebraic constraints in their implicit 
form, simplifying their evaluation. By comparing 
different problem formulations for computing 
muscle controls that can reproduce inverse 
dynamic joint torques during gait, we demonstrate 
the efficiency and robustness of the proposed 
novel formulation. 
 
METHODS 
Musculoskeletal model 
A simple musculoskeletal model with three 
degrees of freedom and nine muscles per leg 
was used in this study (gait10dof18musc) [4]. 
 
Activation dynamics was modelled based on [5] 
using a tanh function to smoothly transition 
between activation and deactivation: 

𝑓 = 0.5 tanh (𝑏(𝑒 − 𝑎)) 
𝑑𝑑
𝑑𝑑

= �
1

𝜏𝑎(0.5 + 1.5𝑎)
(𝑓 + 0.5)

+
0.5 + 1.5𝑎

𝜏𝑑
(−𝑓 + 0.5)� (𝑒 − 𝑎) 

where e is excitation, a is activation, 𝜏𝑎 =
0.01𝑠  is activation time constant  , 𝜏𝑑 = 0.04𝑠 is 
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deactivation time constant, and 𝑏 = 0.1  is a 
parameter determining transition smoothness. 
 
Contraction dynamics was described using the 
model of Hill [6].  

𝑙𝑀𝑀 = 𝑙𝑇 + 𝑙𝑀 cos𝛼 
𝑙𝑀sin𝛼 = 𝑙𝑀0 sin𝛼0 
𝐹𝑇 = 𝐹𝑀0𝑓𝑡(𝑙𝑇) 

𝐹𝑀 =  𝐹𝑀0 �𝑎𝑓𝑎𝑎𝑎(𝑙𝑀)𝑓𝑣(𝑣𝑀) +  𝑓𝑝𝑝𝑝(𝑙𝑀)� 
𝐹𝑇 = 𝐹𝑀cos 𝛼 

where 𝑙𝑀𝑀 is muscle-tendon length, 𝑙𝑇 is tendon 
length, 𝑙𝑀 is muscle fiber length,  𝑣𝑀 is muscle 
fiber velocity, 𝑙𝑀0  is optimal fiber length, 𝛼 is 
pennation angle, 𝛼0 is optimal pennation angle,  
 𝐹𝑇  is tendon force, 𝐹𝑀 is muscle force, 𝐹𝑀0  is 
peak isometric muscle force, and 𝑎 is activation. 
𝑓𝑡, 𝑓𝑎𝑎𝑎,  𝑓𝑝𝑝𝑝, and  𝑓𝑣 are the tendon force-
length, active muscle force-length, passive 
muscle force-length, and muscle force-velocity 
characteristics, respectively. All characteristics 
are second order continuous. 
 
Experimental data 
Experimental data for a gait movement were 
taken from the example files Gait10dof18musc 
installed with OpenSim 3.2 [4]. Inverse dynamic 
joint torques, muscle-tendon lengths, and 
muscle moment arms were calculated using 
OpenSim 3.2. 
 
Problem formulations and solution method 
The optimization problem was to minimize the 
integral of the sum of excitations squared over 
all muscles subject to activation and contraction 
dynamics and the additional path constraint that 
the muscle forces should produce the inverse 
dynamic joint torques. Controls 𝑒 were bound 
between 0 and 1. States 𝑎 were bound between 
0.01 and 1. Contraction dynamics was imposed 
using four different formulations. 
1. Using 𝑙𝑀 as a state:  

𝑑𝑑𝑀
𝑑𝑑

= 𝑓1(𝑎, 𝑙𝑀). 
2. Using 𝐹𝑇 as a state: 

𝑑𝑑𝑇
𝑑𝑑

= 𝑓2(𝑎,𝐹𝑇). 
3. Using 𝑙𝑀 as a state and introducing 𝑢𝑣 as a 
new control simplifying the dynamic equations: 

𝑑𝑑𝑀
𝑑𝑑

= 𝑢𝑣. 
The Hill model was then imposed as a path 
constraint: 

𝑓3(𝑎, 𝑙𝑀 ,𝑢𝑣) = 0. 
4. Using 𝐹𝑇 as a state and introducing 𝑢𝐹 as a 
new control: 

𝑑𝑑𝑇
𝑑𝑑

= 𝑢𝐹. 
The Hill model was then imposed as a path 
constraint: 

𝑓4(𝑎,𝐹𝑇 ,𝑢𝐹) = 0. 

All functions 𝑓𝑖 were derived from the Hill model 
stated above. All formulations were 
mathematically equivalent and thus have the 
same globally optimal muscle excitations. 
 
The dynamic optimization problems were 
solved via direct collocation using GPOPS-II 
with 200 mesh elements. We compared 
convergence, optimal cost function values, 
mesh accuracy, CPU times, and robustness 
against the initial guess (IG). Mesh accuracy 
was defined as the root mean square (RMS) 
difference between the excitations calculated 
using 200 and 400 mesh elements respectively. 
Robustness against the IG was defined as the 
RMS difference between excitations calculated 
using two different IG.  
 
RESULTS AND DISCUSSION 
Table 1 Comparison of different problem formulations 
Formulation 1 2 3 4 
Convergence NO YES YES YES 
Optimal value - 0.2990 0.2623 0.2624 
Accuracy  - 2.6e-3 2.3e-3 3.6e-3 
CPU time [s] - 63 84 76 
Robustness IG - 2.0e-5 3.2e-8 2.5e-4 
 
Problem formulation influenced convergence, 
optimal value, accuracy, and CPU time (Table 
1). Using fiber length as a state and introducing 
extra controls (Formulation 3) resulted in the 
lowest cost function value, the highest mesh 
accuracy, and the highest robustness against 
the initial guess. This formulation, in contrast to 
the others, did not require inversion of the 
force-velocity or tendon force-length curves or 
division by 𝑎 permitting a lower bound of 0 on 
activations. In addition, normalized fiber velocity 
was easy to bound between -1 and 1. Our next 
step is to investigate this novel approach further 
in a complex musculoskeletal model.  
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