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INTRODUCTION 

Over the past two or three decades, the subject of radio fre­

quency echo phenomena has been studied, extensively at times, by a 

variety of investigators. Echo effects occur in nonlinear systems 

that are characterized by a multiplicity of oscillating states or 

eigenmodes. When such systems are excited by a sequence of high 

energy r.f. pulses, they subsequently re-radiate, through non­

linear processes, r.f. power in the form of echo pulses that bear 

observable relationships to the exciting pulses. Such echo pulses 

are a specific instance of more general signal storage and recall, 

but in spite of this implication the subject has remained, by and 

large, confined to physicists and material scientists, and its 

potential for engineering applications is yet to be realized. 

The present thesis attempts to give a concise and critical 

account of the evolution of the echo phenomena over the last thirty 

years. Starting with spin and photon echoes, which were among the 

earliest to be observed and studied, the thesis explores the experi­

mental findings and the models proposed in connection with the more 

contemporary echo experiments, viz. those involving electroacoustic 

or polarization echoes in single and polycrystalline piezoelectric 

materials and in powders. Although the investigations regarding 

the various mechanisms of short and long term echo formation are by 
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no means complete, a coherent picture is beginning to emerge as will 

be shown in this study . 

From the point of view of engineering concepts it is intriguing 

that the description of the echo phenomenon is most simply stated in 

terms dual to those used in describing more conventional effects . 

Thus, replacing time by frequency, nonlinear effects are seen to 

cause not frequency mixing, i.e . spurious frequencies, but rather 

time mixing, i.e. spurious pulses or echoes. 

• This duality reflects the underlying fact that configurations 

exhibiting the echo effect possess a physical frequency space. They 

are able to store individual frequencies in their corresponding 

oscillators or eigenmodes. Sometimes the storage is dynamic only; 

it disappears as soon as the oscillations decay. In other cases 

the storage is long term, as when some parameter of the oscillator 

or mode (resonant f requency, coupling factor, etc.) is changed per-

manently in the process. The latter effect is quite analogous to 

holography with the spatial frequencies (fringes) replaced by tem-

poral frequencies and the fringe contrast by the coupling factor. 

A key concept in the formation of echoes, or storage in general, 

is the notion of phase conjugation . Through the Fourier transform, 

phase conjugation in the frequency domain is connected with time 

reversal in the time domain. Here one begins to get a first inkling 

of how echoes could come about : If, through phase conjugation, time 

is reversed T seconds after an event, it will occur again after a 

second interval of T seconds! 



As will be shown, nonlinearity is required to cause phase con­

jugation. The corresponding time reversal is usually not connected 

with the physical motion of a particle; more often it resides in 

th~mathematics. An important exception is the precessional motion 

of the magnetic spins of certain atomic nuclei. Such a precession 

can actually be effectively reversed by strong nonlinear effects 

and spin echoes are consequently usually discussed in terms of time 

reversal rather than phase conjugation. In other instances of more 

direct relevance to engineering, weak nonlinear effects are involved 

and echo formation can best be seen as a nonlinear perturbation that 

induces phase conjugation. It would thus seem logical to delay the 

discussion of phase conjugation, until the appropriate (weakly non­

linear) phenomena are discussed. Yet the concept of phase conjuga­

tion is so powerful in teaching intuitive insight into nonlinear 

echo systems in general, that it was deemed appropriate to discuss 

it in connection with the first example, that of spin echoes. 

Starting from a description of a classical spin echo experi­

ment, it will be shown how nonlinearity has to be introduced in 

order to explain the observed effect.s. Then, using the simplest 

and most general nonlinear model of system response, it will be 

seen that this not only qualitatively describes the echo, but also 

predicts the multiple echoes which are, in fact, observed. Only 

then shall physical mechanism be discussed to eventually describe 

the magnetic spin echo effect in some detail. 

3 



In subsequent examples the same approach will be followed, 

i.e. describing the experiment, extending the heuristic theory 

where necessary and identifying the nonlinear mechanism responsible. 

By thus gradually building up the complete picture of present day 

research, in chronological order, the abundance of mathematics, 

that unified descriptions often invite, will be avoided • 

. Whether nonlinear signal · storage ever becomes engineering 

practice remains to be seen. It is hoped that this thesis will 

contribute to that possibility. 

4 

In the pages that follow, the major known nonlinear echo phenom­

ena are discussed in a chronological sequence wherever feasible. 

While each chapter is devoted to a distinct class of nonlinear 

echoes, an attempt has been made to maintain a continuity of the 

concepts,reinforci ng earlier ones wherever similarities in the 

physical processes are observed; discarding or modifying them 

wherever experiments are in conflict with theory. Furthermore, 

guided by the experience that mathematical details tend to obscure 

the understanding of the material in simple, logical terms, the 

mathematical derivations have been relegated, wherever appropriate, 

to the appendices that follow the main text. The reader may refer 

to these for a more quantitative understanding of the associated 

phenomena. 
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CHAPTER I 

SPIN ECHOES AND PHASE CONJUGATION 

Spin echoes were first reported by Hahn [1,2] in 1949. These 

echoes are associated with the phenomena of nuclear and ferromagnetic 

resonance. A typical experimental arrangement for obtaining spin 

echoes is shown in Fig. l.r. A large d.c. magnetic field H is 
o 

applied to a sample containing nuclear spins. The sample is placed 

in a coil which forms the inductance of a tuned circuit. The d.c. 

magnetic field establishes a net spin population at thermal equilib-

rium, and the resulting macroscopic moment M is oriented parallel 
o 

to H. As is well known, the nuclear spins, when perturbed, will 
o 

precess about H with frequency yH , where y is the so called gyro-
o 0 

magnetic ratio. The precession of any particular spin is eventually 

dephased by field perturbations due to neighboring spins in the 

lattice. The time during which the precession maintains phase 

memory is called the spin-spin or transverse relaxation time, 

denoted by T2 . After a time T
l

, the spins also begin losing energy 

to the lattice. Tl is called the spin-lattice or longitudinal 

relaxation time. In the experiment, the spin system is subjected to 

two intense radio frequency pulses applied via the coil at the pre-

cession frequency w = w = yH. The pulses are of duration t and 
o 0 w 

separation T, where both tw and T are small compared to T2 and Tl • 



Since the relaxation times of nuclei in liquids are generally large 

enough to favor this condition, experiments with protons in glyc-

erine, water, solutions of Fe(N03)3 etc. yield satisfactory results. 

When the above requirements are satisfied, the individual spins 

will start precessing upon the application of the first pulse, and 

will not yet have dephased or decayed by the time the second pulse 

is applied. Following the latter pulse, identical to the first, 

the precessing spins somehow interfere constructively at time t = 2, 

to give rise to a spontaneous nuclear induction signal, which is 

referred to as the two-pulse spin echo. 

Now, how does 'this come about? If we think of the individual 

spins as elementary oscillators at frequency w , their macroscopic 
o 
111 

effect decays at a rate exp(-t/T'ff) where ~ = r- + r-' If 
e eff 1 2 

T
1

, T2 are both large compared to the observation time, we would 

expect results as shown in Figure 1.2. Here each pulse excites an 

oscillation whose envelope decays according to exp(-t/T~ff)' Upon 

adding the two impulse responses at time t = 2" we do not see any 

pulse echo; in fact, we do not see any pulses at all! They are com-

. 1 
p1ete1y smeared out by the narrow bandwidth (~--,--) of the osci11a­

Teff 
tor ensemble. 

In actual practice, however, the response is as shown in Fig. 

1.3. Although some ringing is visible in the response, it is cer-

tain1y much less than expected; also an echo is observed at t = 2,. 

It turns out that the absence of ringing can be explained by 

the fact that, due to local inhomogeneities ~H in the magnetic 
o 

6 
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y~H 

field, there is a distribution ~f = 2no =; of resonance fre-

1 1 3 1 quencies among the spins such that -- » -- , --T . Consequently 
T3 T2 1 

the spin ensemble acts as a wideband filter with envelope response 

1 1 determined by ---- ~ -- = ~f; so the observed decay is of the form 
Teff T3 

exp(-t~f), where ~f is large enough to ensure a sharp reduction of 

ringing, although the latter is not completely eliminated. (Note 

that, although the macroscopic effect has decayed, the individual 

oscillators are still ringing and will continue to do so for a 

As regards the echo, no explanation based on linear effects is 

adequate. It is immediately obvious that a linear system whose r.f. 

impulse response does not show an echo, cannot produce an echo by 

having two r.f. pulses applied in succession. Consequently the 

explanation must lie in the fact that the system is basically non-

linear. This was first explicitly stated by Gould as a general 

principle for any system of gyrating charged particles [3,4] and was 

later used by Korpel as the basis of a phase conjugation formalism 

applying to any system of independent oscillators [5]. Although we 

will discuss phase conjugation later in more detail, it is helpful 

to introduce it, at this point, as a key concept in the description 

of echo phenomena. 

The basic idea, illustrated in Fig. 1.4, is as follows. Let a 

delta function excite a system of independent oscillators at time 

t = O. The oscillators, which for simplicity's sake are here 



• 

assumed to cover the entire frequency spectrum from 0 to ' 00, will 

start vibrating and hence preserve the information about the fre-

quency spectrum of the delta function. Their individual response 

may be represented by exp(jwt). The phases of the individual oscil-

lators at t = , are given by ~, such that exp(jwt) = exp[jw(t-,) + 

j~ ], hence ~ = We. Assume now that, by some mechanism, we con­, , 
jugate the phases at time t = " Then, from t = , onwards, the 

oscillators individually are described by exp[jw(t-,)-j~ ] = , 
exp[jw(t-2,)] and their macroscopic response by J: exp[jw(t-2,)]dw . 

Such a response obviously represents a delta function at t = 2" 

i.e. an echo of the original pulse. Thus phase conjugation natu-

rally leads to the prediction of echoes. (It should be noted that 

recently, in optics, it has been proposed to use this time reversal 

aspect of phase conjugation for the purpose of restoring abberrated 

wavefront s [6]). 

Now, how is phase conjugation brought about? The simplest 

mechanism is the existence of a cubic nonlinearity in the function 

that describes the excitation mechanism of the system. This can be 

seen as follows. If we apply delta functions to the system at t = 0 

and t = " then the response of the individual oscillators is 

described by Al exp(jwt) + A2 exp[jw(t-,)] where Al and A2 are the 

amplitudes. The response of the system (ensemble of independent 

oscillators) is then given by J[A
I 

exp(jwt) + A2 exp[jw(t-,)]]dw = 

~o(t) + A2o(t-,), where we have left out nonessential constants. 

In the presence of a cubic nonlinearity the additional response R(t) 

8 



of a particular oscillator may be described by (using real notation 

this time) 

3 
R(t) = [AI cos wt + A2 cos W(t-T)] , 

which, after some algebra, may be written as: 

R(t) 

+ [1 A3 + 1 A3 A
2

]cos W(t-T) + 1 A3 cos 3W(t-T) + 4 2 2 -~ 4 2 

2T 
cos 3w(t- 3) + 

(1.1) 

(1. 2) 

We next assume that (a) the oscillators in the system have high Q 

and (b) the oscillators are restricted to a range w , and we use 
c 

"practical" delta functions of width '" 2Tr/w . c 
Under those condi-

tions we can ignore the 3w terms and the macroscopic response of 

the system for t > T can be written as: 

() f (14 A} 3 2) f (3 3 3 A2A ) () d R t -~ + 2 AIA2 cos wt dw + 4 A2 + 2 1 2 cos W t-T W 

(1. 3) 

Inspecting (1.3) term by term, we find that the term involving 

cos w(t+T) refers to a 'virtual' delta function at t = -T, which 

does not contribute to the physical response for times t > T. The 

same applies to the first two terms whi ch represent virtual delta 

9 
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functions at t = 0 and t = T. The only term of physical signifi- , 

cance in the region t > T is the one involving cos W(t-2T) and this 

represents a delta function at t = 2T, which, in fact, turns out to 

be the two pulse echo. 

When deriving (1.2) from (1.1) it will be noted that the term 

in the expansion of (1.1), responsible for the echo, is of the 

m m-l 
f orm A cos [W(t-T)]COS (wt), where m + m - 1 = 2m - 1 = n is the 

order of the nonlinearity involved (e.g. n 3 for cubic nonlinear-

ity). It therefore becomes evident that for echoes to be predicted, 

the nonlinearity must be of an odd order. Hence it is also easy to 

conclude that the minimum order of nonlinearity is cubic, since for 

n < 3, i.e. n = 1, the system is linear. 

A simple extension of the cubic nonlinearity discussed above 

leads to the predi ction of multiple echoes, i.e. two pulse echoes 

at t = fiT, where n ~ 2. This is shown as follows. Suppos·e the 

system under consideration has nonlinearity up to the fifth order. 

Then, as already shown, the cubic nonlinearity leads to an echo at 

t = 2T. Upon examining the echo-term corresponding to the fifth 

order, we find: 

3 2 
RS(t) = A cos W(t-T)COS wt, where RS(t) is the part of the 

response for the echo-term of the fifth order. We then have, 

RS(t) = ~ A cos W(t-T) + ~ cos 3W(t-T) + {6 A cos 3W(t-T/3) + 

3 A 3T A 
+ 16 A cos W(t+T) + 16 cos Sw(t-~) + 16 cos W(t-3T). 

(1. 4) 
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Inspecting (1.4) term by -term, we recognize the last term as an 

additional echo at t = 3T. Thus, a fifth order nonlinearity leads 

to an additional echo at t = 3T. More generally, it may be con­

cluded that a pth order nonlinearity leads to an echo at t = (~)T. 

Thus simple considerations of phase conjugation and nonlinearity 

leads to the prediction of multiple echoes, a phenomenon which has 

in fact been observed. 

Returning to the echo-term associated with cubic linearity we 

find that the contribution to the ensemble response following the 

application of two pulses is given by: 

R
3

(t) ~ fA cos2 W(t-T)COS wt dw = ~ I[l + cos 2W(t-T)]COS wt dw. 

We observe from the above that the mixing product actually respon-

sible for the echo at t = 2T is of the form A cos wt cos 2W(t-T). 

We can interpret this, as the interaction of a parameter of the 

system, made to vary at 2w by the second pulse, with the fundamental 

response at w caused by the first pulse. Such a parametric inter-

pretation of the echo process is quite equivalent to the one dis-

cussed before and, in some cases, more convenient. 

In our heuristic analysis of echoes we have assumed ideal or 

practical delta functions limited in spectral width to a frequency 

w. In experimental practice the ensemble of oscillators is more c 

often characterized by a spread of frequencies ~w around a center 

frequency w . 
o 

The "practical" delta functions then become r. f. 



pulses of envelope width ~ ~: ; however, all the arguments used in 

the pulse echo analysis remain the same. 

In the case of spin echoes the oscillators are centered 

around the precession frequency wand the spread ~w is determined 
o 

by the inhomogeneity ~H in the magnetic field; hence ~w = y~H • 
o 0 

In order to explain the spin echoes we must now, according to the 

preceding analysis, try to identify an appropriate nonlinearity in 

the response mechanism of magnetic spins. As it turns out, spin 

12 

echoes are most easily explained in the case where the nonlinearities 

are large. The method described in the preceding pages then·· no 

longer applies. However, the principle that nonlinearity in some 

form is essential remains. 

We proceed then to investigate the physical processes involved 

in the formation of echoes in a spin system. By applying angular 

momentum conservation to a local system of nuclear spins [7,8] 

subjected to a magnetic field H, the following so called Bloch 

equation is derived for the local macroscopic magnetization M: 

(1.5) 

where y is the gyromagnetic ratio, i.e. the ratio of the magnetic 

moment of the spin to its angular momentum. Considering, for the 

moment, only a bias field H along the Z axis, the equilibrium 
o 

situation will be given by M M ! where M depends on H and the 
o zoo 

temperature. This is shown in Fig. 1.Sa. A small deviation of M 



from this position will establish a precession of M about the Z 

axis with frequency w = yH. This is shown in Fig. 1.Sb. In a 
o 0 

time of the order of T2 this macroscopic precession will disappear 

because of irreversible loss of phase coherence due to interaction 

between individual spins. Individual precessions will also damp 

out in a time ~ T
l

, because of loss of energy to the lattice. We 

assume, for simplicity, that both Tl and T2 are very long compared 

with our observation time. 

Assume next that a radio frequency field, HI cos wot is 

applied in the X direction. If we decompose this field into clock­

wise (H+) and counterclockwise (H-) circular polarization, as shown 

in Fig. 1.Sc, it is intuitively obvious that, because of phase 

synchronism, only the clockwise component will interact with any 

precessing dipoles. What will actually happen is that the dipoles, 

initially at rest, are set ' precessing, the precession angle e 
+ + increasing with time as e = yH t. The rate of rotation, yH , is 

called the Rabi or spin-flipping frequency. It is easiest to visu-

alize this in a coordinate system that rotates with the precession 

and the applied field. This is shown in Fig. 1.Sd where, in the 

rotating system, the increase of e with time is depicted as a pre-

cession of M about X. 

We are now in a position to describe the a ctual process of echo 

formation. First an intense, short r.f. pulse ' is applied, at fre-

quency W , 
o 

. + duration t , and effective amplltude H such that 
o 

+ yH t = TT/2. 
o 

This "TT/2" pulse will move the magnetization M towards 

13 



the Y axis as shown in Fig. 1.5e. Once arrived there, the dipoles 

continue their main precession about Z at frequency w , i.e. in 
o 

the rotating frame, the magnetization remains in the Y direction. 

Now, due to inhomogeneities in the bias field w
o

' not all local 

dipole systems precess at the same frequency. Let the local 

14 

ensembles -1, -2, 1 and 2 be characterized by precession frequencies 

w -2ow , w -ow , w +ow and w +2ow. The magnetization of these 
00000 0 0 0 

groups, having arrived at Y in the rotating frame, will not stay 

there but rather precess about Z at (relative) rates -2ow , -ow o 0' 

+ow , +2ow . ' Fig. 1.5f shows relative positions a time T after 
o 0 

application of the "TI/2" pulse. It is obvious that, for suffi~ 

ciently large ow T (i.e. for large enough homogeneity), the total 
o 

macroscopic dipole moment will average out to zero and hence not be 

observable. Memory of the event is however still preserved in the 

precessing spins, as long as their phases are not randomized irre-

versibly or have decayed, i.e. as long as T < T2, T
l

. 

The second step in the echo process is to ,apply a short 

intense "TI" pulse at time T. The effect of this is to precess the 

individual magnetization vectors 1800 about X so that they end up 

as shown in Fig. 1.5g (it has been assumed that the duration of 

the "TI" pulse is short compared to T). It is readily seen that, 

from this "time reversal" situation, the spin magnetization vectors 

will keep on precessing abo'ut Z to, ultimately at t = 2T, add up in 

phase again (Fig. 1.5h) and cause an observable echo. 



Although the above description is not exact, (spins at differ-

ent ow precess about slightly different axes) it nevertheless por-

trays the essence of the phenomenon. The nonlinearity of the pro-

cess resides in the fact that the initially induced transverse mag­

netization is not proportional to H+ but rather to sine = sin(yH+t) 

which can be written as yH+t - t (yH+t)3 + •..• . for weak nonlin-

+ earities where yH t «1. In the case of "'IT /2" and "'IT" pulses the 

nonlinearity is no longer weak and the process cannot be described 

by the above power series. Nevertheless, the underlying principle 

is the same, as can be seen from the fact that spin echoes appear, 

too, in experiments with other than exact 'IT/2 and 'IT pulses [1]. 

A graphical description of the echo formation for small non-

linearities has been given by White [9] . . The -effect of the first 

pulse, much smaller than 'IT/2, is now to establish a spin population 

shown in Fig. 1.6a which replaces Fig. 1.Sf. Immediately after the 

second pulse of equal amplitude to the first one, the plane of the 

circle has become tilted, all vectors having precessed a small 

amount about X. This is shown in Fig. 1.6b. The transverse 

momenta are now distributed along an ellipse rather than a circle 

in the xy plane. This leads to a bunching in the phase distribu-

tion and ultimately to an echo at t = 2,. We shall return to such 

a graphical representation later, when we discuss cyclotron echoes. 

A somewhat detailed quantitative analysis of the spin echo, 

using the Bloch equations, appears in Appendix A. Some important 

15 



features of phase conjugation by degenerate four-wave mixing are 

discussed in Appendix B. 

16 



CHAPTER II 

PHOTON ECHOES 

17 

In 1964, Kurnit and coworkers reported the observation of a photon 

echo from a ruby crystal [10]. In Fig. 2.1 is shown a schematic 

diagram of the experimental setup used to demonstrate its existence. 

As shown in Fig. 2.1, a sample of ruby crystal (RS) is excited by 

two strong pulses of light obtained by passing part of the 6935 A beam 

of a Q-switched ruby laser through a beam splitter (BS) and lens L1; the 

other part of the beam is delayed via an optical delay line (D) and made 

incident on the sample a time t = T later. The value of T is of the 

order of 100 ns. The direction of the delayed pulse makes an angle 

¢ ~ 3° with that of the undelayed one. These original pulses, emerging 

from the ruby sample, are blocked by a stop (S). It is now found that 

the ruby sample emits a strong pulse of light at t = 2T, which emerges 

at angle 2¢relative to the unde1ayed pulse. This echo pulse passes 

through an aperture in the stop and is gated by a Kerr cell shutter (KCS) 

which is used to reduce scattered light from the excitation pulses. The 

pulse is then detected electrically by a photomultiplier (PM). In 

order for the echo to occur, the following requirements must be 

satisfied: 

(i) The ruby sample must be cooled to liquid He temperature in order 

to obtain relaxation times long compared to the pulse interval T. 
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(ii) Ad. c. magnetic field must be applied to the sample, parallel to 

the optic axis of the crystal. The latter requirement is not funda-

mental. It appears to be necessary in order to inhibit a relaxation 

effect due to a complicated dynamic iteration involving the magnetic 

spins of the Al nuclei in the ruby [11]. We discuss this briefly later. 

In the exper ·iment described above no electric dipole moment is 

connected with either the ground state 1 or the excited state 2 of the 

atomic system [11,12,13]. Hence the convenient classical picture of 

precessing dipoles no longer applies. Instead we must now start 

thinking in terms of quantum mechanical transitions between the two 

levels 1 and 2, brought about by an applied electrical field El (t) . 

Feynman et ale [14,15] have shown how such a situation may be analyzed 

conveniently by the introduction of a pseudo polarization r. The 

vector r is defined as follows: 

r = P2l + P12 , 
' X 

r = i(P2l - P12) 
Y 

r = P22 - Pll 
, 

z 
(2.1) 

where P
ij 

are matrix elements of the so-called density matrix [11,12]. 

In terms of the probability amplitudes a and b for the upper· level 

and lower level respectively, we have [12]: 

--* 
P21 = ab , P21 = * * * a b, P22 = aa , Pll = bb , (2.2) 
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where the bars denote ensemble averages. Also , the ensemble average 

<~> of the physical dipole moment, induced by the perturbation El (t), 

is given by: 

(2.3) 

where P12 = P
2l 

denotes the off-diagonal matrix element for the component 

of the dipole moment along E. 

Thus, the X component of the p'seudo polarization r is proportional 

to the real induced polarization, while the Z component lal2 _ Ib12 , 

is proportional to the difference ~N = N2 - Nl between the populations 

of levels 2 and 1. 

In addition to r, we now define a vector w, such that: 

-2~12 
El ( t) WI = , 

h 

w2 
= 0 

w3 = w (2.4) 
0 

where w = ~E/h and ~E is the energy difference between level's 1 and 2. 
o 

It may now be shown [14] that the time dependent Schroedinger equation 

for this two level, ~ = 0, system may be written as: 

(2.5) 

It is seen that this is of the same form as the Bloch equation (1.5) 

with r 4 M and -w 4 yH. Therefore the same reasoning concerning 
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precession in stationary and rotating frames may be applied here, the 

only difference being that the space of operations is mathematical 

rather than physical. (Also, in the rotating frame., it is the r 

component in the XY plane, rather than along the X axis specifically, 

that determines the magnitude of the induced dipole moment [16].) 

Consequently, the same conclusions follow: upon application of a rr/2 

pulse followed a time. later by a rr pulse, an echo appears at time 2 •. 

The first pulse rotates the r vector into the XY plane i.e it maximizes 

the induced dipole moment and equalizes the populations of levels 1 

and 2. In this "superradiant" state the dipoles are all in phase and 

behave collectively as a macroscopic dipole which radiates 'strongly 

through spontaneous coherent emission [11]. The superradiant state 

consists of a linear combination of superradiant energy states of 

maximum "cooperation number" as defined by Dicke [.17]. The radiation 

intensity from such a state is given by: 

(2.6) 

where I is radiation intensity of a single isolated atom, and N is the 
o 

number of atoms in the sample. 

The above intensity is much larger than the incoherent radiation 

intensity, I. 
l.nco. 

1 
= "2.NIo· 

Following the superradiant state, dipoles belonging to different 

ow's (brought about by inhomogeneous crystal strains, for instance) 

gradually get out of phase. Finally, the second or "rr" pulse moves 

the system through maximum inversion to equal level population again. 
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From this time reversal situation (Fig. 1.Se) the induced dipoles 

rephase again after a time 2T. It should be remarked that the quantum 

mechanical formalism given above may, with appropriate redefinitions, 

also be applied to fun = 1 spin transitions. In the case of magnetic 

spins it then becomes formally identical to the classical description 

of precessing dipoles in physical space. 

The directional aspect of the photon echo experiment is, at least 

qualitatively, explainable in terms of phase conjugation. Let the 

direct pulse be incident along the Z axis: exp {j(wt-kz)}, and the 

delayed pulse be incident at a small angle cp a time T later: 

~ exp {j[w(t-1)-kz-kcpy]}, where k = ksincp ~ kcp. A cubic nonlinearity 
y 

will then give rise to a term exp 2j [w(t-1)-kz-kcpy] * exp {-j (wt-kz)} = 

exp {j[W(t-21)-kz-k2cpy]} showing that the echo at 21 propagates at an' 

angle 2cp. Similarly, 5th order nonlinear terms should give rise to 

echoes at 31 propagating at 3cp etc. Multiple echoes were, in fact, 

observed in the experiment but, for practical reasons, the angle 

between direct and delayed excitation pulses was chosen to be zero, 

hence the echoes propagated in the same direction. 

Abella et a1. [11] have analyzed the photon echo in terms of the 

quantum-mechanical transitions in a two-level system, as discussed 

above. To simplify the calculations, they assume the volume of the 

sample to be small compared to A3 , when A = 2;C is the transition 
o 

wavelength, and ~ is the transition frequency as given by 
o 

h~o = E2 - E1 , E2 and E1 being the excited and ground state energies, 

respectively. The above assumption ensures that the radiation field is 
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uniform in the sample. For such a sample, the echo is emitted by a 

single, phased oscillating dipole. In the case of a sample of larger 

volume, the echo is emitted by an array of phased oscillating dipoles, 

which form a large, directional antenna. 

The requirement of a magnetic field in order to obtain a photon 

echo, as established in experiments, is not a fundamental one. Rowan 

et a1. [18] and Abella et a1. [11] have proposed a tentative model to 

exp~ain the magnetic field requirement, which is based on the effect of 

an internally modulated magnetic field at the Cr3+ sites in ruby, on 

echo relaxation. According to this description, the electronic spin 

of the Cr
3+ ion aligns midway between the optic axis and the applied 

magnetic field, under a ~/2 pulse. This is due to the anisotropy of 

the electronic g factors in the ground and excited states of ruby . 

3+ . The direction of the Cr Sp1U is along the local magnetic field in 

the ground state and the optic axis in the excited state. The 

reorientation under a ~/2 pulse occurs due to the superposition of 

the wavefunctions of the two levels. This reorientation changes the 

direction of the effective magnetic field at the A1 sites. Conse-

quent1y, the A1 nuclei begin to precess around the resulting magnetic 

field. This precession, in turn, modulates the magnetic field at the 

Cr
3+ sites, resulting in a modulation of the energy level separation, 

which degrades the amplitude of the photon echo. From this description, 

it is clear, that the echo-degradation can be minimized if the effec­

tive magnetic field at the Cr
3+ site be aligned parallel to the 

optic axis, which prevents any pulse-induced reorientation. Since 
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the local magnetic fields in the ruby sample are random, only an 

externally applied magnetic field (stronger than the local fields), 

directed along the optic axis, can assure that the degradation of the 

echo due to reorientation is minimum. 

The photon echo discussed above involved electronic transitions 

with the emitted light in the visible. Entirely analogous echoes 

have been observed in the IR due to molecular vibrations [19], and in 

the microwave region due to molecular rotations [20,21]. 



CHAPTER III 

FERRlMAGNETIC ECHOES 

Echoes in single crystals of Yttrium Iron Garnet were first 

observed in 1968 by Kaplan et al. [22]. Although precession of 

magnetic spins is involved here, as i n paramagnetic echoes, a 

number of important differences exist. This is mainly due to the 

fact that neighboring spins are highly coupled so that a descrip­

tion in terms of collective spin modes rather than individual spins 

is necessary. From a conceptual point of view this makes, of 

course, no difference because modes are by definition linearly 

independent. However, this independence may be partly destroyed 

thr ough nonlinear mode coupling which, if excessive, prevents the 

formation of nonlinear echoes. From an experimental point of view 

it is thus desirable that modes overlap spatially as little as 

possible. Such a spatial localization of modes may be brought 

about by the combination of the (conventional) inhomogeneous 

magnetic bias field and an irregularly shaped crystal. As 

pointed out by Kaplan and co-workers "the stationary waves then 

assume the form of very narrow wave packets about surfaces along 

which resonance conditions appropriate to the mode frequency 

hold" [23] . To verify this claim the Kaplan group devised an 

24 
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ingenious experiment in which the crystal had the shape of a 

truncated sphere. As shown in Fig. 3.1, the more severe the trun-

cation, the larger the echo amplitude. 

Another difference with paramagnetic echoes is the dependence 

of the echo amplitude on the separation T between pulses. As 

indicated in Fig. 3.2a the amplitude first increases with T and 

reaches a maximum before decreasing due to the usual irreversible 

dephasing and damping effects. For comparison the echo behavior 

for paramagnetic spin echoes is shown in Fig. 3.2b; we see that 

here the initial growth with T is lacking. 

From these observations we may conclude that the nonlinear 

mechanism of echo formation is not the same for these two cases. 

Whereas paramagnetic echoes are generated because the coupling to 

the oscillators is nonlinear, ferrimagnetic echoes are brought about 

because the ,oscillators are anharmonic, i.e. their frequency 

depends on the square of the amplitude. That this gives rise to 

the behavior shown in Fig. 3.2a may be seen as follows. Assume 

that two pulses f Al exp(jwt)dw and f A2 expljw(t-T)], where 

A2 » Al , are used to modulate a carrier Wc and applied to the 

crystal, and that, for simplicity's sake, w T = nx2TI, where n is 
c 

an integer. At a time immediately following t = T, the amplitude 

squared of the oscillator (mode) at w is then given by 

a 2 = A2 A2 2A A () 1 + 2 + 1 2 cos WT . It will undergo a frequency shift 

of magnitude, say, aa2
, where a is some appropriate constant. 

2 -Neglecting the irrelevant constant terms in a we can write 
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~W = 2aA
l

A2 COS(WT). Then, from T onwards, the macroscopic response 

of the oscillators (modes) is given by: 

J exp[j~w(t-T)][~ exp(jwT) + A2 exp jw(t-T)]dw. (3.1) 

Assuming, for simplicity, that ~W(t-T) « 1 we write: 

exp[j~w(t-T)] ~ 1 + j~W(t-T) 

(3.2) 

Neglecting the constant term, which merely represents the linear 

contribution, we may write the macroscopic response as: 

(3.3) 

1 Finally, using co s WT = 2 (exp(jwT) + exp(-jwT)), we find that the 

response contains a term, 

(3.4) 

As is readily seen, this represents a delta function at time t = 2T. 

The significance of the imaginary factor is that the phase of the 

echo carrier will be shifted by 90°. 

Thus, at least for small T, the echo amplitude should increase 

linearly with pulse separation, as is indeed the case. 

The third difference between paramagnetic and ferrimagnetic 

echoes is that for the latter the echo is amplified i.e. its 
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magnitude is much larger than that of the signal (first) pulse. 

It is argued [23] that this is caused by nonlinear mode coupling. 

Such coupling, although destroying the echo effect when excessive, 

serves, when present to a moderate extent, to parametrically couple 

power into the echo. 

The ferrimagnetic echo is a good illustration of the physical 

complexities involved in actual echo formation. It introdues a 

second kind of nonlinearity, i.e. anharmonicity and also the use of 

• 
modes rather than particles as independent oscillators. Neverthe-

less, as was shown, with a slight modification of the phase con-

jugation formalism, the basic effect is readily explained, at least 

qualitatively . Detailed calculation of the echo amplification due 

to nonlinear mode coupling is more complicated. A simple model 

using gaussian mode f requency overlap [23] leads to very good 

qualitative agreement with experiments in the case of echo ampli-

tude dependence on pulse separation. 

The Kaplan group also did some interesting time compression 

signal processing using ferrimagnetic echoes. That this is possible 

was first demonstrated by Mims [24], using paramagnetic electron 

spin echoes. The principle of operation is readily explained by 

means of Fig . 3.3 . Assume that the first pulse is replaced by a 

more complicated signal consisting of two short bursts of frequencies 

fl and f2 occurring at t = 0 and t =~. The second pulse is re-

placed by a similar sequence with the bursts occurring at t = T 

and t = T + ~/2. It is readily seen that the f2 and fl echoes will 



overlap at t = T. More generally, this is true whenever the first 

signal is a slowly varying frequency and the second one is of the 

same form but varying at twice the rate. In the actual experiment, 

which operated at carrier frequencies near 10 GHz, a frequency 

sweep of 450 MHz was used with a duration (for the signal) of 

1 ~sec. The observed echo lasted· 5 nsec thereby demonstrating a 

time compression of 200:1. 

We will return later to a more general description of signal 

processing [5J, made possible by the use of parametric echoes. 

A mathematical treatment of the generation of echoes due to 

anharmonic nonlinearity appears in Appendix C. 
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CHAPTER IV 

CYCLOTRON :ECHOES 

Cyclotron echoes were first observed by Hill and Kaplan [25] 

in 1965. The independent oscillators in this case consist of 

electrons gyrating around the magnetic field lines with cyclotron 
eB 

f . 0 h . 
requenc~es --- were e ~s 

m 
the charge on the electron, m its mass 

and B the (inhomogeneous) magnetic bias field. A typical arrange­
o 

ment for observing echoes, using microwave horns, is shown in 

Fig. 4.1. It is assumed that the dimension of the plasma in the 

direction of wave propagation is small compared to the ' wavelength, 

so that the electrons are excited in phase. 

The cyclotron echo case is an interesting example of the 

search for a nonlinear mechanism to explain echo formation. Two 

candidates come to mind immediately [26]~ a) nonlinear excitation 

because the electric field, which is a traveling wave, varies (very 

slightly) across the electron orbit [9] in the direction of prop-

agation, b) anharmonicity because of relativistic effects. As it 

turns out, neither is the dominant mechanism. It has been shown 

convincingly by Kap1·an and Hill [27] that a third mechanism must 

be invoked, that of energy dependent collisions. That this leads 

29 

to echoes can be seen by again examining our model of two modulation 

pulses, f ~ exp(jwt)dw and f A2 exp[jw(t-T)]. Let us use a simple 



model of the loss mechanism: 2 
exp(-Sa t) where a represents the 

amplitude and S an appropriate constant. Then from T on, the 

macroscopic r esponse is given by: 

f eXP [- 8a2 (t-t)][A
l 

exp(jwt) + A2 (exp jw(t-t)]dw . (4 .1) 

[Actually ~ has decreased slightly prior t o T, but we shall 

neglect t hat a s it only represents a scaling factor.] Now, as 

222 
before, a = A1 + ~2 + 2A1A2 cos Wt. Neglecting constant terms, 

we now write , in analogy to (3.2): 

2 
exp[-Sa (t-t )] ~ 1- 28 ~A2 (t-t)co s Wt = 

(4.2) 

If (4.2) is substit uted into (4.1) we find, that there exists 
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a term which, around t = T, is described by -S A1A;t f exp jw(t- 2t)dw. 

As in (3 . 4) this represents a delta function at t = 2T modulated on 

a carrier which is shifted by 180°. 

A more detailed calculation considering both anharmonicity and 

ener gy dependent loss has been given in [27]. 

Gould has given an interesting description of echo formation 

as a frustration of echo cancellation in linear systems [26]. We 

shall her e apply his reasoning to a general system of oscillators 

rather than gyrating particles. Assume again that we apply at 

time t = 0 and t = t the pulses, 



VI (t) = Re f: exp(jwt)dw, V2(t) = Re r: exp[jw(t-T)]dw. (4.3) 

Note that (4.3) represents the total physical signal, not just the 

modulation as in (3.1). Now the state of any oscillator may be 

visualized in the complex plane by the phasor exp[j~(t)], it being 

understood that the physical amplitude is represented by the real 

par t. Thus, at a time immediately after the application of the 

first pulse, all oscillators are characterized by ~ = 0 and find 

themselves at 1 in the diagram of Fig. 4.2a. After a time T, 

immediately preceding the second pulse, the oscillators have 

spread out· along the unit circle as indicated for individual 

oscillators A + H. Oscillators A -H exhibit higher frequencies 
n n 

and have made n additional circuits of the unit circle so that 

~(A ) = ~(A) + n2n . Immediately after application of the second 
n 

pulse, the value 1 has been added to all phasors and the situation 

is as shown in Fig. 4.2c. Following the second pulse the oscilla-

tor phasors continue turning around 0 and the groups (AlAn)' (BlBn) 

etc. break up to distribute themselves along the circles marked 

A, B etc. in Fig. 4.2d. It is readily seen that at times t = nT 

the groups coalesce again into discrete points on their respective 

circles. Fig. 4.2e and 4.2f show the situation for t = 2T and 

t = 3T respectively. Note that at these times there has occurred 

a bunching of oscillators (C-G) in the left half plane, all giving 

a negative real contribution. Hence it could be concluded that a 

macroscopic effect (echo) occurs at times nT. 

31 
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We know that this conclusion is wrong because we are describing 

a linear system in which echoes are not possible. What really 

happens is that the summed projections of C-G on the real axis are 

exactly cancelled by those of the remaining oscillators (H,A,B), 

the latter, although fewer in number, having larger amplitudes. 

The point is now that this balance (echo cancellation) may be upset 

(frustration of echo cancellation) by a slight change in oscillator 

density along the unit circle. In turn, such a change may be 

brought about by the nonlinear effects described before. For 

instance, a nonlinear coupling changes the initial circle into an 

ellipse [16] as was earlier shown in Fig. 1.6. For ,the case of 

spins, anharmonicity changes the distribution along the circle by 

introducing perturbations in the phasor rotation rate, and nonlinear 

damping contracts the patterns non uniformly toward the origin. 

Thus Gould's description provides an elegant and convenient way to 

visualize the process of echo format'ion. 

To account for the fact that the cyclotron echo associated with 

an r.f. electric field propagating perpendicular to the d.c. magne­

tic field is much stronger than that associated with an r.f. 

electric field which propagates parallel to the d.c. magnetic 

field, White [9] has proposed that for the perpendicular case 

(with the magnetic field along the Z-axis, and the r.f. field 

along Y), any drift in an electron's orbit -in the z-direction 

does not affect the phase of the electron (since the electric 

field does not vary along Z). For the parallel case (with both 



• 

33 

fields along Z), however, a drift in the orbit causes the phase of 

the electron to change irreversibly. Such an irreversible dephasing 

degrades the echo considerably. 

From a quantum-mechanical viewpoint, White [9] has argued 

that a system of oscillators can rephase in time only if the non-

linear mixing due to pulsed excitation is a periodic function of 

the perturbation. This, in turn, requires that the energy levels 

of the system be finite in number. To show that a cyclotron system 

indeed has a finite number of energy levels, White considered the 

Hamiltonian for an electron subjected to a d.c. magnetic field 

H a , constrained to move in the X-Y plane: 
o z 

H 
o 

(4.4 ) 

The above resembles the Hamiltonian of a displaced harmonic oscilla-

tor. Using the above for a spin-system, and evaluating the upward 

and downward transition probabilities, TP and TP
d 

' respectively, up own 

White obtained: 

TP ~ (n+l) (1-n/2s), and, 
up 

TPd ~ n[1-(n-l)/2s], own 

where n is the level number and 

(4.5a) 

(4. 5b) 

mw 
s = __ c 

hk2 • 
For n = 2s, we see that 

TP = O. Hence a spin system is clearly truncated (i.e. has only up 



34 

a f inite number of levels with non-zero upward transition probabili-

ties) at n = 2s. The analysis for a cyclotron system is more 

involved, but yields similar results. 

In order to demonstrate that velocity dependent collisions 

play the key role in cyclotron echo effects, Kaplan et al. [27] 

used a highly ionized cesium plasma (ensuring that collisions would 

be Coulombic only), with a relatively large electron density 

12 -3 
(~ 10 cm). By considering typical values for electron-ion 

collision time, electron drift time and electron temperature, the 

minimum electron density required for electron-ion collisions to 

11 ' -3 
dominate was found to be about 10 cm . In experiments, it was 

observed that no two-pulse echoes were generated when the electron 

density in the plasma was below the minimum value predicted. In 

afterglow plasmas , however, electron-neutral atom collisions gen-

erated two-pul~e echoes for much lower electron densities 

(~ 107 -3 cm ). The typical values of T2 and Tl were found to be 

200 ns and 400 ns respectively. One notable exception was a three 

pulse echo that persisted upto 40 ~s. Very large longitudinal 

lifetimes, however, have been observed and studied only since 

about 1973. 
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CHAPTER V 

PLASMA ECHOES 

In 1967 Gould et al predicted that "if a longitudinal wave is 

excited in a collision free plasma and Landau damps away, and a 

second wave is excited and also damps away, then a third (i.e., 

the echo) will spontaneously appear in the plasma" [28]. 

The phenomenon of Landau damping is essential to the echo for-

mation. This kind of damping occurs through interaction of the 

wave fields with electrons which have thermal velocities near the 

wave phase velocity [29]. Electrons slower than the phase velocity 

will acquire energy f rom the field and be accelerated, electrons 

faster than the phase velocity will impart energy -to the field and 

be decelerated. Since, for a maxwellian distribution function 

1 2 
f(v) ~ exp(- 2 mev /kT), there are more slow electrons than fast 

ones, energy is, on the whole, removed from the wave and damping 

occurs, even in the absence of collisions. Landau damping can 

also be understood by considering the evolution of the electron 

distribution function f(v) in time and space [30]. If an electric 

field cos(wt) excites the plasma it will modulate the distribution 

function [31] leaving a perturbation of the form f(v)cos{wlt - wlx/v}. 

For large x, the macroscopic field associated with this perturbation 

(i.e. the integral over v) phase averages out to zero. Hence Landau 



damping may be thought of as a dephasing of signals traveling on 

electron "beams" [29] with different velocities v and hence differ-

ent phase velocities. The crucial feature which makes echo forma-

tion possible is the reversibility of the phase mixing, in contrast 

to collision processes which would cause irreversible dephasing. 

Following Baker et al. [31], the generation of an echo is best 

explained by considering the experiment shown in Fig. 5.1. At 

point 1 a plasma wave is launched at frequency wI' This causes a 

perturbation of the distribution function which may be written as: 

(5.1) 

A second wave, at frequency w
2

' is launched at point 2, separated a 

distance £ from 1. This second wave will remodulate the perturba-

tion caused by the first wave so that it will evolve in time and 

space as: 

(5.2) 

The above second order perturbation in the velocity distribution 

contains a term proportional to: 

(5.3) 

In general the macroscopic effect due to this term averages out to 
w2 

------- £ the coefficient of v z~ro again. However, for x 
W2 - w

l 
vanishes and an echo should be obs.ervable at frequency w2 - wI' 
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Baker et al have given an interesting picture of this process, 

using electron trajectories as shown in Fig. 5.2. They assume, for 

the sake of simplicity, that the first signal, at point 1 acts as 

a gate letting particles through at time t = n X2TI/wl = nT. The 

fan of trajectories originating at each nT represents the velocity 

distribution function f(v). The diagram to the right of the main 

figure represents the temporal density of particles net) at various 

distances. We see that, at x = £, all traces of the original modu-

lation have disappeared. At point 2 a second gate operates at a 

frequency w
2 

= 2w
l 

i.e. opening every T/2. The result of this is 

that at x = 2£ a periodic modulation at · w
l 

is restored, in accor­

dance with the theory (w 2 = 2wl , x = w2£/(w2 - w
l

) = 2i). 

Both electron-and ion-wave echoes have been observed. In one 
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ion wave experiment [32], f2 - fl was kept fixed at 100 kHz, with 

exciting frequencies fl at 80, 120 and 140 kHz. In another experi­

ment [31], the length £ was changed as well as the ratio (W; - Wl)/wl • 

In both cases the measured position of the echo was in good agree-

ment with theoretical prediction. Electron-wave experiments [33] 

have been performed at 140 mHz and have shown the existence of 

higher order echoes at appropriate frequencies. It is interesting 

to note that, in plasma echoes, the role of the ensemble of 

oscillators with frequency spread ~f is assumed by waves propagating 

on charged particle "beams" with velocity spread ~v. This is again 

an example of the general case where, instead of independent local 

oscillators, independent spatial modes are involved. The 



nonlinearity of the process is due to the fact that the phase 

velocity of the waves (velocity of the beams) depends on the 

electric field. 

Summary of pre 1970 results 
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We have seen that pulse echoes appear in many systems. All 

such systems are characterized by exhibiting a large number of inde­

pendent oscillators or modes with a sufficiently large spread in 

fundamental parameters such as frequency or (phase) velocity. In 

addition, nonlinearities must be present to achieve the phase con­

jugation which leads to echoes. Gould [26] has divided the non­

linear mechanisms into three groups: 

a) nonlinear excitation; 

b) anharmonicity; 

c) nonlinear damping. 

Table 1 shows Gould's assignment of nonlinearities to the phenomena 

we have discussed so far and some additional ones such as f1uxoid 

echoes [34,35]. 

All the echoes reviewed up to this point are of a dynamic 

nature: The second pulse must be applied before the oscillations 

excited by the first one have died out or otherwise irreversibly 

dephased. We have also limited our description to two-pulse echoes, 

although three-pulse echoes have been observed. As shown in 

Fig. 5 . 3, in the latter case pulses are applied at times t = 0, 

, and T, whereupon a third echo will appear at t = T + , in addi­

tion to the usual one at t = 2,. The mechanism of echo formation 



is basically the same, as can be demonstrated by considering the 

effect of a cubic nonlinearity on the three exciting pulses: 

3 {Ai cos(wt) + A2 cos(wt - WT) + A3 cos(wt - WT - wT)} , 
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which contains a term ~ A1A2A3 cos(wt - 2WT - wT). If all excita­

tions die away with the same time constant Td then it may be readily 

shown that the time dependence of the ~wo pulse echo, exp(-2T/T2), 

and that of the three pulse echo, exp(-2T/T 2 - (T-T)/T
l
), should be 

approximately the same i.e. Tl ~ T2 ~ Td• This has indeed found to 

be the case, with some exceptions. 

We now come to a class of echoes (phonon echoes in crystals 

and powders) where this behaviour is no longer similar but may, in 

fact, be vastly different. Three pulse echo relaxation times have 

been observed that to all intents and purposes are infinite. 

Obviously, some quasi permanent storage must have been effected by 

the first two (write) pulses so that, as in a hologram, information 

may be read out much later by a third (read) pulse. In the 

remaining part of this review we shall discuss such phonon echoes, 

emphasizing the "static" echo effect, the search to find the correct 

mechanism and the possibilities for engineering applications. 
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CHAPTER VI 

PHONON (ELECTROACOUSTIC) ECHOES IN PIEZOELECTRIC CRYSTALS 

Between 1970 and 1973 several investigators reported the 

observation of radio frequency echoes in single crystal and po1y­

crystalline piezoelectric or ferroelectric materials [36-40]. 

Jo f frin and Leve1ut [39] used the term "boson echoes" for this 

phenomenon and attributed their existence to nonlinear phonon-phonon 

interactions. Other workers used the names "polarization echo", 

"e1ectroacoustic echo" or "parametric echo". The new class of 

echoes differed from most previous ones mainly in the fact that no 

specific pulse carrier frequency was required and also that the 

three pulse echo decay time T1 was many orders of magnitude larger 

than the two pulse echo decay time T2• Working at 9 GHz with CdS 

cooled to 4°K, Joffrin and Leve1ut reported T2 to be about 10~sec 

and T1 to be about 0.1 sec. 

Shiren et a1. [40] reported echoes in piezoelectric photocon­

ductors such as CdS, 2nO etc. Crystal rods were placed in high 

electric field regions of reentrant or rectangular X band cavities 

(at ~ 9 GHz) or between the plates of a capacitor (f < 500 MHz). For 

frequencies below 500 MHz, echoes were reported between 1.4°K to 

400 o K, while for frequencies above 1 GHz, no echoes were reported 
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above 70 o K. The following additional properties .were observed 

during the experiment: 

(a) No echo was produced if the sample was not "charged" with visible 

light. Following "charging", the experiments could be conducted 

both in the dark or under illumination. 

(b) The echo amplitude was maximum when the wavelength of the light 

approached the band gap wavelength of the crystal. However, 

correspondingly, the ultrasonic attenuation was maximUm near 

this wavelength, and T2 was reduced considerably. 

(c) In general, the two pulse echo amplitude decayed as a simple 

exponential: 

ADE ~ exp(-2T/T2), where the subscript DE refers to a dynamic 

echo. T2 is of the order of 10~sec. 

(d) The three pulse echo amplitude also decayed as a simple 

exponential: 

-2T T-T 
ASE ~ exp(~ - Tl ), where the subscript SE refers to a 

stimulated, or, as discussed later, static echo. Tl was 

found to be of the order of 20 hrs. at 4°K. 

In order to explain the two-pulse echo phenomenon, Melcher and 

Shiren [41] proposed an electroacoustic interaction model. 

According to this model, the first r.f. pulse generates a forward-

traveling sound wave, by the direct piezoelectric effect, with 

-+ 
parameters (wI' kl ), where WI is the acoustic frequency (equal to 

-+ 
the r.f. pulse carrier frequency) and kl denotes the propagation 
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vector in the forward direction. The acoustic wave, traveling in 

the bulk of the sample, rapidly loses phase coherence due to the 

thinness, roughness and inhomogeneities of the sample. (In other 

words, the acoustic wave is carried by a variety of modes with a 

+ 
spread in k vectors.) At time t = T, a second pulse is applied at 

frequency w2 . The crystal dimension is such that even at microwave 

frequencies the r.f. pulse generates only a static electric field 

in th~ sample with parameters (w2 ' 0), where the zero refers to its 

non-propagating character. According to the present model, harmonics 

mw 2 of this static field are generated through a non-linear effect 

that is associated with the ionization of shallow trap electrons 

into the conduction band. In turn these harmonics interact 

(through the same nonlinearity) with the piezoelectric field 

+ 
associated with the acoustic wave (wI' k

l
), and produce a mixing 

+ 
term (wI' kl ) * (mw 2, 0) = (mw 2-wl , -kl ). Thus, a backward propa-

gating acoustic wave at frequency wI is generated whenever mW2 = 2wl • 

(This is, in fact, the selection rule that is actually observed [41].) 

As this phase conjugation process happens for each of the modes men-

tioned before, they will all get back in phase again after t = 2T so 

that, at that time, the re-constructed wave is detected as an echo 

pulse in the receiver. 

To account for the very slow decay of the three-pulse or stimu-

lated echo, Shiren et al. [40] proposed and others [42,43] clarified 

a model based on an induced electronic space charge grating. On 

-2 illumination, shallow electron traps (€T ~ 10 eV) in the crystal 
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near the conduction level are filled up. This requires a photon 

energy close to the band gap energy. At liquid helium temperature 

the traps have the lifetimes of the order of a few days. The for­

ward propagating acoustic wave due to the first pulse, proportional 

to cos(wt-kx), interacts nonlinearly with the static electric field 

due to the second pulse, proportional to coS{W(t-T)}, to yield a 

component of field proportional to cos(kx-wT). This represents an 

interference pattern stationary in time but periodic in space, with 

a spatial period corresponding to the acoustic wavelength. According 

to Shiren et al. [40] and Asadullin et al. [42], the above stationary 

field causes, through field-induced ionization into the conduction 

band, an inhomogeneous space charge distribution over the traps, 

which contains the information about the frequency w as well as 

about the time interval T of the two exciting pulses. This distri­

bution forms an internal grating made of electrons. The electric 

field of the third pulse, whose piezoelectric coupling is spatially 

distorted in conformance with this grating, now generates a backward 

as well as a forward acoustic wave, which are detected piezoelec­

trically at the crystal surface in the form of the stimulated echo. 

(This situation is analogous to the excitation of acoustic surface 

waves by a grating of interdigita1 electrodes [43].) The decay 

time TI of these stimulated echoes is thus the same as that of the 

traps, which explains the very long persistence of the effect. It 

should be remarked, in passing, that the effect is entirely analogous 
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to that employed in the fabrication of semiconductor acoustic surface 

wave convolvers [44]. 

Another model has been proposed in the Soviet literature. 

According to Krainik et al. [45] the temporally invariant, spatially 

periodic wave, discussed above, produces a fixed elastic pattern in 

the crystal which comprises an acoustic hologram. This pattern may 

be produced by interaction of the acoustic wave with crystal defects. 

The third pulse, called tbe read pulse, acts on the acoustic holo­

gram to produce an echo. 

Two pulse phonon echoes have also been observed in polycry­

stalline magnetic ferrities [46]. In this case the echo is due to 

magnetostrictive excitation of elastic waves. The required non­

linearity is believed to be related to defects. 



CHAPTER VII 

PHONON (ELECTROACOUSTIC) ECHOES IN POWDERS 

The first (dynamic) echoes due to acoustic resonances of 

individual powder particles were observed and interpreted as such 

by Rubinstein and Stauss [47]. In their work on lithium ferrite 

powders they noticed that (magnetic) excitation of echoes was only 

observed when the dimensions of the particles were of the order of 

an acoustic wavelength. Furthermore, the echoes 'disappeared when 

the particles were suspended in a liquid, an effect that was 

correctly ascribed to acoustic damping. (In fact, a thorough 

cleaning and drying of the sample was required to restore the 

echo phenomenon). Also, the transverse relaxation time T2 

increased with decreasing temperature as shown in Fig. 7.1. The 

investigators proposed a magnetic nonlinear excitation mechanism 

that they believed to be due to the modulation of the magnetic 

anisotropy forces by lattice vibrations. Phenomena similar to 

those described above have also been observed in metals [35,48] 

and in commercial ferrites [45]. 
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Since the early 1970's the emphasis in echo experiments has 

shifted to the area of r.f. echoes in piezoelectric powders. The 

fact that powder echoes can be obtained in an extremely wide range 

of powdered crystals, over a wide range of frequencies, and require 



rather simple experimentation, has no doubt contributed to the 

enthusiastic investigations by many groups. 

The piezoelectric powder echoes differ from the crystal echoes 

in the following ways: 

a) They can be obtained from the powdered form of some materials 

which, in the crystalline form, do not generate any echoes; 

b) They do not depend on illumination; 
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c) They exhibit very large longitudinal relaxation times (Tl ) of the 

stimulated echoes, even at elevated temperatures approaching 300o K; 

d) The decay curve for the three-pulse powder echoes generally shows 

evidence of several values of Tl . 

Melcher and Shiren [49]" reported two-pulse and three-pulse . 

echoes in powders of quartz, sand, LiNb0
3

, -K
x
Li

1
_
x

Nb0
3

, BaTi0
3

, 

Gd 2 (M00
4
)3' Li2Ge03 , PLZT ceramic, Se, CdS, ZnO, ZnSe, CdTe and 

GaAs. Similar echoes were observed by Krainik et al. [50]. 

Fig. 7.2 shows a plot of the two-pulse echo amplitude against 

the average particle diameter in a powder sample of GaAs, using 

30 MHz pulses at 300 o K. The echo amplitude is observed to pass 

through a maximum for a particle diameter of about 67mm. This 

particle size corresponds to a half-wavelength of sound at 300 MHz, 

assuming a velocity of 4 x 105 cm per second, a fact which lends 

strong support to the claim that the two-pulse echo in powders 

corresponds to the acoustic resonance of the powder grains. More-

over, as in the case of ferrite powders, it has been observed that 

the surface condition of the particles strongly determines the 



magnitude of the transverse relaxation time T2 • In one case, 

careful etching of the particles after grinding resulted in an 

increase of T2 by two orders of magnitude [51]. This points to 

some form of damping due to the interaction of the particles with 

the environment or with each other. Kuindersma et al. [52] .diluted 

active particles of Si02 with a fine grained inert powder such as 

A1 20
3 

and found that T2 was linearly proportional to the inverse 

concentration. This argues for a neighboring particle interaction 

as the mechanism of tran$verse relaxation. 

Various theories were proposed to explain the short term echo. 
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Kuindersma et al. derived pseudo Bloch equations, starting from a 

nonlinear Hamiltonian for each particle [52], whereas Kessel et al. 

used a nonlinear free energy formalism to calculate the effect [53]. 

Both theories predicted two pulse echoes with a simple T dependence 

of the kind exp(-2T/T2). 

Kajimura et al. at IBM [54] pointed out that careful measurements 

of echo amplitudes did not confirm this simple decay but that instead 

a behavior was found in which the echo first increased from zero to a 

maximum and then decayed exponentially with T2. This behavior is 

shown in Fig. 7.3. As we have seen before (Ch. III) it is charac­

teristic of anharmonicity. Starting from an anharmonic wave equa­

tion and using a slowly . varying envelope approximation, the IBM 

group derived an expression for the two-pulse echo amplitude of the 

form [1-exp(2T/T 2)] exp(-2T/T2). This is in good agreement with 

experiment as can be seen from the dashed curve in Fig. 7.3. Even 
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closer agreement can be achieved (solid curve) when it is assumed 

that there exists a distribution of damping rates in the sample. It 

should be noted, though, that at very high excitation levels, the 

decay behavior becomes power sensitive and quantitatively different 

from that shown in Fig. 7.3. This effect (and a corresponding varia-

tion in pulse shape) is greatly emphasized by lowering the tempera-

ture. 

Following the above investigation, the IBM group greatly 

extended its experimental work on piezoelectric echoes and refined 

the theory. Full details can be found in an extensive article 

reviewing these investigations [55], and in an account of parallel 

efforts elsewhere [56]. 

As pointed out in Chapter III, echoes caused by anharmonicity 

not only should s how the behavior of Fig. 7.3, but also their phase 

should be shifted by 900 relative to the phase of an echo caused by 

nonlinear excitation. Kunkel et al. [57] reported on such phase 

measurements using the spin echo from the nuclear resonance in 

water as a reference. They found a phase angle of 78 0 for (Lorenz 

force excited) Al powder and 93 0 for (magnitostrictively excited) 

Ni powder. 

Some other observations concerning dynamic echoes are of 

interest here. Gurevich et al. [58] have observed echoes at 

double the frequency, located near t = (3/2),. These echoes should 

3 
be due to an E2El term in the excitation. The time dependence of 

3 3 
this for two pulses is E2cos (wt - W,)Elcos wt. It is readily seen 
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that this contains a term: 

(7.1) 

thus correctly predicting the observed echo. Kopvillem and Prants 

[59,60] have developed a quantum mechanical theory of coherent 

polarization effects that predicts echoes in all physically inhomo-

geneous non piezoelectric dielectries. 

Although the mechanism of the dynamic echo has been firmly • 

established, that is not the case for the stimulated echo. The 

anomalous persistence of this echo in powders was first reported 

in 1975 by Popov et al. [61,62]. The discovery led to the possi-

bility of obtaining very long and stable memories in powders. 

Relaxation times of weeks at room temperature were reported in 

powders of Rochelle salt and bismuth gemanate. Such anomalous 

behaviour was later also found to exist in powders of KDP, ADP, 

In a typical three-pulse experiment the powder sample is sub-

jected to two intense r.f. pulses at times t =0 and t = T, at a 

frequency corresponding to acoustic resonance of the average 

particle. Next, a third pulse is applied (at the same center fre-

quency) at a time t = T. The value of T is varied from T = T to 

very high values, keeping the two-pulse separation T constant, and 

the amplitude of the echo at T + T is plotted against T. Fig. 7.4 

shows a typical plot. It will be seen that the echo amplitude 
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follows a decay pattern characterized by two relaxation times. For 

low values of T (close to T) it decays roughly exponentially as 

exp[-(T-T)/T2]. This evidently represents the usual dynamic decay 

of the acoustic vibrations of the powder particles. However, for 

values of T approaching several days and even weeks, the echo is 

found to remain practically constant . 

The non-dynamic part of the st i mulated echo, also termed the 

static-, storage-, memory-, or stimulated echo, was found to dis-

appear [61 , 62] when the ampoule containing the powder grains was 

rotated by 90 0 relative to its axis . The echo reappeared when the 

original orientation was restored. In testing the variation of the 

storage echo amplitude with pulse carrier frequency, the echo was 

found to have a sharp maximum when the frequency of all pulses 

coincided with t he average resonant frequency of the powder grains. 

The fact that the recall time for the third pulse is far 

longer than the lifetime of an acoustic phonon or an electron in a 

trap makes previous explanations inadmissible; hence a new storage 

mechanism had to be found. 

Melcher and Shiren [49,51] proposed an orientation mechanism 

on rotation of powder particles due to the second applied pulse. 

In their model the first pulse develops a vibrating piezoelectric 

dipole p cos(wt) where p~ E1 cose ; e is the angle between the 
o 0 

applied field and the piezoactive axis, w is the resonant frequency 

of the particular particle and E1 is the component at w in the 

frequency spectrum of the exciting pulse. The relevant configuration 



is shown in Fig. 7.5. The second pulse (also at frequency w) will 

now cause a d.c. torque (pxE2)w=o which will cause the particle to 

rotate by an angle ~e. If viscous forces predominate, the rotation 

angle is given by: 

(7.2) 

where ~ = WL denotes the phase difference between the components 

at W of the first and second pulse. A third pulse at t = Twill 

now reexcite the particles and cause a macroscopic dipole moment 

along the piezoactive axis whose amplitude i s : 

For small be this contains a term: 

E3 sine
o 

~e = E E E cose sin
2

e COS(WL ) . 12300 

(7.3) 

(7.4 ) 

Finally, the macroscopic component along the field axis is given 

by (after multiplication by cose ): 
o 

(7.5) 

Summing all macroscopic components over all oscillators we find: 

(7.6) 

which contains a term: 
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The last expression represents a delta function at t = T + , i.e. 

the stimulated echo. In reality, of course, (7.7) should be averaged 

over the distribution of e 's in the sample ,but that will not change 
o 

the essential features of the explanation. Wilms and Vertogen [63] 

have performed numerical calculations in accordance with the above 

model, using the equations: 

2 + E qi -(0 qi cosa
i

, (7.8) 

.. 
-ka. q.E sina. , a. = -

~ ~ ~ ~ 
(7.9) 

where qi is the dipole moment of the ith particle and a
i 

is the 

angle discussed before. The calculation was performed for a 

system of between 100 and 400 particles with a random re~onant fre-

quency distribution 0.90 < (0 < 1.10. The applied field was given 

a Lorentzian line shape in time: osint/(1+0.01t2) and allowed to 

act for a time ~t = 20n. The time between pulses was varied between 

100 < , < 1000. The initial orientation was taken to be e = ~ for o 4 

all particles. Fig. 7.6 shows, as a function of (0, the energy of 

+ particle vibration and the particle orientation at t = 0, t = T 

+ and t = (T + ,). Note that the strength of the stored information 

(i. e. a) has increased after application of the third or "read" 

pulse. This somewhat mysterious behavior has actually been observed 

in experiments [64,65]. Fig. 7.7 shows two echoes at times, and 2, 



after the second pulse. Note the ringing due to .the finite number 

of particles used in the calculation. 

It is interesting to note that the memory mechanism outlined 

above could well be called "electronic holography". As in optical 

holography [66], both the phase and amplitude of a spectral com-

ponent of the signal El (plane wave spectrum in optics) are stored 

by recording the pattern of interference (cos WT irithe electrical 

case) with a signal E2 . The recording takes the form of a change 

in the coupling parameter: amplitude transmission in optics, 

angle between dipole and field in electronics. A third "read-out" 

signal acts via the coupling parameter to reconstruct the original 

signal. We will return to this description in Ch. VIII. 

An apparent confirmation of the orientation model was given by 

the fact that mechanical shaking ("a sharp rap") [49] destroyed 

the static echo. However, Asadullin et al. [67] reported that the 

original echo could be restored partially by a light tapping during 

read-out or by a "rest" of several tens of minutes after shaking. 

Berezov and Romanov [68] reported even stranger behavior: after 

complete stirring (sifting) of the exposed sample, the echo signal 

still appeared at 1/7 of the original amplitude. 

Other objections to the rotation model of echo storage follow 

from the observed dependence of echo amplitude on sample rotation 

before final read-out. According to the simple description given 

before, the echo should be proportional to cos 26 cos(2y + 26 ) 
o 0 

where y is the sample rotation. It had already been observed in 
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the earliest experiments [61,62] that the echo disappeared upon 

rotating the sample by 90°, in disagreement with this prediction. 

More detailed measurements confirmed this and showed an approximate 

2 
cos ydependence [69-71]. 

It is clear from the above findings that the orientation model 

by itself is not sufficient to explain the memory echo and that 

other mechanisms must be active in addition. It has been proposed 

that a d.c. dipole may be established in the particles through 

charge transfer [72] or that the effect may be due to dislocation 

nonlinearities [68] or plastic deformations [73]. In connection 

with the latter it is claimed that both plastic deformations and 

memory echoes disappear upon heating to a few hundred degrees C. 

Although the exact mechanism of memory echo formation has thus 

not yet been unambiguously established, it is nevertheless clear 

that there is a potential for more general signal storage. In this 

context it is of interest that the echo can be reinforced by 

repeated exposure of the sample to write-in pulse pairs [42]. It 

has also been shown that the echoes show frequency selectivity i.e. 

the frequency may be used as an address for information [74], again 

in analogy to multiple recording of holograms by spatial carriers 

[75]. 
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Finally, from the few experiments that have been performed with 

signals other than short pulses, [5,76] it appears that interesting 

signal processing should indeed be possible. We shall discuss this 

next. 



CHAPTER VIII 

ELECTRONIC HOLOGRAPHY 

Most of the phenomena discussed so far may be described by a 

f ormalism similar to that used in optical holography. To see why 

this is so, let us return to the case of two pulses applied at 

• t = 0 and t = T. We have seen how, due to a cubic nonlinearity, 

the individual oscillators generate signals of the kind 

A~AlcOS wt cos
2 

W(t-T) which contribute to the echo component 

2 
A2Alcos W(t-2T). If we had used phasor notation the echo could be 

written as A;A~ where A2 = IA2 1 exp(-jwT) and Al = A~ = IAl l in 

this case. It is easy to generalize this description by assuming 

that the first pulse is characterized by a frequency spectrum 

~l (w) and the second one by ~2(w), The parametric signal generated 

2 * by the individual oscillator at w is then given by ¢2(w)¢I(w) and 

hence this expression also represents the spectrum of the macro-
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scopic signal. This notion was first advanced by Fossheim et al [55] 

in the context of piezoelectric powders and later used independently 

by Korpel as the basis of a general f ormalism [5]. In this formal -

ism it is assumed that the oscillator ensemble is excited by a 

general signal e(t) (which may consis t of the two pulses just 

discussed) of finite duration T. If ~(w) is the frequency spectrum 

of e(t) it may be shown that, for cubic nonlinearities, the 

/ 
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parametrically generated signal E'(t) has a frequency spectrum ~'(w) 

given by: 

2 * ~'(w) ex: ~ (wH (w). (8.1) 

Eq. (8.1) is valid only in the time domain t > T. Prior to that 

time the ordinary Fourier spectrum of e(t) cannot be calculated as 

e(t) is not yet over. For t < T we must then use the instantaneous 

frequency spectrum as defined by Page [77]. We shall not, however, 

discuss such details here but restrict our attention to t > T. 

In the case of two delta functions, at t = 0 and t = T, we 

find: 

e(t) = oCt) + O(t-T), (8.2) 

~(W) ex: 1 + exp(-jwT), (8.3) 

~'(W) ex: 11 + exp(-jwT) 12 [1 + exp(jwT)] 

- 3 + 3 exp(-jwT) + exp(jwT) + exp(-2jWT). (8.4) 

Of the four terms in this expression only the fourth has a 

physical significance for t > T and represents the echo at 2T. 

That the concept is more general may be seen by considering the 

case where 

e(t) e
l 

(t) + O(t-T), (8.5) 



as illustrated in Fig. 8.1. Here we find that (8.1) conta.ins a 

term: 

* </>~(W) CPl (w)exp(-2jwL) (8.6) 

which corresponds to a macroscopic signal 

E' (t) e
l 

(2L-t), (8.7) 

i.e. a time reversed delayed version of e
l 

itself. More generally, 

the time domain equivalent of (8.1) may be written: 

E'(t) ~ I ~2(w)~*(w)exp(jwt)dw = e(t) * e(t) * e(t), (8.8) 

where * denotes convolution and * denotes correlation. 

It is interesting to note that the formalism of Eq. 8.8 is 

analogous to the one used in Fourier holography if ~ is taken to 
t 

represent the sum of the reference wave and the signal wave. This 

may be seen as follows. Assume that, in the Fourier plane of a 

lens, there exists an interference pattern with amplitude distribu-

tion </>(u,v) brought about by the interference between a reference 

wave cP , and a signal wave </>. The pattern is recorded on photo-
r s 

graphic film. With the photographic processing used in holography, 

the amplitude transparency of the resulting negative is given by 

* CPcP Suppose now that, in the reconstruction process, the negative 

is illuminated with ~ rather than, as is commonly done, with ~ • 
r 

57 

In the Fourier plane there would then be created a field ~~~* = ~2~*. 

1 



After an inverse Fourier transform this would in turn give rise 

to a field: 

E'(x ,y) ~ If ~2~* exp[jc(xu + yv)]dudv, (8.9) 

where c is an appropriate constant. Taking into account that 

Eq. (8.9) represents a two-dimensional process, the res emblance 

with Eq. (8.8) is evident. 

The long term or memory echo may also be analyzed by the same 

formalism. In that case it is assumed that the coupling factor K 

to the individual oscillators is modified by the first signal e(t) 

as: 

2 
L\K ~ I ~ (w) I • (8.10) 

If the recall pulse e (t) has a spectrum cp (w), the spectrum CP"(w) 
r r 

of recalled signal E"(t) is then given by: 

(8.11) 

so that 

= e(t) * e(t) * er(t). (8.12) 
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As before, (8.11) and (8.12) are valid only for times subsequent to 

the end of the recall pulse. For the case of two delta functions, 

at t = 0 and t = T, followed by a recall delta function at t = T, . 

we have: 

~(w) 1 + exp(jwT), 

~ (w) = exp(-jwT), 
r 

from which it follows readily, with (8.11), 

~"(w) ~ 2 exp(-jwT) + exp[-jw(T-T)] + exp[-jW(T+T)]. 

(8.13) 

(8.14) 

(8.15) 

Of the three terms in (50), only the third one has physical signi-

ficance in the region t > T; it represents the memory echo. 

That more general signal processing is possible can be seen 
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by assuming that e(t) consists of two well separated functions el (t) 

and e
2

(t-T), and that the recall signal is again a delta function 

at t = T. In that case, 

~(w) ~l (w) + ~2(w)exp(-jwT), (8.16) 

~ (w) exp(-jwT), 
r 

(8.17) 

from which, with (8.11), 
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* + ~2~1 exp[-jw(T+T)]. (8.18) 

The last term represents the potentially useful correlation signal 

e 2 * e
l 

centered ,at t = T + L. I f now e
l 

is a delta function 

centered at t = 0, then this useful part of the recalled signal is 

the non time inverted repl i ca of eZ' centered at t = T + T. Hence 

it would appear that permanent storage of arbitrary signals should 

be possible. 

It is of interest that the concept of signal storage in the 

above manne r was first formulated by Longuet-Higgins [78] in 1968, 

independently of any of the echo work then in progress. Longuet-

Hi ggen s was interested i n the behavioral problem of recall and 

recognition. He suggested a model consisting of a bank of resonators 

whose coupling constant s were to be alter ed by an amount proportional 

to the energy in the spectral components to be stored. Gabor [79,80] 

suggested that the function of the resonantors could also be per-

formed in the time domain by a triple product involving correlation 

and convolution. This triple product is in essence identical to 

the one described by (8.12). As neither Longuet-Higgins nor Gabor 

s e em to have been aware of investigators in the field of parametric 

echoes, (and vice versa), this development is a beautiful example 

of conver gen t scien t i fic evolution! 



An actual model experiment [5] using 20 nonlinea r electronic 

resonators was performed by Korpe1 in 1977. As shown in Fig. 8.2, 

the resonators consisted of parallel LC circuits in which varactor 

diodes served as nonlinear capacitors. The circuits were tuned in 
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steps of 25 kHz, from 1.750 MHz to 2.225 MHz. The Q of each circuit 

was of the order of 200, corresponding to an oscillator decay time 

of 20 ~sec. Fig. 8.3a shows the generation of a dynamic echo, 

Fig. 8.3b the results of the corresponding low level control experi­

ment. The same experiment also showed multiple echoes but these are 

off the time axis in Fig. 8.-3. 

In order to generate a memory echo, the circuit of Fig. 8.2 was 

modified ·so as to make it possible for the voltage across the cir­

cuit to change the coupling coefficient in a quasipermanent fashion 

by self biasing of the varactor diode. The relevant time constant 

of the bias circuit was of the order of 1 msec, long compared to the 

decay time of the individual oscillators. Fig. 8.4a shows the 

result of a three pulse experiment, Fig. 8.4b is again the control. 

The amplitude of the memory echo was also measured, as a function 

of the delay T of the recall pulse. This is shown in Fig. 8.5. 

As expected the observed decay is exponential with a time constant 

approximately equal to that of the bias circuit. For small delays 

the echo amplitude appears to be saturated. 

More general dynamic signal processing is shown in Fig. 8 . 6 

The exponential tail to the rectangular pulse is in agreement with 

the theory and has also been seen by Smolyakov and Khaimovich [76]. 



The latter have, however, also observed a single sharp echo 

following the rectangular pulse, which is not seen here. 
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CONCLUSION 

It has been seen how what seemed originally an isolated phenom­

enon - the spin echo - turned out to be a universal manifestation of 

nonlinear systems containing a large number of independent modes. 

The phenomena discussed make it clear that this insight only came 

about gradually. The role of nonlinearities was perceived first and 

nonlinearities were subsequently classified in various categories 

such as anharmonicity, nonlinear coupling and nonlinear loss. The 

nature of the individual modes was broadened in scope from individ­

ually resonating particles to dispersive eigenmodes. It was seen 

that phase conjugation and time reversal played important roles 

and that the whole process was, in a formal sense and sometimes 

even in a practical sense, very similar to holography. This in 

turn opened up the possibility of general signal processing, a 

possibility which, curiously enough, had been foreseen by 

researchers in an entirely different discipline. 

The first stage of exploration has now come to an end, but 

further developments and, above all, applications appear to be 

strangely lacking. Yet the promise of fairly general utility seems 

to be clear. It may be that, as has happened with so many other 

intriguing techniques of analog signal storage and parallel pro­

cessing, this one too will succumb to sequential processing using 
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digital large scale integration. On the other hand, it may be that 

this particular technique just is not very well known among 

engineers. Whatever the reason, it is hoped that this s.tudy may 

give some fresh impetus to developments in this intriguing area of 

"Fourier space engineering" . 



Type 

Spin echo 

Photon echo 

Ferrimagnetic 
echo 

Cyclotron echo 

Molecular echo 

Plasma wave 
echo 

Fluxoid echo 

Phonon echo 
in crystals 

Phonon echo 
in powders 

Table I. Types of echoes (after Gould (26), with additions). 

System 

Precessing nuclear spins in a mag­
netic field; electron spins in 
ferromagnetic materials 

Oscillating electric dipoles of Cr3+ 
ions in ruby crystal and of SF

6 

Precessing magnetic spins with 
moderately high coupling 

Gyrating free electrons of a plasma 
in a magnetic field 

Rotating molecules in a gas; oscil­
lating electric dipoles in NH3 

Streaming free electrons in a plasma 

Fluxoid excitations in type II super­
conductors 

Electroacoustic interactions in bulk 
piezoelectric crystals 

Os cillating powder grains under 
intense r.f. electric fields 

Probable 
Nonlinearity 

(a) 

(a) 

(b) 

(b), (c) 

(a) 

(a), (b) 

(b) 

(a) 

(b), (d) 

Poss ible Nonlinear Effects 

(a) Nonlinear excitation 

(b) Anharmonicity 

(c) Nonlinear damping 

(d) Permanent plastic 
deformations/change of 
coupling constants due 
to nonlinear stress and 
strain in oscillators 
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Fig. 1.5 Vector representation of spin-echo formation. 
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Fig. 5.1 .Schematic arrangement for obtaining plasma-wave 
echoes. (After Bakeret al. (31)). 
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APPENDIX A 

MATHEMATICAL ANALYSIS OF SPIN-ECHO FORMATION 

We proceed to investigate the physical processes involved in 

the formation of echoes in a spin system. We start with the Bloch 

equation for a local ensemble or cluster of spins: 

~ = y(M x H). (A.l) 

Case I: Spin System Under a Static Magnetic Field Alone. 

Under thermal equilibrium, the components of magnetization are: 

M = 0 M = 0 and M 
x ' Y z 

CH 
= M = __ 0_ , where C is called the 

o T 
o 

o 

Curie constant, and T is the temperature in K. 

Thus, under thermal equilibrium, the local ensemble acquires 

a net magnetization M along the z-axis, along which the d.c. 
o 

magnetic field H is applied. The average magnetizations M and M 
o x Y 

are both zero. 

If, however, the system is not under thermal equilibrium, the 

general form of the equations describing the response is: 

dM 
z 

dt 
y(M x H) 

z 

- -
M - M z 0 

Tl 
(A.2) 

(A.3) 



dM 
x 

dt 
= y(M x H) 

x (A.4 ) 

T2 and Tl represent the transverse and longitudinal relaxation 

times. 

Under a static magnetic field H = H a alone, we may easily 
o z 

show, using eqn. (A . 2) through (A.4), that: 

M = M + (M . - M )exp(-t/T
l

) , z 0 m 0 
(A.5) 

where M. represents the initial value of M, Then M attains the 
m z z 

equilibrium value Mo after a time large compared to Tl ' Using the 

additional condition, 

M2 + M2 + M2 
x 

M2 
x 

follows: 

M 
Y 

M 
x 

y 

+ M2 
y 

where M = M 

= 

xo yo 

z 

M2 
0 

M2 for t « T 2 < T
l

, so that 
0 

2 
- M. , 1n we have the solutions for M and M as 

y x 

Thus, the net magnetization M = M a + M a + M a can be x x y y z z 

described by a damped precession of the aggregate magnetic dipoles 

97 



98 

about the z-axis with the rotating magnetization vector 

-
M = M a + M a in the xy-plane finally going to zero after a xy x x y y 

time large compared to T2• 

The system under non thermal equilibrium, therefore, finally 

attains thermal equilibrium with all dipoles aligned parallel to 

the z-axis, or, more generally, with the dipoles precessing about 

the z-axis in a random fashion so as to keep M 
x 

M = 0 and M = M . 
Y z 0 

Case II: Spin System Subject to Static Magnetic Field and a 

Circularly Polarized R.F. Magnetic Field. 

Suppose we immerse the spin system in a z-directed d.c. 

magnetic field H , and apply to it a circularly polarized r.f . 
o 

magnetic field H, rotating at an angular speed w relative to the 

fixed coordinate system, in the xy plane. 

This configuration is best analyzed by tr~nsforming the quan-

tities relative to a rotating coordinate sy.stem, which we shall now 

demonstrate. 

Suppose that we study the response of the system relative to a 

rotating frame of coordinates x'y'z' which rotates with the r.f. 

field at angular speed w with the z' axis coinciding with the z 

ax is of the fixed frame. Thus the r.f. field becomes time invariant 

in the rotating frame.~ 

the x' axis. 

Let l1. = H a , represent this field along 
m x 

The modified Bloch equations in the rotating frame are: 



elM M - M 
z y(M x if) (w x M) z 0 --= - -dt z z Tl 

elM, M, 
~= y(M X if) , - (w X M) , _ -L-

dt y Y T2 

dM , M, 
x y(M X H) , (w X M) x --= -dt x x' T2 

With w = -w a , where w = yH , and using eqn. (A.6) through 
o zoo 

(A.8), we arrive at the following equation in M : 
Z 

1 
. elM 

(_+~)_z+ 22 1 
T T d (y H + T"T)M 

1 2 t m 12 Z 

The particular or steady state solution of the above is: 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

The transient or complementary solution is found by setting 

the RHS to zero, and writing the equation in the form: 

2 (D + pD + q)M = 0, where 
Z 

d D =­
dt ' p 

1 1 
(T + T)' 

1 2 
q 

Factoring the quadratic in D leads to: 
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D (A.ll) 

Now suppose we have: 

Then the quantity with the radical sign may be approximated as: 

(A.12) 

Using eqn. (A.12) and (A.ll), and some useful simplifications, 

the complementary solution for M may be written as: 
·z 

M = A exp(-~) + B exp(-~) 
zc z Tl z T2 

(A.13) 

where A abd B are constants to be determined from the initial z z 

conditions. 

The total solution for M is given by: 
z 

M 
z 

=M +M zc zp 

M 
t t 0 A exp (- -) + B exp (- -) + ---::-2--:::-2--

z TI z T2 1 + H T T 
Y m 1 2 

(A.14) 

Now, the initial conditions at the instant the r.f. field is applied 

are: 
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M (0) = Mo' M , = M , o , (A. IS) 
z Y x 

provided that the r.f. field is applied long after the d.c. field 

is switched on, and, 

M - M 
z 0 

Tl 
= 0, at t = ° . (A.16) 

Using (A.lS) and (A.16) in (A.14), and solving for A and B , we 
z z 

finally obtain: 

M 
z 

= exp(- ~) - T2 exp(- ~)] + 
T1 T2 

The transient part of M in this case decays exponentially to 
z 

(A. 17) 

zero, and M finally attains a steady state value. We shall dis­
z 

cuss the implications of this solution later. 

On the other hand, if we have: ' 

(B] 2yH > (Jl _ Jl). 
m T1 T2 

Then the quantity with the radical sign approximates to: 
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· I I I 2 2JyH [1 - - {- - -} ] = 
m 2 T2 Tl 

2j yH - j [(T
I 

- TI ) 2] " 
m 2 1 

(A. IS) 

(2yH )2 
m 

4yH 
m 

Using eqn. (A.lS) in (A.ll), and assuming for simplicity that Tl , 

T2 + 00, we obtain the complementary solution for M
z 

as: 

+ B exp[- 1 (~+ ~)t]exp(-jYH t) , 
z 2 Tl T2 m 

where the constants A and B are to be determined from the z z 

initial conditions. 

The total solution for Mis: z 

M = M + M 
z zc zp 

1 1 1 
= {exp[- - (- + -)t]}[A exp(jyH t) + 

2 Tl T2 z m 

M 

+ B z exp(-jYHmt)] + ~ 2 
1 + Y HmTl T2 

Using the initial conditions: 

M (0) = M , M ,(0) = M ,(0) = 0, and 
z 0 y x 

dM 
z --= 

dt 
o at t = 0 , 

(A.19) 

(A.20) 
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we may show that: 

(A.2l) 

Then we have for M : 
z 

M 
z 

M 
+ exp ( - j yH t)]} + ----:~:,---;,2:---

m 1 + Y HmTl T2 

• 

(A.22) 

The transient part of M in this case is a damped sinusoid (called z 

a nutation) which decays exponentially to zero when M attains the z 

steady state value. 

Before we discuss the implications of this solution, we 

investigate the solutions for M , and M , in the rotating frame . 
y x 

The solution for M , is obtained directly as: 
x 

M,=M 
x xo 

t exp(- -) 
T2 

(A.23) 

where M is a quantity to be determined by the boundary conditions. xo 

For M , we solve the second order differential equation: 
y 
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yH M 
m 0 

T1 
(A. 24) 

The steady state solution for M I is: 
y 

M 
y'p 

yH M T2 m 0 
(A.25) 

The transient solutions for M I are similar to those for M , and 
y z 

are constructed so as to satisfy the boundary conditions . The 

1 . h . (_1_l»2 comp ementary solution for M " ~n t ~ reg~me yH , 
Y T2 T1 m 

is: 

M = A exp(-~) + B exp(-~) 
y'c y Tl Y T2 

(A.26) 

where A and B are to be determined from the initial conditions. 
y y 

The total solution for M I is: 
y 

M, 
Y 

yH T2M 
A exp (- ~) + B exp (- ~) + -_m-;:2--;::-2o_-

y Tl Y T2 T 
1 + Y HmTl 2 

Using the initial conditions: 

M ,(0) = 0, 
x 

M ,(0) = 0, and, 
y 

(A. 27) 
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dM, 
--Y- = yM H at t 

dt 0 m 
1 1 0, we obtain, for the case (- - -) > 2yH , 
T2 Tl m 

M, 
x 

M, y 

M 
z 

= 0, 

A 
Y 

t 
exp (- -) + B 

Tl 

(A. 28) 

t yH T2M m 0 exp (- -) + 2 2 Y T2 1 + y HmTl T2 

(A.29) 

(A.30) 

It is clearly evident from these solutions that the transient 

phase of the system under the rotating frame of reference consists 

of a steady exponential decay of M , and M " which cannot describe 
z y 

any precessional motion in the rotating or fixed frame. The above 

situation, for two linearly (or circularly) polarized r.f. pulses, 

cannot lead to the formation of a spin echo in the usual sense. 

This will become clear from the interpretation of the other set of 

solutions in the rotating frame, which we present next. In the 

1 1 regime 2yH > . (-, - -), we obtain the following: 
m T2 T1 

The total solution for M , is: 
y 
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M, lexp {- 1:. (~+ ~)t}] [A exp (jyH t) + B exp (-jyH t)] + 
y 2 T1 T2 Y m Y m 

(A.3l) 

where t he constants A and B are to be determined from the initial 
y y 

conditions. Using the initial conditions: 

• 
M ,(0) = 0, (which leads to M , = 0), 

x x 

M ,(0) = 0, .and, 
y 

dM, 
~ = yH M at t = 0, we obtain, dt m a 

M M 
A '" j a a - -= 

y 2 2j , 

M M 
B '" + j 0 a -= - . y 2 2j 

Then the total solution for M , becomes: 
y 

(A.32) 

(A.33) 

M, 
Y 

1 11M M 
[exp {- - (- + -)t}][~ exp (jyHmt ) - 2J~ exp (-jyHmt)] + 

2 T1 T2 2J 



= M 
o 

sin 

The corresponding solution for Mis: z 
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CA. 34) 

cos (yR t) exp {- l (~ + ~)t} + 
m 2 Tl T2 

1 11M 
'" M cos (yR t) exp {- - (- + -)t} + ---=-2'::"°2-=---
om . 2 Tl T2 T 

1 + Y RmTl 2 
.(A.35) 

Now, the explanation of the spin-echo is highly simplified if 

we assume that Tl is large enough to make the last terms in (A.34) 

and (A.35) small compared to the first terms in the time range 

t « T2 ~ Tl . It may be noted here that if the last terms in (A.34) 

and (A.35) are not dropped, the resulting system would still describe 

the echo formation; the description would, however be more involved. 

We therefore have finally, 

M , = 0, 
x 

M , '" M sin (yR t) exp [- l (~ + ~)tJ, 
yom 2 Tl T2 

(A.36) 

(A.37) 
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M '" M 
Z 0 

1 1 1 cos (yH t) exp 1- - (-- + --)t] , 
m Z Tl TZ 

(A.38) 

For long times M , and M acquire their steady state values as y Z 

given by (A.Z5) and (A.IO) respectively. 

The solutions for M and M , in this case, in the transient 
Z y 

regime, r epresent decaying sinusoids (nutations) at frequency 

w = yH. The combination of these with M , results in a precession 
m x 

of the magnetic dipoles about the HI field, i. e. the x ' axis. It 

is this transient preces s ion in the rotating frame that accounts 

for the echo e ff ect in the spin system. 

/ 
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APPENDIX B 

OPTICAL PHASE CONJUGATION BY DEGENERATE FOUR-WAVE MIXING 

[DFWM] 

The phenomenon of generating a time-reversed (or phase con-

jugated) wave in a nonlinear medium, by using three optical waves 

(degenerate i n frequency) of appropriate propagation vectors, was 

first demonstrated by Yariv et al. [81] in 1977. The mathematical 

basis for such a process may be described as follows. 

The interacting system consists of a nonlinear medium pos-

o h O d d 1 0 0 lOb 01 0 (3) Th sess~ng a t ~r or er non ~near opt~ca suscept~ ~ ~ty, X
NL

• e 

excitation consists of two counter-propagating "pump" waves which 

interact with two counter-propagating, weak "object" waves, all 

the waves being at frequency "w" . The resulting nonlinear inter-

action generates conjugate "image" waves that propagate opposite 

to the "object" waves. If one uses, in such a system, only one 

"object" wave instead of two , one obtains a single, phase-con-

juga ted "image" wave, which is the required time-reversed wave. 

A typical schematic diagram of the set up used to generate 

DFWM is shown in Fig. B.l. The nonlinear medium here is sodium 

o h . d ' . f b 3 1014 -3 h vapor, w~t an atom~c ens~ty 0 a out x cm T e vapor 

is enclosed in a cell, one end of which has a reflective coating. 

The forward pump wave is obtained from a laser; the backward pump 
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wave is generated through reflection. A fraction of the laser beam 

serves as the lIobjectll wave (in the path of which, an object may be 

interposed), which is collinear to the pump to within 0.5°. The 

interaction length, L, defined elsewhere, is about 5 cm. 

From Fig. B.lb, it is clear that the pump wave vectors (k
l

, k
2

) 

and the object and image wave vectors (k
3

, k
4

) must satisfy: 

o (B.1) 

Assuming the fields to be plane waves, we may write: 

E . (r, t) = 1:2 A. (r . ) exp [j (w t - k., r)] + c. c, (B • 2) 
111 1 

where r . is measured along k., and i = 1, 2, 3, 4. The fields, 
1 1 

propagating through the nonlinear medium, satisfy the wave equation: 

(B.3) 

where p = E X(E)E is the polarization, and X(E), the susceptibility, 
o 

depends on absorption, dispersion, saturation and nonlinear mixing. 

Using O(B. 3) and appropriate boundary conditions, it is possible 

to show that the object and image fields, E and E., are related by 
o 1 

coupled differential equations, which solve to give: 

E (L) = E (O)sec KL, and, 
o 0 

(B.4a) 
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* E.(O) = E (O)tan KL, (B.4b) 
~ 0 

where E (0), E (L) are the object field amplitudes at the input 
o 0 

and output faces of the medium, respectively, and Ei(O) is the 

backward (or conjugated) image field amplitude at the input port. 

The coupling constant, K, is given by: 

(B.5) 

where Ep is the pump amplitude, and n2 is the nonlinear (Kerr) 

refractive index of the medium, given by: 

4 3 3 
(7f].l N) /h (rl-w) , (B.6) 

where ].l is the dipole matrix element of transition, N the effective 

atomic density, rl the transition frequency and w is the optical 

frequency. The refractive index, n2 , changes by an amount ~n 

(caused by a nonlinear Kerr effect that results in atomic level 

shifts in the medium), where ~n is quadratically related to the 

2 
optical field amplitude, E, as ~n = n

2
E 

From (B.6) we see that, if we let rl + w, the nonlinearity 

increases. It may be shown that for large nonlinearity, the image 

field may be amplified, and this can be accomplished at relatively 

low pump power. 

The DFWM effect has been observed in, apart from gases, 

crystals of ruby [82], and some semiconductors [83]. In addition 



to its inherent ability to correct phase aberrations in an object 

wave, the effect has been used in efficient spatial convolvers and 

correlators [84], and in -narrow optical bandpass filters [85]. 

112 



APPENDIX C 

GENERATION OF MULTIPLE TWO-PULSE ECHOES IN THE 

PRESENCE OF ANHARMONIC NONLINEARITY 

If we have an r.f. pulse consisting of a carrier at w , modu­
c 

113 

lated by a narrow rectangular gate function "g(t)", of duration t w.' 

then the Fourier spectrum of the gate itself is given by: 

G(w) = [g(t)] = 

= 2[2n] is the width of the main-lobe in the sinc 
t 

w 
where 2wB 

function. Now if we have an excitation to a system of oscillators 

consisting of r.f. pulses at t = 0 and t = T, then we may write 

the excitations as follows: 

fl (t) = Alg(t) cos w t 
c 

ex> 
j W t 

Lex> 

. t 
= Re[Ale c G(w)eJW dW]. (C.l) 

We may note in (C . l) that we have incorporated only the +w compo­
c 

nents of the carrier spectrum, and, since get) is a real function, 

we require, 

G(w) * = G (-w) • (C.2) 



However, if we assume that the spectrum of get) is bandlimited to 

2wB, where w
B 

« wc' then the effective frequency range in (C.l) 

falls entirely in the positive frequency plane. Thus, if now, 

through some frequency-dependent nonlinearity, the form of G(w) 

is changed, the resulting inverse transform need not be a real 

time function any longer, since the final excitation function 

emerging from (C . I) would still be real. 

Thus, assuming an oscillator spectrum that covers the entire 

bandwidth of the excitation, i.e. H(w) = 1, we may write the 

linear response of the system as: 

G(w)ejW(t-T) dw], (C.3) 

where f 2 (t-T) is the r.f. pulse applied at t = T. 

. + d If now, . from time t : T , the individual oscillators un ergo 

an anharmonic frequency-shift, then the function G(w) is modified 

to: 

G' (w) G(w)ej~W(t-T) . (C.4) 

In (C.4), we may note that depending on the form of the frequency-
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shift ~w , G'(w) may not satisfy the real-inverse transform property 

as in (C. 2). 

Thus, in general, the inverse-transform, 

f~ G'(w)e
jwt 

dw, may be complex. 

We next assume that in (C.3), G(w) is changed to G'(w) as given by 

(C.4), and A2 »~. Then the f~rst term in (C.3) may be dropped 

in comparison to the second. Hence, the nonlinear response of the 

system becomes: 

(C.5) 

We next assume that at t = T, the oscillators undergo an amplitude-

dependent frequency-shift of the form: 

2 
Ilw = -Cl.a , (C.6) 

where a is the effective excitation amplitude seen at t = T. We 

2 may then write a as follows: 

a 2 = A2 + A2 + 2A.A 1 2l 2 cos WT. (C.7) 

Using (C.6), (C.7) and (C.4) in (C.S), we get: 



x 

x -jb cos WTd ] e W , (C.8) 

where b = 2aA
1

A2 (t-T). We next use a familiar identity to write: 

-jb cos WT 
e = (C.9) 

n=...oo 

where J (b) is the nth order Bessel function with argument "b". 
n 

Using (C.9) in (C.8), and remembering that "b" is independent 

of "w", we arrive at the following result: 

J (b)e 
n n=...oo 

j3n1T 
2 

x 
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(C.10) 

The integral in (C.10), which indeed satisfies the real inverse 

transform criterion, is easily solved as: 

(C.ll) 

Using (C.ll) reduces (C.10) to: 



co 

n=-co 
J (b)e 

n 

j3n7f 
2 x 
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x g{t+(n-l)T}] • (C.12) 

In (C.12), we note that the terms involving n = 0 and higher 

represent "virtual" r.f. pulses that do not appear in the response 

+ for t > T. Thus, if we choose n = -1, -2, .••• , we find that 

(C.12) predicts "multiple" echoes, centered at t = mT, where 

m = 2, 3, •... These echoes are similar to the -exciting r.f. 

pulses, except that the r.f. carrier associated with each is 

slightly different from "w " c ' 
and has undergone a definite phase 

change. 

If we put n = -p, where p = 1, 2, .... , in (C.12) then -p-l 

-m, i.e. m = p+l = 2, 3, Then the echo-term at t = mT may 

be extracted from (C.12) as: 

(C.l3) 

Thus the echo-response at t = 2T may be written as: 

(C.14) 
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Since 
-j3n/2 . = -J

l 
(b), and e = +J, (C.14) reduces to: 

(C.15) 

It may be noted in (C.15) that the anharmonic nonlinearity has led 

toa shift in the carrier frequency in magnitude and phase. Further-

more, if the gate g(t-2T) is sufficiently narrow about t = 2T, then 

we may replace (t-T) in (C.lS) by T. We then obtain: 

(C.16) 

Now if T is small, and 2aAl A2T « 1, then we may write: 

(C.17) 

Using (C.17) in (C.16), we obtain: 

(C.18) 
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Thus we see tha~ for small values of L, the two-pulse echo ampli­

tude is linearly proportional to L, which is indeed a familiar con­

sequence of anharmonic nonlinearity as borne out by experiments. 
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