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Rearrangement on Conditionally Convergent
Integrals in Analogy to Series

Edward J Timko

University of Dayton
Dayton OH 45469-2316
Email: timkoedz@notes.udayton.edu

Abstract

Rearrangements on conditionally convergent series suggests the exis-
tence of a similar process for integrals, here also referred to as rearrange-
ment. In this document, a general theorem concerning rearrangement
for conditionally convergent integrals is presented, as well as supporting
theorems and a corollary to the general theorem. The corollary reads:
Let f : R" — R™ be a continuous function with an everywhere negative
and monotone increasing derivative. If [(—1)7f(z)dz is conditionally
convergent, then Vz € C, there exists an arrangement on floo(—l)”f(m)d:c
such that z = [ (—1)" f(z)dx.
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1 Preliminary Theorems and Lemmas
Note: Recall that ¢ = cos(f) + isin(f) and (—1)" = ™.

Definition 1. For any function f(z) integrable on [1,00) such that

o0 1 ©°
[ @z = [ 3"+ wd
1 (U
a rearrangement on floo f(x)dx is a rearrangement of the terms in the series
Z;—il f(G+u) for each u on [0,1].

Theorem 1. Let {a;}32, and {b;}32, be positive, real, decreasing sequences
which converge to zero, where a; < b; for all j. If

aj—aj+1§bj—bj+1 ]GIN

then
o0 o0
> <| D (=17
Jj=k+1 J=k+1

Proof. From the hypothesis, both sequences are decreasing, and therefore a; —
aj+1 > 0and b; — bj1q > 0. For Vn € N

2n—1
Z (=1 ajp1 = @ — a1 +Fap2 — a3+ .o+ Gigon—2 — Gigpon—1
=0
< by —bipi b —bigs+ .o+ bipon—2 — biton—1
2n—1
= > (—1bp
i=0

with both sums being positive. Since as, < ba,, it follows that

2n 2n
0<Y (~1Vaj <Y (=1)bjy
§=0 §=0
and so Vn € N,
0<Y (=1 ajp <Y (=1)7bsy
§=0 §=0

which implies

n—+l n+l
Y (=a| <[> (=1);
Jj=l Jj=l

1
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Since a;j,b; — 0 as j — oo, it follows that both series are convergent. Knowing
this, let [ = k 4+ 1 and n — o0, to yield that

Y FWa < | > (-1
Jj=k+1 j=k+1

O

Theorem 2 Let f be a positive, decreasing function on R™, integrable such
that [[°(—1)® f(z)dz is conditionally convergent. Then Do (= DI f(5+u) is
condztzonally convergent Yu € [0, 1].

Proof. Note that, for all u € [0,1] and for all z € R,
[z] +u <2+ 2.

This implies
flx+2) < f([z] +u).
Let N € N such that N > 2. Since

N N
/0 F(TNde =Y £0)

Jj=1

it follows that

N N
/ flz)dz < Zf(j + u).
2 =
Taking the limit that N — oo yields that
/ f@)de < (i +u).
2 =
Since f is 1ntegrable on RT, it follows that f | f(x)dz is finite. Therefore, if the
integral [ f(z)dz — oo then [, f(z)dx — oo, and therefore 3227 f(j+u) —
0.

Suppose that [°(—1)?f(z)dz — L. It then follows Ve > 0,3M > 0 such
that

/f(—l)””f(x)dx — L’ < ﬁ y> M.

Thus, for M < a < b it follows by the triangle inequality that

<

V2
.

/ (1) ) / (0 ey — L] <

/1a(_1>$f(x)dx— L‘ +

http://academic.udayton.edu/EPUMD



Electronic Proceedings of Undergraduate Mathematics Day, Vol. 8 (2008), No. 6 http://academic.udayton.edu/EPUMD

Since f(z) is decreasing, positive, and finite Vo € IR™, it follows that f must
converge to some value, say ¢, as * — oo. Since ¢ < f(z), it follows for
x € [2n,2n + 1/2] with n € N that

—cos(mx) f(z) < ccos(mz) < cos(mzx) f(x)

from which follows that

2n+1/2
/ ccos(mzx)dx
2

n

<

2n+1/2
/ cos(max) f(x)dx| .
2

n

Knowing that

2n+1/2 1
/ cos(mx)dr = —
2 ™

n

it follows that

<

2n+1/2
/ cos(mzx) f(z)dx| .
2

n

Alo

A similar argument will show that the same is true for the sine function. From

this, it follows that
2n+1/2
RS IETE
2

n

\/ﬁcS

™

Let n > M. Then it follows that

. 2n41/2
V2 | v

m n

2
™

and therefore ¢ < e. Therefore ¢ = 0. Thus, f(x) — 0 as  — oo, and therefore
flu+j) — 0,YVu € [0,1] as j — oo. From this, one can conclude that the series
S22 (1) f(j + u) is convergent. Thus, if [°(=1)"f(z)dx is conditionally
convergent, then E;’;l(—l)j f(j +w) is conditionally convergent Vu € [0,1]. O

Lemma 1. Let f be a positive, decreasing, integrable function on every finite
interval of R™. Then

/1 flu+j)cos(mu)du = 0
0

forVj € N.

Proof. Note that

1 1/2 1
/ flu+j)cosmudu = / f(u+ j) cosmudu + f(u+ j) cosmudu
0 0

1/2
1/2 1
> / f(1/2+ j) cos mudu + f(1/2 4 j) cos mudu
0 1/2
1
= f(1/2+j)/ cos mudu
0
= 0.
3
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O

Lemma 2. Let f(x) be positive, decreasing, and integrable on every finite subin-

terval of R* such that

e Vue[0,1] andVjeN, f(u+j)— flu+i+1) < f(j)—

e Vu € [0,1] the series Z;’io(fl)jf(j + u) is convergent.

fG+1)

Then (—1)* Z;’ik(—l)jf(j + u) s integrable on [0, 1] for each positive k, and

Z/ uﬂfuﬂdu_/ —1)"H f(u +

+ j)du.

Proof. First to show integrability. Since Z;’ik(—l)j f(4 + u) is convergent it
follows that f(j +u) — 0 as j — oo. Thus, from the proof of Theorem 1

Vn,k € N with n > k,

M+ <D (=
j=k

j=k

It follows from the hypothesis that f is integrable on [j,j + 1], and therefore

f(u+ j) is integrable for u € [0,1]. Fix k. Define

n

ho(u) = > (=1) f(u + j).

=k

Since the finite sum of integrable functions is integrable, h,(u) is integrable
for each n. Therefore Yu € [0, 1], there exists a finite h(u) € R such that

limy, o0 hn(w) = h(w). Also |h,(u)] < |hy(0)]. Choose

M = sup{|h ()], i1 (0)],...}.

Since h,(0) is convergent and always finite, such a number exists. Therefore,
|hp(u)] < M for Vu € [0,1] and ¥n > k. Therefore, by Lebesgue Dominated

Convergence Theorem, h(u) is integrable on [0, 1].

Note that (—1)“h(u) = cos(ru)h(u) + isin(mu)h(u), and that cos(ru) and
sin(mu) are integrable [0, 1]. Since the product of two integrable functions in-
tegrable, it follows that cos(mu)h(u) and sin(mu)h(u) are integrable [0, 1], and

therefore (—1)“h(u) is integrable on [0, 1].

Now, in order to conserve space, define g(z) = (—1)*f(x).

finite k

Thus, for any

Z/ qude*Z/ u+]du+Z/ (u+j)d

j=k+1

ISSN: 154-2286
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and
1 oo 1 k 1 oo
/Zg(u—i—j)du = /Zg(u+])du+/ Z g(u+ j)du
0 =1 0 521 0 j=k+1
k 1 1 oo
= Z/ g(u+ j)du + Z g(u+ j)du
j=1 0 j=k+1
Therefore
0 1 1 o0 s} 1 1 o
Z / g(u+j)du—/ Z g(u+ j)du| = Z/ g(u+j)du—/ Zg(u+j)du
j=k+170 0 j=k+1 j=1"0 0 j=1

for any finite positive k.
Let u € [0,1]. Since f is decreasing and positive, it follows that 0 < f(u +
J)— flu+ 37+ 1), and thus,

0<flutj)=flut+i+1) <fG)—fE+1)

Therefore, by Theorem 1

S+ <] Y] 96|
Jj=k+1 j=k+1
Thus,
- D g < D G +w < Y g0)
j=ht1 j=kt1 j=k+1
from which follows
1 00 1 )
/ cos(mu) Z (=1)7 f(u+ j)du| < / cos(mu) Z g(j)du
0 j=k+1 0 j=k+1

with the integrability of the left-hand side being given by Lemma 2. Evaluating
the right-hand integral,

1 o0 oo
/ cos(mu) Z (=) f(u+ 7)du| < 1 Z g(j)dul .
0 J=ht1 T |i=k+1

The same follows identically for the sine function in place of the cosine function.
Therefore, by the Triangle Inequality,

1 o \/§ [’}
Y s <215 gyl
0 j=k41 T =k
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Now, since |cosmu| < 1, it follows that
—f(J) < —flu+j) < flu+j)cos(mu) < f(u+j) < f(5)-

Integrating u over [0, 1] yields
1
1)< [ st ) costri)an < 1)

Similarly, |f01 f(u+j)sin(ru)du| < f(j). By a similar argument,
=[G = fU+ D] < [flu+j) = fluti+1)]cos(mu) < f(j) = f(G+1)
and therefore

1
G - G+ < / [t ) — Flut g+ )] cos(mu)du < F(5) — £(G +1)

with similar following for the sine function. Note, for u € [0,1],0 < sin(wu) < 1,
and therefore 0 < [f(u+ j) — f(u+j + 1)]sin(7u). Thus,

1
0< [1ftud) = flut g+ Dlsin(rudu.
0
By Lemma 1, for Vj € N,
1
0< / f(u+ j) cos(mu)du.
0

For every uw € [0,1] and y € w

[futj) = fluti+Dlcosmu < flutj) = flut+i+1) <fG) - fG+1)

. Therefore

/0[f(u+j)—f(u+j+1)]cos7ruduS/0 [f(G) = fG+D]du= f(G)—f(G+1)

or
1 1

/ f(u+j)cos7rudu—/ flu+j+1)cosmudu < f(j)— f(j+1)
0 0

. Letting a; = fol f(u+ j)cosmudu and b; = f(j), it follows from Theorem 1

that
oo 1 )
> 0 [ sat eosmudul < | Y (-17£0)
j=k+1 0 j=k-+1
for all k. Similarly,
'S} ) 1 0o .
S 07 [ fat sinmuda] < | 3 (17 50)
j=k+1 0 j=k+1

ISSN: 154-2286



Electronic Proceedings of Undergraduate Mathematics Day, Vol. 8 (2008), No. 6 http://academic.udayton.edu/EPUMD

By the Triangle Inequality

o0

Z/ (u+ j)du| < V2 Zg(j)

j=k+1 =k+1

and, again by the Triangle Inequality,

Z/ u+jdu—/ Z u+gdu<f(1+ ) ig(j).

j=k+1 j=k+1 j=k+1

Since Z]Oil g(j) is convergent, it follows that it is Cauchy, and therefore Ve >
0,dN € N such that

e}
€

> 90) <m k=>N.

j=k+1 T

Thus

Z/ u—l—jdu—/ Z (u+j)du| <e k>N

j=k+1 j=k+1

which implies

0o .1
Z/ 9U+Jdu—/ Zgu-i—jdu <e
0

and therefore
o0

Z:/Olg(uﬂ)duzfig(uﬂ)du

2 Main Theorem

Theorem 3 (Main Theorem). Let f be a positive, decreasing function integrable
on any finite subinterval of RT. If

e Vu € [0,1] and Vj € N it holds that f(u+j)— f(u+j+1) < f(j)—F(i+1)
° fl x)dx is conditionally convergent

then Vz € C there exists a rearrangement on [~ (=1)* f(x)dz such that , z =
(=07 f (@) de.

ISSN: 154-2286
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Proof. Note

/100( i/gﬂ f(x)dx.

Making the substitution that v = j + z, it follows that

/100(— :i/ 1) f(u + j)du

By Theorem 2, Vu € [0,1] it holds that Z;’;l(—l)jf(j + u) is conditionally
convergent. Therefore, by Lemma 2

/1 (-1 dx—/ 1)U (a4 j)du.

Since f L f(u+4)(—1)7 is conditionally convergent Vu € [0,1] it follows that

Vh(u) € ]R there exists a rearrangement of the terms in the series such that

h(u) = 250:1 f(u+j)(—1)7. This constitutes a rearrangement on [, (—1) f(z)dz.
Choose z € C such that z = |z|e?.

Now choose a rearrangement of the terms in Z;’;l flu+5)(=1)7 for Yu €
[0, 1] such that

Zf(u + 5)(—=1)7 = 2|z| cos(mu — 6).

Then -
/1 (=D f(z)dx = 2.
O

Corollary 1. Let f be a positive function, integrable on any finite subinterval of
R, with an everywhere negative and increasing derivative. If floo(—l)wf(x)dm
is conditionally convergent, then Yz € C, there exists a rearrangement on

[° f(@)dx such that z = [°(—=1)* f(z)dz.

Proof. Tt suffices to show that f satisfies the requirements of the Main Theorem.
The requirement of conditional convergence is obviously met. It is also clear
that f is decreasing.
Since f is continuous, it follows by the Mean Value Theorem that there exists
€ (4,7 + w) such that

flut3) = f(5) = f'(cj)u.

Since (j,j+u)N(j+1,j+u+1) =0, it follows that ¢; < ¢;j+1, and f'(¢;) <
f/(Cj+1). Thus,

flut+d) = f0) <flut+j+1) = fG+1)

ISSN: 154-2286



Electronic Proceedings of Undergraduate Mathematics Day, Vol. 8 (2008), No. 6 http://academic.udayton.edu/EPUMD

and
flutg) = flu+i+1) <fG) - fG+1).

Thus, f satisfies the requirements of the Main Theorem. O

ISSN: 154-2286
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