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Abstract 
 
Consider a finite connected graph G whose vertices are labeled with non-negative integers 
representing the number of pebbles on each vertex. A pebbling move on a graph G is defined as 
the removal of two pebbles from one vertex and the addition of one pebble to an adjacent vertex. 
The pebbling number f(G) of a connected graph is the least number of pebbles such that any 
distribution of f(G) pebbles on G allows one pebble to be moved to any specified but arbitrary 
vertex. We consider pebbling on directed graphs and study what configurations of directed graphs 
allow for pebbling to be meaningful. We also obtain the pebbling numbers of certain orientations 
of directed wheel graphs (Wn) with odd order where n>6 and directed complete graphs (Kn) with 
odd order where n>5. G is said to be demonic if f(G) = n where n is the order of G. We 
demonstrate the existence of demonic directed graphs and establish that the sharp upper bound and 
sharp lower bound of the pebbling numbers of the directed graphs is the same as that of the 
undirected graphs: n <  f(G) < 2 n-1.  
 
Pebbling 
 
A graph is an ordered pair of sets (Vertices[V], Edges[E]) where V is non-empty and E is a set of 
pairs of elements of V. The number of vertices of a graph is called its order. The graph is said to 
be an undirected graph if the elements of E are unordered pairs and a directed graph if they are 
ordered pairs. Figure A below is an undirected graph and Figure B is a directed graph, both with 3 
vertices and 2 edges. 

 

The edge or the ordered pair (u, v) 
in figure B goes from u to v and we 
also say that u is adjacent to v, or v 
is adjacent from u.   

 
Consider a graph G. Assign nonnegative integers to the vertices of G. If the vertex v is associated 
with the integer label m, we say that m pebbles are placed on v. If the sum of all the integer labels 
on G is n, we say n pebbles are distributed on G. 
 
A pebbling move is an operation of subtracting 2 
from the label of a vertex, and adding 1 to the label 
of an adjacent vertex. Note that a pebbling move 
can only be made on a vertex with a label of 2 or 
more. Also note that a pebbling move on a graph 
with n pebbles distributed on it results in a 
distribution of n-1 pebbles.   

 
 
The pebbling number f(v, G) of a vertex v is the least number m such that if m pebbles are 
randomly distributed over the graph G, there is some series of pebbling moves by which a pebble 
can be placed on v.  
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The pebbling number f(G) of a graph G is the maximum of the pebbling numbers of all the 
vertices v in G. For example, one can determine the pebbling number of graph C to be 4. It can be 
seen that every rotation of the graph results in the same graph and therefore every vertex of the 
graph is the same as any other vertex. It is then clear that every vertex would have the same 
pebbling number, which would then also be f(G). Without loss of generality, assume that any one 
of them is the target vertex (marked with an X in the figure below). It can be seen easily that the 
following distribution of 3 pebbles does not allow one pebble to reach the target. 
 

 
 
Therefore, f(G) has to be greater than 3. To see if f(G) =4, consider the following possible 
distributions of 4 pebbles on the graph: 

 
 
In each case, it is easy to see that a pebble can reach the target with a finite number of pebbling 
moves. Therefore, f(G) =4. 
 
The number of pebbles on any vertex u is represented by p(u). 
 
Strong Graphs 
 
A (directed) walk in a directed graph D is an alternating sequence of vertices and edges vo, x1, 
v1,…, xn, vn in which each edge xi is vi-1vi. A path is a walk in which all vertices are distinct. If 
there is a path from u to v, then v is said to be reachable from u. A directed graph is strongly 
connected or strong if every two vertices are mutually reachable (see ref[1], 206).  
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An orientation of a graph G is any directed graph that results from an assignment of directions to 
the edges of G. It is important for us to know whether or not a particular orientation of a graph is 
strong before we start pebbling on it. The following results whose proofs can be found in [1] are 
useful in classifying graphs as strong or not strong. 

Pebbling on a directed graph is meaningful only 
if every vertex can be reached from any other 
vertex. Therefore, a directed graph must be 
strongly connected in order to do any pebbling. 
A source is a vertex which is only adjacent to 
other vertices; a sink is a vertex that is only 
adjacent from other vertices. It is easy to see that 
any graphs with sinks or sources are not strong 
and therefore pebbling cannot be done on such 
graphs. 

 
Theorem 1 
 

1. A graph G has an orientation that is strong if and only if G is connected and has no 
bridges. Therefore every edge must lie on a cycle. 

2. A vertex is called a leaf if there is only one other vertex either adjacent to it or from 
it. A graph that contains any leaves is not strong. 

3. A closed walk has the same first and last vertices and a spanning walk contains all 
the nodes of the graph. A directed graph is strong if and only if it has a closed 
spanning walk. A directed graph is hamiltonian if it has a closed spanning path. 
Every hamiltonian directed graph is strong. (The converse is not always true.) 

4. Let D be a non-trivial directed graph of order p. If every pair of distinct vertices u 
and v with u not adjacent to v satisfies od(u) + id(v) > p, where od (u) is the 
number of vertices adjacent from u and id(v) is the number of vertices adjacent to v,  

  then D is hamiltonian and therefore strong. 
 
Before we look at the pebbling numbers of certain class of strongly connected directed graphs, we 
need to examine some previously found results regarding the pebbling properties of undirected 
graphs to see if they apply to directed graphs as well. 
 
Pebbling On Undirected Graphs  
 
There is a growing literature on pebbling on undirected graphs (see [4]). Let G be any undirected 
graph and u, v and w be vertices of G. One immediate consequence of the definition of pebbling 
number is that p < f(G), where G has order p, the number of vertices of G. To see this, consider 
the distribution where p-1 pebbles are distributed on the vertices of G with no pebbles on the 
target, and exactly one pebble on every vertex other than the target. Then no pebbling moves are 
possible since no vertex has two or more pebbles. So p-1 < f(G). A graph whose pebbling number 
is equal to its number of vertices is called a demonic graph. 
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If u is a distance d from v, and 2d –1 pebbles are placed on u, and these are all the pebbles on the 
graph, then no pebble can be moved to v. A shortest u-v path is called a u-v geodesic. The 
diameter of G is the length of any longest geodesic. So it is clear that f(G) > max {|V(G)|, 2d}, 
where |V(G)| is the number of the vertices of G, and d is the diameter of the graph G. It is also easy 
to see that f(G)< 2|V(G)|-1.  
 
We can conclude that there is a range of values that the pebbling number of an undirected graph 
G, with order p, takes on: p< f(G) < 2 p-1. In [5], Jessup shows the existence of several demonic 
graphs, so we know that p is the greatest lower bound. Similarly, it has been shown that f(Pn)=2n-1 
where Pn is a path graph on n vertices, so 2p-1 is the least upper bound on the range of f(G).  

 
 
Pebbling on Directed Graphs 
 
Let G denote a graph and let GD denote a strongly connected directed graph with the same number 
of vertices and the same edges as G. Following the arguments similar to the case of an undirected 
graph, p< f(GD) < 2 p-1, where p is the number of vertices of GD.  
 
A natural question that arises is what are the greatest lower bounds and least upper bounds for the 
pebbling number of any directed graph? In other words, are there any directed graphs of order p 
whose pebbling numbers are equal to p or 2 p-1? By showing directed graphs whose pebbling 
numbers are equal to p, we would be demonstrating the existence of demonic directed graphs. 
Later in this paper, we show that a certain orientation of odd-ordered complete directed graphs are 
demonic. 
 
It should be noted that f(G) < f(GD) since if GD can be pebbled with r pebbles then so can G by 
following the same pebbling moves.   
 
We now explore the pebbling numbers of various classes of directed graphs. 
 
Cycle Graphs, Cn
 
A cycle graph, Cn, is a directed graph on n vertices {v1, v2,…, vn} where every vertex vi (i<n) is 
either adjacent to vi+1 or adjacent from it and vn is adjacent to v1 or adjacent from it. 

 
Note that the only two 
strong orientations on a 
cycle graph, Cn, are the 
following:   

 
 Note that for any vertex, vi , indegree (vi) = outdegree (vi) = 1. 
 
It is obvious that any orientation of Cn other than those shown above creates sources or sinks. 
 

For undirected cycles, f(C2k) = 2k and f(C2k_1)= 1
3

22
1k

+⎥
⎦

⎥
⎢
⎣

⎢ +

 (see [4]). 
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Theorem 2. Let Cn be a cycle graph of order n, with a strong orientation. Then  
f(Cn) = 2 n-1. 

 
Proof.  The longest path between any vertex and any other vertex in Cn has length n-1. Each 
pebbling move costs 2 pebbles at the vertex of origin. Therefore for a pebble to travel to the target 
vertex from any vertex, we need a minimum of 2 n-1 pebbles. Since the pebbling number of any 
graph with n vertices cannot be greater than 2 n-1, then f(Cn) must be equal to 2 n-1. 
 
We just showed an example of a directed graph where the pebbling number is equal to 2 n-1 where 
n is the order of the graph. We can conclude that the least upper bound of the pebbling number of 
any directed graph is 2 n-1. 
 
Alternating Wheel Graphs, Wn
 
We define an alternating wheel, Wn to be a directed wheel graph whose order is n+1, where n is 
even and with the following properties: 

o There is one central vertex, c. 
o The remaining n vertices v1, v2, …, vn are called the outer vertices and vi is adjacent 

to c if i is even, while c is adjacent to vi if i is odd. 
o The only other edges are as follows:   

vi is adjacent to both  v i-1  and v i+1 if  i is odd, for 3< i < n-1;  and v1 is adjacent to 
vn .   

 
The following diagram shows an example of an alternating wheel. 
 

By definition, the number of outer vertices is 
even and therefore there are an even number of 
triangles that contain the vertex c. It should also be 
noted that each triangle forms a cycle and that these 
cycles alternate in direction as shown in the figure. 
For the central vertex c, id(c) = od (c), where od (c) 
is the number of vertices adjacent from c and id(c) is 
the number of vertices adjacent to c. For any outer 
vertex vi, od(vi) = id(vi) + 1, depending on whether 
vi is adjacent from c or adjacent to c.    
 

 
 
 
 
Another property to be noted is that the diameter of an alternating wheel is 4. The proofs that these 
properties hold are fairly straightforward and are left for the reader. 
 
Lemma 1. Consider an alternating wheel Wn. Let u and v be any two outer vertices that are 
both adjacent to c. If p(u) + p(v) > 2t+1, then t pebbles can travel to the center c and there will be 
at least one pebble left on either u or v.  
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Proof. We use induction on t to prove this lemma. 
Consider the case when t = 1. This implies that p(u) + 
p(v) > 2(1) + 1 = 3. This means that either u or v has 
at least 2 pebbles (by the pigeonhole principle). Thus, 
one pebble can reach c since both u and v are adjacent 
to c.  

 
For the induction step, let us assume that the t th case holds and show that the (t+1)st case works. 
We need to show that if p(u) + p(v) > 2(t+1)+1 = 2t+3, then t+1 pebbles can reach c with one 
pebble left on u or v. Since 2t+3 = (2t+1)+2, by the induction hypothesis, the 2t+1 pebbles 
guarantee us that t pebbles can reach c and one of these pebbles is left on u or v. So, we now have 
a total of 3 pebbles remaining on u and v and we still need to send one more pebble to c. But this 
is simply the basis case, so one more pebble can reach c and one pebble is left on u or v. 
 
Alternating Fan Graphs, Fk
 
An alternating fan, Fk, is a directed fan graph whose order is k+1, where k is odd and with the 
following properties: 

o There is one central vertex, c. 
o The remaining k vertices v1, v2, …, vk are called the outer vertices and vi is adjacent 

to c if i is odd, while c is adjacent to vi if i is even. 
o The only other edges are as follows:   

vi is adjacent to both v i+1 and vi-1  if  i is even, for 2< i < k-1. 
 
An example of a fan graph is shown below: 
 

 

It is important to notice that an alternating fan graph is a 
subgraph of an alternating wheel graph. This fact will 
play an important role later in finding the pebbling 
number of an alternating wheel. 

Lemma 2. In an alternating fan graph Fk, k -3+4t pebbles are sufficient for t pebbles to reach c 
for k > 3. In particular, k+1 pebbles are sufficient for one pebble to reach c in Fk. 
 
Proof. We employ the principle of mathematical induction on k. 
 
Consider the basis case when k=3. Let the three outer vertices in F3 be a, b, d as shown in the 
figure below. 

We need to show that 3-3+4t = 4t pebbles are sufficient to 
send t pebbles to c. The only four possible distributions of 
pebbles on a and d are: 

(a) p(a) + p(d) = 0 
(b) 0 < p(a) + p(d) < 2  
(c) 2 < p(a) + p(d) < 2t +1 
(d) 2t+1 < p(a) + p(d) < 4t 
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Case (a): If p(a) + p(d) = 0 then that means that p(b) = 4t. It is obvious that 4t pebbles are 
sufficient to send t pebbles to c via the path b-a-c. 
 
Case (b): If 0 < p(a) + p(d) < 2, then that means that either p(a) >1 or p(d) > 1 (by pigeonhole 
principle). Without loss of generality, let us assume that p(a) > 1. Since p(a) + p(d) < 2, b must 
have at least 4t-2 = 2(2t-1) pebbles. This means that (2t-1) pebbles can be sent to a; p(a) is now at 
least 2t, which is enough to send t pebbles to c. 
 
Case (c): If 2 < p(a) + p(d) < 2t +1, then either p(a) + p(d) = 2(t-m)+1 or p(a) + p(d) = 2(t-m)+2 
for some integer m such that 0<m<t (if t=m, we have case (b)). In either case, we know by 
Lemma 1 that t-m pebbles can be sent to c. If a and d have either 2(t-m)+1 or 2(t-m)+2 pebbles, 
then b must have the remaining either 4t-2(t-m)-1 or 4t-2(t-m)-2 pebbles. Therefore  
either p(b) = 2(t+m-1)+1 or p(b) = 2(t+m-1), and p(b) > 2(t+m-1) > 4m (since t>m).  So m 
pebbles can be sent to c.  
 
Case (d): When p(a) + p(d) > 2t +1, we know t pebbles can reach c by Lemma 1. 
 
For the induction step, assume that the result holds for some positive integer k and prove it for 
(k+2), since k must be odd. Note that it is not the (k+1)st case because of the fact that the number 
of outer vertices has to be odd by the definition of a fan. We need to show that (k+2)-3+4t = k-
1+4t pebbles are sufficient to send t pebbles to the center. The outer vertices of Fk+2 can be 
partitioned into two sets: {v1, v2,…, vk} and {vk+1 , vk+2}. If vk+1 and vk+2 are removed along with 
their edges, it is easy to see that Fk is left, which means that Fk is embedded within Fk+2. This is 
where the induction step comes into play.  
 Let v denote vk+1  and u denote vk+2  and M 

denote the embedded Fk. Consider any 
distribution of k-1+4t pebbles on the outer 
vertices of Fk+2. Focusing on the number of 
pebbles on u and v, the proof breaks down 
into two cases: 

(1) p(u) + p(v) > 4t 
(2) p(u) + p (v) < 4t

 
 
Case (1): When p(u) + p(v) > 4t then t pebbles can reach c via the path v-u-c path.  
 
Case (2): p(u) + p(v) < 4t implies one of four possibilities: 

(a) p(u)+p(v) = 4(t-m)+1 
(b) p(u)+p(v) = 4(t-m)+2 
(c) p(u)+p(v) = 4(t-m)+3 
(d) p(u)+p(v) = 4(t-m)+4 ,  where m is some positive integer, t > m. 

 
In each of these possibilities, the number of pebbles on u and v is enough to send t-m pebbles to c 
via the path v-u-c, with some extra pebbles left over on {u, v}. So, in each case, we need to show 
that m pebbles can be sent to c from the pebbles on v1, v2, …, vk.
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Case 2(a) & (b): If either p(u)+p(v) = 4(t-m)+1 or p(u)+p(v) = 4(t-m)+2, then M has at least 
k+4m-3 pebbles. By the induction hypothesis, m pebbles can be sent to c.  
 
Case 2(c): If p(u)+p(v) = 4(t-m)+3, the number of pebbles on M is k+4m-4 = k + 4(m-1) 
>  k+4(m-1)-3. We can send (t-m) pebbles to c from the 4(t-m)+3 pebbles on u and v, leaving at 
least 3 pebbles on {u, v}. So either u has at least 2 pebbles or v has at least 2 pebbles. If u has at 
least 2 pebbles, then one of those can be sent to c and by the induction hypothesis, m-1 pebbles 
from M can be sent to c. If v has at least 2 pebbles then one pebble can be sent to vk.. M now has 
(k+4m-4)+1= k+4m-3 pebbles and by the induction hypothesis, we can send m pebbles to c. 
 
Case 2(d): If p(u)+p(v) = 4(t-m)+4 = 4(t-m+1), then the number of pebbles on M is ((k+2)-3+4t)-
(4(t-m+1))= k-1+ 4t- 4t+ 4m- 4= k+ 4m- 5= k+4(m-1)-1 > k+4(m-1)-3. So, (t-m+1) pebbles can 
be sent from {u, v} to c, while by the induction hypothesis, m-1 pebbles can be sent from M to c. 
Hence a total of t pebbles can be sent to c. 
 
Theorem 3. Let Wn be an alternating wheel graph. Then f(Wn)=10+n for n> 6. 
 
Proof.  We demonstrate a distribution of  n+9 pebbles that does not allow a pebble to reach a 
specified target. Let us consider the following distribution of n+9 pebbles on Wn: 
 

The chosen target is a vertex that is adjacent to c and is 
represented with an X in the figure. The vertices adjacent 
from the target vertex have no pebbles on them as indicated 
in the figure. A vertex, u, that is not adjacent to the target 
and is adjacent from the center has 15 pebbles. The central 
vertex c and the vertices adjacent from u have no pebbles on 
them. The remaining n-6 vertices each have one pebble on 
them.

 
 
 
 
 
 
 
 
 
 
The only vertex where a pebbling move is possible is u since all the other vertices have fewer than 
2 pebbles. The only way to reach the target is via the path of length four shown in the figure.  
Fifteen pebbles will not suffice to send one pebble to the target.   
 
Now let us consider any distribution of 10+n pebbles on Wn. There are only three types of possible 
target vertices: the central vertex and the two types of outer vertices, where one is adjacent from c 
and the other is adjacent to c. The three types of targets are illustrated below and are marked with 
an X. 
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Case 1: Let c be the target. A distribution of 10+n pebbles implies that there is at least one outer 
vertex with 2 or more pebbles on it. If that outer vertex is adjacent to c, one pebble can reach c. If 
that outer vertex, say u, is adjacent from c, then there are two possibilities. If p(u)> 4 then one 
pebble can reach c. If p(u) < 4, then the rest of the graph has more than 6+n pebbles. Consider 
what happens when the vertex u and its edges are removed. The remaining graph is Fn-1 as shown 
in the figure below. 

 

Since 6+n > n, by Lemma 
2 we can send one pebble 
to c. 
 

Case 2: Consider the case when the target is an outer vertex that is adjacent from c. Since the only 
way to get a pebble to the target is through c, we need at least 2 pebbles on c. Suppose there are 
fewer than 2 pebbles on c. Consider the subgraph where the target and its edges are removed like 
in case 1. The remaining graph is Fn-1. The outer vertices of the subgraph have at least 9+n 
pebbles. By Lemma 2, we need n+4 pebbles to send two pebbles to c.  
 
Case 3: Consider the case when the target is an outer vertex, x, that is adjacent to c. Let the 
neighboring vertices that are adjacent from x be i and j, as shown in the figure below. 

 
 
The last edge of any path to the target must be either i-x or j-x. If p(i)> 2 or p(j)>2, then one 
pebble can be moved to x. We need only consider the case where p(i)<2 and p(j)<2.  
 
If we delete i, j, and x and the edges associated with them, we are left with an alternating fan 
graph, Fn-3. By Lemma 2, if the number of pebbles on Fn-3 is (n-3)-3+4t, then we can move t 
pebbles to c. The number of pebbles on this Fn-3 is (10+n)-p(i)-p(j).  
 
If (10+n)-p(i)-p(j) > (n-3)-3+4t, then we can move t pebbles to c. This condition simplifies to 16-
p(i)-p(j) > 4t. If p(i)+p(j)=0, then we can move four pebbles to c, and using the path c-i-x we can 
move one pebble to the target.  
 
If 0<p(i) +p(j) <2, then either one or both of i and j have a pebble. Then we only need two 
pebbles to be moved to c to use c-j-x or c-i-x to put one pebble on x. So 16-p(i)-p(j) > 14 > 4(3), 
indicating that we can move three pebbles to c from the vertices of Fn-3. 
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It is a known fact that undirected wheel graphs (on any number of vertices) are demonic [3]. We 
have shown that f(G) < f(GD) where G is a wheel with more than 7 vertices. We now demonstrate 
a class of graphs for which  f(G) = f(GD). 
 
Alternating Complete Graphs, K2n+1 

 
We define an alternating complete graph, K2n+1, to be a directed graph with an odd number of 
vertices, {vo, v1, v2,…,v2n} and we say that vi is adjacent to vj if and only if (i-j) mod 2n+1 is odd. 
An example of an alternating complete graph is shown below. 

 

Note that at each vertex the direction of the edges incident 
with it alternate in direction as illustrated in the figure 
above. Note also that any rotation of the alternating 
complete graph gives us an isomorphic graph. 

 
Theorem 4. f(K2n+1) = 2n+1 for n > 2. 
 
Proof. We use induction on n. 
 
Consider K5 with five pebbles on its vertices, and v0 as target. If p(v1)> 2, we can move one pebble 
to v0. So p(v1) <2. Consider A ={v1, v2} and B= {v3, v4}. Without loss of generality A has at least 
3 pebbles on its vertices.  
 
If the number of pebbles on A is at least four, then we can move one pebble to x using the path v2- 
v1- v0.  
 
If p(v1)+ p(v2) =3, and p(v1)=1, then we use the path v2-v1-v0 to move one pebble to v0.  
 
If, however, p(v1)= 0 and p(v2)= 3, then B has two pebbles on its vertices. If p(v3)=2, move one 
pebble from v3 to v2, and A now has four pebbles. If p(v4)=2, move one pebble to v1, and A now 
has four pebbles. If p(v3)=p(v4)=1, move one pebble from v2 to v4, so there are two pebbles at v4. 
Move one pebble to v3, giving us two pebbles at v3, and then move one pebble to v0.  
 
For the induction step, assume that the result holds for K2n+1 and show that it holds for K2(n+1)+1. 
Consider a distribution of (2n+1)+1 pebbles on K2(n+1)+1 with vo as the target. Let  u =vi  and  
v= vi-1 such that vo is adjacent to u= vi as shown below. 
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If u, v and the edges associated with them are removed, 
then it can easily be checked that the resulting graph is the 
alternating complete graph K 2n+1, which we will denote 
M. (Note that two edges are removed at each vertex. 

 
Assume that there are 2(n+1)+1 pebbles on K2(n+1)+1. If M has 2n+1 pebbles on it, then by the 
induction hypothesis, one pebble can be moved to v0. Also if p(u)+p(v) >4, then we can move one 
pebble to v0 using the path u-v-v0. 
 
So suppose that M has fewer than 2n+1 pebbles on it. Then p(u)+p(v)> 2, and p(u)+p(v)<4, or 
p(u)+p(v)=3. If p(v)>1, then using the path u-v-v0, we can move one pebble to v0. So, assume 
p(u)= 3 and p(v)= 0. Then M has 2n pebbles on it. Move one pebble from u to any vertex vr in M 
such that u is adjacent to vr. (We are guaranteed that such a vr exists since id(u) = od(u) and u is 
adjacent to or from at least two vertices in M.) Now M has 2n+1 pebbles on it, and one pebble can 
be moved to v0 by the induction hypothesis.  
 
Hence alternating complete graphs are demonic. It is known that undirected complete graphs on 
any number of vertices are demonic[2].  

 
The results obtained in this paper allow us to conclude that the bounds of the pebbling number of a 
directed graph on n vertices are the same as that of an undirected graph: n <  f(GD) < 2 (n-1) where 
n is the order of a graph GD. 
 
Open Questions 
 
We conclude this paper with some open questions on pebbling on directed graphs. 

• What are other classes of directed graphs which are demonic? 
• Does Graham’s conjecture [ f (GD x HD) <  f(GD) x f(HD) ],where GD x HD is the Cartesian 

product of two graphs, hold? 
• What are the optimal pebbling numbers of directed graphs? The optimal pebbling number 

of a graph G, fopt(G), is the least number such that there exists a solvable distribution of 
fopt(G) pebbles on G.  

• If GD1 and GD2 are strongly connected directed graphs with the same set of vertices and 
edges with different orientations, then under what conditions is f(GD1) = f(GD2)? 
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