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Abstract: The study of continued fractions has produced many interesting and exciting 
results in number theory and other related fields of mathematics.  Continued fractions 
have been studied for centuries by many famous mathematicians such as Wallis, Euler, 
Gauss, Lagrange, Ramanujan, Cauchy, and Khinchin.  A connection between continued 
fractions and the Fibonacci sequence can be revealed by examining functional parameters 
of various rational functions.  This work makes use of existing results concerning 
continued fractions and Mathematica to explore the relationship between continued 
fractions and rational functions. 

 

 Continued fractions are one of many ways of representing real numbers. The 

actual term “continued fraction” has been around for 350 years since it was first seen in 

John Wallis’ Arithmetica Infinitorum in 1653. A continued fraction is a sequence of 

integers that represent a real number. These sequences have a strong impact in number 

theory and have been studied by many mathematicians such as Euler, Gauss, Lagrange, 

Ramanujan, Cauchy, and Khinchin. Not difficult to understand and innumerable in their 

uses, continued fractions provide mathematicians with a different way to express the 

numbers they work with day in and day out.   
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 The finite simple continued fraction representation of a real number x has the 

form: 

0. a,...,a,a and integers negative-non are a...,a,a,a where n32n321
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An abbreviated way of writing this continued fraction is: 

x = [a1, a2, a3,…, an]. 

 It is not difficult to obtain the continued fraction form of a rational number; the 

process very closely resembles that of Euclid’s Algorithm for finding the greatest 

common divisor. The process begins by finding the greatest integer part of the rational 

number and then determining the fraction remainder, 
1

1

q
p . To continue the fraction, the 

remaining fraction is replaced by 

1

1

1

p
q

. The process is repeated with this new rational 

number,
1

1

p
q and continues until the remaining fraction itself is of the form 

na
1 , .Zan ∈ An 

example of this process is shown below: 
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So, the continued fraction representation of 
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107  is:                                    
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 Using Mathematica, I took a backwards approach to looking at continued 

fractions of rational functions. Rather than starting with the rational functions themselves, 

I input continued fraction expansions of the forms [x], [a,x], [a,a,x], …, [a,a,a,…,x] to see 

the type of generating fractions that were produced. What I found was quite interesting:  

.SaSS a,S 1,S 0,S where2,n allfor  
(x)SS

(x)S S                 

:form  theof is x]a,...,a,[a,fraction  continued  theof form reducedEach 

2-n1-nn210
1-n2-n

n1-n +====≥
+
+

•

.
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4                   
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• Using a power series expansion whose Taylor coefficients are the point of 

concurrency and its conjugate, an explicit formula for the sequence can be generated. 

 As mentioned, the initial investigation began by looking at the continued fractions 

from a backward perspective. By inputting the continued fraction expansion, I was able 

to analyze the generating fractions that were produced from these expansions. When a = 

1, the Fibonacci sequence arises in the coefficients of x and the constants in both the 

numerators and denominators of these generating fractions. 

 Close inspection shows the Fibonacci sequence appearing in the following 

pattern: 

(x)FF
(x)FF

1-n2-n

n 1-n

+
+ , where 21210 1,1,1,0 −− +==== nnn FFFFFF  and n is the number           

of elements in the expansion.  

 There appears to be a similar pattern occurring in all of the successive fractions as 

well.  Investigation concludes that these generating fraction are of the same form as those 

with the Fibonacci sequence only with a different, yet dramatically similar generating 

sequence.  The fractions all contain a sequence, Sn, such that   

 
(x)SS
(x)SS

1-n2-n

n 1-n

+
+  where aSSS === 210 ,1,0  and 2-n1-nn SSS += a  where a is the 

constant used in the continued fraction expansion and n is the number of terms in the 

expansion. 

 In the a = 1 (Fibonacci) case, the generating fractions were of the form 

(x)F  F
(x)F  F

1-n2-n

n1-n

+
+ . A proof by mathematical induction shows that this is indeed the case. 
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Therefore, by the principle of mathematical induction,  

                   
QED  expansion.fraction  continued in the  termsofnumber 

  theisn  and FFF..., 1,F 1,F 0,F where
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The general case is dealt with in the same manner as the case where a =1. With a proof 

by mathematical induction, we can see that for any value of a, the generating fraction will 

be of the form 
(x)S  S

(x)S  S

1-n2-n

n1-n

+
+ where the sequence 2-n1-nn SSS += a with initial 

values a.S1,S0,S 210 ===
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Therefore, by the principle of mathematical induction, 
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 Looking at the plotted generating fractions, a point of concurrency for all of the 

generating fractions on the line y = x for each value of a appears. The point of 

concurrency can not only be determined using the graph, but analytically as well.  Again, 

we will look at the case when a=1 (Fibonacci) and then use similar techniques to show 

that this holds true for all values of a. 
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 The negative solution to the equation is not a possibility as it is apparent that there 

is not a point of concurrency there. We solve for the concurrency point the same way in 

the general solution. 
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 From this we conclude, each continued fraction expansion of the form [a,a,a,...,x] 

has a point of concurrency for all si, i=1,2,…,n, which is the point of intersection for the 

line y=x and all of the graphs of the function and is of the form
2

4 
2 ++

=
aax  . 

 So far these continued fractions have been dealt with exclusively with recursive 

sequences. However, it is possible to define an explicit rule for the sequence that also 

relates to the point of concurrency found above by using a power series expansion for a 

function f(x). The following is the recursive sequence we have been discussing so far: 

 s0(a)=c, s1(a)=d, sn+2(a)=sn(a)+asn+1(a). 

This gives a sequence with the following terms: 

 s0(a)=c, s1(a)=d, s2(a)=c+ad,  s3(a)=d+a(c+ad)=d+ac+a2d, 

 s4(a)=c+ad+a(d+ac+a2d) =c+2ad+a2c+a3d. …. 

To find an explicit rule for the sequence, use the series expansion of the function: 

                    ∑∑
∞
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+
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0
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n

n
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Then, using the second expansion, solve for f(x) to obtain what we will call the 

generating function. 
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Now we have the generating function for the sequence Sn(x). We will again begin with 

the Fibonacci case. Remember that the Fibonacci sequence is the sequence of the form: 

 Sn=aSn-1+Sn-2 where a=1.  

For this sequence we defined c = 0, d = 1, and a = 1. 
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By using partial fraction to decompose the generating function, we will be able to 

explicitly see the role that the point of concurrency plays in the sequence itself. 
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We can now equate the coefficients to get an explicit formula for sn(1): 

55
*

)1(
)1(

5
1

)1(
*)1(

5
1

*
)1(

5
1

*
*)1(

5
1

*
)1(

5
1)1(

5
1)1(

nn

n

nn

n

nn

nn

nn

nn

nn

n

n

n

n

ns

φφ

φφ

φφ
φ

φφ
φ

φφ

+
−

=









−
−









+








−

−








−

=








 −








+







 −








−

=










 −








+







 −








−

=

 

This is the explicit formula for the sequence generated with a = 1 (or the Fibonacci 

sequence). We can now see how the point of concurrency (in this case φ , or the Golden 
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Ratio) related to the original recursive sequence. Once again, we will repeat the steps 

used to generate the explicit form of the Fibonacci sequence to generate the explicit 

formula for all previously defined sequences Sn(a). 

In general, we defined the sequence to be: Sn=aSn-1+Sn-2 for all a = 1,2,3,... 

So in general we have, if c = 0, d = 1, and a = a, then 

 s0(a)=0, s1(a)=1, s2(a)=a 

 s3(a)=aa+1=a2+1, …. 

 Using the same series expansions of the function f(x) as before, for all sequences 

Sn(a), the generating function will be: .
1

)( 2 −+
−

=
axx
xxf By examining the roots of the 

denominator we once again see that 
2

42 +±−
=

aax  which was the solution discussed 

previously when finding the points of concurrency. We can then factor the denominator 

as shown below: 
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Again, by decomposing the generating function we can explicitly see the role the point of 

concurrency plays in the sequence itself: 
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We can now equate the coefficients to give an explicit formula for Sn(a): 
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 This is the explicit formula for any sequence Sn(a)=aSn-1+Sn-2 where s0 = 0, s1= 1, 

s2 = a and now we can explicitly see how the point of concurrency aφ  relates to the 

original sequence and the generating fractions for all values of a. 

 Continued fractions are not difficult to understand, but they do produce interesting 

results when looked at more intensely. Continued fraction expansions of the form 

[a,a,a,…,x] were investigated. The results found included a pattern in the continued 

fraction itself using a recursive formula to find the coefficients, the existence of points of 

concurrency on the graphs of all of the expansions, and the explicit formula for the 

recursive formulas produced by these continued fraction expansions. 
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