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Abstract: The study of continued fractions has produced many interesting and exciting
results in number theory and other related fields of mathematics. Continued fractions
have been studied for centuries by many famous mathematicians such as Wallis, Euler,
Gauss, Lagrange, Ramanujan, Cauchy, and Khinchin. A connection between continued
fractions and the Fibonacci sequence can be revealed by examining functional parameters
of various rational functions. This work makes use of existing results concerning
continued fractions and Mathematica to explore the relationship between continued
fractions and rational functions.

Continued fractions are one of many ways of representing real numbers. The
actual term “continued fraction” has been around for 350 years since it was first seen in
John Wallis’ Arithmetica Infinitorum in 1653. A continued fraction is a sequence of
integers that represent a real number. These sequences have a strong impact in number
theory and have been studied by many mathematicians such as Euler, Gauss, Lagrange,
Ramanujan, Cauchy, and Khinchin. Not difficult to understand and innumerable in their

uses, continued fractions provide mathematicians with a different way to express the

numbers they work with day in and day out.



The finite simple continued fraction representation of a real number x has the

form:

O+
a}'t

wherea,,a,,a,...,a, arenon - negativeintegersand a,,a,,...,a_, > 0.
An abbreviated way of writing this continued fraction is:
X = [aj, as, a3,..., an].
It is not difficult to obtain the continued fraction form of a rational number; the
process very closely resembles that of Euclid’s Algorithm for finding the greatest

common divisor. The process begins by finding the greatest integer part of the rational

number and then determining the fraction remainder, Py . To continue the fraction, the

q,

remaining fraction is replaced by — . The process is repeated with this new rational
kil

D

number,ﬂ and continues until the remaining fraction itself is of the form — ,a, € Z. An
p 1 an

example of this process is shown below:



107 _4, 48 1
107 4,489, L
59 50 59

48

59 _q, 1 1
=1
48 48 48

48 4 1

B_4.4_4

11 11 11

4

H_2.3 2,1

4 4 4
3

4 1 1

— =14+ —=

3 3

. . . 107 .
So, the continued fraction representation of =9 is:

107 1
=1+
59 1

or 107 =[11,4,2,1,3].
59

Using Mathematica, I took a backwards approach to looking at continued
fractions of rational functions. Rather than starting with the rational functions themselves,
I input continued fraction expansions of the forms [x], [a,x], [a,a,X], ..., [a,a,a,...,X] tO see

the type of generating fractions that were produced. What I found was quite interesting:

¢ Each reduced form of the continued fraction [a,a, a,..., x] is of the form :

S, +S
S0 #5000 poralin > 2, whereS, 0,8, =1,S, =a,S. —aS, | +8. ..
Sn—Z + Sn—l (X)
e All of the graphs of the continued fractions have a point of concurrency on the line y = x that is
of the form:
=4 +Va* +4
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e Using a power series expansion whose Taylor coefficients are the point of
concurrency and its conjugate, an explicit formula for the sequence can be generated.

As mentioned, the initial investigation began by looking at the continued fractions
from a backward perspective. By inputting the continued fraction expansion, I was able
to analyze the generating fractions that were produced from these expansions. When a =
1, the Fibonacci sequence arises in the coefficients of x and the constants in both the
numerators and denominators of these generating fractions.

Close inspection shows the Fibonacci sequence appearing in the following
pattern:

Fn—l + Fn (X)

,where F, =0,F, =1,F, =LLF, =1F,_, + F,_, and n is the number
Fn-Z + Fn-l (X)

of elements in the expansion.

There appears to be a similar pattern occurring in all of the successive fractions as
well. Investigation concludes that these generating fraction are of the same form as those
with the Fibonacci sequence only with a different, yet dramatically similar generating
sequence. The fractions all contain a sequence, S,, such that

Sn—2 + Sn—l (X)

where S, =0,5, =15, =a and S, =4S, , +S,, where a is the
constant used in the continued fraction expansion and # is the number of terms in the
expansion.

In the @ = 1 (Fibonacci) case, the generating fractions were of the form

. A proof by mathematical induction shows that this is indeed the case.
F,+F ()



Theorem:For n>2(n=number of elementsin the continued fraction sequence),
(11 x] =t P F OO
Fn-Z + Fn-l (X)
where F, =0,F, =1,F, =1,F, =2,..,F, =F , +F,_,.
Proof': (By Induction)
F+Fx) 1+x

1. Let n=2,
F, +F (x) X
1 1+
X X
2. Assume fu(x) = M
Fﬂ-2 + Fn-l (X)
Want f_, (x) = F+F.x
Fn-l + Fn (X)
1
w0 = f(f, () T
P P S AN S T 1 0O
P 4 F ) F, +F (x)
F“'2 + Fn-] (X)
= Fn'l + Fn-2 + (Fn-l + Fn )X _ Fn + Fn+1(X)
Fn-l + Fn (X) Fn-l + Fn (X)

Therefore, by the principle of mathematical induction,

F ,+F
(L. x]= Fr PR GO
Fn‘2 + Fn—l (X)

whereF, =0,F, =1,F, =1,..,F, =F,, +F, , andnis the

number of terms in the continued fraction expansion. QED

foralln>2

The general case is dealt with in the same manner as the case where a =1. With a proof
by mathematical induction, we can see that for any value of a, the generating fraction will

Sn—2 + Sn-l (X)

be of the form where the sequence S, =aS, , +S, , with initial

valuesS; =0,S, =1,S, =a.



Theorem: For n>2 (n =number of elements in the continued fraction sequence),
S, +8S,(x)
S,,+S,,x)
where S, =0,S, =1,S, =a,...,S, =aS,, +S,,.
Proof : (By Induction)

[a,a,a,...,X]=

S, +S,(x) 1+ax
Sy +5S,(x) X
I 1+ax

[a,x] =a+—=
X X

2. AssumeS  (x) = M
s“'2 + Sn»l (X)

Sy +8,, (%)
S, +S,x)

1. Let n=2,

Want S, ,,(x)=

Spa(®)=8(S,(x))=a+

1

S, (x)
1 S.,+S,,(x)

S.75.00 TS 8.0

Spa +8,, ()

_a(S,, +S,(x)+S,, +S,,(x) (@S, +S,,)+ (S, +S,.)x

B S, +8,(x) B S+, ()

_ S, +S,,(X)

S, +8,(®

=a+

Therefore, by the principle of mathematical induction,

[a,a,a,...,x]=—Sn-hLSH(X)
Sn-2+Sn-1(X)
whereS, =0,S, =1,S, =a,...,S, =aS_, +S,,. QED.

foralln>2

Looking at the plotted generating fractions, a point of concurrency for all of the
generating fractions on the line y = x for each value of a appears. The point of
concurrency can not only be determined using the graph, but analytically as well. Again,
we will look at the case when a=1 (Fibonacci) and then use similar techniques to show

that this holds true for all values of a.



We begin by letting f(x)=1+ L [1,x].
X
Then define the proceeding fractions as such :
fix) = 1+l =[1x], f,(x) =1+L1 =[LLxLA , f,(x)= 1++
X 1+ 1+ —1
X 1+ I
O +—
X

=[LLL,....x]

. 1
Then, to find the point of concurrency: f(x) =1+—=x
X

x+1=x2
0=x?-x-1

1++/5
X =

2

. . 1+
and thus, the point of concurrency is x =———=¢, whena =1.

The negative solution to the equation is not a possibility as it is apparent that there

is not a point of concurrency there. We solve for the concurrency point the same way in

the general solution.

Lets(x)=a+ ! =[a, x|
X

And,

sl(x)=a+l=[a,x],sz(x)=a+
X

I =la,a,x],...,s,(x)=a+ I
a+—

at+———
X 1

To find the point of concurrency :
1

s(x)y=a+—=x
X

ax+1=x>

0=x*-ax-1

at+a’+4
X =
2
2
. . a”+4
and the point of concurrency is x = 5 =g,



From this we conclude, each continued fraction expansion of the form [a,a,a,...,X]

has a point of concurrency for all s;, i=1,2,...,n, which is the point of intersection for the

a++a’+4

line y=x and all of the graphs of the function and is of the form x = 5
So far these continued fractions have been dealt with exclusively with recursive
sequences. However, it is possible to define an explicit rule for the sequence that also
relates to the point of concurrency found above by using a power series expansion for a
function f(x). The following is the recursive sequence we have been discussing so far:
so(a)=c, s1(a)=d, sn+2(a)=sn(a)t+asy+1(a).
This gives a sequence with the following terms:
so(a)=c, si(a)=d, sy(a)=c+ad, s3(a)=d+a(ct+ad)=d+ac+a’d,

s4(a)=c+ad+a(d+act+a’d) =ct+2ad+a’cta’d. ....

To find an explicit rule for the sequence, use the series expansion of the function:
f(x)= ZS,, (a)x" or f(x)=c+dx+ ZSM (a)x"?
n=0 n=0

Then, using the second expansion, solve for f(x) to obtain what we will call the

generating function.



f)—c—dv =5, . (@x""

n=0

S —c—dr=3(s,(a) +as,, (@)x""

f(x)—c—dx= isn (@)x"? +as,, (a)x""

n=0

f(x)—c—dx= an (a)x"* + Z as,, (a)x""
n=0

n=0

f(x)—c—dx=x" ZSn (a)x" + axz s (@)x™!
n=0

n=0

f(x)—c—dx:xzf(x)+ax(f(x)—c)
f(x)—c—dx=x"f(x)+axf(x) — acx
acx—c—dx=x" f(x)+axf (x) = f(x)
(ac—d)x—c=(x"+ax—1)f(x)

(acz'—d)x—c ~ ()
x“+ax—1

Now we have the generating function for the sequence S,(x). We will again begin with
the Fibonacci case. Remember that the Fibonacci sequence is the sequence of the form:
Sw=aSn.1+S;.2 where a=1.

For this sequence we definedc=0,d=1,anda=1.

So, f(x)= - D¢
x +x-1
=X
_x2+x—1
B -X
145 1-5
(x+ 5 )x + 5 )
- x
(X + @)X+ %)

(where ¢ * is the conjugate of ¢).



By using partial fraction to decompose the generating function, we will be able to
explicitly see the role that the point of concurrency plays in the sequence itself.

- X _ A N B
(x+P)x+¢%) x+¢ x+¢*
A+ B =-1 and Ap*+Bgp =0
(B=-1-4)

So we have A¢g*+(-1-A4)p =0

A(p*-p)=¢
A
($*-¢) -5
P A T I
Then B = 1+\/§_ \/g _\/g
(¢ 1 g * 1
reo=(5 5 ) (F )
_ 1) 1 +(1j 1
-5 1+5 v5 1+
¢ ¢*
(1 = (=1)"x" 1 )& (-1)"x"
(FESTFESS

We can now equate the coefficients to get an explicit formula for sy(1):
IERICANER e
Sn(l)_(_\/g ¢n J—'_(\/gj{ ¢*n J
() T () )
~5 N g NEDN A
(s ) L)
NG WS DAY e

b
5

This is the explicit formula for the sequence generated with a = 1 (or the Fibonacci

sequence). We can now see how the point of concurrency (in this case ¢, or the Golden

10



Ratio) related to the original recursive sequence. Once again, we will repeat the steps
used to generate the explicit form of the Fibonacci sequence to generate the explicit
formula for all previously defined sequences Sy(a).

In general, we defined the sequence to be: S,=aS, ;+S,, forall a = 1,2,3,...
So in general we have, ifc =0, d = 1, and a = a, then

so(a)=0, si(a)=1, sx(a)=a

S3(a)=aa+1=a2+1,

Using the same series expansions of the function f(x) as before, for all sequences

Sn(a), the generating function will be: f(x) = 2_—xl By examining the roots of the
X" +ax—

—at+a’+4

denominator we once again see that x = - which was the solution discussed

previously when finding the points of concurrency. We can then factor the denominator

as shown below:

—a—+a’+4 —a++a’ +4

Xt +ax—1=| x— xX—
2 2
B +a+\/012+4 x+a—\/a2+4
2 2

=(x+4)(x+4,%)
a+a’+4

where ¢ =
9, 5
y o a— a’+4
¢ 2

Again, by decomposing the generating function we can explicitly see the role the point of

concurrency plays in the sequence itself:

11



-X _ A N B
(x+¢a)(x+¢a*) x+¢a x+¢a*
A+B=-1 and A¢a *+B¢a =0
(B=-1-4)

So we have A¢a *+(-1- A)¢a =0
AP %4 )=¢
¢ ¢

_ a _ a
(¢a >l<-¢a) — a2 +4

—mﬂé 4 *
Ji TTrs ies

Then B=-1+

f(x)_( ¢a 1 + ¢a* 1 ]
—Va® +4 \ P, +x Va? +4 \ P, *+x
1 1 1 1
= +
—vNa*+4 ) 14 a’+4) 14~

¢ 9,

&) x” 1 )& (1)
—Va* +4 ; 8" +(\/a2+4]nz<; g, *

We can now equate the coefficients to give an explicit formula for S,(a):

s (a):( J 1 I(_l)n]{v 1 ](_l)n

' —Na*+4 \ 4, at+4 )\ .
:( ! ]{(—D"«ﬁa H ! J[(—D”%"J
Ve ra ) 0 ) e +a o0

:( 1 J{(—l)"@*”}{ I I(—DW]
Jara = Jaira )\ 1

— ¢(l *n + ¢an
—\/az +4 \/a2 +4

12



This is the explicit formula for any sequence Sy(a)=aS,.;+S,» where sp=0, s;= 1,

s> = a and now we can explicitly see how the point of concurrency ¢, relates to the

original sequence and the generating fractions for all values of a.

Continued fractions are not difficult to understand, but they do produce interesting
results when looked at more intensely. Continued fraction expansions of the form
[a,a,a,...,x] were investigated. The results found included a pattern in the continued
fraction itself using a recursive formula to find the coefficients, the existence of points of
concurrency on the graphs of all of the expansions, and the explicit formula for the

recursive formulas produced by these continued fraction expansions.
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