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Chapter 3

Nonlinear Self-
Organization in
Photorefractive
Materials

Partha P. Banerjee

Department of Electrical and Computer Engineering and
Center for Applied Optics,
University of Alabama in Huntsville, Huntsville Alabama

Nickolai V. Kukhtarev

Physics Department, Alabama A&M University, Normal
Alabama

John O. Dimmock

Center for Applied Optics and Department of Physics,
University of Alabama in Huntsville, Huntsville Alabama

3.1 Introduction

It is indeed intriguing that many natural phenomena as well as the brain
or animal behavioral patterns exhibit self-organization. The convective
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rolls in a liquid when it is heated beyond the Ray]eigh—Bel‘nal‘d instability
point is an example of pattern formation in hydrodynamics due to selfs
organization. Here the temperature difference is the driving force or input
parameter. Below the critical or threshold temperature, On€ can only
observe random motion of the liquid particles. Besides, in an open Cony
tainer containing the fluid, surface tension can also affect the flow, causing
tesselation of the surface and formation of hexagonal cells. Such spontanés
ous pattern formation is exactly what is termed Self_m-ganizatiom but
there is no agent inside the system that does the organizing. The motion
of the whole is no longer the sum of the motion of the parts, due to
nonlinear interactions between the parts and the envh'onment- Another
gxample of pattern formation is a “wave” among spectators in a stadium—
individual spectators communicate and cluster fogether in groups to &<
ate a nearly synchronized pattern that spreads throughout the stadium.
Speaking of which, there is enough evidence that hur:an behavioral pat-
terns are self-organized. The human body, for example, is @ complex Sy5-
tem comprising about 10* joints, 103 mu’scleq clo:zpcei] types, and 108
neurons or neuron connections. The actions ofé(;nimunicati‘on, pody move:
ment etc. are the result of self-organization of this comple¥ gystem per-
taining to a certain control or input parameter (stir;luluS)- In a gimilar
fashion it has been shown that the brain itself is ;;m active dynamic gelf-
organizing system. For more on the Self-Organi‘zin _ e\c‘,LS of the brain
and human behavior, the readers are referred to I?eltsop[/]J Kohonen (2],
and Haken [3]. ; ;T

Some of the elementary conce -anization
pts and F for cp] frorganiza
are as follows [1]: conditions for self-ov8

1. Patterns anse spontaneously as a result of nonlinear coupling
between large numbers of interacting components

2. The system mustbe far from equilibrium . Due to nonlin€ar interac
tions, energy is not distributed evenly b.ut coalesces into patterns
or flows. >

3. Relevant degrees of freedom, or order parameters, must exist near
nonequilibrium phase transitions, Wherer loss of st’abilitv gives risé
to new patterns and/or switching betweer; patterns. ‘

4. Noise must be present in the system, 5o that fluctuations can “feel”

the system stability and provide for the gystem t© self-organize
into different patterns. 80
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In this chapter we will discuss self-organization and its effects in
optics. In fact, one of the most exciting and potentially useful areas of
current research in optics involves the understanding and exploitation of
self-organization in nonlinear optical systems. This self-organization may
sometimes lead to the evolution of complex spatial patterns which can be
regarded as the nonlinear eigenmodes of the system. Generation of these
patterns is characteristically marked by the presence of intensity .thresh-
olds. The detaijled study of the self-organization process, including tbe
spatiotemporal evolutio}l, is needed in order to harness these effects for
potential practical applications.

For along time in nonlinear optics, only problems of temporal dynam-
ics were investigated. However, spatial distributions were OHI.V_ assumed,
PholtEeEard to thoirthme evolntion and berice relationship with tempo-
ral instabilitieg. However in a nonlinear system with comp]icat_ed tempo-
ral dynamics, it tuens out that one cannot retain purity in spatial
dimensionality. It is therefore equally important to investigate ‘Fhe dynam-
ics of the transverse spatial variations which in fact give rise to very
interesting patterns due to self-organization. A vast Wf%alth of patterns
can be achieved by using a nonlinear optical elemem’; with feedback th’a{;
has the capability to provide for field transformation, e.g., l?y Spatlfj
filtering. Thege types of systems have been called optical kaleidoscopes,
simply because of the different self-organized patterns tbat they can gen-
erate. Examples of nonlinear self-organized kaleidoscopic patterns are:

Rolls
Rotatory waves
Optical spirals

Hexagonal patterng
Patterns with more complicated geometry

Pattern hopping

An excellent reference for this as well as self—organizatio'n in different
nonlinear optical systems is the book by Vorontsov and M?ller (4].
Information processing applications of nonlinear OptICS_ are closely
linked to the ability to contro] nonlinear optical systems which can self-
organize in different ways. For instance, different pattlorns formed
through self-organization can be used for coding and processing of optical
information [4]. It has been proposed that the existence of several modes
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in a laser can be used as a base for synergetic computing [5]- Fourier
filtering techniques have been used in conjunction with nonlinear optical
systems for information processing. Degtiarev and Vorontsov (6] used
Fourier filtering in the path of a liquid crystal light. valve (LCLV) system
with feedback for phase distortion suppression. Such nonlinear optical
systems with feedback have also been used for various kinds of pattern
generation such as hexagons, rolls, etc. [7]. The dynamics of pattern forma-
tion in a coupled LCLV system with feedback have been studied by Thur-
ing et al. [8].

Photoinduced scattering of laser radiation into self-organizing pat-
terns has been observed over the past several years in a substantial
number of nonlinear materials including gases and liquids [9-14]- Among
solids, photorefractive materials such as KNbO, have been observed to
exhibit a rich variety of such scattering includin;g‘ hexagonal pattern f01.‘-
mation and rotation, as well as other patterns depending on the exper1-
mental conditions [15, 16]. Furthermore simultaneous pattern generatioﬂ
and self-phase conjugation have been observed due to self—organization
in this material under other conditions [17, 21]. Hexagon formation has
also been observed in other photorefractive materials as well, such as
BaTiO, [22, 23].

Because of_ tbe richness of the scattering phenomena observed in
KNb.Oq, we anticipate that the understanding of the origins of photore-
fractivity and the nature of the self-organization phenomena will lead to

novel and substantially enhanced nonlinear applications of this material
such as set forth in the following,

1. We anticipate that the self-organization can readily be used 0
intelligently manufacture diffractive optical elements, such as hexagonal
arrays, gratings etc. In this case, one can use the non,linear pl‘OpertieS of
the active material to create diffractive optic elements, rather than rely
on complicated geometrical processing. In the long ru’n, these patterns
can be generated and stored in thin-film photorefractive polymers. In the
shorter term, one can image a plane inside of a thick Cl-ys:tal on a film
and thereby make such diffractive elements.

2. The near-field pattern is observed to be composed of hundreds of
phase-related spots in a hexagonal array which can be caused to shift or
move across the face of the crystal. We believe that this can, in principles
be used for hexagonal sampling of images in digital image processing
which offers spatial bandwidth savings [24]. Hexagonal array generation
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has been traditionally done by fabricating binary phase gratings [25].
These hexagonal arrays can also be used to effectively couple light into
a fiber bundle, which may eventually feed into adaptive antenna array
structures.

3. The far-field pattern can be used to broadcast separate images of
an input pattern in different directions. Further, because these separate
images have specific phase relations, unique image processing can be
performed by interfering these separate images with each other or with
the original beam. It is also conceivable that the far-field pattern compris-
ing six peripheral spots and the central spot can be used to monitor
velocity and acceleration of a moving body.

4. As both near- and far-field pattern rotations are extremely sensi-
tive to small misalignments of the pump beam with respect to the crystal
surfaces and axes [16, 18], we anticipate that this material can be em-
ployed as an integral element in misalignment detection or rotation sens-
ing devices.

5. The self-phase conjugation can be used to form conjugate images
in both forward and backward directions without the need of complex
additional optics. Edge enhancement, an important aspect of image
processing, has been demonstrated using this material and there is
potential to develop real-time optically edge-enhanced correlators using
this concept.

6. Finally, since we can observe and measure holographic currents
during grating recording in the photorefractive material [26, 27], we
anticipate that the self-organization effects and their time dependencies
can be modified and indeed controlled by application of external electrical
fields to the KNbO, crystal. In the long term, the possibility of superpos-
ing external electrical modulation to change the holographic current
and hence the diffraction pattern in the near- and far-fields seems
feasible. This will open the door to exciting applications of the crystal in
nonlinear information and image processing which may be electronically
controllable.

Before closing this section, we would like to point out that photoin-
duced scattering in the KNbO, crystal has also been observed over a wide
range of the visible spectrum [17]. This makes the crystals particularly
attractive in low-cost applications using, for instance, portable He-Ne
lasers. Not only is the understanding of self-organization important for
possible applications, but also the optical and electrical measurements
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on the crystal are essential in order to characterize the physical propertiey
of the crystal related to charge transport and the nature of the nonlinear.
ity. This will enhance the knowledge base for the crystal, useful for rigor.
ous analysis of the self-organization phenomenon, as well as for othey
applications. Finally, the optical and electrical measurements can by
readily used to characterize other photorefractive crystals as well.

3.2 Basic experimental observations

Self-organization leading to hexagon formation using photorefractive ma-
terials such as KNbOg can be heuristically explained as due to a photoins
duced holographic scattering which develops in two stages [16). In the
first stage, scattered light is rearranged into a cone which corresponds
to a Fabry-Perot mode of the nonlinear cavity formed by the refractive
index mismatch at the crystal interfaces. Reflection gratings, sometimes
aided by transmission gratings, may nonlinearly modify the cavity charac.
teristic and the cone angle. At the second stage, waves scattered in the
cone write new holographic gratings (second generation gratings), and
those among them that have holographic grating vectors equal to the
strongest gratings from the set of first generation gratings are enhanced,
following a winner-take-all route. This holographic self-organization
model conceptually explains the appearance of a hexagonal spot structure
around the transmitted beam. Other heuristic explanations are based on
the Talbot effect; this was enunciated by Tamburrini et al. [13] for 2 liquid
crystal and extended to the case of KNbO, by Honda and Matsumoto
[22]. Other simplified explanations of hexag;)n formation also exist in the
literature [28]. In this case, the authors use g simplified although, maybe,
unrelated model of nonlinear susceptibility in the understanding of hexag-
onal pattern formation in photorefractives. The detailed physics of hexago-
nal pattern generation in photorefractives in our opinion is complicated
and not yet well understood.

KNbOj is a biaxial electrooptic material with orthorhombic symmetry
and has excellent photorefractive properties marked by large beam cou-
pling gains [29], fast buildup times, and large anisotropies [30]. Further-
more, Fe doping in KNbO; is known to increase the maximum value of
the two-beam coupling gain [31]. KNbO, based phase conjugators have
been implemented in various configurations [31—-33] and material proper-
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ties of the crystal have been extensively studied [34, 35]. The net optical
nonlinearity of KNbOj; has been studied using standard z-scan techniques
[16, 36]. Electrical measurements have been also performed and give
valuable information about the Maxwell relaxation time, screening length,
and photogalvanic current [26].

Self-organization of an Ar laser single-beam scattering in a photore-
fractive KNbO,:Fe crystal, first into a scattering cone, and then into a
hexagonal pattern was observed by Honda [15] and Banerjee et al. [16].
Furthermore, these spots may be made to rotate about the center, and
the rotation speed depends on the misalignment of the incident beam
from the c-axis and the power of the beam. The hexagonal pattern is also
influenced in real time by a low-power He-Ne laser (wavelength 632 nm):
the spot pattern erases in about a second after the He-Ne laser is turned
on, leaving only the scattering cone, and reappears a second after the He-
Ne is turned off.

In the simplest experimental setup, an Ar laser (wavelength 514 nm)
with horizontal polarization and with initial beam diameter 1 mm is
reduced to a beam diameter of 0.5 mm using a confocal lens combination,
and illuminates a KNbO,:Fe crystal of dimensions 6 X 6 X 7 mm? (Fig.
3.1) [16]. A slightly converging beam may also be used [15]. When the
beam is normal to the incident surface, the far-field pattern is stationary
in time and comprises a strong central spot with a peripheral ring which
appears instantaneously, and thereafter evolves into six symmetrically
spaced spots on the scattering cone (Fig. 3.2a). This far-field pattern is
observed simultaneously both in the forward and backward directions;
however, the diffraction efficiencies (discussed in more detail below) are
not identical.

Art Laser | ” ﬂ J‘-T——_J
- UV
L1 L2 ] Screen
c-axis

Fe : KNbO3 Crystal

Figure 3.1: Experimental setup to observe hexagon formation in potassium
niobate. (L1, L2-lenses.)
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Figure 3.2: (a)Far-field transmission pattern showing central spot and hex-
agonal pattern. (b) Near-field pattern showing hexagonal spot array. (Source: Ref.
[16]. Reprinted with permission.)
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The semiangle of divergence 6 of the peripheral cone is approximately
0.8° in air and is independent of the incident power. The time taken to
form the spots is a few seconds for an incident power of 7.5 mW, although
the spots may be formed for lower incident powers as well, with a longer
formation time. The ring and all spots (central and peripheral) are also
predominantly horizontally polarized. The diffraction efficiency for the
spots in the forward direction is large: the intensity ratio of each transmit-
ted peripheral spot to the transmitted central spot, which we term the
forward diffraction efficiency per spot, is over 7%, for a total forward
scattering efficiency into all six spots of 42%. The corresponding diffraction
efficiency in the backward direction is about 4% per spot. Finally, the
diffraction efficiencies seem to be relatively independent of the incident
power over the range of powers investigated (7.5-30 mW).

Upon imaging different planes in the crystal (including the exit face)
by a lens for the sake of visualization of the transverse nature of the
optical fields, we have found, as shown in Fig. 3.2b, a periodic transverse
hexagonal pattern at approximately the exit face of the crystal. Moreover,
when the crystal is moved longitudinally by 0.5 cm, the same transverse
pattern repeated, indicating a (nonlinearly modified) Talbot-type effect
[37] (see Fig. 3.3), with contrast reversal occurring halfway between the
Talbot imaging planes. The transverse period, calculated from the longitu-
dinal period, is of the order of 30 pum, indicating a far-field diffraction
angle in agreement with our observed value.

If the incident beam is slightly off-normal to the interface (typically
by 0.04°), and the power is increased, the entire hexagonal pattern rotates
[16]. The sense of rotation depends on the sense of the angular misalign-
ment; thus, both clockwise and counterclockwise rotations of the pattern
are possible through positive and negative angular misalignments. A
typical value for the rotation speed in the steady state is 100 degrees per
minute for an incident power of 30mW. The rotation speed is smaller for
lower powers and smaller misalignments; however, we have observed that
a minimum critical power was required to achieve constant-speed rotation
in the steady state. Figure 3.4 shows the sense of rotation for various
values and signs of the angular misalignment. In fact, this phenomenon
of rotation may be effectively used to reconfigure the hexagonal spot array
pattern to any desired orientation by increasing the beam power for a
finite length of time. The existence of a minimum threshold may suggest
a secondary bifurcation [38], rotation is one of the routes by which such
patterns may lose stability. Rotation of the far-field could imply that
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Figure 3.3: Contrastinversion of hexagonal spot array due to Talbot imaging.

individual spots in the near-field (Fig. 8.2b) undergo a change in phase
as a function of time; however, this ig gt;] under investigation.

For larger angular misalignmentg (typically 0.3°), the far-field pattern
resembles a hexagonal structure where the six Spo’ts are located on an
ellipse instead of on a circle as ip Fig. 3.2a. A larger misalignment (of
0.4°) destroys the hexagonal pattern altogether. What remains are two
primary diffracted spots on opposite sides of the main beam orthogonal
to the misalignment direction, in agreement with the experimental results
of Grynberg et al. [9].

In related gxperiments, Honda obtained similar results by using 2
KNbOj crystal in 1r'1dex matching oil along with an external BaTiOs3 self-
pumped phase f:onJugate mirror [15]. Also, a slightly converging beam
was used, by using a convex lens of focal length 300 mm. The reflectivity
of the phase conjugate mirror was about 50%. Pattern formation has also
been observed using a KNbO, crystal along with a plane feedback mirror
[39]. As will be discussed in the following, the angle of divergence depends
on the length of the feedback path, thus it is possible to change the cone
angle by adjusting the position of the external feedback mirror. In this
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Symmetry Line

AN af

| I ( e
| i 1 3
0.02° 002 0.0f O 0.0% A0,

Figure 38.4: Experimental data for direction of rotation and angular misalign-
ment. (A = hexagon rotates clockwise; O = hexagon rotates counterclockwise; X
= hexagon is stationary.)

case, the crystal c-axis should be slightly tilted from the beam axis to
reduce the influence of the beam reflected from the back surface of the
crystal. It has been also shown that pattern rotation can be achieved by
using an additional erase beam, making a small angle with respect to the
direction of propagation of the pump beams in the crystal [18, 23]. The
speed and sense of rotation of the hexagonal pattern in the far-field may
be also controlled with the erase beam. Hexagonal pattern formation has
been observed in photorefractive materials other than KNbO;. Hexagonal
pattern generation in Co-doped BaTiO, with an external feedback mirror
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has been observed by Honda and Matsumoto [22] and by Uesu et al. [23].
In all of the preceding experiments, higher-order hexagonal patterns have
been observed in the far-field with an increase of incident intensity. Also,
interesting patterns have been observed using a single feedback system
with a virtual feedback mirror. A virtual feedback mirror is achieved by
inserting a lens between the exit plane of the crystal and the external
feedback mirror [19, 20]. The lens images the mirror at a certain distance
from the exit face of the crystal. Depending on the location of the lens,
the image location could be outside or even inside the crystal. Square
patterns have been observed using this arrangement. For an appropriate
choice of the virtual feedback mirror (typically located inside the cryste.ll)a
the hexagonal and square patterns have been shown to alternate with
time, demonstrating “pattern-hopping,” which is testimony to criterion
#3 for self-organization in the Introduction.

In a related experiment, self-phase conjugation similar to what weg
observed in SBN [40] has been observed in KNbO, [17]. This configuration
has applications in image processing as well, as recently shown by Ban-
erjee et al. [21]. In a typical experimental setup involving KNbOg: Fe [17_]’
a wave C, incident at about 10° to the normal to the crystal surface 18
reflected from the crystal, producing C'., (Fig. 3.5). Due to scattering.

additional waveg C, and C{ develop, which propagate almost normal to

e e st
photorefractive material

C1 C-1!
<Eco o'
ok

C-1

> Z

Figure 3.5: Six-wave coupling in potassium niobate.
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3.3 Theory

the crystal surface. These represent concentric Fresnel rings, and are
analogous to Fabry-Perot modes in a resonator. With time, the inner ring
may decompose into a hexagonal pattern. Furthermore, interaction of the
four waves C,,C,C¢,C" | gives rise to additional waves C_, (counterpropa-
gating to C' ; and phase conjugate of C;) and C] (counterpropagating to
C, and its phase conjugate).

A variation of the above experiment involves interactions initiated
by two beams C; and C,, and supported by reflections C_, and Cj, to
eventually produce C | and C}. In this case we have found that if C,
represents the field from a point source, the phase conjugate C_, images
a certain distance behind the photorefractive crystal. Furthermore, if C,
is the Fourier transform of an object, the phase conjugate of the object is
recovered in the far-field, traveling nominally in the direction of C_,. By
changing the position of the object with respect to the front focal plane
of the Fourier transform lens, edge enhancement can be achieved [21].

3.3 Theory

3.3.1 Fabry-Perot modes

Assume that a radially symmetric beam C(r), where r represents the
radial distance in the transverse plane, is nominally normally incident
onto a Fabry-Perot cavity formed by the parallel faces of the photorefrac-
tive material. The far-field intensity profile can be shown to be given by
IC(0)] S(6), where S(0) is a shaping function which, to a first approximation,
can be shown to be

1
¥ (9) o - 2 (3.1
S (6) 1 + F(8)sin%ky0% L /2

Also, C(6) represents the Fourier transform of C(r), with 6 = k,./ ko, where
k. is the spatial frequency corresponding to r and &, is the propagation
constant of the light in the medium. In the above relation F is the cavity
finesse and L is the thickness of the material. From (3.1), upon setting
ko02L/2 = m, the semiangle of the first ring can be calculated to be
approximately 0.4° in the material, which is of the order of our observed
value of 0.8° in air. With time, the ring may break up into hexagonal
spots, as observed experimentally. Note also that in the experiments,
secondary (or higher-order diffraction) rings, and sometimes higher-order
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hexagonal spots, are also observed. We have observed in our experimenty
that the radius of the second ring is observed to be \/3 times that of tha
first, which can be also derived from (3.1) by setting ky0°L/2 = 3.

We would like to point out that the existence of Fabry-Perot modes
in the crystal cavity supports the concept of periodic imaging during
propagation in the crystal. In so-called “open” cavities consisting of a
matched or misaligned photorefractive crystal and an external feedback
mirror, the concept of Talbot imaging has been used to determine the
scattering angle [22, 23). However we feel that the concept of Talbot
imaging as discussed in [22, 23] can only be applied to the case of propaga-
tion in the “cavity” between a “thin” slice of the photorefractive material
containing the induced reflection grating and the external mirror. More
on this is discussed in the following.

In a nonlinear system where the incident beam may originate from
light scattering, the coupling between forward and backward traveling
waves may be provided by transmission and / or reflection gratings. From
experimental results on beam coupling, it has been shown that reflection
gratings are dominant. In the remainder of this chapter, we will assume
only reflection gratings to be present. It turns out that the scattering angle
will be nonlinearly modified depending on the strength of the reflection

grating.

3.3.2 Model equations

We represent the forward and backward traveling waves in the nonlinear
photorefractive material as

E = Re[(C, €xXp — jkoz + C, expjkoz) exp.jwotl (3.2)

where C, . denote the forward and backward traveling wave amplitudes,
respectively, and w is the angular frequency of the light in the medium. We
also assume that the material has light-induced changes in the refractive
index due to reflection gratings formed in the material, with spatial fre-
quency 2k,. The spatial evolution of the forward and backward traveling
envelopes can be then written as

LG = —JjkednC,. | (3.3)
Ly Co= — 7k Sn¥ L,
where L, are linear operators given by the relation

L, e =0/0z % j(1/2ky) V2. (3.4)
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The variable 8n represents the fractional change of refractive index due
to the induced reflection grating and evolves according to
Cv(’ C",.' E3

701 / ot + on = VWTC\Z (3.5)

We consider reflection gratings only for now because they are dominant
in photorefractive potassium niobate [15]. Transmission gratings have
been assumed in other analyses, such as for the determination of the
onset of instability [41). By usi ng the model of excitation of satellite beams
due to propagation of contrapropagating primary or pump beams, and
transmission gratings, so-called spatial dispersion curves for the onset of
instabilities leading to satellite beam formation have been derived. The
plots show the dependence of the minimum threshold gain as a function
of the angle between the pump and the spatial sidebands [41]. Dispersion
curves assuming predominantly transmission gratings and aided by re-
flection gratings have been also derived by Kukhtarev et al. [17]. Later
on in the chapter, we will provide the results of such dispersion curves
but using reflection gratings in the model, since it pertains more closely
to spontaneous pattern generation in photorefractive potassium niobate.

We would like to point out that pattern dynamics have been exten-
sively studied in a bidirectional photorefractive ring resonator assuming
transmission grating approximation and four-wave mixing in the active
photorefractive medium [42]. Spontaneous symmetry breaking, dynami-
cal oscillations, vortex formation and complex pattern development are
predicted for large Fresnel numbers. A photorefractive oscillator with a
stable resonator has been used to model a nonlinear dynamical system
in which transverse mode patterns have been observed [43].

3.3.3 Instability criterion and the dispersion relation

There is considerable work done on the onset of instabilities in a photore-
fractive medium with reflection gratings due to counterpropagation of
pump beams. The analysis of Sturman and Chernykh [44] assumes a
medium in which there is no energy coupling. Saffman et al. [45] has
performed a more detaijled analysis assuming both real and complex cou-
pling coefficients. Honda and Banerjee [39] have improved on their analy-
sis, by showing that pattern generation can occur even for purely energy
coupling.



h8 Chapter 8  Nonlinear Self-Organization in Photorefractive Materials

We now present the threshold condition for instabilities derived for
the experimental arrangement in [39] with the photorefractive crystal and
a feedback mirror. We use the relations in Eqs. (3.3)=(3.5) and substitute

CL',e' = Co,O' [1+ C11€xXp—jKer+c_; _yexpjKerl,c; = C; i/ Co,0
' (3.6)

where K is the transverse wavenumber and r denotes the transverseé
coordinate to get
(0702 ~ jky)ey = jAy(ey + ¢ * —cp — €_1)s
(a/aZ +jkd)c_1:i: = —JA’y % (Cl 3 C_q g i={ 05 P (f,,']'),
(d/0z + jRy)ey = jAy*(c; + ¢y *—cyp —C 1),

(3.7)

(d/0z — jkyle_y = — jAy(c; + c_1* —¢p —Cc_1),

where k; = K*/2k; and A = A(z) = ICol2 ICo 21112 + ICol*. Note that
since A is a function of 2, Egs. (3.7) cannot be solved analytically. However,
when the reflectivity of the feedback mirror is unity or the reflection from
the back surface of the crystal is considerable, we can approximate Alng
1/4 [39].

For the case of a feedback mirror placed behind the crystal, the
boundary conditions can be written as

01,71(0) i 0,
¢y (L) = exp( —ij(,l)cl(]_,),c‘l, (L) = exp(2jkgl)c-1 *(L)

(3.8)

where L is the crystal thickness and [ denotes the distance between the
photorefractive medium and the feedback mirror. The threshold condition
can be found using (3.7) and (3.8) and using the Laplace transformation
to solve. Assuming that the mirror is placed against the back surface of
the crystal, the “dispersion relation” can be written as

cos wL cos kyL + (v /2w) sin wL cos kyL (3.9)
+ (ky/w)sinwL sink,L = 0,

where we have assumed the coupling constant ~ to be purely imaginary
(y = = jv) and w? = k3 — \2/4. Figure 3.6 shows the dispersion curve
for this case. When vy is just above the threshold for spatial sideband
generation, the direction of the sidebands will correspond to %, which
gives the minimum of the dispersion curve. For other mirror Jocations
the angle between the carrier and the spatial sidebands decreases as
shown in [23, 39].
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FH;;{‘ul‘e 3.6: Threshold condition assuming purely energy cmlph}“‘i :.ml-lli“;“
mirror feeflback. Mirror is located at the back surface of the sample. (S0UTe® &
[39]. Reprinted with permission.)

3.3.4 Nonlinear eigenmodes in the steady state

The formulation stated above through Egs. (3.3-3.5) can also be used to
study the exact spatial behavior of the carriers (Coﬂtl'apl")pagating p\%ﬂ\pS)
and the spatial sidebands. In the steady state, the spatial evolution of
the carriers and the spatial sidebands lying on 2 gcattering ring can be

studied by solving the system of equations [46-481

2 ‘3]
Y C"’"C:’ECJ"/HEC"\ * ‘EC\ (3.10)

Fhl

J ) ; i

Jhl

LiCi —~ Ean"l‘(‘:/ =y

where we have assumed the optical properties of the photorefractive mate-

rial to be isotropic. As seen from Ea. (3.10), coupling will oceur only

between waves whose transverse wavevectors satisfy the general relation

K, + K; = K, + K;. An example of a set of contrapmpﬂg‘(‘ti“g pumps an.d
a set of six forward and backward propagating scattered gidebands 18
shown on the transverse K-plane in ¥ig. 3.7. It can be shown that seven
different types of couplings may occur. For example, Krr = 0, K =K *
K; couples the main forward traveling beam with three waves that are
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Figure 3.7: Transverse k-vectors of hexagonally related scattered WElVes:;_/l i
regard to that of the forward- ang backward-propagating beams. Two 8¢

hexagonally related Scattered beams are shown.

hexagonally related. The interaction K; = —K;, K;, = —K; couples gets 0
hexagonally related waveg together. i
In what follows, we assume a geometry identical to the experime? ok
arrangement in [16] with only the unmatched crystal and no feedb_ﬂrs
mirror. Using Eq. (3.10) g a model, the spatial evolution of the cart® g
and the sidebands haye been analyzed for the case when there are
sidebands symmetrically distributed on the scattering ring [47, 48].
preliminary results which were performed using a purely imaginary o
shows the general nature of the “modes” in the steady state that can ¥ A
within the interaction region in the photorefractive material. These mod®
show the permissible valyeg of the phase difference between the PumS
and the sidebands at the front surface of the material for different valu®
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of the gain barameter proportional to y. Furthermore, one can simultane-
ously get the Spatial variations of the contrapropagating pumps and the
spatial sidebands, assumed equal in magnitude for simplicity. The results
therefgre define the conditions needed for self-organization of the laser
beam intp 5 Scattering ring, starting from fanning noise in the material.
.However, 1t turns out that the ratio of scattered to pump intensities both
n thg forward and the backward directions are not exactly similar o
SXperimentally ohseryed results [16].

e would like tq point out that a simple time evolution simulation
to illustrate the basic principle of the formation of the scattering ring and
hexagon formation can be pérformed by starting from the model shown
III’;EQS (3.3)~(3.5) and even assuming a constant (intensity independent)

aginary coupling constant, constant amplitudes for the interacting
iF;uTnDS apd Spatial sidebands in the photorefractive material, and assum.
fargm? thin Sample [46]. Taking an initial linear scattermg from beam
= ng, th? evolution of the spatial sidebands into a scatteru?g co'ne and

entually ing, hexagonal pattern in the far-field is shown in 172 2

§=0.02, (=20

increasing time
t/t=0.1, 5.7, 16.8, 33.4

SCata.& Time evolution of scattering around a circle, showing the growth
2 fering ring and eventual formation of the hexagonal spot pattern. The

e “oupling parameter Q showing coupling between hexagonally pe.lated
Seatper, e Scattering ring and the pump is taken to be 20,.anc.i the linear
I8 taq g Coefficient from the pump (to initiate the self-organization process)
"o be 0,02 1461
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The plots ‘-?hOW that the energy scattered into the ring as the first stage
of the self-organization process essentially later redistributes into the
hexagons. The plots are quantitatively modified slightly if transmission
gratings are also incorporated into the simulations. All simulation results
are in qualitative agreement with experimental observations [16]. If ome
Tnonitors the minimum value of the gain needed for the onset of instabilit-
ies as a function of the linear scattering parameter, it is observed that
‘Fhe threshold gain decreases sharply with increasing initial linear scattex™
ing, as expected, and tends to slightly decrease for very high values of
the scattering parameter. This decrease can be attributed to the fact that
excessive linear scattering tends to deplete the pumps of their initial
energy, thus inhibiting the formation of reflection gratings and eventual
transfer of pump energies into the spatial sidebands. This simple simula-
tion also demonstrates the justification for looking for exact spatial €igen=
modes which depict the spatial variation of the pumps and the scattering
ring as the first stage of the self-organization process.

As stated in the preceding discussion, the discrepancy between nu-
merical simulations for the nonlinear eigenmodes and experimental re-
sults of the energy scattered into the ring and eventually into the hexagon
can be resolved by assuming a complex coupling constant. Possible reasons
for the nonideal phase of the coupling coefficient are as follows. As in any
photorefractive material, the contribution to photorefractivity can come
from both diffusion and photovoltaic contributions. While diffusion creates
a space-charge field which is out of phase with the intensity pl‘Oﬁle-
photovoltaic effects give rise to space-charge fields which are in phase
with the intensity [49]. In general, therefore, an arbitrary phase difference
may exist. Furthermore, even for a purely photovoltaic material, it has
been shown that there can exist a phase difference between the intensity
grating and the fundamental spatial frequency component of the space-
charge field, for large modulation depths. This can also give rise to &
complex coupling coefficient [50].

Starting from Eq. (3.10) and setting y — ¥ €xp Jd with

Cip =S (@exp(—JK;; * ryexp(Fjmz | L)exp(jo;;(2)) (3.11)
we can derive the spatial evolution equations for the amplitudes and
phsaes of the interacting waves. If we assume that the amplitudes and

phases S, -, &; -, 1,i' # 0 of the interacting waves on the scattering ring are
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identical for simplicity, we get after extensive algebra, coupled differential
equations which have the functional forms [51]

385/92 = (y/1)Fy[S3,82,82,52b,c,,N]1 — N8S2,
08%/0z = (y/I)F,[S3,5%,82,52b,c,0,N] + 883, (3.12)
9b/dz = (y/I)F,[S%,5% 82,S%b,¢,0,N] + w/L,

where
b=d¢; — by +m2/L,c =y — by — w2/L (3.13)

The corresponding equations for Sgr’]«, ¢ can be found by interchanging
the primed and unprimed variables, interchanging b and ¢ in the above
equations and replacing L by —L. In Eq. (3.12), I is the incoherent intensity
and we should point out that Eq. (3.12) is valid assuming up to third-
order interactions. The constant d is a linear scattering parameter. N is
the number of interacting waves on the scattering ring, taken here to be
equal to 72. The exact expressions for F; in (3.12) are given in [47, 48,
51]. Conservation rules for waves interacting through the formation of
reflection gratings hold, and Eq. (3.12) is solved numerically assuming
boundary conditions pertinent to the front and back surfaces of the crystal
which generate the counterpropagating waves in a truly mirrorless config-
uration.

The numerical results (not shown here) show the existence of multiple
eigenmodes which are possible in the photorefractive medium. Each eigen-
mode is characterized by a value of 5(0) [assumed equal to c(0)] and ¢,
and is the locus of permissible solutions on the 6(0) — ¢ plane. If the
forward and backward scattering ratios, defined as the fraction of the
pump energy scattered onto the ring, are monitored, it follows that by
relaxing the condition on ¢, namely, making it arbitrary, it is possible to
attain values similar to experimental observations. For instance, for a
value of ¢ = 230° about 40% of the energy is scattered into the ring in
the forward direction, with about 30% in the backward direction, in close
agreement with experimental observations [16]. The fact that a complex
coupling constant is required to achieve the expected forward and back-
ward scattered energies corroborates the fact that the ideal phase differ-
ence (namely 270°) between the intensity grating and the induced
refractive index profile is probably changed due to contributions from
diffusion from the finite modulation depth of the intensity grating, as
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explained in the preceding discussion. The phase difference between the
pump and the sidebands at the front surface is close to 270° for this case,
which implies phase modulation of the profile of the total beam at this
plane (and also at the exit plane), with amplitude modulation in the center
of the photorefractive material. The analysis also enables us to track the
exact spatial evolution of the pumps and the spatial sidebands; this is
shown in Fig. 3.9. We would also like to point out that agreement between
theory and experiment is only observed for the above value of ¢, which
explains why self-organization is not observed when the experiment is
performed with the c-axis of the crystal turned in the reverse direction
[16].

Finally we would like to point out other related analytical work in
the area of transverse instabilities. The effect of crystal symmetry on the
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Figure 3.9: Spatial variation of the forward- and backward-scattered and
main beam amplitudes during propagation through the crystal.
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formation and rotation of hexagonal scattering patterns in photorefractive
materials has been discussed by Dimmock [52].

For the orthorhombic, C,,, symmetry of the KNbO; crystal, the two
crystallographic planes perpendicular to the a- and b-axes are planes of
reflective symmetry and the c-axis is a two-fold rotation axis. If we con-
sider that the incident laser beam in Fig. 3.1 is polarized along the a-
axis, and that the laser beam, and its reflected beams are directed exactly
along the c-axis, then the experiment will also possess the C,, symmetry.
Namely, it is invariant with respect to twofold rotations about the ¢-axis,
and reflections in the two symmetry planes. Such a configuration can
show no right- or left-handedness. The constraints of symmetry on the
possible rotations are shown in Fig. 3.10. Let K, and K, represent the
transverse K vectors of the laser beam with respect to the crystallographic
c-axis direction. If the crystal reflection planes are perpendicular to the
c-axis then K and K, are proportional to A6}, and A0, If the laser beam
propagates parallel to either of the two symmetry planes the orthorhombic
symmetry is preserved and no rotation can occur. It is only when the laser
beam propagates in a direction corresponding to one of the four quadrants
that predictable and stable rotation is allowed. Figure 3.4 shows how the
direction of rotation experimentally depends on the beam direction. This
is not exactly what is predicted in Fig. 3.10. The discrepancy can be
explained by postulating additional asymmetries in the material, and

Figure 3.10: Dependence of rotational sense on beam direction.



66 Chapter 3 Nonlinear Self-Organization in Photorefractive Materials

misorientations of the front and back surfaces with respect to the c-axis
of the crystal. The effect of orthorhombic anisotropies of the index of
refraction and the electrooptic coefficients has been discussed in detail
in [52].

Sandfuchs et al. have determined the instability criteria for the case
when a voltage is applied across the photorefractive material, and assum-
ing reflection gratings and finite modulation index for the intensities [53].
For related work in Kerr media, the reader is also referred to [54-56].

3.3.5 Self-phase conjugation

As described in Section 3.2, interactions initiated by incident beams Co1
and supported by internal reflections Cy, ;- eventually generate C_; 5
[17]. Using equations analogous to Eq. (3.10) for the interfering waves
and in the steady state we can write, approximately [46],

L’C_ =~ o 'C”)LI,CI = . C »
¢ 1 rLO, 1 (4] el ny ,'1 0 (314)
no, -1 *¥CoCT*, ng,1 = ¥CoCr*.

Using the preceding relations, the phase conjugate intensities / ; ;- can
be found as

Il' 2 TRI””(.IZ 2/(1 - R)z(llin,c ar IOillc)z;I»l e Rll (315)

Oinc

where Iy;,. o,,. are the input intensities of the waves 1 and 0; 7 and R
represent the transmittivity and reflectivity of the interface, respectively.
The derivation above can be modified to include the effects of transmission
gratings as well. A detailed description of the evolution of the conjugates
is important and will be performed in the future, especially in light of
recent experimental observations that the time dynamics of the different
phase conjugates formed are different and could hence originate from
transmission or reflection gratings.

3.3.6 Model of hexagonal formation based on
transverse electrical instability

In what follows, we will discuss the contribution of electrical instabilities
to the formation of hexagonal structures. An adequate description of self-
organized pattern in KNbO,; and other thick photorefractive materials
includes material equations (like diffusion-drift model) and Maxwell’s
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equations. Both material and optical equations are nonlinear and are
potentially capable of describing formation of spatial-temporal patterns.
As an example, we can mention the problem of the holographic subharmonic
[57], observed during self-diffraction of two beams with slightly different
frequencies, and with an external electric field in Bi,5SiO,, crystals. The
appearance of an additional beam between intersecting “pump beams” was
originally explained by optical nonlinearities [568]. Laterit wasrealized that
instabilities of material equations, like period doubling, may lead to forma-
tion of a subharmonic component in the space-charge field and in the refrac-
tive index [59]. Similar trends are visible in the explanation of hexagon
patterns in the thick photorefractive materials.

All previous explanations of pattern formation in photorefractive crys-
tals were based on instabilities of optical equations (Maxwell’s equations)
where material equations play only an insignificant role. Only recently
it was realized that photogalvanic currents may be responsible for contrast
enhancement, and may result in space-charge instabilities [50]. Quantita-
tively, formation of the spatial patterns due to photogalvanic current may
be explained taking into account the relation V - J = 0. This equation
implies that the current has a vortex structure and forms closed loops.
Detailed calculations of the transversal structure caused by photogalvanic
nonlinearity is beyond the scope of this discussion. The ansatz that pho-
togalvanic instabilities lead to transverse patterns of the E-field and re-
fractive index lets us discuss experimental results in the near field.

Transversal modulation of the refractive index of a thick photorefrac-
tive crystal may be regarded as recording of a bunch of optical channels
or waveguides. As was shown in [60], modulation of the refractive index
may be visualized in the near-field as optical channeling. We can thus
model the transversal modulation of the dielectric constant by the function

glx,y) = By + £, cos K x + & cos(A,y + ¢) (3.16)

where g, denotes the average value of the permittivity, and ¢,,, are the
amplitudes of the modulation along the transverse x- and y-axis, with
wave numbers K, K, and proper phase shift ¢. Introducing the function
&(x,y) in Maxwell’s equations, we can get the following result for the near-

field intensity:
Ix,y) = Iyl + e, (L, /\)?sin®(mhz /2L )cosK x
+ g,(L,/\)?sin®(whz /2L cos(K,y + o)

(3.17)



68 Chapter 3 Nonlinear Self-Organization in Photorefractive Materials

where L, = 2w/K,, and \ is the wavelength. The solution [Eq. (3.17)]
is valid for small modulation and includes longitudinal modulation with
the periods

Zpy = 2LZ, /X, (3.18)

X,y

We can see that Eq. (3.17) also describes contrast inversion. As de-
scribed before, for experimental values with KNbO, (A = 0.514 pm, L, =
L, = 30 pm), we can get for longitudinal period z, = 2z, = 0.49 cm that
is close to the experimental value of 0.5 em [16]. l

We would like to reiterate that the explanation of hexagonal struc-
tures by Talbot effect imaging is valid only for optically thin gratings,
where Talbot effect description during propagation in free-space is justi~
fied. In our case we have used a thick erystal (1 cm thick) and we should
use an adequate model of thick holographic gratings. The channeling
effect is pronounced for thick gratings, and naturally describes the effect
of contrast inversion. In contrast to Bragg diffraction that normally needs
coherent light, channeling may be observed also in incoherent illumina-
tion.

3.5 Conclusion

We have summarized, using minimal mathematics, some important as-
pects of an area which is complicated for two reasons: (1) because of the
nonlinear and spatiotemporal nature of the problem, and (2) because the
response of a photorefractive material to incident light is a complicated
phenomenon, governed by a set of nonlinear coupled differential equa-
tions. Wherever possible, experimental results have been quoted or re-
ferred to to assure readers that there is some connection to reality behind
the complicated mathematics. The list of potential applications given in
the Introduction is also meant to excite the reader to future possibilities.
We hope the summary of self-organization in photorefractives, as pre-
sented, will interest readers to undertake the challenging and unfinished
work in the area. Finally, we have tried to compile the important refer-
ences in the general area, and although undoubtedly some have been
left out for brevity and due to oversight, cross-referencing should prove
valuable in finding all necessary citations to this rapidly growing field.
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