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S.ignal flow graphs are a viable alternative to block diagrammatic representation of a system. What makes 

SIgnal flow graphs attractive is that certain features from graph theory can be applied to the simplification 
and the synthesis of complex systems. 

100.1 Introduction 
--------------------------------------------------------------------------
T~e relationship between the input and output of a certain system can be represented in terms of a block . 
d1ag . ram. The block diagram represents the operator that operates on the lI1put to produce the output, 
and can be represented either in the time domain or in the Laplace domain for a time-dependent input 
;nd output. The relationship between the input and the output in the Laplace domain is called the transfer 
UI7~tion of the system. In this case, the input is the independent variable and the output is the dependent 

vanable. Sometimes, when there are intermediate dependent variables, the relationships between each 

?ther as well as the input(s) and output(s) can also be represented by block diagrams. Alternatively, 
I~stead of block diagrams, the dependent variables and the inputs can be denoted as nodes, and connec­
tIons Or paths between the nodes can denote the mathematical operator linking the two variables or 
nOdes. This is used to draw what is called a signal flow graph. A simple diagram representing the similarities 
between a block diagram and a signal flow graph is shown in Figure 100.1. 

~ Signal Flow Graphs for Feedback Systems 

In many systems, there is feedback (positive or negative) from the output to the input. Negative feedback 
m~kes a system more stable, while positive feedback causes a system to become unstable and is the 
pnnciple behind the operation of oscillators. Feedback is depicted in a block diagram through a feedback 
transfer function G(s) between the output and the input, as shown in Figure 100.2. Note that in this 
c~e, U(s) is the input, and the output X

2
(s) is fed back to the input through G(s). The input X I (s) to 

(s) can be expressed as 

XI(s) = U(s) - X 2 (s)G(s) (100.1) 

~ 
\!) 2005 ~86.7/051$O. 00+$ 1050 
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FIGURE 100.1 Connection between a block diagram and a signal How graph. 
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FIGURE 100.2 Connection between a block diagram and a signal How graph for a system with negative feedback. 

where 

(100.2 ) 

The same is dep icted in the signal flow graph drawn on the right. Note that upon manipulating Equation 
(l00. 1) and Equation (100.2), a direct relationship can be found between the input U(s) and the output 
X 2 (s) as 

H(s) 
X (s) = U(s) = H U(s) 

2 l+G(s)H(s) ,,/ 
(100.3) 

In other words, the feedback system represented by the block diagram in Figure 100.2 can be reduced 
to a block diagram similar to Figure 100.1, where the input is now U(s) and the transfer function relating 
the output X 2 (s) to the input is now H c,,(s), defined in Equation (100.3). This is shown in Figure 100.3. 
The equiva lent signal flow graph also reduces to a form similar to Figure 100.1, with X\(s) replaced by 
U(s) and H(s) replaced by H eq (s), as shown in Figure 100.3. This also suggests that in a signal flow 

graph, it may be possible to reduce the number of nodes through a systematic node elimination procedur 
This is faci litated through using Mason's theorem for reduction of systems, to be described below. 

In general, signa l flow graphs may be more complicated and comprise nodes, paths, and loops. An 
example of a feedback loop appears in the signal flow graph of Figure 100.2; however, self-loops are pos ibl 
as well. An exam ple of a more complicated signal flow graph involving many loops is shown in Figure 
10004. This signal flow graph corresponds to the set of equations 

x 2(S) = X\(s)H I (5) + X 2(5'fJ 2(S) , (lOOA) 

~ Heq(s) ~ 
U(s) X2(s) 

• •• 
Block Diagram Signal Flow Graph 

FIGURE 100.3 Red uced block diagram and corresponding signal How graph from Figure 100.2. 
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U(s) X1(s) V(s) 

- G1(s) 

FIGURE 100.4 A more complicated signal flow graph corresponding to the sy tern of equations showing feedback 
loops including self-loops. 

H(s) h(t)* 

• •• • • • 
X 1(s) x1(t) 

FIGURE 100.5 Equivalence between ignal flow graphs in Laplace and time domains. 

One can readily go from the et of equations to the signal flow graph and vice versa. 
In passing, we would like to point out that the econd of the relations in Equation (100.4) above can 

be rewritten in the form 

This implies that self-loop can be eliminated by dividing all incoming path ga ins by I - Gj(s), where 
G,(s) is the self-loop gain for the node X , . Other types of simplification of signal flow graphs, such as 
node elimination, are discussed later. We would like to remind readers that signal flow graphs can be 
drawn for signals depicted in either the Laplace domain or the time domain. The time domain equivalent 
of the signal flow graph in Figure 100.4 would involve the same nodes and loops, except that the nodes 
would be depicted as u(t),x l (t ),x2(t),y(t ), which are the inverse Laplace transforms of 
U(s),X I (S),X 2 (s),Y(s ), respectively, and the loops would correspond to operators in the time domain 

such as h ,(t),h/t),g l(t),g 2(t), which are the inverse Laplace transforms of H ,(s), H 2 (s),G I (S),G 2 (s), 

respectively. Figure 100.5 shows the equivalence between the signal flow graphs in the Laplace and time 
domains. It should be noted that multiplication in the Laplace domain corresponds to convolution in 
time, denoted as a ,. in Figure 100.5. 

For instance, if H,(s)=s, then h,(t) = d[8(t)]ldt, and it can be shown from the properties of convo­
lution that h ,(t)*x ,(t)=[d[8(t)]ldt] * x ,(t) = dx ,(t)ldt, so that the operator h,(t)*=dldt.If H,(s)=c, a 
constant, then hi (t)* = c, which is the same multiplicative constant. 

100.3 Reduction of Signal Flow Graphs 

We now enunciate Mason's theorem for reduction of a signal flow graph. It states that the equiva lent 
transfer function from input U(s) to output yes) can be written as 

(J00.5) 

where 

(100.6) 
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is the determinant of the feedback configuration. The L, s are loop gains; I, L
J 

i the urn of all I op 
ga ins; I,' LkL) is the sum of all pairs of different non touching loop gain, etc. Two loop are nontouching 
if they have no nodes in common. The P, s are the gain of direct transmittances from the input to the 
output. Also ~ , is the system determinant after we have excluded all loop that touch the Po path. 

As an example, we will demonstrate the use of Mason's theorem to find the equivalent tran fer functi n 
for the system shown in Figure 100.4. Here, I, L) =-GIH I +G 2, and all higher order urn in (100.6) 
are zero, so that ~ = 1 +GIHI -Gz. Also, PI = l.HIH 2 and 1= l, and there is only one direct path 
from the input to the output. Hence, using Equation (100.5), 

HH 
H (s)=Y(s)IU(s)= I z 

cq l -Gz +GIHI 

The reduced signal fl ow graph is shown in FigurelOO.6. 
In retrospect, Mason's theorem is equ ivalent to solving for the output yes) in terms of the (knm"ll 

input U(s) from a set of linear algebraic equations of the form AK = fl. According to ramer's rule, 

the solution for the j-th component of the vector K is Xj = Iv~ II~ , where the matrix Vj has ~ a it­

j -th column , and the co rresponding columns of yes) as its other columns. Upon applymg this to the 

example depicted in Figure 100.4, we see that the dependent variable XI'X 2,Y can be olved by fir-t 

rewr iting (100.4 ) in the form of a vector-matr ix equation of the type ~ =fl as 

the so lution fo r Y, using Cramer's rule is 

u 
o I HI 

o 0 

which yields the result for the equivalent transfer function identical to Equation (l00.7) above. 

(100. ) 

( 100.9) 

The reduction of the signal flow graph shown above using Mason's theorem can also be achieyed 
through a repeated node eliminatiol1 process. The rules of elimination are as follows. Assume that 'we 
would like to eliminate the node X 2' First, we need to eliminate the self-loop around X 2' The self-Io p 
of gain Gz is eliminated by dividing all incoming transmittances by l -G2 • This makes the transmittance 
from XI to Xz equal to H I I(l-Gz). Now, in the reduced signa l flow diagram, all nodes except.', 
are drawn, and all original branches not entering or leav ing X 2 are inserted. Finally, we add bran -h:s 
represen ting every possible path (in the signal flow diagram without self-loops) through X 3' For in tance, 
we can go from XI to XI through -HIGI 1(1 -G2 ),and XI to Y through H zGI /( l -Gz) . Theredu -ed 
signal flow graph is shown in Figure 100.7. 

A similar procedure can be used to eliminate the node X I . As before, it entails first removing the - If­
node at XI' wh ich makes the transmittance from U to XI equal to (1-Gzl/(l-G2 +HP,), pon 
now eliminating XI' the transmittance from U to Y is [(1 - G2)/(l - G2 + HIGI)) X [H2G/(l - GJl 

Heq(s) = H,H2/(1 - G2 + G,H,) 
U(s). ..Y(s) 

FIGURE 100.6 Equivalent reduced signal flow graph derived from Figure 100.4. 
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FIGURE 100.7 Reduction of the signal flow graph in Figure 100.4 through elimination of node X
2

• 

= H 2G/(l- G2 + H,G,), which is identical to the equiva lent transfer function H ,,/s) in Eq uation ( 100.7) 
derived using Mason's theorem. The re ulting signal flow graph is as shown in Figure 100.6. 

100.4 Realization of Transfer Functions 

Thus far, we have discussed procedure for simpli fying signa l flow graphs to derive the transfer function 
of the system. We wiD now turn o ur attention to synthesizing signal flow graphs given a particular transfer 
functio n. Using the H cc/(s) in Equation (l00.7) as an illustration, ass ume that 

( 100.10) 

Then 

(IOO.l1) 

As is often the case, the degree of the polynomial in the denominator is equal to or grea ter than the 
degree of the polynomial in the numerator. Then the degree of the polynomial in the denominator is 
defined as the order of the system, and is eq ual to the number of states of the system. We can therefore 
define two state variables X I (S),X 2(s) for the system, related through XI(s)= X/s)ls, or equivalently, 
X /s) = sX I (s) . In the time domain this implies that X

2
(1) = dX , (I) 1 dl ,where XI (t), X

2
(t) are the inverse 

Laplace transforms of X I (S),X 2 (s) , respectively. Conversely, XI(t) is the integraJ of XI(t) . 
For convenience, Equation ( J 00. J I) is reexpressed in the form 

( 100.12 ) 

Since this is a second-order system, one needs two integra tors. The integrator outputs are call ed 
XJs),X 2 (s) , and the integrator inputs are ca lled X I'(S),X

2
'(s), respecti vely, as shown in Figure 100.8. 

The second step is the reali za tion of the denominator in Equation ( 100.12). Since Maso n's theorem 
states that all loops that touch h~ve a t. = 1-r L" it is convenient to construct loops incorporating 
feedback which have a nod e In common, VIZ ., X I(S), and with feedback loop gai ns equal to 
-(al+bl-I)ls and -(a ,b, -b2 + 1)ls

2
, as illustrated by the dashed lines in Figure 100.9. Fina ll y, to 

construct the numerator, we ensure that all direct paths also pass through one node, viz., X I(S). The 
path gains are a 2 /s and a la 2 I S 2 , as illustrated by the dotted lines in Figure 100.9. 

• 
U 

• 
1/s 

~ . ~. 

X ' , 
1/s 

~. 

X, 
•• y 

FIGURE 100.8 First s tep in the realization of the transfer funct io n in Equat ion ( 100.1 2). 
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-(alb, - b2+ 1) 
~------------------------------------------~ , , , , , , 
i - (a, + b, - 1) i 
: ~--------------~ 

U: f : r a,a,-'! 1/, ~ F Xi 1/, .:' 

. _- J 
a2 

FIGURE 100.9 Signal flow graph for the transfer function in Equation ( 100.12). 

.. 
y 

The signal flow graph shown in Figure 100.9, also called Type I realization, is not unique. Type II L 
an alternate realization that assumes that all feedback loops and parallel path go through X 2'(5) rather 
than X\(s). Fina lly, Type III involves a realization that is based on first decomposing Equation (100.1_ ) 
into partial fractions in the form 

(100.1 ) 

by first factorizing the denominator. This yields a realization of the transfer function in terITl f 
parallel loops. In cases where the denominator has complex roots, it ca n be decomposed into partial 
fractions involving sums of terms as in Equatio n (l00.11) and Equation (100.13). Details can be found 
in Truxal (1972). 

100.5 Boundary Conditions and Signal Flow Graphs 

Signal flow graphs can be suitably adapted to incorporate initial conditions imposed on a certain state. 
For instance, assume that in the time domain, states x\(t),x/t) are related through the set of coupl d 
differential equations as 

(100.14 

where al'a 2 are constants. Equation (100.14) is the state variable formulation of a second order DE 
of the form d 2x / dt 2 + a \dx / dt +a

2
x = O. With the definitions x\ = x,x2 = dx\ / dt , this ODE an be 

rewritten as Equation (100.14). Note al 0 that Equation (100.14) can be recast in the form 

(100.15 

which is a special case of the vector ODE 

(100.16a 

Together with the output equation 
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1 "(0) I ',(0) 
1/s 1/s 

X{ Xi 
• • ~ 

~t t 1 
1/s Xl - a2 1/s 

... 
- al 

-1 

FIGURE 100.10 Signal flow diagram for realization of the system modeled by Equation (100.15 ). 

y=Cx+Du 
- -- -- (JOO. 16b) 

one can describe the behavior of the entire linear sy tern. 
Upon Laplace transforming Equation (100.14), we get 

sX, (s) + X 2(S) = x, (0), 

a 2X, (s)+(s +a,)X 2(S) = x 2(0). 
( 100.17) 

Similar to the way the signal flow graph from the transfer function in Equation (100.12) was realized, 
we can draw the signal flow diagram for Equation (100.l7), as shown in Figure 100.10. 

100.6 Conclusion 

We have sum marized the sa li ent points of signal flow graphs, their reduction, and their synthes is. As 
seen from the discussions above, they are an analogue to block diagrams in the ana lys is of linear systems. 
In some cases, signal flow graphs can give valuab le information about the controllability and observability 
of linear systems as well. Loosely speaking, a state is controllable if it can be changed by an app ropriate 
set of inputs. A state is observable if the output(s) depend on the particular state. However, fo rmal tests 
for controllability and observability can be made on the basis of the matrices A,B,C,D defined in 
Equation (100.16) above. This is outside the scope of this chapter. - - --
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