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S.1gnal flow graphs are a viable alternative to block diagrammatic representation of a system. What makes

a'gnal flow graphs attractive is that certain features from graph theory can be applied to the simplification
0d the synthesis of complex systems.

100.1 Introduction

The relationship between the input and output of a certain system can be represented in terms of a block
‘agram. The block diagram represents the operator that operates on the input to produce the output,
and can e represented either in the time domain or in the Laplace domain for a time-dependent input
and Output. The relationship between the input and the output in the Laplace domain is called the transfer
u”_“ion of the system. In this case, the input is the independent variable and the output is the dependent
Variable, Sometimes, when there are intermediate dependent variables, the relationships between each
?ther as well as the input(s) and output(s) can also be represented by block diagrams. Alternatively,
hstead of block diagrams, the dependent variables and the inputs can be denoted as nodes, and connec-
tions or paths between the nodes can denote the mathematical operator linking the two variables or
Nodeg, This is used to draw what is called a signal flow graph. A simple diagram representing the similarities
Ctween a block diagram and a signal flow graph is shown in Figure 100.1.

100.2 Signal Flow Graphs for Feedback Systems

" Many systems, there is feedback (positive or negative) from the output to the input. Negative feedback
m?kes a system more stable, while positive feedback causes a system to become unstable and is the
Frmdple behind the operation of oscillators. Feedback is depicted in a block diagram through a feedback
fansfer function G(s) between the output and the input, as shown in Figure 100.2. Note that in this
€ase, U(s) is the input, and the output X,(s) is fed back to the input through G(s). The input X,(s) to

() can be expressed as

Xl(s)=U(s)—X2(s)G(s) (100.1)
O R
O T 1001
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X,(s) X,(s)
—»  His [—» o———— >0
X,(s) X,(s) e
Block Diagram Signal Flow Graph

FIGURE 100.1 Connection between a block diagram and a signal flow graph.

U(S) X1(S) U(s) XI(S) XZ(S)
H(s)
B ~G(s)
Block Diagram Signal Flow Graph

FIGURE 100.2 Connection between a block diagram and a signal flow graph for a system with negative feedback

where

X,(s)= X, (s)H(s) i (100.2)

The same is depicted in the signal flow graph drawn on the right. Note that upon manipulating Equation

(l()(().l) and Equation (100.2), a direct relationship can be found between the input U(s) and the output
X,(s) as

H(s)
e S8 :
2(S) l+G(s)H(s)U(S) HoU6) g

In other words, the feedback system represented by the block diagram in Figure 100.2 can be reduced
to a block diagram similar to Figure 100.1, where the input is now U(s) and the transfer function relatin
’tli]}f outp'ut Xz(s? to the input is now Hml(s), defined in Equation (100.3). This is shown in Figure 100.38.

€ equivalent signal flow graph also reduces to a form similar to Figure 100.1, with X (s) replaced b
U(s) a.nd H(s) replaced by H,(s), as shown in Figure 100.3. This also suggests that lin a signal ﬂovt
?rljlph, it may be possible to reduce the number of nodes through a systematic node elimination procedure

is is fac1lltat<?d through using Mason’s theorem for reduction of systems, to be described below. ;
exal:; gleen(e;'cjll, )mgnal flow graphs may bc.more complicated and comprise nodes, paths, and loops. An
= wcﬁ A) a ffedback loop appears in tl:le sngna.l flow graph of Figure 100.2; however, self-loops are possible
e ThlnS e.xample of a more complicated signal flow graph involving many loops is shown in Figure

-4 signal flow graph corresponds to the set of equations

X,()=U(s)= X, (s)G,(s) ,
X,(5)=X,(9)H (s)+ X, (s)G,(s) , (100.4)

Y(s)=X,(s)H,(s).

—> Hegls) >
U(s) Xa(s)
Block Diagram Signal Flow Graph

Heq(s)

FIGURE 100.3 Reduced block diagram and corresponding signal flow graph from Figure 100.2.
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U(s) X1(s) Y(s)

~Gy(s)

FIGURE 100.4 A more complicated signal flow graph corresponding to the system of equations showing feedback
loops including self-loops.

H(s) h()*
X1(s) Xa(s) X4(t) Xa(t)
FIGURE 100.5 Equivalence between signal flow graphs in Laplace and time domains.

One can readily go from the set of equations to the signal flow graph and vice versa.
In passing, we would like to point out that the second of the relations in Equation (100.4) above can

be rewritten in the form

£ H,(s)
XZ(S)_Xl(S)l—Gz(S)

This implies that self-loops can be eliminated by dividing all incoming path gains by 1-G,(s), where
G,(s) is the self-loop gain for the node X, . Other types of simplification of signal flow graphs, such as
node elimination, are discussed later. We would like to remind readers that signal flow graphs can be
drawn for signals depicted in either the Laplace domain or the time domain. The time domain equivalent
of the signal flow graph in Figure 100.4 would involve the same nodes and loops, except that the nodes
would be depicted as u(t),x,(t),x,(t),y(t), which are the inverse Laplace transforms of
Ul(s), X ,(5), X ,(s),Y(s), respectively, and the loops would correspond to operators in the time domain
such as h(t),h,(t),g,(t),g,(t), which are the inverse Laplace transforms of H (s),H,(s),G,(s),G,(s),
respectively. Figure 100.5 shows the equivalence between the signal flow graphs in the Laplace and time
domains. It should be noted that multiplication in the Laplace domain corresponds to convolution in
time, denoted as a * in Figure 100.5.

For instance, if H (s)=s, then h (t)=d[6(t)]/dt, and it can be shown from the properties of convo-
lution that h (t)*x (t)=[d[6(t)]/dt]*x (t)=dx (t)/d1, so that the operator h,(t}x=d/dt If H (s)=c a
constant, then A, ()%= c, which is the same multiplicative constant.

100.3 Reduction of Signal Flow Graphs

We now enunciate Mason’s theorem for reduction of a signal flow graph. It states that the equivalent
transfer function from input U(s) to output Y(s)can be written as

H,(6)=Y()/Us)= Y PA, /A (100.5)

where

A=1-3 L+ ,LkL,—z lL,”L”L”+... (100.6)
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is the determinant of the feedback configuration. The L;s are loop gains; X L, is the sum of all loop
gains; Y’ L, L, is the sum of all pairs of different nontouching loop gains, etc. Two loops are nontouching
if they have no nodes in common. The P s are the gain of direct transmittances from the input to the
output. Also A, is the system determinant after we have excluded all loops that touch the P path.

As an example, we will demonstrate the use of Mason’s theorem to find the equivalent transfer function
for the system shown in Figure 100.4. Here, 2 L, =-G H +G, and all higher order sums in (100.6)
are zero, so that A=1+G H -G, Also, P,=1.H H, and A =1, and there is only one direct path
from the input to the output. Hence, using Equation (100.5),

H
H_(s)=Y(s)/U(s) = ——1--2
SS=Y($)IUG) oo (100.7)

The reduced signal flow graph is shown in Figure100.6.

In retrospect, Mason’s theorem is equivalent to solving for the output Y(s) in terms of the (known)
input U(s) from a set of linear algebraic equations of the form AX =B. According to Cramer’s rule,
the solution for the j-th component of the vector X is Xj=’l)]1/‘g‘ , where the matrix D; has B as its
J-th column, and the corresponding columns of Y(s) as its other columns. Upon applying this to the
example depicted in Figure 100.4, we see that the dependent variables X, X,,Y can be solved by first
rewriting (100.4) in the form of a vector-matrix equation of the type AX =B as

IS G ST e
R SRR [ e T
the solution for Y, using Cramer’s rule is
1 G, Ul |1 G, 0
Y=|H, 1-G, O|/|H 1-G = iteh U (100
T : ‘ R B T 2 -9)
OF e Rl o T :

which yields the result for the equivalent transfer function identical to Equation (100.7) above.

The reduction of the signal flow graph shown above using Mason’s theorem can also be achieved
through a repeated node elimination process. The rules of elimination are as follows. Assume that we
would like to eliminate the node X,. First, we need to eliminate the self-loop around X . The self-loop
of gain G, is eliminated by dividing all incoming transmittances by 1—G, . This makes the transmittance
from X to X, equal to H, /(1-G,). Now, in the reduced signal flow diagram, all nodes except X
are drawn, and all original branches not entering or leaving X, are inserted. Finally, we add branches
representing every possible path (in the signal flow diagram without self-loops) through X, . For instance,
wecan go from X, to X, through —HG,/(1-G,),and X, to Y through H,G, /(1-G,). The reduced
signal flow graph is shown in Figure 100.7.

A similar procedure can be used to eliminate the node X, . As before, it entails first removing the self-
node at X, which makes the transmittance from U to X, equal to (1-G,)/(1-G,+H,G,) . Upon
now eliminating X, , the transmittance from U to Y is [(1 = G,)/(1 = G, + H,G))] X [H,G,/(1 — Gyl

Heq(s) = HiHo/(1 - Gz + GyHy)
U(s) @ »® Y(s)

FIGURE 100.6 Equivalent reduced signal flow graph derived from Figure 100.4.




Signal Flow Analysis 100-5

Xi(8)  HG/1-G
TS = > i )

-H:G,/(1-Gj)
FIGURE 100.7 Reduction of the signal flow graph in Figure 100.4 through elimination of node X;.
= H,G,/(1 — G, + H,G,), which is identical to the equivalent transfer function Hn,(-‘) in Equation (100.7)

derived using Mason’s theorem. The resulting signal flow graph is as shown in Figure 100.6.

100.4 Realization of Transfel Functions

Thus far, we have discussed procedures for simplifying signal flow graphs to derive the transfer function
of the system. We will now turn our attention to synthesizing signal flow graphs given a particular transfer
function. Using the H,(s) in Equation (100.7) as an illustration, assume that

H(s)=s+a, H,(s)=a,, G (s)=s+b,,G,(s)=s+b, . (100.10)

Then

Y(s) a,s+aa
H, (s)=——=———_"22 "1 : 100.11
d U(s) s"+(a, +b ~s+(ab, —b, +1) ( )

As is often the case, the degree of the polynomial in the denominator is equal to or greater than the
degree of the polynomial in the numerator. Then the degree of the polynomial in the denominator is
defined as the order of the system, and is equal to the number of states of the system. We can therefore
define two state variables X, (s),X,(s) for the system, related through X, (s)=X,(s)/s, or equivalently,

XZ(S) =SX|(S) . In the time domain this implies that Xl(t) =dxl([)/d[ , where X,([),Xl(t) are the inverse
Laplace transforms of X, (s),X,(s) , respectively. Conversely, x,(t) is the integral of x,(t).
For convenience, Equation (100.11) is reexpressed in the form

Y(s) a,/s+aa, /s’
H, (s)=—== 2 =2 . 100.12
" UG 14(a,+b -1)/s+(ab, —b, +1)/5° !

Since this is a second-order system, one needs two integrators. The integrator outputs are called
X ,(s),X,(s) , and the integrator inputs are called X,'(s),X,'(s) , respectively, as shown in Figure 100.8.

The second step is the realization of the denominator in Equation (100.12). Since Mason’s theorem
states that all loops that touch havea A=1- L;, it is convenient to construct loops incorporating
feedback which have a node in common, viz., X, (s), and with feedback loop gains equal to
—(a,+b,—1)/s and —(ab,—b,+1)/s", as illustrated by the dashed lines in Figure 100.9. Finally, to
construct the numerator, we ensure that all direct paths also pass through one node, viz., X (s). The
path gains are a, /s and aa,/s’, as illustrated by the dotted lines in Figure 100.9. :

FIGURE 100.8 First step in the realization of the transfer function in Equation (100.12)
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FIGURE 100.9 Signal flow graph for the transfer function in Equation (100.12).

The signal flow graph shown in Figure 100.9, also called Type I realization, is not unique. Type II is
an alternate realization that assumes that all feedback loops and parallel paths go through X,'(s) rather

than X (s). Finally, Type III involves a realization that is based on first decomposing Equation (100.12)
into partial fractions in the form

Hm(s)zz a,/(s+b), b eR (100.13)

by first factorizing the denominator. This yields a realization of the transfer function in terms of
parallel loops. In cases where the denominator has complex roots, it can be decomposed into partial

fractions involving sums of terms as in Equation (100.11) and Equation (100.13). Details can be found
in Truxal (1972).

100.5 Boundary Conditions and Signal Flow Graphs

Signal flow graphs can be suitably adapted to incorporate initial conditions imposed on a certain state.

For instance, assume that in the time domain, states x,(t),x,(t) are related through the set of coupled
differential equations as

dx (t)/dt =x,,

(100.14)
dx,(t)/dt =—a,x, —ax,

where a,a, are constants. Equation (100.14) is the state variable formulation of a second order ODE
of the form d?x /dr? +a,dx/dt +a,x=0. With the definitions x, =x,x, =dx, /dt , this ODE can be
fewritten as Equation (100.14). Note also that Equation (100.14) can be recast in the form

e S L (100.15)
dt x_, _ag_ —al X2 ’ .
which is a special case of the vector ODE

dx /dt = Ax+ Bu (100.16a)

Together with the output equation
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x4(0) X5(0)

1/s 1/s

~

e X

1/s X; -ap r 1/s Xz

A )
|
&

FIGURE 100.10 Signal flow diagram for realization of the system modeled by Equation (100.15).
Z=g.§+91_l (100.16b)

one can describe the behavior of the entire linear system.
Upon Laplace transforming Equation (100.14), we get

sX,(s)+ X, (s) = x,(0),
100.17
a:XI(s)+(s+al)X2(s)=xl(()). ; )

Similar to the way the signal flow graph from the transfer function in Equation (100.12) was realized,
we can draw the signal flow diagram for Equation (100.17), as shown in Figure 100.10.

100.6 Conclusion

We have summarized the salient points of signal flow graphs, their reduction, and their synthesis. As
seen from the discussions above, they are an analogue to block diagrams in the analysis of linear systems.
In some cases, signal flow graphs can give valuable information about the controllability and observability
of linear systems as well. Loosely speaking, a state is controllable if it can be changed by an appropriate
set of inputs. A state is observable if the output(s) depend on the particular state. However, formal tests
for controllability and observability can be made on the basis of the matrices A BC,D defined in
Equation (100.16) above. This is outside the scope of this chapter. i o
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