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2 Scalar EM Beam Propagation 
in Inhomogeneous Media 

2.1 INTRODUCTION 

In the previous chapter, we reviewed some of the mathematical preliminaries that will be useful 
later on in the text. In this chapter, we discuss some of the basic concepts of scalar wave propaga­
tion, and discuss an important numerical method, called the beam propagation method (BPM), to 
study propagation in linear media and in media with induced nonlinearities. Furthermore, we also 
discuss propagation through induced gratings, both transmission and reflection type, in order to 
assess energy coupling between participating waves. Finally, we introduce readers to an important 
characterization method, called the z-scan method, which is often used to determine the focal length 
of an induced lens. 

2.2 TRANSFER FUNCTION FOR PROPAGATION 

For simplicity, we consider the scalar wave equation 

and substitute 

a
2
E _V2V 2E=O 

at2 

E(x,y, z, t) = Re{E,(x, y,z) exp[j(wot - koz)]} 

with roJko = v. The quantity E, is related to the phasor Ep according to 

Ep(x,y,Z) = E,(x, y,z) exp(- j/coz) 

(2.1) 

(2.2) 

(2.3) 

and we will use one or the other notation according to convenience. Substituting Equation 2.2 into 
Equation 2.1 and assuming that E, is a slowly varying function of z (the direction of propagation) in 

the sense that la2E,laz'I/laE,lazl« /co, we obtain the paraxial wave equation [I] 

2 .,- aE, _ n2E 
jl{.°az-V.l e (2.4) 

where vi denotes the transverse Laplacian. Equation 2.4 describes the propagation of the envelope 
E,(x,y,z) starting from the initial profile E, I ,=0 = E,o(x, y). 

Equation 2.4 can be solved readily using Fourier transform techniques. Assuming E, to be 
Fourier transformable, we can employ the definition of the Fourier transform as in Equation 1.15 

E,(k"ky;z) = ~x.y{E,(x,y,z)} = f E,(x,y, z) exp(jkxx + jkyy)dxdy (2.5) 

11 
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and its properties to transform Equation 2.4 iuto the ordiuary differential equation (ODE) 

(2.6) 

We can easily solve Equation 2.6 to give 

(2.7) 

where E,o(kx, k;J is the Fourier transform of E,o(x, y). We c,!-n interpret Equation 2.7 in the following 
way: Consider a linea~ system with an input spectrum of E,o(k" k;J at Z = 0 where the ontput spec­
trum at Z is given by E,(kx, ky; z). The spatial frequency response of the system, which we will call 
the paraxial transfer function for propagation is then given by 

E, _ H(k k' ) = j(kx +ky)z - { , '} 
- - .U J'Z exp 
E,o 2k" 

(2.8) 

As we will show later, in the split-step BPM, we model propagational diffraction by means of the 
transfer function for propagation derived above. For more exact calculations, the nonparaxial trans­
fer function can be used. This may be derived starting from the nonparaxial wave equation, but will 
not be presented here for the sake of simplicity. 

Incidentally, the inverse Fourier transform of the transfer function for propagation yields the 
impulse response for propagation. Starting from the paraxial transfer function for propagation 
which resembles a complex Gaussian, the inverse Fourier transform is a complex Gaussian as well, 
and has the form 

h(x,y,z) = ;~ exp [ - j(X'2: i)ko 1 (2.9) 

This, when convolved with the initial beam profile, yields the profile of the diffracted beam in the 
spatial domain directly. This convolution integral is in fact the Fresnel diffraction formula. 

2.3 SPLIT-STEP BEAM PROPAGATION METHOD 

If we wish to consider propagation in a material where the propagation constant or equivalently 
the refractive index is a function of position, either due to profiling of the material itself (such as 
a graded index fiber or a grating) or due to induced effects such as third order nonlinearities, the 
paraxial wave equation changes to 

oE, = _I_V' E _ 'l!.n" E 
oz 2jk,,"' J .. , 

(2.10) 
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The quantity An is the change in the refractive index over the ambient refractive index no = c/v, 
where c is the velocity of light in vacuum. Equation 2.10 is a modification of Equation 2.4 and 
can be derived from the scalar wave equation when the propagation constant or equivalently the 
velocity of the wave is a function of (x, y, z) explicitly as in gratings or fibers, or implicitly such as 
through the intensity dependent refractive index. An alternative, though heuristic, way to justify 
the presence of the additional term on the RHS of Equation 2.10 is to note that in the absence of 
diffraction (the first term on the RHS), the solution of the equation is of the form E, oc exp[-jAnk.z], 
which explicitly shows the additional phase change due to propagation in the perturbed refractive 
index. 

The paraxial propagation equation (2.10) is a partial differential equation (PDE) that does not 
always lend itself to analytical solutions, except for some very special cases involving special spatial 
variations of An, or when as in nonlinear optics, one looks for particular soliton solution of the result­
ing nonlinear PDE using exact integration or inverse scattering methods. Numerical approaches are 
often sought for to analyze beam (and pulse) propagation in complex systems such as optical fibers, 
volume diffraction gratings, Kerr and photorefractive (PR) media, etc. A large number of numerical 
methods can be used for this purpose. The pseudo spectral methods are often favored over finite dif­
ference methods due to their speed advantage. The split-step BPM is an example of a pseudospectral 
method. 

To understand the philosophy behind the BPM, it is useful to rewrite Equation 2.10 in the 
form [2,3] 

(2.11) 

where D, S are a linear differential operator and a space dependent or nonlinear operator respectively 
(see, for instance, the structure of Equation 2.10). Thus, in general, the solution of Equation 2.11 can 
be symbolically written as 

E,(x,y,Z + Az) = exp[(D + S)Az]E,(x,y,z) (2.12) 

if D, S are assumed to be z-independent. Now for two noncommuting operators D, S, 

A A ( A A (1) AA , 

exp(DAz)exp(SAz) = eXPl DAz+ SAz + 2 [D,S](Az)' + ... J (2.13) 

according tu the Baker-Hausdorff formnla [2], where [D, S] represents the commutation of D, S. 
Thus, up to second order in Az, 

exp(DAz + SAz)!! exp(DAz)exp(SAz) (2.14) 

which implies that in Equation 2.13 the diffraction and the inhomogeneous operators can be treated 
independent of each other. 

The action of the first operator on the RHS of Equation 2.14 is better understood in the spectral 
domain. Note that this is the propagation operator that takes into account the effect of diffraction 
between planes Z and Z + Az. Propagation is readily handled in the spectral or spatial frequency 
domain using the transfer function for propagation written in Equation 2.8 with z replaced by Az. 
The second operator describes the effect of propagation in the absence of diffraction and in the 
presence of medium inhomogeneities, either intrinsic or induced, and is incorporated in the spatial 



Username: IP user at University of Dayton Book: Computational Methods for Electromagnetic and Optical Systems, Second Edition . 
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for 
reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. 
copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to 
the full extent of U.S. Federal and Massachusetts laws.

14 Computational Methods for Electromagnetic and Optical Systems 

Initial profile 
E,(x,y;z=O) 

I f,(k., ky, z) = 3"" {E, (x, y, z)) I 

1 

I E;(x,y,Z+Az)=3;,;tE,(k.,k,;Z+Az)) I 
1 

I E,(x,y,Z+Az)=E;(x,y,Z+Az)exp{SAz) I 
I 

FIGURE 2.1 Flow diagram for the BPM split-step method. 

domain. A schematic block diagram of the BPM method in its simplest form is shown in Figure 
2.1. There are other modifications to the simple scheme, viz., the symmetrized split-step Fourier 
method, and the leap-frog techniques; these are discussed in detail elsewhere [2]. 

2.4 BEAM PROPAGATION IN LINEAR MEDIA 

In this section, we will illustrate various cases where the BPM can be used to analyze propagation in 
inhomogeneous media. While most of the examples will be connected with beam propagation, we 
must point out to readers that the method cao be used to analyze pulse propagation as well, simply 
by replacing z in Equation 2.11 with t (time), and making the linear spatial transverse differential 
operator a similar differential operator in z. With this modification, Equation 2.11 can model the 
propagation of one dimensional longitudinal pulse through an optical fiber with arbitrary group 
velocity dispersion. For details, we refer the readers to Agrawal [2]. 

2.4.1 LINEAR FREE-SPACE BEAM PROPAGATION 

The propagation of Gaussian beams through free space cao be readily analyzed analytically using 
the transfer function of propagation. For a traditional scalar (or x- or y-polarized) Gaussian beam, 
E,(x, y; z = 0) is a Gaussiao function of the form 

E,(x,y;O) = Eo exp[ -a(x' + y')] (2.15) 

with a Fourier transform 

- ( 1£) [(k' + k') 1 E,(k.,ky;O) = Eo a exp - x 4a y (2.16) 
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where 0: may be complex. Hence, using Equation 2.8, 

whose inverse transform is a Gaussian in transverse spatial dimensions: 

E ( .) = jko E (.>t.) [jkO(x
2 

+ y2)] ,x,y,z 2 0 exp 2 
rtq 0: q 

Equation 2.17 defines the well-known q-parameter of the Gaussian beam: 

·k 
q=z+~ 

20: 

15 

(2.17) 

(2.18) 

(2.19) 

If the initial Gaussian beam has waist wo and plane wavefronts, 0: = lIw~ and q = z + jZR, where 
ZR = kow~!2 is commonly referred to as the Rayleigh range of the Gaussian beam. Upon simplify­
ing Equation 2.18 using Equation 2.19, we get the standard expression for the diffracted Gaussian 
beam profile as 

E (x y. z) = ~E exp[ (x
2 

+ y')] exp[ jko(x
2 

+ y')]e-jj(') 
, " w(z) 0 w2(z) 2R(z) 

(2.20) 

where 

Incidentally, if a Gaussian beam with initially plane wavefronts passes through a (thin) lens of focal 
length J, the latter introduces a quadratic phase curvature which can be accommodated by multiply­
ing the initial Gaussian with a complex exponential exp[jko(x2 + y2)!2fl. In this case, the scalar optical 
field immediately behind the lens (z = 0+) can be written in the form as in Equation 2.15 above, but 
where 0: is redefined as 

(2.22) 
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FIGURE 2.2 Diffraction of a Gaussian beam during free-space propagation: (a) profile at z = 0 (plane 
wavefronts assumed) and (b) profile at Z = ZR' where ZR is the Rayleigh range of the original Gaussian beam. 

The paraxial propagation of a Gaussian beam through an optical system involving translation and 
lensing can be equivalently studied in terms of the variation of the q-parameter. For instance, due 
to propagation in air through a distance z alone, the change in the q-parameter can be readily found 
from Equation 2.17 as 

(2.23a) 

On the other hand, if a Gaussian beam is incident on a lens of focal length f, the change in the q-parameter 
can be readily found from Equation 2.18 and the phase transfonnation by the lens given above as 

1 1 1 
--=---
qnew qold f 

(2.23b) 

Equation 2.23a and b will be later used to analyze propagation of Gaussian beams through media 
which have a distributed lensing effect, such as a nonlinear medium. 

We now demonstrate the application of BPM to Gaussian beam propagation through free space. 
In this case, the inhomogeneous operator is zero, and propagation from a plane z = 0 to arbitrary 
z can indeed be performed in one step in this case. However, in the example we provide, we use the 
split-step method to convince readers that the result is identical to what one would get if the propaga­
tion was covered in one step. In Figure 2.2, we show the profile of a diffracted Gaussian beam after 
propagation through free space, and the results agree with the physical intuition of increased width 
and decreased on-axis amplitude during propagation as well as the analytical results in Equations 
2.20 and 2.21. 

2.4.2 PROPAGATION OF GAUSSIAN BEAM THROUGH GRADED INDEX MEDIUM 

A graded index medium has a refractive index variation of the fonn 

(2.24) 

where no denotes the intrinsic refractive index of the medium, and n(2) is a measure of the gradation 
in the refractive index. 

In this case, the operator S becomes 

(2.25) 
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FIGURE 2.3 Contour plots showing periodic focusing of an initial Gaussian profile. 

Propagation of a Gaussian beam in a medium with a graded index profile is shown in Figure 2.3. 
The contour plots show the initial (Gaussian) beam profile, the beam profile where the initial 
Gaussian attains its minimum waist during propagation before returning back to its original shape 
again, due to periodic focusing by the graded index distribution. Note that there exists a specific 
eigenmode (a Gaussian of a specific width, related to the refractive index gradient) for which the 
beam propagates through the material without a change in shape as a result of a balance between 
the diffraction of the beam and the guiding due to the parabolic gradient index profile. The con­
tour plot of such a beam is shown in Figure 2.4. Analytical expressions for the Gaussian beam 

60 

50 

40 

30 

20 

10 

10 20 30 40 50 60 

FIGURE 2.4 Fundamental mode in a graded index fiber. 



Username: IP user at University of Dayton Book: Computational Methods for Electromagnetic and Optical Systems, Second Edition . 
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for 
reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. 
copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to 
the full extent of U.S. Federal and Massachusetts laws.

18 Computational Methods for Electromagnetic and Optical Systems 

during propagation through a graded index medium and for the eigenmode can be derived using 
the q-parameter of the Gaussian beam and the ABeD laws of q-transformation, but will not be 
pursued bere for the sake of brevity. 

2.5 BEAM PROPAGATION THROUGH DIFFRACTION 
GRATINGS: ACOUSTOOPTIC DIFFRACTION 

The beam propagation algorithm bas been applied to the propagation of a beam through a grating, 
and can be also used to analyze the case wbere the grating is a sound field. In what follows, we give 
an example of the use of BPM to analyze diffraction of light by an acoustooptic cell in which a trav­
eling wave of sound causes a cbange in the refractive index using a modified split-step technique. 
The modification consists of the fact that the inhomogeneity due to the refractive index grating is 
accomodated for in the spatial frequency domain as well. 

The perturbation I!.n in the case of sound induced gratings is a function of time and space: 

I!.n(X,Z, I) = Cs(x,z,l) (2.26) 

wbere C is an interaction constant (for details, see Karpel [4]) and s(x, Z, I) is the real sound ampli­
tude given by, 

S(x,Z,I) = .!.[S,(x,z)exp( - jKx)exp(jQI) + c.c.] 
2 

(2.27) 

where S, is the complex amplitude of the sound field that interacts with the light beam and is travel­
ing in the x direction, and c.c. denotes the complex conjugate. 

The quantities K and Q are the propagation constant and the angular frequency, respectively, of 
the sound field. Following Refs. [4,5], a snapshot of the sound field is used at I = 0, so that using 
2.26 and 2.27, 

exp(S Az) = exp( - j/coI!.nAz) - 1- jkol!.nAz 

=1- (~)jkoAzC[S,(x,z)eXp(-jKX) +S,*(x,z)exp(+jKx)] (2.28) 

In the modified split-step technique, we take the Fourier transform of the above operator operating 
on the optical field E,(x, z), taking care to note from the property of Fourier transforms that 

~'[f(x)exp(±jKx)] = J(kx ±K) (2.29) 

The main propagation loop of the algorithm is modified from Figure 2.1 and is shown in Figure 
2.5. The boxes marked "Shift ±K" are used to facilitate the operation shown in 229 in the spatial 
frequency domain. 

Figure 2.6 shows problem geometry of a Gaussian beam incident nominally at Bragg angle on 
a sound column of width z = L. The simulated evolution of the Gaussian beam is shown in Figure 
2.7. The peak phase delay a of the light traveling through the acoustooptic cell is taken equal 
to 1t, and the Klein-Cook parameler Q = K2Llko = 13.1. We would like to point out that the same 
answers could be derived by using the transfer function for acoustooptic interaction, as given in 
Refs. [4,6]. 
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Initial profile 

E,(x. z=O) 

FIGURE 2.5 Flow diagram for the modified split-step technique to analyze acoustooptic interaction. 

Acoustic grating 

o order 

-1 order 

Z=o Z=L 

19 

FIGURE 2.6 Geometry of acoustooptic interaction with a Gaussian beam at nominal Bragg incidence. 

2.6 BEAM PROPAGATION IN KERR-TYPE NONLINEAR MEDIA 

2.6.1 NONLINEAR SCHRODINGER EQUATION 

The nonlinear propagation of beams through a cubically nonlinear material is modeled by the non­
linear PDE also called the nonlinear Schrodinger (NLS) equation [7] 

(2.30) 

where n2 is the nonlinear refractive index coefficient defined by the functional dependence of the 
total refractive index n on the intensity [7]: 
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Zeroth order 

Z= 

FIGURE 2.7 Simulation plot of the intensity of the angular spectrum of the total field at different positions 
along interaction length. (From Venzke, C. et aI., Appl. Opt., 31, 656, 1992. With permission.) 

(2.31) 

In writing (2.30), we have taken the linear refractive index no equal to unity for the sake of simplic­
ity. For a medium with n2 > 0, one can observe self-focusing of a Gaussian beam traveling through a 
medium, while self-defocusing is observed for a medium with n2 < O. The physical reasoning behind 
self-focusing is as follows. The Gaussian beam induces a positive lens in the nonlinear material for 
n2 > 0 due to the fact that where the beam intensity is high (e.g., on-axis), the induced refractive index 
is higher as well, amounting to larger slowing down of the wavefronts. The wavefronts are therefore 
bent similar to the action of a positive lens, resulting in initial focusing of the beam. This process 
continues till the beam width is small enough for the diffraction effects to take over, leading to an 
increase in the beam width. The converse is true for the case of n2 < O. In this case, the beam spreads 
more than in the linear diffraction limited case. A stable nonspreading solution in one transverse 
dimension can be analytically found from the NLS equation for n2 > 0 and has the form 

(2.32) 

where K is a free parameter. The phase of Ee in the nonspreading solution is linearly proportional to 
the propagation distance z. 

As discussed above, self-focusing results in increase in the on-axis intensity and the narrowing 
of the beam width. For powers above a certain critical power Pc [7,8], the beam may theoretically 
collapse with an intensity so high that it can either cause breakdown in the material, triggering 
some other physical effects, such as saturation of the index of refraction or failure of the assump­
tions about slowly varying amplitude and paraxial approximation. Zakharov and Shabat [9] have 
pointed out that if the nonlinearity is strong enough, this results in higher index of refraction toward 
the center of the beam and on-axis rays undergo total internal reflection and are thereby trapped. 
As shown above, nonlinearity can balance diffraction of a beam in one dimension, resulting in the 
formation of first order spatial solitons, see Equation 2.32. Also, if the nonlinear effect is higher 
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than diffraction, periodic focusing occurs, or may result in higher order solitons. This may not be 
the case in two or three dimensions where spatial collapse may occur. 

In normalized form, and assuming n2 > 0, the NLS equation in Equation 2.30 can be rewritten as 

. aUe V2 - 1-2 1- 0 ]-+ loUe + Ue Ue = az (2.33) 

In a system with cylindrical symmetry, Equation 2.33 becomes 

. aUe 1 aUe a
2
Ue 1-21- 0 ]-+--+--+ Ue Ue = 

aZ r ar ar2 
(2.34) 

The NLS equation as written in Equation 2.33 can also be modified to model pulse propagation 
through a nonlinear fiber and in the presence of group velocity dispersion. This is possible due to the 
fact that the interchange x --7 t in the NLS equation (2.33) with a suitable coefficient in front of the 
second order derivative term, signifying (anomalous) material dispersion and subsequent renormaliza­
tion transforms the equation to one that can model the propagation of pulses in time 't along a fiber [2]: 

(2.35) 

Analogous to Equation 2.32, the first order soliton solution of (2.35) can be expressed as 

(2.36) 

where K is a free parameter. This profile is called a temporal soliton and can be regarded as a non­

linear eigenmode of the NLS system. The propagation of an initial profile ue("t;Z = 0) = sech(.JY'''t) 

with y' = 1 using the BPM to model the NLS equation as in Equation 2.35 is shown in Figure 2.8. 
The linear term in Equation 2.35 can be handled in the temporal frequency domain by using Fourier 
transforms, similar to the case of propagational diffraction. Note that the nonlinear operator is 

UeO= sech(T),Ilz= 5e-005, Level = 3, Time = 3 
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FIGURE 2.8 Evolution of a first order I-D soliton. (From Nehmetallah, G. and Banerjee, P.P., Nonlinear 
Optics and Applications, H.A. Abdeldayem and D.O. Frazier, eds., Research Signpost, Trivandrum, India, 
2007. With permission.) 
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Ue!)= 2' sech(T}, Maxtime= 2,l:lz= 5e-005, Level=3, Time = 2 
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FIGURE 2.9 Evolution of a second order I-D soliton. (From Nehmetallah, G. and Banerjee, P.P., Nonlinear 
Optics and Applications, H.A. Abdeldayem and D.O. Frazier, eds., Research Signpost, Trivandrum, India, 
2007. With permission.) 

exp{S Az} = exp - jy , IUe 12 Az . As expected, the "pulse" remains unchanged with propagation. 
A similar result is obtained if we program the propagation of an initial beam profile and use 
Equation 2.30 in one transverse dimension (x). The result is a spatial soliton. 

The second order soliton input ue('t, 0) = 2 sech('t) and its evolution in time is shown in Figure 2.9. 
The split-step technique has also been applied to analyze propagation of profiles in two transverse 
dimensions [11], and also to analyze propagation of optical fields that are pulsed in time and have a 
spatial profile in the transverse dimension [12]. 

2.6.2 SIMULATION OF SELF-FOCUSING USING ADAPTIVE FOURIER 

AND FOURIER-HANKEL TRANSFORM METHODS 

The NLS equation for beams using the paraxial approximation has been previously derived in 
Section 2.6.1 as 

. aUe n 2 - 1-2 1- 0 J - + v l.Ue + Ue Ue = az (2.37) 

During the last stages of self-focusing, the assumptions about slowly varying amplitude and the 
paraxial approximation may not be valid for large focusing angles. It has been proposed that there is 
no singularity if one accounts for nonparaxiality [13]. The paraxial and nonparaxial NLS equations 
which are classically used to model the self-focusing phenomenon can be written in the general 
operator form: 

(2.38) 

where D is the transverse dimension in space. The parameter £= (t../41tr 0)2, where r 0 is the initial beam 

radius is often referred to as thenonparaxiality parameter. Also, Lrue = viu .. Nnz(ue) = lueI

2
" . For most 

cases, 0' = 1 and hence N nZ (ue) = IUe 12 . The nonlinear operator Nnz(ue) may be also conveniently modi­
fied to reflect any saturation in the change of refractive index: 

(2.39) 
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Incidentally, for the paraxial case, two transverse dimensions and assuming radial symmetry, and 
()' = 1, a special solution of (2.38), called the Townes soliton [7], can be found as the solution of the 
normalized differential equation 

ViR(r) -R +R3 = 0, R'(O) = 0, R(oo) = 0 (2.40) 

'IYPical solutions for three different initial conditions, called modes, are plotted in Figure 2.10. These 
modes, named fi(i'), are characterized by the fact that the solutions tend to zero for i' -7 ~. The solu­
tions of Equation 2.40 are very sensitive to initial conditions: for other initial conditions, the solutions 
do not converge to zero as r -7 ~. 

The basic concept behind adaptive numerical algorithms is rather simple: imagine that a Gaussian 
beam is spreading during linear propagation due to diffraction. If a numerical solution is being com­
puted, it is clear that after some distance of propagation, the size of the beam will become comparable to 
the total transverse grid size, which will result in errors in the numerical computation, such as aliasing if 
fast Fourier transform (FFT) techniques are used. The problem can be alleviated if the transverse profile 
is re-sampled using a coarser grid size. The step size for propagation can also be increased, based on 
the presumption that no sudden changes in the beam would occur at distances larger than the Rayleigh 
range. The converse should be true for beams that are focusing: the transverse grid size should be made 
finer and the propagational step size smaller. 

In the case of the NLS equation, for the case D = 2, and assuming radial symmetry, McLaughlin 
et al. [14] predicted similarity solutions of the form 

(2.41) 

where F is an arbitrary function. We can use this knowledge to adaptively vary the longitudinal 
stepping Az and the transverse grid size for the beam. 

A few more technical details must be mentioned before commencing the discussion on our adaptive 
numerical techniques. Weinstein [15] bas shown that if the initial beam power Po is less than the lower 

bound for the critical power for blowup Pd' = (A. 2/4nnon")N,, where N, = .fiR12 r dr = 1.86225, there 
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is no collapse of the paraxial NLS equation. Also, for an arbitrary initial profile u,o "# R, Fibich [13] 
proved that there is an upper bound for the critical power P," = (k'j4n:non,) G(u,o) where 

for which blowup will occur for this initial profile if it has sufficient high power. There are few 
known integral invariants for the paraxial NLS equation above when aD <! 2. These invariants 
are based on the symmetry of the NLS equation under gauge, space, and time transformations, 
and may be derived from a Lagrangian density of Equation 2.37. Three of these invariants are the 
Hamiltonian and the variance, defined as [14,16] 

N = jlu,I' dr (2.42a) 

(2.42b) 

1 d'jll'l I' D-2jl I' S dz' r ii, dr = H --4- ii, dr (2.42c) 

where the term 1Vzj,I' results from diffraction, and lu,r from the nonlinear effect. 
Note that from Equation 2.42c blowup occurs only if D <! 2. The "variance" is given as 

V(z) =jlrl'lu,I' dr = 4Hz' + (dV(O)ldz)z+ V(O) for D =2 [17]. Thus, for H < 0, the function V(z) 

vanishes at a distance z, = [Vo/-4Hol"' > O. A sufficient condition for blowup is H < 0, Le., when 
the nonlinear effect is stronger than diffraction, the beam self-focuses and collapse occurs at a 
distance z., ~ z,. 

For an input Gaussian of the form u,o = ce -,.'n?" z, = (1/(pNj2 -1) )112, z, = 0.317(p - 1)-0.6346 for 
ro = 1, and z., = O.l585(p - 1)-n6346 for ro = 11..[2, where p = NofN, and No = c'rcP [18]. Note that the 
condition H = 0, which leads to P,··, leads to an overestimate of the actual critical power. 

We now outline our numerical adaptive spectral technique called the adaptive split-step fast 
Hankel transform (AFHTSS) used to track the solution of the NLS equation for a = 1, D = 2 and vari­
able 1'.. Our scheme is based on the combination of the standard split-step fast Fourier transform 
(SSFFT) and the Hankel transform, which exploits the cylindrical symmetry of the problem. This 
enhances the computation time and precision appreciably. In addition, we also use the concepts 
from the similarity solution developed by McLaughlin et al. [14] and apply them to our split-step 
spectral method mentioned above, so that the grid transverse spatial range and the longitudinal 
spatial step are adaptively updated. As its name indicates, we use the Hankel transform (see Chapter 1) 
instead of the usual Fourier transform, relying on algorithms already developed in the literature [19]. 
In cylindrical coordinates, Equation 2.38 becomes 
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We use the definition of the lth order Hankel Transform pair [19,20]: 

'P(p,z) = 2:n:f tjJ(r,z)J,(2:n:rp)rdr, 
o 

and the property: 

tjJ(r,z) = 2:n:f'P(p,z)J,(2:n:rp)PdP 
o 

25 

(2.44a) 

(2.44b) 

The AFHTSS algorithm in Figure 2.11 resembles the symmetrized Foncier split-step techniqne, 
where we change the longitudinal spatial step Az oc (l/c(z,l'-llc(z:J2J = l/c(z,l' when c(z:J » c(z,), 
adaptively using McLaughlin's similarity formula (2.41) and the grid spatial range &-muoc llc(z) in 
order to track the varying amplitude of the focusing beam when £ = O. 

There are several numerical approaches for implementing the Hankel transform [19,21]. The 
importance of Siegman'S method [19] resides in the fact that, depending on the parameters, one can 
employ a non-uniform sampling that is denser near the focusing region, which has advantages over 
uniform sampling. Yu et a!.'s method [21] is based on the expansion of the function and its transform 
by a zero order Bessel series that can be written as 

(2.45a) 

(2.45b) 

(2.45c) 

The in's are the positive roots of the zero order Bessel fnnction 10, I, is the first order Bessel 
function, andR" Rz are the spatial and transform ranges respectively, with S = 2R,Rz• For r. E r~R, 

and Pm E P ~ Rz, we have l)I(r.) = 'I'(Pm) = 0, where r. = i.l2rrRz and Pm = im12rrR,. 
We now show sample simulation results using the AFHTSS method that uses Yu et al.'s Hankel 

transform technique [21], as well as a novel adaptive version of a split-step fast fourier transform 
(AFFTSS) technique. For the test function tjJ 0 = 4e-..'I2 , self-focusing and collapse is expected 
at Z, = 0.1487 for £ = O. Note that z, = 0.288, based on the study above, which is obviouslyoveres­
timated. Figure 2.12 shows the maximal focusing as a function of grid size h = &-, which proves 
the convergence of our method to the numerical focusing point when Ilr decreases by varying the 
S parameter defined above [22]. Although the trend is similar, this is a considerable improvement 
over the convergence test results in Fibich and Han [23]. Figure 2.13 shows the growth of the on­
axis intensity using AFHTSS technique for the test function above [22]. Also, in this figure, we take 
S = 2rrR,Rz = 21t x 2000 (corresponding to approximately 4000 cylindrical samples), which permits 
computation for the paraxial case till Z = z.,=0.148l7 corresponding to the expected z,=0.1487 writ­
ten above. Figure 2.14 shows the corresponding AFFTSS technique for 1024 x 1024 grid where we 
get Z = z.,=0.158l [22]. This implies that the critical distance Z, is a little bit over estimated and the 
maximum intensity reached is also less than the AFHTSS method. It is instructive to note that 
with increase in sampling points, the AFFTSS approaches the results from AFHTSS, but on the 
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FIGURE 2.11 The AFHTSS algorithm, a symmetrized version of the split-step FFT using Hankel transform 
instead, and using adaptive longitudinal stepping and transverse grid management. FHT: fast Hankel trans­
form, IFHT: inverse fast Hankel transform. 
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FIGURE 2.12 Maximal focusing as a function of grid size. (From Banerjee, P.P. et aI., Opt. Commun., 249, 
293, 2005. With permission.) 
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FIGURE 2.13 On-axis intensity of "Po = 4e-r212 as a function of propagation for fixed values of e rang­
ing from 10-2 to 10-8 where z = Zc = 0.1481 for e = 10-8, and for an adaptive e varying as e = (t..141tr)2, using 
AFHTSS with S = 27tRIR2 = 21tx2000 (4000 cylindrical samples). (From Banerjee, P.P. et aI., Opt. Commun., 
249, 293, 2005. With permission.) 

expense of calculation time. Also we note that changing the number of samples in both techniques 
does not affect the value of the critical distance drastically, but the maximum intensity reached 
at that point will be less or more depending on the number of samples, which is in agreement 
with the convergence test mentioned above. We stress that in all computations using AFHTSS and 
AFFTSS, energy is always conserved. Consequently, AFHTSS permits us to track peak intensi­
ties higher, faster, and more accurate than what is achievable by AFFTSS. Also, by using adaptive 
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FIGURE 2.14 On-axis intensity of 1\10 = 4e-r2
/
2 as a function of propagation for fixed values of £ rang­

ing from 10-2 to 10-8 where z = Zc = 0.1581 for £ = 10-8, and for an adaptive £ varying as £ = (AJ4w)2, using 
AFFTSS with 10242 samples. (From Banerjee, P.P. et aI., Opt. Commun., 249, 293, 2005. With permission.) 

non-paraxiality parameter e in the scalar nonparaxial equation, we obtain results similar to those of 
the more complex vector method [24] and superior to those when e is constant [13]. 

Finally, we compare computation speeds of the AFHTSS and AFFTSS. It can be shown that for 
Siegman's method, the number of computations is proportional to 4Nlog22N + 2N, compared with 
2N210g2N computations for the two dimensional FFT as in AFFTSS. Although at first glance, the 
number of computations in Yu et al.'s method is proportional to N2, we can make the number of com­
putations comparable to Siegman's method by a priori computing and storing the zeros of the Bessel 
function. The advantages of Yu et al.'s method over Siegman's are the accuracy for the sampled points 
and a simple retrieval expression. For more comparison between Yu et al.'s and Siegman's method, we 
refer readers to table 1 in Yu et al. [21]. Also, we note that the use of the adaptive variation of the longi­
tudinal propagation stepping size &. and the transverse spatial sampling size according to 1!c2(z) and 
l!c(z) allow us to track on-axis amplitudes, for the paraxial case, up to two orders of magnitude more 
than what is achievable without the adaptive algorithm, for both the AFHTSS and AFFTSS methods. 
Without the adaptive variation, the numerical methods become unstable, and we witness oscillatory 
focusing and defocusing of the beam from numerical instability. 'JYpical run times on a Pentium IV 
2.4GHz processor with a 2GB RAM are around 1 min for AFHTSS when S = 2rrRIR2 = 21tx2000, 
lOmin for AFFTSS when the mesh size is N2 = (210)2. Note that the Hankel transform based method, 
which exploits the cylindrical symmetry, is one dimensional, and therefore is expected to be faster 
than other two dimensional FFT based numerical methods. 

2.7 BEAM PROPAGATION AND COUPLING IN PHOTOREFRACTIVE MEDIA 

2.7.1 BASIC PHOTOREFRACTIVE PHYSICS 

In this section, a model for beam propagation through a nonlinear PR material that takes into 
account inhomogeneous induced refractive index changes due to the nonlinearity is first developed. 
In some cases a focused Gaussian beam asymmetrically distorts due to passage through the 
nonlinear material. 
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The PR effect has been used in a wide variety of applications, viz., image processing, optical 
interconnections, optical data storage, optical limiters, and self-pumped phase conjugators [25]. 
When a PR material is illuminated by a light beam or by a fringe pattern generated by the interfer­
ence of two light beams, photoexcited carriers are redistributed in the volume of the crystal [25]. 
This sets up a space-charge field which, through the linear electro-optic effect, gives rise to a refrac­
tive index profile and hence a phase hologram. 

The phenomenon of PR beam fanning, where the incident light beam is deflected and/or dis­
torted when it passes through a high-gain PR crystal, has been observed in BaTi03, LiNb03, and 
SBN [26-28]. One of the ways this has been explained is through the fact that a symmetric beam 
may create an asymmetric refractive index profile, leading to beam distortion, or what we will 
call deterministic beam fanning (DBF) in the far field [29]. This analysis has been done for a thin 
sample, meaning one where diffraction of the beam is neglected during its travel through the PR 
material, and by using a linearized theory to determine the induced refractive index profile. We 
have recently extended the linearized approach to the case of a thick sample, and have inclnded the 
transient effects, and are in the process of determining the effects of transient DBF when a reading 
beam is used to illuminate a previously stored hologram in the PR material [30]. 

Another school of thought is that beam "fanning" results from light scattering from the random 
distribution of space charges in the PR material. However, a larger contribution to random beam 
fanning (RBF) is the so-called amplified noise [31], which may arise from the couplings between 
the plane-wave components scattered from crystal defects. 

In what follows, we examine steady state DBF in a diffusion-dominated PR material by deriv­
ing a closed form expression for the induced refractive index change from the nonlinearly coupled 
Kukhtarev equations. We also assess the role of propagational diffraction in DBF by determining 
the similarities and differences between the thin and thick sample models. 

I! must be stated that the simplified model for the induced refractive index described in the 
following sub-section can be also used to analyze two beam coupling and energy exchange in 
PR materials. When two approximately co-propagating beams are incident on the PR material, 
they give rise to induced transmission gratings which facilitate the energy exchange. On the 
other hand when two approximately contra-propagating beams are incident on the PR mate­
rial, they give rise to induced reflection gratings which also facilitate the energy exchange. This 
energy exchange occurs over and above the beam fanning described above. While the first model 
described below for induced refractive index is based on carrier diffusion, other effects such as 
the photovoltaic (PV) effect in materials such as LiNb03 can also contribute to induced transmis­
sion and reflection gratings, as will be seen later. 

2.7.2 INDUCED TRANSMISSION GRATINGS 

I! can be shown that the coupled set of simplified Kukhtarev equations [25] (see Chapter 6 for 
details) for a diffusion-dominated PR material can be decoupled in the steady state to yield an 
ODE for the space charge electric field [29]. In denormalized form, we can express this electric 
field E,(x, y, z) approximately as 

where 
e is the electronic charge 
kB is the Boltzmann constant 
T is the temperature 

E .kBT ~ 
, e ~/s+J 

s is the ionization cross section per unit photon energy 
P is the thermal generation rate 
J(x, y, z) denotes the intensity distribution along x, y at a position Z in the PR material 

(2.46) 
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FIGURE 2.15 Geometry for analysis ofDBF. 

Now, this electrostatic field induces a refractive index change &I",(x,y,z) for extraordinary polarized 
(say along x, see Figure 2.15) plane waves of light in the PR material, assuming that BaTi<l, in this 
example, through the linear electro-optic effect, is given by 

~n(x,y,z,B) = Eu(x,y,z)f(B) 

(2.47) 

( 
B B )-' n;(B) = sin2

_+COS
2

-n5 n; 

where no, n, are the linear ordinary and extraordinary refractive indices, and To is the linear con­
tracted electro-optic coefficient [25]. 

The angle e in Equation 2.47 is defined in Figure 2.15. Note thatf(e) is a slowly varying function 
of e over the spectral content of the optical field. It can be readily shown that, in general, propaga­
tion through the PR material under the slowly varying envelope approximation may be modeled by 
means of the PDE [29] 

aE, = _ .~ &IE _ . [ 1 1 V2 E 
az Jft{) ,J 2n, (e)1GJ ~, 

E ( ) 
_ k.T aIE,(x)1

2
Iax 

'" x - 2 
e '11118+ IE,(x)1 

(2.48) 

For values of e around 40°, a symmetric beam conld induce an asymmetric refractive index profile, 
leading to beam bending and DBF in the far field. However, for some other value of e, for instance 
90°, our theory predicts symmetric beam shaping, in agreement with the findings of Segev et al. [31]. 
In this respect, the nature of the optical nonlinearity in a PR material is more involved as compared 
to that in a nonlinear Kerr-type material. We point out that in a Kerr-type material for instance, only 
an asymmetric beam profile can cause beam bending, as reported in [32], while a symmetric beam 
undergoes self-focnsing or defocnsing. 
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In what follows, we first provide results for the far-field beam profiles by assuming the PR mate­
rial to be a thin sample, in the sense that we neglect the effects of propagational diffraction through 
the material. A Gaussian input 

(2.49) 

with 10 = 2Pl7tWZ, where 10 denotes the on-axis intensity and P is the beam power, is phase modu­
lated due to the induced refractive index profile. The resulting output field is Ee(x,y,L) = Ee(x,y, 0) 
exp(-jkoAn(x)L), where L is the thickness of the PR material. Such a phase modulation results 
in a shift of the far-field pattern with respect to the axis (z) of propagation of the optical beam, 
and in the appearance of asymmetric sidelobes, the so-called fanning of the beam. Numerical 
simulations for BaTi03 with parameters no = 2.488, ne = 2.434, r42 = 1640pm/V, r 13 = 8 pm/V, r 33 = 
28 pm/V, s = 2.6 X 10-5 m2/J, ~ = 2/s, T = 298 K [29] and L = 1 cm and using an incident wavelength 
of 514.5 nm shows a monotonic increase in the shift of the far-field main lobe from the z axis with 
increase in 10 (implying either an increase in power P or a decrease in width W). In Figure 2.16a 
and b, kx is the spatial frequency variable corresponding to x, and is related to the far-field coordi­
nate xf by kx = koX/d, d being the distance of propagation from the exit of the crystal to the far field 
[29]. However, the amount of DBF (defined by the relative amount of power in the sidelobes) varies 
nonmonotonically with intensity, initially increasing as the intensity is increased from low levels to 
attain a maximum, and then decreasing with further increase in intensity. 

Note that our results are different from those of Feinberg [26], in that the latter, based on a lin­
earized two-beam coupling (TBC) theory that neglects couplin,g of UIe angular plane wave compo­
nents of the Gaussian with any background illumination, yields Es oc Wllo, where 10 is the quiescent 
intensity (to be compared with our Equation 2.48). For a Gaussian intensity profile, the locations of 
the extrema of E in Feinberg's formulation are fixed w.r.t. to the incident profile, and hence may be 
shown to predict a monotonic increase in DBF with a decrease in W. In our nonlinear formulation, 
however, for decreasing W, the extrema of E move out with respect to the incident profile, so that 
the profile essentially sees a linear induced refractive index for sufficiently small W resulting in 
reduced DBF. 
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FIGURE 2.16 Normalized far-field intensity profiles for the thin-sample model: (a) P = 1.5mW and 
(b) W = 40/lm. (From Banerjee, P.P. and Misra, R.M., Opt. Commun., 100, 166, 1993. With permission.) 
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Before comparing the thin sample results with the findings for the thick sample case, we will, at 
this point, provide a simple alternate explanation for the observed behavior of DBF when monitored 
as a fWlCtion of the intensity. Our explanation is based on the examination of the spectrum of the 
phase modulation exp(-jkr/ln(x)L). The far-field pattern is the convolution of the above spectrum 
with that of the input profile. Since An(x) is an odd function of x (see Equations 2.47 and 2.48), it can 
be expanded in a power series of the form ax' - bx, where a and b are given by 

b = 4f(O)k.TleW
2 

~/slo +1 
a= 

(2bIW2)(~/slo) 

~/slo + 1 
(2.50) 

Note that the coefficients of this expansion hold for all values of the ratio ~/slo. The spectrum H(kx) 

of exp(-ikr/ln(x)L) is then 

H(k) = ~Ai kx -bkoL 
x (3a)''' (3a )"3 

(2.51) 

Once again, kx has the same implication as in the discussion on Figure 2.16. We comment that if 
d is replaced by f, where f is the focal length of a lens at the exit plane of the crystal, kX' and hence 
xl' would be representative of the spatial coordinate on the back focal plane of the lens. Ai[.] is the 
Airy function [33]. The ith zero, IX" of H(kx) is related to the ith zero, y, «0) of Ai[.] by IX, = bkoL + 
(3a)''' "fi. It then follows that the spatial extent of the Airy pattern for kx < bkoL, up to say the ith zero, 
and normalized by the spectral width 2/W of the incident Gaussian profile, varies nonmonotonically 
with 10• The shift in the Airy pattern, bkoL, however, increases with an increase in 10• For large If> it 
can be shown that the shift is proportional to 1/W', in agreement with the trend in Figure 2.16a. The 
resulting far-field pattern which is the convolution of the Gaussian spectrum and the Airy pattern 
generally exhibits decreased DBF when the Airy pattern has a (denormalized) width much smaller 
than that of the Gaussian spectrum (which may occur, for instance, for both small and large W). This 
is in agreement with our numerical simulations in Figure 2.16. Appreciable DBF occurs in the region 
where the normalized spectral width is greater than unity. As an example, for P = 1.5 mW, maximum 
beam fanning, defined by the maximum of the ratio of the peak value of the sidelobe and that of the 
mainlobe, occurs when W = 30 J.UU. Details can be found in Misra and Banerjee [29]. 

We will now present the results for the far-field beam profiles using a thick sample model for the 
PR material and point out the similarities and differences with the thin sample approach. Numerical 
simulations for the thick sample model were performed on the basis of Equation 2.48 by employ­
ing the split-step beam propagation technique discussed above. In this simulation, we track both 
the phase and amplitude modulation of the beam within the crystal due to the combined effects 
of propagational diffraction (along x, y) and induced refractive index (along x) arising from the PR 
effect. Figure 2.17a and b shows the normalized far-field intensity patterns with Wand P as param­
eters. By W; we now mean the beam waist which would be expected at Z = L12 (i.e., the location 
of the center of the sample) in the absence of any electro-optic effect fr ij = 0) (see inset in Figure 
2.17a). The results are qualitatively similar: DBF is seen to reduce at very low (high) and very high 
(low) values of P (W). Quantitatively, for a fixed power P (viz., 1.5 mW), we can predict the absence 
of DBF for sufficiently large values for W (viz., 70 lUll), which are independent of the model (thin 
or thick sample) used for simulation. Physically, this makes sense since the thin and thick sample 
models must agree if the diffraction effects in the crystal are sufficiently small. On the other hand, 
the reason for the absence of DBF for a sufficiently small value of W in the thick sample approach 
is that effectively, the beam width, if monitored over most of the sample is large (due to a large dif­
fraction angle), implying a reduced PR effect. This, in tnm, implies that propagation through the 
crystal is predominantly diffraction limited. For small W; the thick sample model therefore is more 
accurate than the corresponding thin sample model for the same value of W since the latter model 
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FIGURE 2.17 Normalized far-field profiles for the thick sample model: (a) P = l.5mW and (b) W = 40llm. 
(From Banerjee, P.P. and Misra, R.M., Opt. Commun., 100, 166, 1993. With permission.) 

overestimates the amount of cumulative PR effect. For the thick sample model, for the same value of 
P as above, we see negligible DBF for W less than 25 ~. On the other hand, the thin sample model 
predicts a value of W less than 5 ~m for negligible beam fanning. The reason for the disappearance 
of DBF in the thin sample approach has been presented above using the Airy function argument and 
the movement of the extrema of E w.r.t. the incident optical field. Maximum DBF for P= 1.5 mW 
occurs for W = 40~, in close agreement with the thin sample computations and the Airy function 
approach. However, the shift in the position of the mainlobe in the thick sample model is much 
smaller as compared to the thin sample case due to the effective decrease in the PR effect for a small 
waist size, as explained above. Referring to Figure 2.17a, we note that for W = 40 ~m, P = 1.5 mW, 
and/= lOcm, the spatial shift in the back focal plane of a lens of focal length/located at the exit 
plane of the PR material is about 0.2 mm. We would like to comment that for the above parameters, 
DBF was also numerically observed at the exit face of the thick PR sample. 

Thus far we have analyzed the propagation of a single focused Gaussian beam in a diffusion­
dominated PR medium. When two beams are incident on such a medium with a small angle between 
each other, the induced refractive index profile is responsible for energy exchange between the two 
beams, a phenomenon referred to as TBC. This energy exchange occurs due to the phase shift 
between the intensity interference pattern and the induced refractive index pattern [25]. We can 
effectively study the interaction and the resulting energy exchange between two focused Gaussian 
beams incident on the material numerically using the split-step method. The problem geometry is 
shown in Figure 2.18. The two Gaussian beams are focused in the center of the PR material and 
the angle between them is 29. The Gaussian beams are expressed in terms of their q-parameters 
(see Section 2.4) at the entry face of the material. The split-step algorithm is used to determine the 
interaction and energy exchange between the two beams. The induced refractive index An is used to 
construct the operator representing the induced inhomogeneity in the material. The results on two 
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FIGURE 2.18 Geometry for TBe in a diffusion-dominated PR material. 
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FIGURE 2.19 (a) Dotted and dashed lines are respectively the far-field signal and pump intensities with the 
absence of any PR material and chain dots and chain dashes represent the resulting far-field intensities after 
the beams have propagated through a 5 mm BaTi03 sample. Incident beams are focused to the center (z = 
Ll2) of the PR crystal and the waist of each beam at wavelength 0.632/-tm is 100/-tm. Signal to pump ratio 
is 3 and semi-angle of crossing 9 is 0.5°. (b) Interference pattern at center (z = Ll2) of the PR crystal for the 
beams described in (a). (c) Space-charge field (Vim) at the center (z = Ll2) of the crystal for the beams of (a). 
(From Ratnam, K. and Banerjee, P.P., Opt. Commun., 107, 522, 1994. With permission.) 

wave mixing are shown in Figure 2.19. The dot-dashed lines show the far-field intensity profiles of 
the two Gaussian beams in the absence of the PR material. The dashed lines show the beams after 
energy transfer due to the induced refractive index. The initial pump to signal power is 3. The peak 
intensity of the pump and signal beams are 63 and 21 W/cm2, respectively, before the interaction. The 
beams are coupled by a 5 mm BaTi03 PR material. The output beams do not show any effect of beam 
fanning at this power; however, with larger beam powers, distortion of the beams due to beam fan­
ning is observed. The results have been used to find the TBC strength and their dependence on the 
intensities of the two participating beams. The results, discussed in more detail in Ref. [34], depict 
that the coupling strength depends on the power ratio between the two beams, a fact that is ignored in 
perturbation calculations of two-wave mixing in PR materials. Later, in Chapter 6, we will analyze 
this effect in more detail with participating plane waves and using rigorous coupled wave theory. 
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2.7.3 INDUCED REFLECTION GRATINGS AND BIDIRECTIONAL BEAM PROPAGATION METHOD 

Contrary to transmission gratings which are induced in a PR medium by two waves nominally 
traveling at a small angle with each other, reflection gratings are formed by two nearly contra­
propagating waves. In a PR material such as lithium niobate (LiNbO,), this can be simply formed 
due to the interference between an incident beam (typically traveling down the c-axis) and its 
Fresnel reflection from the back surface of the crystal due to the linear refractive index mis­
match. The period of the reflection grating is therefore much smaller than that of the transmis­
sion grating, determined by the wavelength of the interacting waves (or beams). Energy exchange 
between the forward and backward traveling beams can give rise to depletion of the forward 
traveling beam (pump) and amplification of the backward traveling beam (signal), and has appli­
cations in optical limiting [35,36]. In what follows, we outline the use of the BPM, suitably 
modified to include forward and backward propagation, to determine the energy exchange during 
self-pumped TBC in a reflection grating geometry. It turns out that a PR material like LiNbO, 
has contributions to its PR effect from diffusion as well as the PV effect, where the latter gives 
rise to an induced refractive index profile in phase with the intensity profile, further complicating 
the analysis. 

The bi-directionality of the simulation (opposing directions of the pump and signal beams) is 
handled by treating the two counter-propagating directions in sequence and then using an iterative 
shooting method to find the converged solution. The schematic of the beam propagation algorithm is 
shown in Figure 2.20. The dark lines on the left and right sides of Figure 2.20 represent the front and 
rear surfaces of the PR material, respectively, and the crystal c-axis is perpendicular to these faces. 
In this work, we only consider the case of LiNbO" which is a uniaxial crystal. For uniaxial crystals 
with light propagation along the polar axis, only one transverse polarization vector is required to 
be defined. The crystal longitudinal propagation direction is split into n steps (shown by the dashed 
lines). The incident pump beam is defined with a Gaussian amplitnde profile and the e-1 spot size 
characterizes the focusing condition. Other transverse beam profiles may be substituted for the 
Gaussian, to suit specific experimental parameters. 

In typical practical applications, the pump beam is usually chosen to be focused at the front 
surface of the crystal. Focus at any point inside the crystal is accomplished by doing beam propa­
gation in a crystal through the desired length, taking the complex conjugate of the field and 
using that as the initial field. The amplitude of the incident optical field E;n is adjusted to use 
any desired power for the pump beam. During simulation, the field retains both amplitude and 

E, 

1 2 3 n 

FIGURE 2.20 A schematic representation of the origin and path of the pump and signal beams. The signal 
beam (EJ is generated by the Fresnel reflection of the pump beam (E;J at the rear surface of the crystal. Both 
beams are nominally perpendicular to the boundaries. The paths are shown with angles to help distinguish 
the beams. 
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phase information at every propagation step. The paraxial approximation used in this split-step 
method allows us to simulate the propagation of beams with spot sizes as small as 311m without 
significant error [37]. 

As the beam enters the crystal (at step 2), part of it is reflected (E.-ej). The transmitted beam (E) 
is propagated to the rear boundary, where part of this beam is transmitted (EpJ and remainder is 
reflected (EJ (at step n - 1). At each propagation step, the local value of the pump field (E/i» is saved 
in a bnffer. The signal beam, E" is then propagated in the opposite direction to the pump beam, until 
it travels through the front face of the crystal (E,J. At each step the signal beam field E,(i) is also 
saved in a bnffer. The E,(i) buffer is then added to the previously buffered pump beam field E/i) to 
produce the interference array. At the ith longitudinal step, the intensity of the interference pattern 
is then given by IE/i) + E,(i)12• Since the fields are defined as transverse arrays, the interference 
at every ith longitudinal step also has a transverse profile. This transverse profile of the interfer­
ence, however, is computationally very costly, since for each step this has tu be saved in the bnffer. 
Moreover, since we are simulating an interference pattern, the step size along the longitudinal direc­
tion must be substantially smaller than the wavelength. 

It is determined that for a crystal of thickness of the order of the wavelength (in the material), the 
number of points n has to be at least 40 to produce a smooth interference pattern. For contra-directional 
TBC in LiNbD., it is the intensity modulation in the longitudinal direction that is of greatest impor­
tance, since the electro-optic coefficient is weak perpendicular to the c-axis. Hence, we have employed 
an alternate approximate method of simulating the interference with less computational load. We have 
saved only the peak of the field (instead of the whole transverse array) in the bnffer. This resnlts in an 
interference pattern without a transverse profile. This approximation does not resnlt in any significance 
difference in our simulation, but has improved the required CPU time by two orders of magnitude. 

Figure 2.21 shows the peak of the interference at every step in the longitudinal direction (each 
point of the plot represent the peak of the transverse profile at that step) for a thin LiNb03 crystal. 
The length of the simnlated crystal equals two wavelengths inside the crystal, where the free-space 
wavelength A.; is taken to be 532 nm, and the ordinary refractive index (no) of LiNb03 is used. 
Because there is no absorption loss and hardly any beam diffraction in this short distance, the inter­
ference has constant amplitude. For large crystal lengths, and for smaller beam spot sizes focused 
at the entrance of the crystal, the beam amplitude changes with propagation due to diffraction, and 
consequently results in a gradually decaying interference pattern. 
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FIGURE 2.21 Interference pattern in the longitudinal direction for a LiNbO, crystal. Crystal length is equal 
to two wavelengths (532 nm) of light (inside). The number of longitudinal steps (n) per wavelength is 100. Spot 
size is 5 Jj.m. 



Username: IP user at University of Dayton Book: Computational Methods for Electromagnetic and Optical Systems, Second Edition . 
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for 
reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. 
copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to 
the full extent of U.S. Federal and Massachusetts laws.

Scalar EM Beam Propagation in Inhomogeneous Media 37 

Following the linear cycle, the PR effect is now simulated through a nonlinear cycle of beam 
propagation. In this cycle, the buffered modulated intensity can be used to determine the space­
charge field. The change in index then can then be determined by considering the electro-optic 
effect. For qualitative simulation, the following simplified general expressions are used [38,39]: 

n=IIo+6.n (2.52) 

6.n oc E, (2.53) 

E,(diffusion) = C",· VI(x,y,z) (2.54) 

E,(photovoltaic) = Cp' ·l(x,y,z) (2.55) 

where no is the bulk index of refraction of the crystal, and 6.n is the change in index due to the 
space-charge field. 

Note that in writing (2.54), we have approximated Equation 2.46 for the case where the "dark 
intensity" which may include background illumination is much larger than the intensity interference 
pattern from the participating optical waves or beams involved in coupling (~/s » I). Furthermore, 
in LiNbO" there is a substantial PV effect, which provides an additional contribution to the space 
charge field, as shown through Equation 2.55. The total space-charge field is approximately the sum 
of the contributions from diffusion of charge carriers and the PV effect. 

The nonlinear cycle proceeds in a similar manner to the linear cycle. The buffered interfer­
ence pattern intensity profile from the linear cycle is used to estimate the modified local refrac­
tive index variations through Equations 2.52 through 2.55. The refractive index change at each 
space-step in the calculations is treated as a dielectric boundary. As the pump beam Ep propagates 
through the index modulated crystal, the power of the beam is diminished at every step due to 
reflection losses at the dielectric boundaries, and the local values of Ep are stored in a buffer. Each 
grating reflected beam from the pump (pumpscatter) is propagated all the way out of the crystal. 
This grating scattered light is added to the buffered signal array. Each grating reflected beam 
from the signal (going toward the back surface of the crystal) is propagated all the way out of the 
crystal and added to the buffered pump array. As a first order approximation, it is assumed that 
scattered light from the pump and signal beams do not go through additional scattering during 
the propagation through the grating. 

At the end of this first nonlinear cycle, the interference pattern is slightly modified. Subsequent 
iterations of this nonlinear cycle continue to modify the interference pattern (and the modulated 
index). When the difference between two successive interference patterns is within a chosen toler­
ance value (we have used 5%), convergence is assumed and the TBC efficiency is determined. All 
of the scattered beams that exit through the front and rear faces of the crystal are summed (Ep~,a.,,) 
and E",,,att'ry respectively). Throughout the crystal, the value of the pump buffer and signal buffer 
reflects the converged value of the pump and signal after loss or gain. In the case of pure charge 
diffusion, for the c-axis oriented along the direction of pump propagation, constructive interference 
occurs for the backscattered light, while the transmitted light suffers destructive interference. This 
interference occurs due to the phase difference between the interference and grating patterns, and 
the phase change in the scattered beams due to the reflections from the grating. The constructive 
and destructive interference directions are reversed when the crystal c-axis is reversed. Because of 
the destructive and constructive interference, the pump beam and the signal beam losses and gains 
power in the direction of respective propagation. 
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FIGURE 2.22 Flowchart showing the novel algorithm for simulation of self-pumped contra-directional TBC 
for a Gaussian beam. 

This algorithm for self-pumped contra-directional TBC is summarized in the flowchart of 
Figure 2.22. 

As stated earlier, a grating can only cause power coupling between two counter-propagating plane 
waves if the grating is phase shifted (ideally, by 90°) with respect to the interference produced by 
the two waves. For a grating that is in phase with the interference pattern, there can be no beam cou­
pling. Extending on this established fact, we assume that for a weakly focusing beam, similar beam 
coupling behavior should be observed. We simulate a beam-coupling where the grating is 90° phase 
shifted with the interference (Figure 2.23), and in a crystal that is 2 wavelengths long. Following 
Equation 2.50, we have chosen Cd! such that the change in index is 0.027. Figure 2.24 shows the 
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FIGURE 2.23 Interference pattern (top) and resulting 90° phase shifted index modulation (bottom) for pure 
diffusion alone. Crystal length is 2 wavelengths inside. Power inside is 1 unit and change in index is 0.027. (From 
Saleh, M.A., Self-pumped Gaussian beam coupling and stimulated backscatter due to reflection gratings in a 
photorefractive material, PhD dissertation, University of Dayton, Dayton, OR, 2007.) 
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FIGURE 2.24 Energy exchange between the pump and the signal beam due to the modulated index from 
pure diffusion. Pump power is reduced by about 4% and signal power gains equally. Oscillation in power is 
artifact, as explained in the text. (From Saleh, MA., Self-pumped Gaussian beam coupling and stimulated 
backscatter due to reflection gratings in a photorefractive material, PhD dissertation, University of Dayton, 
Dayton, OR, 2007.) 

energy exchange between the pump and the signal beam due to the out-of-phase induced refractive 
index. Scattered light from the signal beam destructively interferes with the pump beam to diminish 
the pump power. Conversely, scattered light from the pump beam constructively interferes with the 
signal beam to increase the signal power. This is a distinctive feature of energy exchange due to beam 
coupling. In this case of simulation, pump power is reduced by about 4% and signal power gains 
equally. The observed oscillation in the power in Figure 2.24 is an artifact. The oscillation comes 
from the difficulty of calculating the power of (pump + signal scatters) or (signal + pump scatter) at 
any given point inside the nonlinear medium. The actual coupling is calculated by accounting for the 
amplified signal or diminished pumps outside the crystal, where the index is constant. 

The presence of PV field usually has a negative effect on the phase of the index modulation. 
However, the PV field may change the magnitude of Iln to overcome this negative effect. It has been 
shown, both theoretically and experimentally, that a larger PV field may actually enhance the beam 
coupling [40]. This can also be verified using a constant value for Cd! and changing the value of Cpv 

in our model Equations 2.52 through 2.55. 

2.8 z-SCAN METHOD 

The previous examples illustrated the use of the split-step method in calculating the beam pro­
files during diffraction in space or during propagation through a guided (externally or internally 
induced) medium. If a Gaussian beam is however assumed, the split-step method can be reformu­
lated in terms of a differential equation that shows the evolution of the Gaussian beam's param­
eters, e.g., width, during propagation. The ensuing equation can be exactly solved in some cases, 
e.g., for a Kerr-type material, and is therefore physically more transparent than the results obtained 
using the split-step method. The differential equation for the parameter(s) may not be simpler to 
solve than the split step, however, having an analytical solution (Gaussian beam) adds a tremendous 
insight into the actual propagation of the wave through the material, whereas the split-step method 
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only presents simulation results. Using Equations 2.23a and 2.23b, when a Gaussian beam travels a 
distance Az in an n2 medium, the q-parameter change using the split-step method can be written as 

(2.56) 

wherej ... is the nonlinearly induced focal length of the slice Az [7,41]. The above equation shows 
that the q of a Gaussian beam changes due to propagational diffraction and due to the induced non­
linearity of the material. In LiNbo" the PV effect is mainly responsible for breaking the circular 
symmetry of an incident focused extraordinarily polarized Gaussian beam. Therefore, the propaga­
tion model is based on the propagation of an elliptical Gaussian beam. 

Light induced scattering resulting in DBF has been observed in PR LiNbO" and can be explained 
on the basis of an induced nonlinear refractive index primarily due to the PV and thermal effects 
[38]. This type of beam fanning is distinct from RBF due to light scattering from the randomly 
distributed space charges or crystal defects [31]. In LiNbO, the PV effect is responsible for breaking 
the circnlar symmetry of an incident focused extraordinarily polarized Gaussian beam in the far 
field, while the thermal effect manifests itself in circnlarly symmetric far-field patterns [38]. Over 
a range of input powers the PV effect dominates, resnlting in an elongated far-field pattern with the 
spreading dominant along the c-axis of the crystal. 

An interesting consequence of monitoring the q-parameter variation of a Gaussian beam as it 
propagates through a nonlinear material is the fact one can thereby estimate the amount of nonlin­
earity in the material. Conventional methods of estimating the sign and magnitnde of the optical 
nonlinearity in materials inclnde the z-scan technique where the far-field on-axis transmittance is 
monitored as a function of the scan distance about the back focal plane of an external lens [41-43], 
as shown in Figure 2.25. 

We point out that sometimes the z-scan method, however, may be rather cumbersome since it 
involves physically scanning the material, leading to our development of a simpler technique where 
the longitndinal position of the sample is not changed. Instead the beam ellipticity is monitored 
as a function of the incident beam power P, while testing materials with induced inhomogeneous 
nonlinearities, e.g., PR LiNbo, [44]. Another disadvantage of the z-scan is that monitoring the 
on-axis intensity may be difficult due to aberrations, optical misalignments, sample imperfections, 
refractive index mismatch, and non-parallelism of the entry and exit faces of the material. The 
imperfections can give rise to fine interference patterns within the far-field intensity profile. These 
problems have been observed during z-scan measurements of LiNbo" leading us to develop the 
P-scan technique as an attractive and simple alternative [44]. 

Laser 

Lens 
... 

Nonlinear sample 

z=o 

. . . ... . .. 

.... ~ ... -. -1-----_ 
10 D 

FIGURE 2.25 z-scan setup for a thick sample. The thick lines represent the path of the "rays," described 
as the locus of the lie points of the Gaussian beam. The thin lines show the ray path in the absence of the 
medium. Circular symmetry of the Gaussian beam is assumed throughout the sample. 
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In what follows, we develop the theoretical model for determining the nonlinear refractive index 
of PR LiNbO, that uses an appropriate model for beam propagation through a nonlinear material. 
The model takes into account inhomogeneous induced refractive index changes due to the optical 
nonlinearity. For the case of LiNbO" induced refractive index changes are primarily due to PV con­
tributions over the range of powers used. The model is based on the evolution of beam widths of an 
incident circularly symmetric Gaussian beam focused by a lens onto the material in order to reduce 
RBF. The calculations closely follow the analysis for the z-scan determination of nonlinearities in 
a thick sample of a nonlinear material [41,44]. Under certain approximations, the model reduces 
to that used by Song et al. to study anisotropic light-induced scattering aud "position dispersion" 
in PR materials [43]. Since we consider a "thick" sample, i.e., a sample whose thickness is much 
larger than the Rayleigh range of the focused Gaussian beam, diffraction effects become important 
and cannot be neglected. Therefore we determine the beam shape as it leaves the nonlinear sample 
and then calculate the beam profile after it has propagated some distance outside the medium. The 
information about the effective n2 is contained in the nature of this profile. In general, the magni­
tude and sign of the nonlinearity can be determined from the beam profile variation as the sample 
position is varied about the back focal length of the extemallens. The nonlinearity depends on the 
acceptor-to-donor concentration ratio N.IND , which in turn determines the far-field diffraction 
pattern. Conversely, measurements of the far-field pattern can be used to calculateN.IND and used 
as a tool for characterizing different LiNbO, samples. 

2.8.1 MODEL FOR BEAM PROPAGATION THROUGH PR LITHIUM NIOBATE 

Assume an incident Gaussian beam in the form 

Extending 2.56, for an elliptical Gaussian beam, the following relationships holds: 

Since 

where 

2 

A_ = !;.z+~ 
~x ~' 

Jind;z: 

2 

f>q =!;.z + ..iL. 
y find , 

1 1

2 2 (x' l' 
n = n, +n, E, - n, -2n,a (Z)I-, +-,) ,wx Wy 

n2 is the effective nonlinear refractive index coefficient 
n, is the linear refractive index 
E, is the optical field 

(2.57) 

(2.58) 

(2.59) 

We can compute the phase change upon noulinear propagation through a section !;.z of the sample 
and thereby determine the induced focal length. As expected, these focal lengths are inversely 
proportional to !;.z and can be expressed as 

, 
~ _ n,wy 
Jind -

, 4nz,a2 (z)!;.z 
(2.60) 
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Substituting (2.60) into (2.58) and taking the limit as I!.z -7 0 we obtain the system of equations 

dqx = 1+ 4I1zxa(~)q; 
dz neWx 

(2.61) 

Using the well-known relationship: (l/q) = (l/K) + j(Nn;mv2) where R is a radius of Gaussian beam 
curvature (l/R) = (l/w)(dwldz), and A. is the wavelength in vacuum, we obtain 

_1_ dRx n;rr,zw: - A. 2 R; 4nZza 2 

R; dz (ne7tW;Rx)2 new.; 

1 dRy n;n:2w; - A. 2 R; 
R; dz = (n,><w;Ry)2 

411z a2 , 

d2wx 
)..2 411zxa2 

dz2 = n;:n;2w~ neW;t 

d2w )..2 411z a2 
--y= , 
dz2 n2:n;2w3 

neW)' , y 

(2.62) 

(2.63) 

Taking into account the relationship for the beam's power, P = (1t1211)a2(z)w.(z)w,(z) where 11 is 
the characteristic impedance of the material, which is conserved, we finally have the system of 
equations describing the Gaussian beam propagation in a thick LiNbO, crystal: 

d2wx 
)..2 811zxP11 

dz2 n;TC2w~ 2 
:n:neWxWy 

(2.64) 

d2w )..2 811z, P11 --y= 
dz2 n2

:Jt
2w3 2 

, Y :n;neWyw.~ 

Assuming n2x »1Iz, (true for PR lithium niobate) the variation of the widths wx and wy of an elliptic 
Gaussian beam propagating through a thick LiNbO, sample as shown in the z-scan setup of Figure 
2.25 can be modeled by the coupled differential equations: 

d2wx )..2 

dz2 n;Jt2w~ 
(2.65) 

The case when n2x = n2y has been studied in [41] by employing the q-transformation approach to 
find the widths of a circular Gaussian beam in a nonlinear medium in the presence of diffrac­
tion. Equation 2.65 assume that the nonlinearity is highly inhomogeneous and only affects the 
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width along the x-axis (which coincides with the c-axis of our crystals) due to the large electron 
mobility along that axis [25]. The effective n2 can be written as [41] 

where 
r 33 is the electro-optic coefficient 
k is the PV constant 
IX is the absorption coefficient 
'YR is the recombination constant 
J.l is the mobility 
e is the electron charge 
P is the thermal generation rate 

(2.66) 

In the above equation, we have made the assumption p » .1, where. is the ionization cross-section 
per quantum of light and I is the optical intensity. 

2.8.2 Z-SCAN: ANALYTICAL RESULTS, SIMULATIONS, AND SAMPLE ExPERIMENTS 

In this sub-section, we present analytical and numerical simulation results and compare them with 
sample experiments using PR LiNb03• If the Gaussian beam incident on the sample is assumed to 
have planar wavefronts and waist Wo (approximately at the back focus of the lens), then 

(Z2\ n1<w2 
w2(z) = w2l1+-). Z = _, __ 0 yO 2,Ry '1 

ZRy /\'0 

(2.67) 

For a sample length L assumed to be much larger than the Rayleigh ranges ZR, and ZR. along Z for the 
elliptic beam, the evolution of w x can be approximated as 

(2.68) 

It is clear that in the x-direction, the beam spread is more than that in the linear diffraction-limited 
case when n2 < 0 and less when n2 > O. As seen from relation 2.63 the nonlinearity does not affect 
the beam width along the y-direction, which leads to elliptic beam cross-section profile at the exit 
of the crystal and, in general, in the far field. 

For more general geometry, where the incident beam does not have a planar wavefront, we have 
solved Equations 2.65 numerically. Figure 2.26 shows typical z-scan graphs plotted for four different 
values of power for the initially circularly symmetric Gaussian beam. In the calculations, we have used 
the following parameters: crystal width L = IOmm, lens focallengthfo = IOcm, Au = 514nrn, initial 
beam width Wo = l.Omm, n, = 2.20, n, = -l.4xlO-12 m2/V'-, P = ImW, crystal exit plane to observation 
plane distance D = 1 m. A simple explanation of the behavior in the limiting case (s much smaller 
or larger thanf.) seen in Figure 2.26 can be given by referring to Figure 2.25. When the distance., 
lens-to-sample separation, is much smaller than the lens focallengthfo, the incident beam is weakly 
focused and therefore the beam widths lie close to their linear values leading to semi-linear diffraction­
limited propagation. When. is much larger than fo, the incident beam is weakly diverging and the 
overall nonlinear effect is small that, in turn, leads to semi-linear diffraction-limited propagation. 
If. - fOo the incident beam is highly focused and therefore the nonlinear effect is large. In this region, 
as • decreases, the normalized intensity decreases from its linear value, passes through a minimum, 
and then reaches its maximum before approaching its linear value again. The overall negative slope 
(between the peak and the valley) of the z-scan confirms the net negative non1iuearity of the sample. 
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FIGURE 2.26 Typical z-scan graph drawn by solving Equations 2.65 and propagating the Gaussian beam a 
distance D behind the sample. 
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FIGURE 2.27 Plot of ellipticity as function of displacement s for parameters same as in Figure 2.26 but fur 
P =O.2mW. (From Banerjee, P.P. etai., J. Opt. Soc. Am. B, 15,2446,1998. With permission.) 

Figure 2.27 depicts ellipticity w)Wy in the far field versus displacement s drawn for the same set 
of parameters as that used to draw Figure 2.26, but for P = 0.2 mW. We have done a series of sample 
experiments and compared results. It turns out that the on-axis intensity measurement of far-field 
patterns may lead to significant errors due to fine structures in the pattern as seen in Figure 2.28 
(obtained using a LiNbO, crystal doped with Fe). We have used this crystal for all experimentation 
to validate our theory, unless otherwise stated. Possible reasons for this include 

1. Interference patterns stemming from single-beam holography [45] 
2. Interference patterns from optical misalignment 
3. Light diffraction and scattering on crystal defects 
4. Interference patterns from nonparallel crystal edges 
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FIGURE 2.28 1Ypical beam pattern at D = 0.5 m for P = 0.05 mW,Jo = 20cm, and s = 19.5 cm for Fe doped 
LiNb03 crystal. (From Banerjee, P.P. et aI., J. Opt. Soc. Am. B, 15, 2446, 1998. With permission.) 
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FIGURE 2.29 Experimental (points) and theoretical (line) variation of the beam ellipticity on the observation 
plane as a function of scan distance. Here, P = 0.2mW, D = 0.5m,Jo = 1Ocm. Upon comparison, n2 = -1.4 x 
10-12 m2/V2• (From Banerjee, P.P. et aI., J. Opt. Soc. Am. B, 15,2446, 1998. With permission.) 

Note that the pattern is approximately symmetric (along x and y). This symmetry arises because the 
refractive index changes that are due to PV (and thermal effects) are symmetric and because there 
is little contribution from diffusion. Experimental results based on the measurement of ellipticity, 
as shown in Figure 2.29, show the same trend as the theoretical predictions superposed on the same 
figure. The ellipticity was calculated from experimental observations by first determining the extent 
W x' W y of the bright or gray region along x and y, respectively, from pictures such as Figure 2.28 and 
taking the ratio of the two. Note that Figure 2.29 is in fact a blowup of Figure 2.27 over the interval 
9.5-10.5 cm. The theoretical graph in Figure 2.29 was drawn after examining the experimental 
results shown in the same figure and choosing that value n2 for the analytical graph that minimizes 
the sum of the differences between the experimental points and the corresponding theoretical data. 

As a final note, we would like to point out that each time the crystal was displaced along the lon­
gitudinal direction for a fresh z-scan ellipticity measurement, we also made a transverse movement 
of the crystal in order to make sure that we were starting out from a virgin location in the crystal 
for each data point. In other words, we always started out from an initially unexposed region of the 
crystal and exposed it to the incident illumination until steady state was achieved. 
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In summary, a model for beam propagation through a nonlinear material that takes into account 
inhomogeneous induced refractive index changes due to the nonlinearity was developed. The 
theory based on this model can be used to analyze the propagation of Gaussian beams through 
PR LiNbO,. A focused Gaussian beam of circular cross section incident on the sample emerges 
as an elliptic Gaussian after interaction in this material. As stated earlier, the simpler P-scan 
method can be used to evaluate the effective nonlinearities (resulting from the PV effect) of 
lithium niobate samples doped with different materials such as Fe, Co, Cr, Rh, Mn, etc. The value 
of the nonlinear coefficient can then be used to determine the acceptor-to-donor ratio of dopants 
in the PR samples. This method can be used to characterize any optically nonlinear material that 
has an induced intensity dependent refractive index. We would like to point out that this method 
is very general and in principle may be applied to any nonlinear electromagnetic material and at 
any frequency. 

PROBLEMS 

2.1 Assume a Gaussian beam in air with plane wavefronts and waist Wo at a distance do from a 
converging lens of focal length f 
(a) Using the laws of q-transformation, find the distance behind the lens where the Gaussian 

beam focuses, i.e., again has plane wavefronts. 
(b) Using the BPM, simulate the propagation of the beam through air and through a lens. 
(c) By setting do = f, determine the profile of the beam a distance fbehind the lens. 
(d) By setting do = 2f, determine the profile of the beam distances f and 2fbehind the lens. 

2.2 A Gaussian beam of width w and having wavefront with a radius of curvature R is normally 
incident on the interface between air and glass of refractive index n. Find the width and radius 
of curvature 
(a) Immediately after transmission through the interface 
(b) Immediately upon reflection at the interface 

2.3 A Gaussian beam of waist Wo of wavelength I.. is incident on a slice of dielectric material of 
thickness L with a refractive index n(x) = no + An cos Kx with Wo » 21tIK. Calculate the 
far-field diffraction pattern of the beam after transmission through the material 
(a) Assuming a thin sample, i.e., L «ZR where ZR is the Rayleigh range of the Gaussian beam, 

and normal incidence 
(b) Assuming a thick sample L > ZR and with K'LI..» I, and incidence at Bragg angle given 

by cilB = sin-1(KI..!41t) 
2.4 Use the split-step beam propagation technique to analyze propagation along z of a one­

dimensional Gaussian beam of Wo = 100"," ("'" is the free-space wavelength) incident onto a 
grating made using a material of quiescent refractive index no' The grating has a thickness 
of L = 100"," with a refractive index profile n(x) = no + An sgn (cos Kx), K = 21t1A, A = 5",", 
where sgn denotes the signum function. Assume no = 1.5 and An = 0.00015. Calculate the 
profile at the exit plane of the grating and in the far field. Repeat the problem for the case 
where the thickness of the grating is L = 1000"," and characterize the differences between 
the two cases. 

2.5 Analyze the propagation of a Gaussian beam of waist Wo = 100"," through a material of 
thickness L = 100"," having a refractive index profile n(x) = no + a(x/wo), Ixl < 5wo. Let no = 
1.5, a = 0.015. Determine the far-field intensity profile. You may use analytical techniques 
and/or the BPM. 

2.6 A Gaussian beam of waist Wo = 100"," symmetric about x = 0 is incident from air onto a 
nonlinear material slab of thickness L = 1001..0 and of refractive index n(x) = no + n,I(x), 
no = 1 where l(x) is the intensity of the Gaussian beam. Assume that a knife edge is present 
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at Z = O. Use the split-step method to determine the far-field profile. At Z = 0-, assume 
n2I(0) = 10-4. 

2.7 The paraxial NLS equation can be written as 

.au 1 a(D_,aU) J(112)-0 }-+--- r - + u u-az rD-' ar ar 

where D represents the dimension of the problem. For the case D = 2 (cylindrical symmetry) 
and J(luI2) = lul2 (a) use the Hankel transform technique to numerically plot representative 
beam on-axis amplitudes during propagation all the way to near the self-focusing point for an 
initial profile Uo = 4e -"12 ; (b) repeat part (a) for the case when, as in the text, a fixed and adap­
tive nonparaxiality parameter has been included. 

2.8 (a) Plot the on-axis amplitudes as a function of propagation distance for the case of the par­
axial NLS equation with cylindrical symmetry but for an initial profile Uo = 4e-" . (b) Repeat 
part (a) for the case when, as in the text, a fixed and adaptive nonparaxiality parameter has 
been included [22]. 

2.9 In the paraxial NLS equation 

. au 1 a ( D , au) (2) ]-+-_ - r - - +J lui u=O az rD' ar ar 

setting D=3 implies spherical symmetry. AssumeJ(luI2) = (luI2/(1 + lI1u 12» . Use a change of 
variable u = r'v; 1 = 112 to change the radial operator from spherical to cylindrical coordi­
nates. Thereafter, by using a suitable initial condition, sketch typical profiles of the spheri­
cally symmetric shapes that are stable during propagation. For hints and details of the Hankel 
transform to be used, readers are referred to Nehmetallah and Banerjee [46]. 

2.10 Derive representative z-scan graphs for the case where the (thin) lens to be characterized 
is a linear lens with a fixed focal length J which is independent of the intensity of the light, 
but may depend on other parameters such as applied voltage across the sample lens as in an 
electro-optic lens. In this case, show that the z-derivative of the on-axis intensity is similar 
to the traditional z-scan signature of a nonlinear induced lens. 

2.11 Derive representative z-scan graphs for the case when the sample under test has an induced 
refractive index as in a diffusion-dominated PR material, and given by I!.n oc oIlox, assuming 
one transverse dimension. Assume thin sample, for simplicity. Show that the nature of the z-scan 
graph is an even function of the displacement from the back focal plane of the external lens. 
For hints and details, readers are referred to Noginov et al. [47]. 

2.12 If the induced refractive index of a material is proportional to the gradient of the intensity, 
show how this effect may be used in image processing applications such as edge enhancement 
of an image. For hints, readers are referred to Banerjee et al. [48]. 
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