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Summary 
    In this Chapter, we provide a brief review of the 

underlying nonlinear Schrödinger and associated 
equations that model spatio-temporal propagation in 
one and higher dimensions in a nonlinear dispersive 
environment. Particular attention is given to fast 
adaptive numerical techniques to solve such equations, 
and in the presence of dispersion and nonlinearity 
management, saturating nonlinearity and nonparaxiality. 
A unique variational approach is          also outlined which 
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helps in determining the ranges of nonlinearity and dispersion parameters to 
ensure stable solutions of the nonlinear equations. The propagation of 3+1 
dimensional spatio-temporal pulses, or optical bullets is also modeled using a 
fast adaptive split-step Hankel transform technique. 
 
1. Introduction 
 Traditionally, solitons or solitary waves propagating in a medium are 
caused by a balance between nonlinearity and dispersion.  Mathematically, 
solitons are particular solutions of nonlinear partial differential equations 
modeling many physical phenomena. The soliton was first described by John 
Scott Russell in 1834, who observed a solitary wave in the Union Canal, 
reproduced the phenomenon in a wave tank, and named it the "Wave of 
Translation". In 1895, Korteweg and deVries mathematically described weakly 
nonlinear shallow water waves with an equation that later came to be known as 
the KdV equation [1,2,3]. Since then, this and similar equations have been 
found in a wide range of physical phenomena, especially those exhibiting 
shock waves, and traveling waves and solitons. In 1965 Zabusky and Kruskal 
used a finite difference approach to numerically solve the KdV equation and 
the word “soliton” was first used [2].  Rigorously speaking, the soliton is a 
special subset of solitary waves that is stable to perturbations and mutual 
collisions; however, the word is sometimes used loosely in the literature to 
denote stationary traveling wave solutions of nonlinear partial differential 
equations. 
 In nonlinear optics, solitons can be classified as temporal (1-dimension), 
spatial (1 and 2-dimensions) or spatiotemporal (3-dimensions) depending on 
whether the light is confined in time, space, or space and time, respectively. 
Hence a temporal soliton represents an optical pulse that does not change its 
shape while propagating in nonlinear media, such as a Kerr type medium.  
Similarly, a spatial soliton is a confined beam in direction(s) transverse to 
propagation. Temporal solitons in Kerr type media are formed due to the 
balance of two counter effects, viz., dispersion, which leads to pulse 
broadening, and self phase modulation (SPM) where the refractive index 
depends on the intensity of the pulse.  Spatial solitons are formed due to the 
balance between beam diffraction which induces spreading of the beam, and 
the self focusing phenomena due to the Kerr nonlinearity. Spatiotemporal 
solitons or optical bullets exist due to the balance between dispersion, 
diffraction and Kerr nonlinearity effect. 
 During the last two decades there has been a lot of interest in optical 
solitons.  Different kinds of solitons have been introduced, namely, Bragg, gap, 
vortex, parametric, discrete, algebraic, vector and incoherent solitons along 
with different “shades” associated with them, such as bright, dark and gray. 
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For a complete list of these the reader can refer to the book by Kivshar and 
Agrawal [4]. 
 Chronologically, the first spatial soliton was discovered in 1964 due to the 
nonlinear phenomenon of self-trapping of continuous wave optical beams in a 
bulk nonlinear media [4].  In 1973, Hasegawa was the first to suggest the 
existence of temporal solitons in optical fibers, due to a balance between self-
phase modulation and anomalous dispersion, and to propose the idea of a 
soliton-based transmission system to increase performance in optical tele- 
communications [5]. In 1980, Mollenauer et al. were the first to experimentally 
observe these temporal solitons [6, 7].  In 1987, Emplit et al. made the first 
experimental observation of the propagation of a dark soliton in an optical 
fiber [7]. In 1988, Mollenauer et al. used the Raman effect to transmit soliton 
pulses over 4,000 kilometers [8].  In 1991, Gordon et al. transmitted solitons 
error-free at 2.5 Gbps over more than 14,000 kilometers, using erbium optical 
fiber amplifiers [9]. In 1998, Georges et al. used wavelength division 
multiplexing through combining optical solitons of different wavelengths, and 
demonstrated data transmission of 1 Tbps [10]. In 2001, solitons became a 
practical reality when submarine telecommunications using solitons was first 
realized in Europe carrying real traffic [12]. 
 
2. Theoretical background 
2.1 Pulse propagation in fiber: The 1-D NLS equation 
 It is well known that pulses traveling in a nonlinear medium distort due to 
the effect of nonlinearity.  Also linear theory predicts that pulses distort due to 
dispersion that may exist in the medium. This phenomenon is due to the fact 
that different frequency components constituting the pulse travel with different 
velocities in a dispersive medium.  So, it is surmised that nonlinearity and 
dispersion together can accommodate distortionless propagation of pulses, 
called solitons. For both nonlinearity and dispersion, chirping in frequency 
develops during propagation. Appropriate amounts of each ensures soliton-like 
propagation.   
 Fiber dispersion can be best understood by realizing that the propagation 
constant k is not a constant but depends on frequency according to the 

dispersion relation [13] 2 3
0 0 1 0 2 0 3

1 1k k k k k
2 6

( ) ( ) ( ) ( ) ..ω ω ω ω ω ω ω .= + − + − + − + , 

where k0 is the propagation constant at frequency ω0, k1 = k’(ω0), is the group 
velocity (GV) parameter, k2 = k”(ω0) is the group velocity dispersion 
parameter (GVD), and )(kk 03 ω′′′= is the slope of the group velocity. 
 An optical pulse with an envelope ue propagating in a single mode fiber 
will have a spectral width ∆ω, since ( )2, eunn ω=  depends on frequency.  Then 
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1υ . Thus, different spectral components 

travel at different speeds along the fiber causing dispersion. This phenomenon 
is called GVD and is denoted by parameter k2 = k” (ω0), where k2 > 0, (<0) 
corresponding to normal dispersion (ND) and anomalous dispersion (AD), 
respectively.  We note that dispersion broadens the pulse shape. 
 The effect of the nonlinearity is manifested in the intensity dependence of 
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responsible for self refraction [1,13]. The third order χ
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(3) susceptibility, which 
is also related to n2, is the nonlinearity present in optical fibers, and is 
responsible for nonlinear refraction. This phenomenon is called self phase 
modulation (SPM), where the optical pulse experiences spectral broadening or 
self-focusing in time domain.  Note that one can use a heuristic method to 
derive the nonlinear Schrödinger (NLS) equation by using the dispersion 
relation and operator method as outlined in Refs. [1,13], to get:  
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which is the normalized form of the NLS equation, and correspondingly 
has a single soliton solution of the form [14]:  
 

( ) 2

2zj

e ehsecu~
Κ

−
ΚΚ= τ .                                          (4) 

 

 Figure 1(a) shows the first order soliton described by Eq. (4) as it 
propagates in a nonlinear dispersive medium.  Figure 1(b) shows the evolution 
of the corresponding second order soliton which can be found numerically by 
starting with an initial profile which is twice the amplitude of the first order 
soliton [14]. 
 

(b) 

~

(a)  
 

Figure 1.  (a) First and (b) second order 1-D soliton evolution. 
 
2.2 Beam propagation in bulk media: Self-focusing equation 
 Self-focusing is a nonlinear phenomenon, which has been studied 
extensively for the last four decades. Similar to the one dimensional case, the 
refractive index is affected by the nonlinearity. Self-focusing results in 
increase in the on-axis intensity and the narrowing of the beam width.  For 
powers above a certain critical power Pc [15,16], the beam theoretically 
collapses with an intensity so high that it can either cause breakdown in the 
material, triggering some other physical effects, such as saturation of the index 
of refraction or failure of the assumptions about slowly varying amplitude and 
paraxial approximation, causing periodic focusing and defocusing. Zakharov 
and Shabat [17] pointed out that if the nonlinearity is strong enough this results 
in higher index of refraction towards the center of the beam and on-axis rays 
undergo total internal reflection and are thereby trapped. Nonlinearity can 
balance diffraction of a beam in one dimension, resulting to the formation of 
first order spatial solitons. Also, if the nonlinear effect is higher than diffraction, 
periodic focusing occurs, or may result in higher order solitons. This may not 
be the case in two or three dimensions where spatial collapse may occur. 
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 The self-focusing equation in 1 and 2 transverse dimensions can be 
derived as in Ref. [13] where we get the following relation: 
 

∗−∇=
′ eeeT
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Zd
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0 2
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2 β .                         (5)  

 

If ue(X’, Y’,Z’) = a (X’,Y’)e-jκZ’ is assumed to be the solution of the above 
equation then we have: 
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a spatial soliton solution of the form: a(X’) = Asec h(KX’), where
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forms as a balance between focusing due to nonlinearity or self refraction, and 
spreading due to diffraction.  
 
B. Two-transverse dimensions  
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which has no analytic solution, and is very sensitive to initial conditions.  
Particular solutions or modes of Eq. (8) with ( ) 000 =∞=′ )(a~,a~  are called the 
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Townes “solitons”. These modes depend on the initial condition 00 a)(a~ = .  
The first three “modes” are shown in Figure 2. 
 
C.  Three dimensions 
 To find a stationary particular solution in this case, it is sometimes easier 
to start with the nonlinear Klein-Gordon (NKG) equation which may also be 
used to describe the envelope propagation in the presence of a cubic 
nonlinearity [1].  Here, the linear part of the equation can be derived from the 
dispersion relation: ω2 = c2

0k2− A1, by replacing ω, k  by the equivalent operators 
[1], and heuristically introducing a cubic nonlinear term (similar to the NLS): 
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where A1 > 0, A3<0. The relationships between A1, A3 and the commonly used 
dispersion and nonlinearity parameters can be found in Refs. [1,13].  If we 
consider radial symmetry, stationary solutions may be obtained by substituting 
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all angular dependences, we get: 
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 If (D-1) = 1, the problem is one similar to the previous case with cylindrical 
symmetry. If (D-1) = 2, the  equation    models the spherically symmetric case, 
   

~
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mode 1
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Figure 2.  Townes soliton profiles. 
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which can give 3-D spatio-temporal solitons or optical bullets. Also, if we 

make a final substitution 
0

2
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1

p

rAr~,â
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−= in Eq. (10) we get: 
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 Figure 3 shows the 3D spatio-temporal plots or “optical bullet” 
propagation in bulk media where the solution tends to self-focus after 
propagation for some time. Figure 4 shows particular solitary wave solutions by 

plotting 
)(â
)r~(â

0
 versus r~  (dotted curve) and compares it to with corresponding 

solutions for D =(1,2) (solid and dashed curves, respectively) [18]. 
 

 
 
Figure 3. Optical bullet propagation. Simulation performed using numerical techniques 
described below. 
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Figure 4. Townes soliton profiles for D=1 (solid line), 2 (dashed line), 3 (dotted line)  
(Nehmetallah and Banerjee [33]). 
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2.3 Nonparaxial assumption in the NLS equation  
 During the last stages of self-focusing, the assumptions about slowly 
varying amplitude and the paraxial approximation may not be valid for large 
focusing angles. It has been proposed that there is no singularity if one 
accounts for nonparaxiality [19]. Starting from Eq. (5) the paraxial and 
nonparaxial NLS equation which is classically used to model the self-focusing 
phenomenon can be written in the general operator form: 
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where D is the transverse dimension in space, ε = (λ/4πr0)2 and r0 is the initial 
beam radius, and where  eTer u~u~L ∆= , ( ) σ2

eenl u~u~N = . For notational convenience, 
the z in (12) is the normalized form of Z ' in Eq. (5). 
 
2.4  Beam propagation in saturating nonlinearity 
 As we mentioned earlier, self-focusing results in the narrowing of the 
spatiotemporal pulse width in dimensions and increase in the on-axis intensity.  
For powers above a certain threshold the spatiotemporal pulse undergoes 
collapse. In reality, the high pulse intensity may either cause breakdown in the 
material, or some other physical effects may be triggered, such as saturating of 
the index of refraction, so that no further focusing may occur.  The time-
dependent (3+1)-dimensional (D=3) paraxial wave equation, in the presence of 
group velocity dispersion is [4,18,20]: 
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intensity induced change in index where n4 ≠ 0 and negative in the case of 
saturable nonlinearity. 
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where sd  = sgn(k2) (sgn(x) = -1,1 for x<0, x>0 respectively), w0 is the initial 
transverse spatial width, and Ld is the diffraction length. If sd = -1 (anomalous 
dispersion) we can assume spherical symmetry of the field distribution and 
introduce the radial variable r = (x2 + y2 + τ2)1/2 to recast Eq. (14) as [20] 
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2.5 Dispersion management in D-dimensions  
 In the last decade, dispersion management (DM) techniques have received 
a lot of attention due to their advantages in high speed nonlinear wave 
propagation in optical communication systems.  One of these advantages is the 
enormous reduction of the inter-pulse effects due to the zero dispersion limit 
[21].  In 1 dimension (1D) DM reduces pulse radiation due to modulation 
instability reduction, it also reduces amplitude compensating fiber loss and 
jitter due to collisions between signals in different channels of wavelength 
division multiplexed systems (WDMS). Also, DM has many other effects 
which provides stabilizing pulse propagation for very long distances [22].  
Hence, DM is expected to be the future of soliton-based communication 
systems. The time-dependent paraxial wave equation, in the presence of 
periodic modulation of dispersion, has the form of a modified (D+1)-
dimensional NLS with a dimensionless envelope of the optical field according 
to 
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where r = (x2 + y2)1/2 or r = (x2 + y2 + τ2)1/2  for cylindrical (D=2) or spherical 
(D=3) symmetry of the field distribution respectively, and f (z) is either 
piecewise continuous (PWC) periodic functions or simple harmonic functions 
of the form ϑ(z) = ϑ0  +ϑ1 sin Ωz.   
 
2.6 Nonlinearity management in D-dimensions  
 Some studies show that beam stabilization can be accomplished if the 
nonlinearity coefficient is weakly modulated along the propagation direction 
where the beam power oscillates about the modulated critical value [23]. Also, 
Towers and Malomed [24] concluded that a better stabilization can be obtained 
if we use a more radical modulation of the nonlinearity.  This modulation is 
done based on a periodically alternating self-focusing (SF) and self defocusing 
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(SDF) layers or even a stack of periodic SF layers with different values of the 
Kerr coefficient.  Note that in a quadratically nonlinear medium with phase 
mismatch ∆K, it has been shown that the effective cubic nonlinearity coefficient, 
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 The time-dependent (D+1)-dimensional (D=3) paraxial wave equation in 
the presence of group velocity dispersion is [4, 18]: 
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where 002 )'()'(ˆ nkZnZg =  is the nonlinear parameter responsible for SPM 
and is either piecewise continuous in layers of width L or harmonic function of 
period L. Introducing the following normalization for Eq. (17): ,
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where sd = sgn(k2), w0 is the initial transverse spatial width, Ld is the diffraction 
length and where )()'(ˆ zgZg = . If we assume sd = -1 (anomalous dispersion) 
and spherical symmetry of the field distribution, and introduce the radial 
variable r = (x2 + y2 + τ2)1/2, Eq. (18) can be written as 
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where  D can take on any value from 1 to 3. 
 
3. Hankel or Fourier Bessel transform methods 
 Most of the PDEs mentioned so far do not have a closed form solution, 
and hence we use numerical techniques to tackle these types of problems.  
However, due to the computational complexity of the problem encountered in 
higher dimensions, we have shifted our focus towards numerical integral 
transform techniques and their variations to solve such type of equations.  In 
this Section we outline a numerical technique called the adaptive fast Hankel 
split step (AFHSS) [26-31] or adaptive Fourier Bessel split step (AFBSS) 
method.  This method is used to track, as an example, the solutions of the 2 
and 3-D NLS equation and their variations.  Note that this method is based on 
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the combination of the standard split step fast Fourier transform (SSFFT) 
technique and the use of the Hankel transform, which utilizes the cylindrical 
and spherical symmetry of the problem. This symmetry leads us to use this 
method applied to the above problem. Also, we remark that the computation 
time and precision are enhanced enormously. In addition to this tool, we will 
also use the similarity criterion developed by Zakharov et al. [17]. This 
criterion is applied to transverse spatial dimensions and the longitudinal 
propagation step, which can be adaptively updated.  In this way, we can track 
the pulse/beam amplitudes to distances very close to the collapse distance in 
the self-focusing case and can also track the amplitude dynamics of the 
spatiotemporal solitons, as discussed later.  
 The AFHSS algorithm in Figure 5 resembles the symmetrized Fourier 
split-step technique, but where we change the longitudinal propagation 
stepping size ∆z ∝ A (z1)-1/s – A(z2)-1/s ≈ A(z1)-1/s when A(z2) >> A(z1) adaptively 
using the similarity formula defined in [17] where s = (2/3,1/2) for D = (2,3) 
respectively, and the grid spatial range ∆rmax ∝ A(z)1-D in order to track the 
varying amplitude of the spatio-temporal pulse in the medium.  The flowchart 
in Figure 5 has been written for the time-dependent paraxial wave equation, in 
the presence of periodic modulation of dispersion and nonlinearity, which, as 
discussed above, has the form of a modified (D+1)-dimensional NLS for a 
dimensionless envelope of the optical field: 
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 The linear operator in Eq. (20) with D=2,3 is 
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 The Hankel transform or Fourier Bessel technique can not apply directly to 
this operator in the case when D=3, so we have to transform the operator from 
spherical coordinates to cylindrical coordinates by letting ( ) ( )z,rvrz,ru~ l

e
−= , 

where l is the order of the Fourier Bessel or Hankel transform.  The expression 
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of the cylindrical and spherical Fourier Bessel transform pair respectively, 
where they are related to each other by:  
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Figure 5. The AFHSS algorithm, a symmetrized version of the split step FFT using 
cylindrical or spherical Fourier Bessel transform instead, and using adaptive longitudinal 
stepping and transverse grid management (Nehmetallah and Banerjee [37]). 
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function. The above transform pair is solved by the lth order finite Hankel 
Transform method, explained in the next subsection. 
 
3.1 Calculation of the Hankel transform 
 Many techniques are used to calculate the Hankel transform [26, 27] but 
we adopted Yu’s [28] or Guizar’s [29] method.  We use the definition of the lth 
order finite Hankel Transform of the third kind [30]: 
 

( )[ ] ( ) ( ) ( ) ( ) ( ) ( )[ ] ,drrYqJqYrJz,ru~rz,u~z,ru~
p

q
mlmlmlmlemee ∫ −== ρρρρρHH       (24)     

 

in which ρm’s are the roots of the transcendental equation J1(qρm)Y1(Pρm) − 
J1(qρm)Y1(qρm) = 0, the inverse transform can be written as  
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expansion of the function and its transform by an lth order Bessel series [28, 29]   
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 Here it is preferable to choose R2 as large as possible, and R1 is determined 
by the initial profile, which is going to decrease due to focusing in this 
problem.  Also, if we choose , then the error is close to zero as N 
increases. 

1+= NlS~ κ

 
4. Focusing arrest mechanisms   
 As explained earlier, self-focusing results in the narrowing of the beam 
width in two transverse dimensions and increases the on-axis intensity. Above 
a certain threshold power the beam undergoes collapse. Although the exact 
value of the critical power depends on the spatial distribution of the input 
beam, the critical power of circularly symmetric beams is not more than a few 
percent above the theoretical lower bound value [15, 16] 

c
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c nn
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2

4π
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where c  is the normalized beam power, which is a necessary condition for 
collapse. The slowly varying amplitude and the paraxial approximation 
assumptions are not valid for large focusing angles during the last stages of 
self-focusing, and there is no singularity if one accounts for nonparaxiality 
[19].   

N

 

 
 

Figure 6. Maximal focusing as a function of grid size (Banerjee et al.  [31]). 
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 For a problem with cylindrical symmetry, the Hankel transform technique 
is preferable over other classical techniques such as finite difference, finite 
element, and wavelet methods, due to the availability of fast algorithms with 
speeds comparable to one-dimensional fast Fourier transform (FFT) methods.   
For a detailed study of the nonparaxial NLS, refer to Ref. [31].  Numerically 
we used the AFHSS algorithm developed earlier to solve Eq. (12).  
 Figure 6 shows the maximal focusing as a function of grid size h = ∆r  
which proves the convergence of our methods to the numerical focusing point 
when ∆r decreases by varying the S  parameter defined above. Although the 
trend is similar, this is a considerable improvement over the convergence test 
results in Fibich and Ilan [32].  Figure 7 shows the growth of the on-axis 
intensity using the AFHSS technique for a Gaussian test function.  

~

 

 
 
 
Figure 7. On-axis intensity of ( )24 2

0 /rexpu~e −= as a function of propagation for fixed 
values of ε ranging from 10-2 to 10-8 where z = zc = 0.1481 for ε = 10-8, and for an 
adaptive ε varying as ε = (λ/4πr)2, using AFHSS with 200022 21 ×== ππ RRS~  (4000  
cylindrical samples). λin inset is normalized to r0. (Banerjee et al.  [31]). 
  
5. Saturating nonlinearity 
 When a pulsed optical beam propagates through a bulk nonlinear medium, 
it is affected by diffraction, (anomalous) dispersion, and nonlinear refraction. 
Such a space-time combined effect lead to many nonlinear phenomena such   
as spatiotemporal collapse, which can yield short pulses with extremely high 
optical fields, or formation of three dimensional optical solitons or light bullets 
[18]. These light bullets represent an extension of self-trapped optical           
beams into the temporal domain. Such optical solitons are important in tele- 
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communication systems due to their self-confined structure, by preserving their 
shape after propagating long distances, where they satisfy the requirement of 
being self-guided in bulk media.  Under the combined and balanced effect of 
linear diffraction and dispersion and the spatio-temporal nonlinear effect, 
optical bullets may exist.  The above phenomenon is traditionally governed by 
the (3+1)-dimensional NLS, which can be viewed as a limit of the Zakharov 
system of Langmuir waves in plasma.  Note that in (1+1)-dimensions, the NLS 
equation can be solved explicitly by the inverse scattering method [3] and 
particular solutions are stable, corresponding to temporal or spatial solitons.  
However, in (2+1) and (3+1)-dimensional cases, solutions are not stable and 
they can be stabilized by using saturating nonlinearities or graded-index 
nonlinear media for example [19, 33].   
 In this Section we use the AFBSS method, to numerically solve Eq. (15) 
with and without saturating nonlinearity, which is classically used to model 
this phenomenon.  For a detailed study refer to Ref. [33].  Figure 8 shows that 
a beam will start to focus, and then self-trapping occurs during to saturation 
nonlinearity for the following pulse parameters , 
where N

54050 0
2
0 === w,.A,0N

0, A, w, are the normalized power, amplitude and width respectively. 
 

 
 
Figure 8. Stable light-bullet generation with initial focusing (Nehmetallah and Banerjee 
[33]).  
 
6. Dispersion management  
 As mentioned in Section 2.5, DM has received a lot of attention due to its 
benefits in high-speed optical communications systems. Analytical study is 
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necessary to understand fundamental pulse dynamics and the interaction 
between dispersion fluctuation and nonlinearity. Several different methods 
have been developed to study pulse propagation in DM fibers each has its 
region of applicability to successfully describe the pulse dynamics of the DM 
solitons. In 1-D, a novel technique based on wavelet transform to numerically 
solve pulse propagation in a nonlinear optical fiber with periodically modulated 
dispersion is used. Readers are referred to Ref [34] for details on the adaptive 
wavelet transform (AWT) method. Moreover, an analytical description for the 
chirped pulse dynamics based on the Lagrangian theory is also presented, in 
which the average dispersion is in the anomalous regime and where we obtain 
good agreement between this analytical method and AWT.   
 
6.1 Variational technique 
 In this Section we reduce Eq. (20) with a periodic dispersion (and 
nonlinearity) map using a variational technique to a coupled set of nonlinear 
ordinary differential equations (ODEs).  These ODEs accurately predict the 
pulse dynamics in (a) both a weak and strong nonlinear medium, compared to 
dispersion, and (b) slow or fast modulation frequency, compared to the 
frequency of oscillations of the soliton width.  This analytical method defines 
the boundaries for how to select stable initial conditions for the pulse and the 
dispersion map, and we use this information in our numerical technique to 
solve (20).   
 In the presence of periodic modulation of dispersion and nonlinearity, the 
functions f (z), g(z) in the equation 
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are either piecewise continuous (PWC) periodic functions or simple harmonic 
functions of the form ( ) zsinz Ω10 ϑϑϑ += . 
 The variational approach describes the wave evolution based on the 
Lagrangian formalism of classical mechanics in terms of the Lagrangian 
density [35] 
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where the (D+1) NLS equation can be derived from  using the Euler-
Lagrange equation 

L
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 Note that the application of Eq. (29) to the Lagrangian density in Eq. (28) 
generates the NLS equation given in Eq. (27).  Following the Ritz optimization 
procedure, let us assume the initial profile to be one of the following forms: 
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where the amplitude A(z), beam radius w(z), and wave-front curvature b(z), are 
unknown functions of the propagation distance z. Following the method in 
[35], where we insert the trial functions from Eq. (30) into the Lagrangian and 
by integrating: 
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we obtain the reduced Lagrangian, where theα, β, and γ ’s are given by 
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for a Gaussian ansatz, and  
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for a hyperbolic secant assumption. 
 We can derive a set of evolution equations called Euler-Lagrange 
equations taking into account that the variation with respect to the unknowns  

in the initial profile should be equal to zero, namely: 0 ⇒=
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where ( ) ( ) ( )z~iezAzA φ= , N0 is the initial pulse energy defined above.   
 In what follows, we consider the case where g(z) = 1 for the case of 
dispersion management.  The case f(z) = 1 for the case of nonlinearity 
management will be discussed in the following Section. 
 
6.2 The 1-dimensional case (D=1) 
 If we consider the case of a harmonic and a high-frequency modulation of 
the dispersion map of the form f = 1+sinΩz, where Ω > ωs where ωs is the 
soliton width oscillation frequency [21].  Also we assume the ratio f1/Ω to be 
small and a hyperbolic secant ansatz as an initial pulse.  Taking the derivative 
of Eq. (34b) and comparing it to Eq. (34d), we arrive at the following system 
of ODEs [21] 
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where, for notational brevity, the subscripts stand for derivatives.  Following 
the Kapitza approach, the width w and the chirp b has the form 

respectively. Upon taking the average, denoted by the 
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Let δb = S1sin Ωz + S2cos Ωz, δw = S3sin Ωz + S4cos Ωz. Defining 
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and (36d) can be found from the following system of linear equations  
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−

d~

wbf

S
S
S
S

~b

~b
bw

bw

0
2

0

04
04
202

220

1

4

3

2

1

κ
κ

Ω
Ω

Ω
Ω

.                       (37) 

 

The solution of the above system gives  
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where . Assuming  to 
be sufficiently large so as to neglect the second terms in (38), we arrive at 

42242222 64204324 bb~w~wb~w +++++= ΩΩΩΜ κκκ 1f

 

,zcoswbfzsin
w

fw Ω
Ω

Ω
Ω

1
322

1 2114
−⎥⎦

⎤
⎢⎣
⎡ +

−
=

π
δ                    (39a) 

 



 G. Nehmetallah and P.P. Banerjee 52

,zcosfzsinb
w

bfb Ω
Ω

Ω
Ω 2

12
422

1 214
ππ

δ −⎥⎦
⎤

⎢⎣
⎡ +=                    (39b) 

 

,wb
w
bfwbwz ⎟

⎠
⎞

⎜
⎝
⎛ −+= 3

322

2
1 242

πΩ
        (39c) 

.
w

bb
ww

bf
w

b
w

bz ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+×+−−= 3

2
04

824

2

22

2
1

32
02

42 623124222 NN
ππππ Ω

    (39d) 

 

The above system can be simplified if we consider Ω1f  to be small. We 
obtain 
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which admits a fixed point solution 22
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N .  Note that stabilization is possible when 

there is a minimum in this effective potential. 
 We now show sample simulation results using the AWT methods.  Figure 
9 shows the variation of the on-axis pulse amplitude for three different 
dispersion map periods, keeping the same amplitude in the anomalous 
dispersion regime according to condition stated above, with the initial pulse 

( )22 τ−= expu~e , using the AWT techniques according to the accompanying 
initial conditions.   
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Figure 9. Variation of the on-axis pulse amplitude for three different dispersion map 
periods, keeping the same amplitude in the anomalous dispersion regime with the initial 
pulse ( )22 τ−= expu~e , using the AWT techniques according to the accompanying initial 
conditions. 
6.3  The 2-dimensional case (D=2) 
 In 2-D, we have to use the adaptive fast Hankel split step (AFHSS) 
transform developed earlier (instead of the AWT) to numerically solve the 
underlying nonlinear Schrödinger (NLS) equation with dispersion management 
terms, use the averaged variational technique to reduce the governing (D+1)-
dimensional NLS equation to a coupled set of nonlinear ordinary differential 
equations (ODEs) and rigorously solve these equations and study their stability 
in each case. These ODEs accurately predict the pulse dynamics in a medium 
of periodic nonlinearity and/or dispersion variations. This analytical method 
defines the boundaries for how to select stable initial conditions for the pulse 
and the dispersion map, and compare it with the exact numerical technique 
developed.  
 Let us again consider a periodic function for the dispersion of the form 

. From Eqs. (34b) and (34d) we arrive at the following 
ODE system 
( ) z~sinffzf Ω+= 10
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Following a similar approach to the 1-dimensional case [36], we arrive at the 
condition 11000 γβN<< f . 
 
6.4  The 3-dimensional case (D=3) 
 Let us consider a periodic function for the dispersion of the form 

.  Let ( ) z~sinffzf Ω+= 10 wb=ϖ , then from Eqs. (34b) and (34d) we arrive at 
the following ODE system 
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w
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where 
1

10
4

1

1
3 42 +
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+

− ==
D

D

D

D Dc,c
α
β

α
γ N . Following a similar approach to the 1-

dimensional case, we conclude that stabilization is possible when f0c4>0 [37]. 
 We now show sample simulation results using the AFHSS method. All the 
input functions are of the type mentioned in Eq. (30).  Figure 10(a) is for D=2 
with the parameters f = [-1,2], ∆z = 0.001, M = 8000 A0 = 1.5, w0 = 1, L = 0.04 
shows the beam evolution. Notice that in this case the beam focuses and 
defocuses periodically. Figure 10(b) shows the corresponding on-axis amplitude. 
Figure 11(a) shows the case when D=3 with the parameters f = [-2,4], ∆z= 
0.005, M = 7200, A0 = 1, w0 = 5, L = 0.015, which leads to a stable soliton.  
Figure 11(b) shows the corresponding on-axis amplitude.  
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Figure 10. Stable 2-D soliton generation through the sign alternating dispersion using 
the AFHSS method. (a) pulse evolution. (b) evolution of the on-axis amplitude 
(Nehmetallah and Banerjee [37]). 
 

 
 
Figure 11. Stable 3-D soliton generation through the sign alternating dispersion, using 
AFHSS. (a) pulse evolution, (b) evolution of the on-axis amplitude (Nehmetallah and 
Banerjee [(37]). 

7. Nonlinearity management  
 In this Section we use the same numerical and analytical techniques 
developed earlier to solve and study transverse and pulsed optical beam or 
“light bullet” propagation in a layered alternating self-focusing and self-
defocusing medium based on the scalar nonlinear Schrödinger (NLS) equation 
in two and three dimensions with cylindrical and spherical symmetry 
respectively. It has been shown [23] that a beam can be stabilized if the 
nonlinearity coefficient is weakly modulated along the propagation direction 
where the beam power oscillates about the modulated critical value. Moreover, 
a better stabilization occurs if a more radical modulation of the nonlinearity is 
done based on a periodically alternating SF and SDF layers, or even periodic 
SF layers with different values of the Kerr coefficient as shown in [24].  In this 
case, we have to start from Eq. (19):  
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 A detailed analysis to solve the above equation can be found in Ref. [38].   
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7.1 The two-dimensional case (D=2) 
 If we study the stability of Eq. (34d) when g(z) is a harmonic varying 
function with a dc offset viz., g(z) = g0 +g1 sinΩz, Eq. (34d) becomes  
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= . Also, if we make the assumption 

that the beam radius w can be divided into ( ) ,ww~zw δ+= with ww <<δ , 
where w~ varies on a slow time scale, and δw is a rapidly varying function with 
a zero mean value, then by means of Kapitza averaging method we derive the 
following equations from Eq. (44)[39]: 
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where ...  is the average over the period 2π/ Ω. A particular solution for Eq. 
(45a) is 
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and if we substitute Eq. (46) into Eq. (45b), we obtain the evolution equation 
of w~ as 
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Eq. (47) will have a stable, fixed point solution given by  
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Eq. (48) has a real value for the average width w~  when 06εε > . So for g1 < 

0, we must have ⎟⎟
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, which agrees with the results obtained 

in [39]. 
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7.2 The three-dimensional case (D=3) 
 Eq. (34d) becomes 
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 A particular solution for Eq. (50a) is 
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Also, if we substitute Eq. (51) into Eq. (50b), we obtain the evolution equation 
of w as ~
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Eq. (52) can be written in steady state as 
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 Eq. (53) is solved for the initial conditions ∆z = 0.01, A0 = 0.18, w0 = 10, 
g0 =1, g1 = -4, L+ = L- = 0.2, where one of the steady state real positive roots 
for the average pulse width 10w~ ≈  which agrees with the initial condition w0 = 
10, assumed. Also note that the above equation with the same initial conditions 
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but with the exception of ε0 < 0 this time admits no physical solution, which is 
in agreement with [39]. 
 We now show sample simulation results using the AFHSS method. All the 
input functions are of the type mentioned in Eq. (30).   Figure 12 shows the 
case for D=2 with the parameters ∆z = 0.01, A0 =2.1, w0 = 1, g0 =1, g1 = -2, L+ 
= L- = 0.01. Notice that in these cases the beam focuses and defocuses 
periodically. Figure 13 shows the case   when D=3 with the following parameters: 
  

 
 
Figure 12. Stable 2-D soliton generation through the sign alternating nonlinearity, 
using AFHSS with  (1600 cylindrical samples) (Nehmetallah 
and Banerjee [38]). 

80022 21 ×== ππ RRS~

 
 
Figure 13. Stable 3-D soliton generation through the sign alternating nonlinearity, using 
AFHSS with  (1600 radial samples) (Nehmetallah and Banerjee 
[38]). 

80022 21 ×== ππ RRS~
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∆z = 0.01, A0 = 0.18, w0 = 10, g0 = 1, g1 = -4, L+ = L-= 0.2, which according to 
the analytical study above leads to a stable soliton, but for 40≈  diffraction 
lengths we see a 10% focusing in the numerical solution [40]. 
 
8. Conclusion  
 In this Chapter, we have provided a brief review of the underlying nonlinear 
Schrödinger and the Klein-Gordon equation that model spatio-temporal 
propagation in one and higher dimensions in a nonlinear dispersive environment. 
While particular analytical solutions are known in certain cases, the vast majority 
of situations demand numerical solutions. We have summarized a fast adaptive 
numerical technique based on Hankel transforms to simulate propagation in 
higher dimensions, as well as referred to other techniques, such as the adaptive 
wavelet transform method. Nonparaxiality has been treated as an additional term 
in the NLS equation, and results of stabilization of solitons using nonparaxiality 
and saturating nonlinearity have been discussed. We have also dealt with 
dispersion and nonlinearity management in detail, to show how soliton 
stabilization can be achieved using these techniques.  Initial parameters on pulse 
amplitude, width and nonlinearity and dispersion management parameters 
required for stable or quasi-stable propagation has to be found using a variational 
technique, which we have outlined in the Chapter. While dispersion management 
is widely known, nonlinearity management can be effected through the well-
known cascaded quadratic nonlinearities.  It is hoped that the numerical methods 
outlined in the Chapter prove useful for simulation of nonlinear spatio-temporal 
propagation of optical pulses or optical bullets, in either free-space or in guided 
wave systems.  
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