

University of Dayton eCommons

Geology Faculty Publications

Department of Geology

2011

Encyclopedia of Snow, Ice and Glaciers

Vijay P. Singh Texas A & M University - College Station

Pratap Singh

Umesh K. Haritashya University of Dayton, uharitashya1@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/geo_fac_pub

Part of the <u>Geology Commons</u>, <u>Geomorphology Commons</u>, <u>Geophysics and Seismology</u> <u>Commons</u>, <u>Glaciology Commons</u>, <u>Hydrology Commons</u>, <u>Other Environmental Sciences</u> <u>Commons</u>, <u>Paleontology Commons</u>, <u>Sedimentology Commons</u>, <u>Soil Science Commons</u>, <u>Stratigraphy Commons</u>, and the <u>Tectonics and Structure Commons</u>

eCommons Citation

Singh, Vijay P.; Singh, Pratap; and Haritashya, Umesh K., "Encyclopedia of Snow, Ice and Glaciers" (2011). *Geology Faculty Publications*. Paper 7. http://ecommons.udayton.edu/geo_fac_pub/7

This Book is brought to you for free and open access by the Department of Geology at eCommons. It has been accepted for inclusion in Geology Faculty Publications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.

ENCYCLOPEDIA OF EARTH SCIENCES SERIES

ENCYCLOPEDIA of SNOW, ICE AND GLACIERS

edited by

VIJAY P. SINGH

Texas A&M University College Station, Texas USA

PRATAP SINGH

New Delhi India

UMESH K. HARITASHYA

University of Dayton Dayton, Ohio USA

Contents

Contributors	xxi	Anabatic Winds: In Relation with Snow/Glacier Basin	39
Preface	xli	Umesh K. Haritashya, Vijay P. Singh and Pratap Singh	39
Acknowledgments	xliii		
Guide to the Reader	xlv	Anchor Ice D. P. Dobhal	40
Ablation Depression Lasafam Iturrizaga	1	Andean Glaciers Mathias Vuille	40
Ablatometer <i>Rijan B. Kayastha</i>	3	Anisotropic Ice Flow Olivier Gagliardini	44
Acidity of Glacier Ice <i>Cunde Xiao</i>	3	Antarctica Rasik Ravindra and Arun Chaturvedi	45
Active Ice Wedge Pratima Pandey	4	Anti-Icing Rijan B. Kayastha	54
Adfreeze Pratima Pandey	4	Anti-Syngenetic Ice Wedge Pratima Pandey	54
Aerial Photogrammetry for Glacial Monitoring <i>Martin Kappas</i>	4	Appalachian Glacier Complex in Maritime Canada Rudolph R. Stea	54
Alaskan Glaciers Bruce F. Molnia	16	Arctic Hydroclimatology Jessica Ellen Cherry	58
Albedo Thomas C. Grenfell	23	Artificial Ground Freezing Rijan B. Kayastha	61
Alps Martin Beniston	35	Artificial Production of Snow Carmen de Jong	61
Altai-Sayan Glaciers Vladimir Aizen	38	Atmosphere-Snow/Ice Interactions Timo Vihma	66

viii	CONT	TENTS	
Atmospheric Circulation and Glaciochemical Records Shichang Kang	75	Catastrophic Rock Slope Failures and Mountain Glaciers Kenneth Hewitt, John J. Clague and Philip Deline	113
Automated Glacier Mapping Frank Paul	76	Catchment Glacier D. P. Dobhal	127
Basal Sediment Evacuation by Subglacial Drainage Systems Darrel A. Swift	85	Caucasus Mountains Chris R. Stokes	127
Base Flow/Groundwater Flow Debasmita Misra, Ronald P. Daanen and Anita M. Thompson	90	Characteristics of Snow and Glacier Fed Rivers in Mountainous Regions with Special Reference to Himalayan Basins Akhouri Pramod Krishna	128
Bed (Bottom) Topography Vijay Kumar	93	Chemical Composition of Snow, Ice, and Glaciers <i>Amanda M. Grannas</i>	133
Bed Forms (Fluvial) <i>Vijay Kumar</i>	93	Chemical and Microbe Records in Snow and Ice <i>Liu Yongqin</i>	135
Bed Roughness Vijay Kumar	94	Chemical Processes in Snow and Ice <i>Amanda M. Grannas</i>	138
Bed Strength Vijay Kumar	94	Circulation and Mixing in Ice-Covered Lakes Lars Bengtsson	139
Benchmark Glacier Tobias Bolch	95	Cirque Glaciers Øyvind Paasche	141
Biogeochemistry of Sea Ice David N. Thomas	98	Climate Change and Glaciers Arun B. Shrestha	145
Blue Ice Richard Bintanja	102	Climate Variability and High Altitude Temperature and Precipitation	153
Bottom Melting or Undermelt (Ice Shelf) Ashok Kumar Verma	103	Mathias Vuille Cloudburst	156
Brash Ice Chelamallu Hariprasad	103	Vijay Kumar Cohesion	157
Calving Glaciers Charles R. Warren	105	P. Pradeep Kumar	
Canadian Rockies and Coast Mountains of Canada	106	Cold-Based Glaciers Reginald D. Lorrain and Sean J. Fitzsimons	157
John J. Clague, Brian Menounos and Roger Wheate	100	Condensation Nuclei P. Pradeep Kumar	161
Cascade Mountains, USA Rijan B. Kayastha	111	Confluence of Rivers Anju Chaudhary	161
Cascade System <i>Rijan B. Kayastha</i>	112	Congelation Ice Pratima Pandey	163
Catastrophic Flooding Fiona Tweed	112	Crack Pratima Pandey	163

	CON	TENTS	ix
Creep Christophe Lambiel, Reynald Delaloye and Isabelle Gärtner-Roer	163	Debris Tobias Bolch	186
Crevasses C. J. van der Veen	165	Debris Thermal Properties and Impact on Ice Ablation <i>Ryohei Suzuki</i>	188
Critical Temperature Pratima Pandey	168	Debris-Covered Glaciers Martin P. Kirkbride	190
Crush Pratima Pandey	168	Deglaciation Vinvent Rinterknecht	192
Crust Pratima Pandey	168	Degree-Days Roger J. Braithwaite	196
Cryoconite Nozomu Takeuchi	168	Depletion of Snow Cover Sanjay K. Jain	200
Cryodessication P. Pradeep Kumar	171	Deposition from Debris-Rich Ice Gulab Singh and Farjana S. Birajdar	201
Cryofront P. Pradeep Kumar	171	Digital Elevation Model Generation Over Glacierized Region	202
Cryogenesis P. Pradeep Kumar	171	Thierry Toutin	
Cryogenic Aquiclude P. Pradeep Kumar	171	Digital Image Information Extraction Techniques for Snow Cover Mapping from Remote Sensing Data Manoj K. Arora, Aparna Shukla and	213
Cryogenic Fabric P. Pradeep Kumar	172	Ravi P. Gupta Direct Surface Runoff	232
Cryolithology P. Pradeep Kumar	172	Lars Bengtsson	
Cryopeg P. Pradeep Kumar	172	Discharge/Streamflow Debasmita Misra, Ronald P. Daanen and Anita M. Thompson	234
Cryosol P. Pradeep Kumar	172	Distributary Channels Anju Chaudhary	236
Cryostatic Pressure Pratima Pandey	173	Diurnal Cycle of Runoff Darrel A. Swift	237
Cryostructure Pratima Pandey	173	Diverging Ice Flow Gulab Singh and Farjana S. Birajdar	239
Cryoturbation P. Pradeep Kumar	173	Drift Glacier/Ice/Snow Gulab Singh and Farjana S. Birajdar	240
Dating Glacial Landforms Jason P. Briner	175	Dry and Wet Snow Line/Zone Ravi P. Gupta	240
Dead Ice D. P. Dobhal	186	Dry Snow Ravi P. Gupta	241

x CONTENTS				
Dye Tracer Investigations of Glacier Hydrology Peter Nienow	242	Forbes Band Gulab Singh	296	
Dynamics of Glaciers Hester Jiskoot	245	Formation and Deformation of Basal Ice <i>Simon J. Cook</i>	297	
Elongation Ratio <i>Vijay Kumar</i>	257	Frazil Gulab Singh	300	
Englacial Conduit D. P. Dobhal	257	Freezing Bottom (Ice Shelf) Gulab Singh	300	
Englacial Processes Andrew G. Fountain	258	Freezing Meltwater Gulab Singh and F. S. Birajdar	301	
Environmental Isotopes Bhishm Kumar	261	Freezing and Thawing Index Jiang Fengqing and Zhang Yanwei	301	
Epigenetic Ice Chelamallu Hariprasad	262	Frequency Analysis of Snow Storms Stanley A. Changnon	302	
Epiglacial Morphology Claudio Smiraglia and Guglielmina Diolaiuti	262	Fresh Water Storage Pratima Pandey	303	
Equilibrium-Line Altitude (ELA) Jostein Bakke and Atle Nesje	268	Frictional Melting Pratima Pandey	303	
Erosion of Hard Rock Bed D. P. Dobhal	277	Frost Alan W. Rempel	303	
Erosion Rate Subhajit Sinha	277	Frozen Soil Hydrology Ronald P. Daanen, Debasmita Misra and Anita M. Thompson	306	
Estimation of Glacier Volume and Volume Change by Scaling Methods	278	Frozen Toe (Outer Zone of Glacier Snout) Pratima Pandey	311	
David B. Bahr Estuary Ice Cover	281	Gelisols Divya Dudeja	313	
Brian Morse Fast Ice D. P. Dobhal	289	Geochemistry of Snow and Ice Tandong Yao, Yongqin Liu, Huabiao Zhao and Wusheng Yu	313	
Finger Rafting Dominic Vella and John Wettlaufer	289	Geocryology Amit Kumar	324	
Firn Rachel W. Obbard, Ian Baker and	290	GIS in Glaciology Jacob Napieralski	325	
Rachel W. Lomonaco Fjords	293	Glacial Drainage Characteristics Richard A. Marston	328	
Umesh K. Haritashya, Vijay P. Singh and Pratap Singh	293	Glacial Ecosystems Nozomu Takeuchi	330	
Foliation Gulab Singh	296	Glacial Erosion Ping Fu and Jonathan Harbor	332	

	CON	TENTS	xi
Glacial Erratic D. P. Dobhal	341	Glacier Surging Hester Jiskoot	415
Glacial Geomorphology and Landforms Evolution <i>Alan R. Gillespie</i>	341	Glacier System Rajesh Kumar	428
Glacial Grooves D. P. Dobhal	358	Glacier Toe Rajesh Kumar	429
Glacial Overdeepening Christopher Lloyd	358	Glaciers of the Karakoram Himalaya <i>Kenneth Hewitt</i>	429
Glacial Striations D. P. Dobhal	359	Glacieret Rajesh Kumar	436
Glacial Trough D. P. Dobhal	359	Glacierization Rajesh Kumar	436
Glacial/Interglacial Cycles Michel Crucifix	359	Glacioeustasy Amit Kumar	436
Glaciation During Times of Enhanced/Reduced Atmospheric Carbon Dioxide Andrew B. G. Bush	366	Glaciofluvial Rajesh Kumar	437
Glaciations and Groundwater Flow Systems Jean-Michel Lemieux and Edward A. Sudicky	372	Glaciogenic Deposits Rajesh Kumar	437
Glacier D. P. Dobhal	376	Glaciohydraulic Supercooling Fiona Tweed	438
Glacier Bird of the Andes Douglas R. Hardy and Spencer P. Hardy	377	Glacioisostasy Amit Kumar	439
Glacier Cave Monohar Arora	377	Glaciolacustrine Himali Panthri	440
Glacier Field Studies: Important Things to Notice John F. Shroder	378	Glaciology Peter G. Knight	440
Glacier Hydrology Pratap Singh	379	Glaciomarine Amit Kumar	443
Glacier Lake Outburst Floods Lasafam Iturrizaga	381	Glaciostatic Pressure/Stress Divya Dudeja	443
Glacier Mass Balance Wilfried Haeberli	399	Glaciotectonic Structures, Landforms, and Processes	444
Glacier Motion/Ice Velocity Terry Hughes	408	James S. Aber and Andrzej Ber Global Climate Modeling in Cryospheric	458
Glacier Pothole Rajesh Kumar	414	Assessment Jeffrey Ridley	438
Glacier Sliding Rajesh Kumar	415	Global Outlook of Snowcover, Sea Ice, and Glaciers <i>Mauri Pelto</i>	461

xii	CONT	ENTS	
Global Warming and its Effect on Snow/Ice/Glaciers Stephen J. Déry	468	Horizontal Component of Velocity Rijan B. Kayastha	530
GPS in Glaciology, Applications Matt A. King	471	Hummocks (Peat) Subhajit Sinha	530
GRACE in Glaciology John Wahr	474	Hydrochemical Characteristics of Snow, Ice, and Glaciers Jacob Clement Yde	530
Granulometry Amit Kumar	477	Hydrogen Isotopes Bhishm Kumar	533
Gravel Sheet Amit Kumar	477	Hydrographs Ian C. Willis	534
Gravitational Mass Movement Deposits D. P. Dobhal	477	Hydrologic Cycle and Snow Ronald P. Daanen, Debasmita Misra and	538
Gravity Flow (Mass Flow) Rajesh Kumar	477	Anita M. Thompson Hydrological Response in Glacierized Basins	541
Gray-White Ice Chelamallu Hariprasad	478	<i>Ian C. Willis</i> Hydrology of Jökulhlaups	544
Greenland Glaciers Outside the Ice Sheet Jacob C. Yde	478	Fiona Tweed Hydropower: Hydroelectric Power Generation	
Greenland Ice Sheet Poul Christoffersen	484	from Alpine Glacier Melt Mauri S. Pelto	546
Ground Ice D. P. Dobhal	489	Hypsometry Andrés Rivera, Fiona Cawkwell, Camilo Rada and Claudio Bravo	551
Ground Penetrating Radar Measurements Over Glaciers David C. Nobes	490	Hysteresis Vijay Kumar	554
Heat and Mass Transfer in Sea Ice <i>Daniel J. Pringle</i>	505	Ice Yoshinori Furukawa	557
High Elevation Glacio-Climatology <i>Vladimir Aizen</i>	507	Ice Age Matthias Kuhle	560
Himalaya John F. Shroder	510	Ice Age Cycles: Data, Models, and Uncertainties <i>Donald Rapp</i>	565
Himalayan Glaciers in 2010 and 2035 J. Graham Cogley	520	Ice Age Development Theory Matthias Kuhle	576
Hindu Kush John F. Shroder	523	Ice Apron Mahendra R. Bhutiyani	581
Holocene Glacier Fluctuations Johannes Koch	525	Ice Caps Mahendra R. Bhutiyani	582
Horizontal Component of Ablation <i>Rijan B. Kayastha</i>	529	Ice Caves Mahendra R. Bhutiyani	583

	CON	TENTS	xiii
Ice Core Nancy A. N. Bertler	584	International Polar Year 2007–2008 Ian Allison	647
Ice Covered Lakes Lars Bengtsson	589	Interstitial Ice P. Pradeep Kumar	649
Ice Dams Mahendra R. Bhutiyani	590	Intrusive Ice Chelamallu Hariprasad	649
Ice Sheet Alastair G. C. Graham	592	Inventory of Glaciers Frank Paul	650
Ice Sheet Mass Balance Eric Rignot	608	Inverse Methods in Glaciology G. Hilmar Gudmundsson	653
Ice Shelf Adrian Jenkins	613	Inversion Layers Mahendra R. Bhutiyani	656
Ice-Cored Moraines Sven Lukas	616	Inverted Cup Depth Hoar Crystals Mahendra R. Bhutiyani	656
Ice-Dammed Lakes <i>Fiona Tweed</i>	619	Irreducible Water Mahendra R. Bhutiyani	657
Ice-Marginal Deposition Mahendra R. Bhutiyani	621	Isotope Analysis Tandong Yao, Wusheng Yu, Huabiao Zhao and	657
Ice-Marginal Processes Matthew R. Bennett	623	<i>Yongqin Liu</i> Isotopic Characteristics of Ice, Snow, and Glaciers	665
Ice-Volcano Interactions Hugh Tuffen	625	Bhism Kumar Isotopic Fractionation of Freezing Water	668
Icefall Mahendra R. Bhutiyani	628	Martyn Tranter	
Iceland Glaciers Oddur Sigurðsson	630	Isotopic Signatures Bhishm Kumar	669
ICESat Data in Glaciological Studies Thomas A. Neumann, H. J. Zwally and	636	Kame and Kettle Topography Amit Kumar	671
Bob E. Schutz	(10)	Katabatic Wind: In Relation With Snow and Glaciers <i>Amit Kumar</i>	671
Icicle <i>P. Pradeep Kumar</i>	640	Kilimanjaro	672
Icing P. Pradeep Kumar	640	Douglas R. Hardy Kunlun Mountains	679
Impacts of Snow and Glaciers on Runoff Sarah Boon	640	Jingshi Liu	
Interception of Snow Manmohan Kumar Goel	646	Lake Ellsworth John Woodward, Martin J. Siegert, Andy M. Smith and Neil Ross	683
Interflow Manmohan Kumar Goel	647	Lake Ice Rajesh Kumar	686

xiv	CONT	ENTS	
Lake Vostok Malte Thoma	687	Marginal Channel (Lateral Meltwater Channel) Amit Kumar	724
Laminated Sediments Rajesh Kumar	690	Marginal Ice Zones Rajesh Kumar	724
Landforms of Glacial Deposition John F. Shroder	690	Marine Glaciers Rajesh Kumar	725
Landforms of Glacial Erosion John F. Shroder	692	Marine Ice Sheet Rajesh Kumar	725
Landforms of Glacial Transportation John F. Shroder	693	Mechanical Weathering Rajesh Kumar	725
Landscapes of Glacial Erosion Martin P. Kirkbride	694	Median Elevation of Glaciers D. P. Dobhal	726
Last Glacial Maximum Glaciation (LGM/LGP) in High Asia (Tibet and Surrounding Mountains)	697	Mediterranean Glaciers and Glaciation <i>Philip D. Hughes</i>	726
Matthias Kuhle Latent Heat of Condensation	702	Melt Runoff Modeling Pratap Singh	730
Prem Datt Latent Heat of Fusion/Freezing	703	Melting Processes Luke Copland	733
Prem Datt Latent Heat of Sublimation	703	Meltwater Channels <i>Cliff Atkins</i>	735
Prem Datt Latent Heat of Vaporization/Condensation	703	Meltwater Conduit D. P. Dobhal	738
Prem Datt Lateroglacial	704	Meltwater Erosion Rajesh Kumar	738
Lasafam Iturrizaga Lateroglacial Landform Systems	704	Meltwater Pressure Rajesh Kumar	739
Lasafam Iturrizaga Laurentide Ice Sheet	708	Meltwater Storage Pratap Singh	739
John T. Andrews Layering of Snow	713	Microorganisms Associated with Glaciers Vanya I. Miteva	741
Rajesh Kumar		Monitoring and Warning Systems Markus Konz	744
LIDAR in Glaciology Michael N. Demuth	713	Monsoonal Records Observed from Snow/Ice/Glacier	746
Little Ice Age Rajesh Kumar	722	<i>Shichang Kang</i> Moraine	747
Lobe Rajesh Kumar	722	Anders Schomacker Moulins	756
Mapping of Internal Glacial Layers David A. Braaten	723	Umesh K. Haritashya, Vijay P. Singh and Pratap Singh	750

	CON	TENTS	xv
Mount Everest Rijan B. Kayastha	756	Palaeo-Channel Vijay Kumar	803
Mount Kenya William C. Mahaney	758	Palaeo-Ice Stream Chris R. Stokes	803
Mountain Geomorphology David R. Butler	761	Palaeoclimate and Past Glaciations <i>Philip D. Hughes</i>	808
Natural Hazards Associated with Glaciers and Permafrost Andreas Kääb	763	Palaeohydrology Vijay Kumar	812
Negative Temperature Gradient (in Ice) Rajesh Kumar	775	Pamirs Vladimir Aizen	813
Neoglaciation Rajesh Kumar	775	Pancake Ice Chelamallu Hariprasad	815
Network of Stakes	775	Papua Ian Allison	815
Pratap Singh New Zealand Glaciers	775	Paraglacial Landscape Transformations Lasafam Iturrizaga	817
Wendy Lawson Niche Glacier	779	Patagonia Stephan Harrison	824
D. P. Dobhal Normalized-Difference Snow Index (NDSI) Dorothy K. Hall and George A. Riggs	779	Paternoster Lakes Umesh K. Haritashya, Vijay P. Singh and Pratap Singh	826
Novaya Zemlya Chris R. Stokes	781	Peak Flood Glacier Discharge Monohar Arora	827
Nye (N) Channels D. P. Dobhal	781	Percolation Zone Prem Datt	827
Ogives Divya Dudeja	783	Perennially Frozen Ground Monohar Arora	827
Optical Remote Sensing of Alpine Glaciers Duncan J. Quincey and Michael P. Bishop	783	Periglacial H. M. French	827
Orographic Precipitation Justin R. Minder and Gerard H. Roe	794	Permacrete Ashok Kumar Verma	841
Outlet Glacier Monohar Arora	799	Permafrost Yuri Shur, M. Torre Jorgenson and M. Z. Kanevskiy	841
Overburden Pressure Prem Datt	799	Permafrost on Asteroids William C. Mahaney	848
Oxygen Isotopes Bhishm Kumar	799	Permafrost and Climate Interactions Sharon L. Smith and Margo M. Burgess	852
Palaeo Glaciofluvial Sediment Systems Norm R. Catto	801	Permafrost Modeling Daniel Riseborough	858

xvi	CONT	FENTS	
Permanent/Perpetual Snow Line Monohar Arora	859	Rating Curve Ian C. Willis	918
Physical Properties of Snow Florent Domine	859	Recession Coefficient Manmohan Kumar Goel	922
Piedmont Glaciers Monohar Arora	863	Recession of Discharge Manoj K. Jain	922
Pingo Himali Panthri	863	Reconstruction of the Last Glaciations in the Whole of Asia Matthias Kuhle	924
Plastic Deformation A. K. Singh	864	Recrystallization of Ice Ashok Kumar Verma	932
Plastic Flow A. K. Singh	864	Refreezing of Meltwater Ashok Kumar Verma	932
Pleistocene Epoch Amit Kumar	865	Regelation Ashok Kumar Verma	933
Plucking Amit Kumar	865	Remobilization (of Debris) Renoj J. Thayyen	933
Polythermal Glaciers Neil F. Glasser	865	Resedimentation Subhajit Sinha	933
Precipitation Donna F. Tucker	867	Retreat/Advance of Glaciers Luke Copland	934
Proglacial Lakes Brenda L. Hall	870	Rime Ice <i>Renoj J. Thayyen</i>	939
Quaternary Glaciation Jürgen Ehlers and Philip Gibbard	873	River Ice Hydrology Hung Tao Shen	939
Radar Application in Snow, Ice, and Glaciers <i>G. Venkataraman and Gulab Singh</i>	883	Roche Moutonnees Himali Panthri	942
Radiative Transfer Modeling Jie Cheng and Shunlin Liang	903	Rock Glaciers John R. Giardino, Netra R. Regmi and	943
Radioactive Fallout Bhishm Kumar	913	John D. Vitek Rocky Mountains	948
Radioactive Isotopes Bhishm Kumar	913	<i>Eric M. Leonard</i> Röthlisberger (R)-Channels	952
Radioactivity Bhishm Kumar	914	Renoj J. Thayyen	
Rain-Induced Snowmelt Delphis F. Levia and Daniel J. Leathers	915	Runoff Coefficient Manmohan Kumar Goel	952
Ram Resistance Prem Datt	917	Runoff Generation Anita M. Thompson, Debasmita Misra and Ronald P. Daanen	953

	CON	TENTS	xvii
Runoff Observations Anita M. Thompson, Debasmita Misra and Ronald P. Daanen	955	Serac Markus Konz	1027
Runout Distance A. K. Singh	957	Siberia <i>Kazuyoshi Suzuki</i>	1028
Salinity C. K. Jain	959	Slush and Sleet of Snow A. K. Singh	1031
Saltation C. K. Jain	959	Snow A. K. Singh	1031
Scandinavian Glaciers Juha P. Lunkka	960	Snow Bed/Snow Bed Vegetation Nadine Konz	1032
Sea Ice Matti Leppäranta	964	Snow Course A. K. Singh	1032
Sea-Level Anny Cazenave	969	Snow Cover and Snowmelt in Forest Regions Tobias Jonas and Richard Essery	1033
Seasonal Frost Chelamallu Hariprasad	974	Snow Cover Changes in the Alps Christoph Marty	1036
Seasonal Snow Cover Amit Kumar	974	Snow Crystal Structure Kenneth G. Libbrecht	1038
Sediment Budgets Helen E. Reid and Gary J. Brierley	975	Snow Deformation Jerome B. Johnson	1041
Sediment Core and Glacial Environment Reconstruction Jostein Bakke and Øyvind Paasche	979	Snow Density Steven Fassnacht	1045
Sediment Entrainment, Transport, and Deposition Michael J. Hambrey and Neil F. Glasser	984	Snow Depth Gavin Gong	1045
Sediment Flux Source-To-Sink Achim A. Beylich	1003	Snow Drift <i>Richard Bintanja</i>	1048
Sediment Gravity Flow George Postma	1005	Snow Gauge A. K. Singh	1049
Sediment Routing Subhajit Sinha	1010	Snow Grains Thomas H. Painter	1050
Sediment Transfer Modeling Richard Hodgkins	1010	Snow Hydrology Sarah Boon and Katie Burles	1053
Sediment Yield Kelly MacGregor	1014	Snow Layer A. K. Singh	1059
SEM Analysis of Glacial Sediments William C. Mahaney	1016	Snow Load A. K. Singh	1060
Septa of Englacial Debris Subhajit Sinha	1027	Snow Metamorphism A. K. Singh	1060

xviii	CON	TENTS	
Snow Microstructure Christine Pielmeier	1061	Streamflow Trends in Mountainous Regions Peter Molnar, Paolo Burlando and Francesca Pellicciotti	1084
Snow Pellet A. K. Singh	1062	Structural Glaciology	1089
Snow Pillow	1062	Michael J. Hambrey	
A. K. Singh		Subglacial Borehole Instrumentation <i>Philip R. Porter</i>	1091
Snow Pit A. K. Singh	1063	Subglacial Drainage System	1095
Snow Ripening	1064	Bryn Hubbard	
A. K. Singh	1064	Subglacial Lakes, Antarctic John C. Priscu	1099
Snow Skating Ashok Kumar Verma	1004	Subglacial Processes	1101
Snow Skiing Ashok Kumar Verma	1066	Sean Fitzsimons and Reginald Lorrain	1105
Snow Storm	1067	Subglacial Volcanism Hugh Tuffen	1105
A. K. Singh		Subglacial Weathering Markus Konz	1106
Snow and Vegetation Interaction Christopher A. Hiemstra and Glen E. Liston	1067	Sublimation from Snow and Ice	1106
Snow Water Equivalent Michael Durand	1070	A. K. Singh	
Snowboard	1071	Summer Accumulation Type Glaciers Nozomu Naito	1107
Amit Kumar		Super Cooling Clouds	1108
Solifluction Stephen J. Walsh and Daniel J. Weiss	1071	P. Pradeep Kumar	1108
Solute in Glacial Meltwaters	1074	Supercooled Water Simon Cook	1108
Martyn Tranter Solutes in Glacier Ice	1077	Supra-Glacial Debris Entrainments D. P. Dobhal	1112
Renoj Thayyen	1079	Surface Energy Balance Michiel Van den Broeke, Xavier Fettweis and	1112
Specific Melt Rate Pratap Singh	1078	Thomas Mölg	
Stable Isotopes Bhishm Kumar	1078	Surface Temperature of Snow and Ice <i>Dorothy K. Hall</i>	1123
Stage-Discharge Relationship Amit Kumar	1079	Suspended Sediment Concentration <i>Veerle Vanacker</i>	1125
Stationary Glacier Renoj Thayyen	1081	Suspended Sediment Dynamics <i>Tim Stott</i>	1126
Stratigraphy of Snowpacks Peter W. Nienow and Fay Campbell	1081	Suspended Sediment Load Amit Kumar	1132

CONTENTS					
Synthetic Aperture Radar (SAR) Interferometry for Glacier Movement Studies <i>Y. S. Rao</i>	1133	Topographic Normalization of Multispectral Satellite Imagery Michael P. Bishop and Jeffrey D. Colby	1187		
Talik Tingjun Zhang	1143	Transformations of Snow at the Earth's Surface and its Climatic and Environmental Consequences	1197		
Tarn <i>Himali Panthri</i>	1144	Florent Domine			
Temperate Glaciers Andrew Fountain	1145	Transient Snowline Markus Konz	1204		
Temperature Lapse Rates in Glacierized Basins Shawn J. Marshall and Mira Losic	1145	Tree-Ring Indicators of Glacier Fluctuations Dan J. Smith and Lynn Koehler	1205		
Temperature Profile of Snowpack Charles Fierz	1151	Tributary Glaciers Hester Jiskoot	1209		
Terminus Amit Kumar	1154	Urban Snow Lars Bengtsson and Annette Semádeni-Davies	1211		
Terraces Amit Kumar	1155	U-Shape Valley Amit Kumar	1217		
Thaw Weakening	1155	Vein Ice Chelamallu Hariprasad	1219		
Divya Dudeja Thermal Infrared Sensors	1156	V-Shaped Valley Amit Kumar	1219		
<i>Anju Chaudhary</i> Thermal Regime of Ice-Covered Lakes <i>Lars Bengtsson</i>	1157	Water Balance in the Glacierized Region <i>Heidi Escher-Vetter</i>	1221		
Thermokarst Debasmita Misra, Ronald P. Daanen and Anita M. Thompson	1158	Westerlies and their Effects on Maritime Ice Caps and Glaciers <i>Robert D. McCulloch</i>	1224		
Thinning of Arctic Sea Ice	1166	WGMS (World Glacier Monitoring Service) Wilfried Haeberli	1227		
Ron Lindsay Thinning of Glaciers	1169	Winter Accumulation Glacier Amit Kumar	1227		
Etienne Berthier Tibetan Plateau	1172	Year-Round Ablation Pattern Rijan B. Kayastha	1229		
Tandong Yao, Yongqin Liu, Huabiao Zhao and Wusheng Yu		Younger Dryas Sven Lukas	1229		
Tidewater Glaciers Andreas Vieli	1175	List of Articles	1233		
Tien Shan Glaciers <i>Vladimir Aizen</i>	1179	Author Index	1239		
Till Jan A. Piotrowski	1181	Subject Index	1241		

Contributors

James S. Aber Emporia State University Emporia, KS 66801-5087 USA jaber@emporia.edu

Vladimir Aizen College of Science, Mines Building University of Idaho Moscow, ID 83844-3025 USA aizen@uidaho.edu

Ian Allison Australian Antarctic Division and Antarctic Climate and Ecosystems CRC Private Bag 80 Hobart, Tasmania 7001 Australia ian.allison@utas.edu.au

John T. Andrews Institute of Arctic and Alpine Research and Department of Geological Sciences University of Colorado Boulder, CO 80309 USA andrewsj@colorado.edu

Manoj K. Arora Department of Civil Engineering Indian Institute of Technology Roorkee Roorkee 247667 India manojfce@iitr.ernet.in Monohar Arora National Institute of Hydrology (NIH) Roorkee 247667, UA India arora@nih.ernet.in

Cliff Atkins School of Geography, Environment and Earth Sciences Victoria University of Wellington P.O. Box 600 Wellington 6140 New Zealand Cliff.Atkins@vuw.ac.nz

David B. Bahr Department of Physics and Computational Science Regis University 3333 Regis Blvd Denver, CO 80221-1099 USA dbahr@regis.edu

Ian Baker Thayer School of Engineering Dartmouth College Hanover, NH 03755 USA Ian.Baker@Dartmouth.edu

Jostein Bakke Department of Geography/Bjerknes Centre for Climate Research University of Bergen Fosswinckelsgate 6 5020 Bergen Norway Jostein.Bakke@geog.uib.no

Lars Bengtsson Department of Water Resources Engineering Lund University P.O. Box 118 22100 Lund Sweden Lars.Bengtsson@tvrl.lth.se

Martin Beniston Interdisciplinary Institute for Environmental Dynamics University of Geneva 7 route de Drize 1227 Carouge, Geneva Switzerland martin.beniston@unige.ch

Matthew R. Bennett The School of Applied Sciences Bournemouth University Talbot Campos Fern Barrow Dorset BH12 5BB UK MBennett@bournemouth.ac.uk

Andrzej Ber Polish Geological Institute – Polish Research Institute Warszawa Poland andrzej.ber@pgi.gov.pl

Etienne Berthier LEGOS/CNRS/UPS 14 av. Ed. Belin 31400 Toulouse France etienne.berthier@legos.obs-mip.fr

Nancy A. N. Bertler Joint Antarctic Research Institute Victoria University of Wellington and GNS Science P.O. Box 600 Wellington 6140 New Zealand Nancy.Bertler@vuw.ac.nz

Achim A. Beylich Quaternary Geology and Climate Group Geological Survey of Norway (NGU) Leiv Eirikssons vei 39 7491 Trondheim Norway and Department of Geography Norwegian University of Science and Technology (NTNU) Dragvoll 7491 Trondheim Norway achim.beylich@NGU.NO

Mahendra R. Bhutiyani Hazard Assessment and Forecasting Division Snow and Avalanche Study Establishment Plot No. 1, Sector 37 A, Him Parisar Chandigarh 160036 India mahendra_bhutiyani@yahoo.co.in

Richard Bintanja Royal Netherlands Meteorological Institute (KNMI) Wilhelminalaan 10 3732 De Bilt The Netherlands R.Bintanja@knmi.nl

Farjana S. Birajdar Centre of Studies in Resources Engineering Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra India

Michael P. Bishop Department of Geography and Geology University of Nebraska-Omaha 6001 Dodge Street Omaha, NE 68182 USA mpbishop@mail.unomaha.edu

Tobias Bolch Department of Geography University of Zürich-Irchel Winterthurerstr. 190 8057 Zürich Switzerland tobias.bolch@geo.uzh.ch

Sarah Boon Department of Geography University of Lethbridge 4401 University Dr Lethbridge, AB T1K 3M4 Canada sarah.boon@uleth.ca

David A. Braaten Center for Remote Sensing of Ice Sheets Department of Geography University of Kansas Lawrence, KS 66045 USA braaten@ku.edu

xxii

Roger J. Braithwaite Geography Programme, School of Environment and Development University of Manchester Oxford Road Manchester M13 9PL UK r.braithwaite@manchester.ac.uk

Claudio Bravo Centro de Estudios Científicos, CECS Arturo Prat 514 Valdivia Chile cbravo@cecs.cl

Gary J. Brierley School of Environment The University of Auckland 10 Symonds Street Private Bag 92019, Auckland 1142 New Zealand g.brierley@auckland.ac.nz

Jason P. Briner Department of Geological Sciences University at Buffalo Buffalo, NY 14260 USA jbriner@buffalo.edu

Margo M. Burgess Geological Survey of Canada Natural Resources Canada 601 Booth Street Ottawa, ON K1A 0E8 Canada Margo.Burgess@nrcan-rncan.gc.ca

Paolo Burlando Institute of Environmental Engineering ETH Zurich 8093 Zurich Switzerland paolo.burlando@ifu.baug.ethz.ch

Katie Burles Department of Geography University of Lethbridge 4401 University Dr Lethbridge, AB T1K 3M4 Canada Andrew B. G. Bush Department of Earth and Atmospheric Science University of Alberta 1-26 Earth Sciences Building Edmonton, AB T6G 2E3 Canada andrew.bush@ualberta.ca

David R. Butler Mountain GeoDynamics Research Group Department of Geography Texas State University-San Marcos San Marcos, TX 78666-4616 USA db25@txstate.edu

Fay Campbell Department of Geographical and Earth Sciences University of Glasgow Glasgow G12 8QQ UK

Norm R. Catto Department of Geography Memorial University of Newfoundland St. John's, NL A1B 3X9 Canada ncatto@mun.ca

Fiona Cawkwell Department of Geography University College Cork Cork Ireland f.cawkwell@ucc.ie

Anny Cazenave Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS) LEGOS-CNES, Observatoire Midi-Pyrénées 18 Av. E. Belin 31400 Toulouse France Anny.Cazenave@legos.obs-mip.fr anny.cazenave@gmail.com

Stanley A. Changnon University of Illinois Urbana, IL 61853 USA schangno@illinois.edu

xxiv

CONTRIBUTORS

Arun Chaturvedi Antartic Division Geological Survey of India NH 5P Faridabad 121001 India arun.daak@gmail.com

Anju Chaudhary Water Resources System Division National Institute of Hydrology Roorkee 247667 India anju@nih.ernet.in

Jie Cheng College of Global Change and Earth System Science Beijing Normal University 19 Xinjiekouwai Street Beijing 100875 China brucechan2003@126.com

Jessica Ellen Cherry International Arctic Research Center and Institute of Northern Engineering University of Alaska Fairbanks 930 Koyukuk Dr. Fairbanks, AK 99775-7335 USA jcherry@iarc.uaf.edu

Poul Christoffersen Scott Polar Research Institute University of Cambridge Lensfield Road Cambridge CB2 1ER UK pc350@cam.ac.uk

John J. Clague Department of Earth Sciences Centre for Natural Hazard Research Simon Fraser University 8888 University Drive Burnaby, BC V5A 1S6 Canada jclague@sfu.ca

J. Graham Cogley Department of Geography Trent University Peterborough ON, K9J 7B8 Canada gcogley@trentu.ca Jeffrey D. Colby Department of Geography and Planning Appalachian State University Boone, NC 28608 USA colbyj@appstate.edu

Simon J. Cook Centre for Glaciology Institute of Geography and Earth Sciences Aberystwyth University H5, Llandinam Ceredigion, Wales SY23 3DB UK smc@aber.ac.uk basalice@gmail.com

Luke Copland Department of Geography University of Ottawa Ottawa, ON K1N 6N5 Canada luke.copland@uottawa.ca

Michel Crucifix Georges Lemaitre Centre for Earth and Climate Research Université catholique de Louvain 2 chemin du Cyclotron 1348 Louvain-la-Neuve Belgium michel.crucifix@uclouvain.be

Ronald P. Daanen Geophysical Institute University of Alaska Fairbanks 903 Koyukuk Dr. Fairbanks, AK 99775-7320 USA rdaanen@alaska.edu

Prem Datt Research and Design Center (RDC) Snow and Avalanche Study Establishment Plot No-1, Sector 37-A Himparishar 160036, Chandigarh India datt_prem@rediffmail.com

Carmen de Jong The Mountain Institute University of Savoy 73376 Pôle Montagne, Le Bourget du Lac France carmen.dejong@institut-montagne.org Reynald Delaloye Department of Geosciences Geography University of Fribourg Ch. du Musee 4 1700 Fribourg Switzerland reynald.delaloye@unifr.ch

Philip Deline EDYTEM Lab Université de Savoie, CNRS 73376 Le Bourget du Lac France pdeli@univ-savoie.fr

Michael N. Demuth Glaciology Section, Geological Survey of Canada Earth Sciences Sector Program on Climate Change Geoscience Natural Resources Canada 601 Booth Street Ottawa, ON K1A 0E8 Canada Mike.Demuth@NRCan-RNCan.GC.CA

Stephen J. Déry Environmental Science and Engineering Program University of Northern British Columbia 3333 University Way Prince George, BC V2N 4Z9 Canada sdery@unbc.ca

Guglielmina Diolaiuti Department of Earth Sciences "A. Desio" University of Milano Via Mangiagalli 34 20133 Milano Italy guglielmina.diolaiuti@unimi.it

D. P. Dobhal Wadia Institute of Himalayan Geology 33, General Mahadev Singh Road Dehradun 248001, Uttarakhand India dpdobhal@rediffmail.com

Florent Domine Laboratoire de Glaciologie et Géophysique de l'Environnement CNRS BP 96, 54 rue Molière 38402 Saint Martin d'Hères France florent@lgge.obs.ujf-grenoble.fr Divya Dudeja Department of Geology DBS (P.G.) College Dehradun 248001, Uttarakhand India divyadudeja@yahoo.co.in

Michael Durand Byrd Polar Research Center Ohio State University 108 Scott Hall, 1090 Carmack Road Columbus, OH 43210 USA durand.8@osu.edu

Jürgen Ehlers Geologisches Landesamt Billstrasse 84 20539 Hamburg Germany juergen.ehlers@bsu.hamburg.de

Heidi Escher-Vetter Commission for Glaciology Bavarian Academy of Sciences and Humanities Alfons-Goppel-Strasse 11 80539 Munich Germany Heidi.Escher@kfg.badw.de

Richard Essery School of GeoSciences University of Edinburgh Edinburgh EH9 3JW UK richard.essery@ed.ac.uk

Steven Fassnacht Snow Hydrology, Watershed Science Program Colorado State University Natural Resources Building Room 335 Fort Collins, CO 80523 USA srf@warnercnr.colostate.edu

Jiang Fengqing Xinjiang Institute of Ecology and Geography, CAS Chinese Academy of Sciences 40-3 South Beijing Road Urumqi, Xinjiang 830011 China jiangfengqing@gmail.com jiangfq@ms.xjb.ac.cn

Xavier Fettweis Institute for Marine and Atmospheric Research Utrecht University Princetonplein 5 3584 CC Utrecht Netherlands and Department of Geography University of Liège Allée du 6 Août, 2 4000 Liège Belgium xavier.fettweis@ulg.ac.be

Charles Fierz WSL Institute for Snow and Avalanche Research SLF 7260 Davos Dorf Switzerland fierz@slf.ch

Sean J. Fitzsimons Department of Geography University of Otago P.O. Box 56 Dunedin 9054 New Zealand sjf@geography.otago.ac.nz

Andrew G. Fountain Department of Geology Portland State University P.O. Box 751 Portland, OR 97207-0751 USA andrew@pdx.edu

Hugh M. French University of Ottawa (retired) 10945 Marti Lane North Saanich, British Columbia V8L 5S5 Canada hmfrench@shaw.ca

Ping Fu Department of Earth and Atmospheric Sciences Purdue University 550 Stadium Mall Dr West Lafayette, IN 47907 USA pfu@purdue.edu Yoshinori Furukawa Research Group for Phase Transition Dynamics of Ice Institute of Low Temperature Science Hokkaido University N19 W8 Sapporo 060-0819 Japan frkw@lowtem.hokudai.ac.jp

Olivier Gagliardini Laboratoire de Glaciologie et Géophysique de l'Environnement du CNRS/UJF 54, rue Molière BP 96 38402 Grenoble France gagliardini@lgge.obs.ujf-grenoble.fr

Isabelle Gärtner-Roer Glaciology, Geomorphodynamics and Geochronology Department of Geography University of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland isabelle.roer@geo.uzh.ch

John R. Giardino Department of Geology and Geophysics Texas A&M University College Station, TX 77843-3115 USA rickg@tamu.edu

Philip Gibbard Quaternary Palaeoenvironments Group, Cambridge Quaternary Department of Geography University of Cambridge Downing Street Cambridge CB2 3EN UK plg1@cam.ac.uk

Alan R. Gillespie Department of Earth and Space Sciences Quaternary Research Center University of Washington Seattle, WA 98195-1310 USA arg3@u.washington.edu

Neil F. Glasser Centre for Glaciology, Institute of Geography & Earth Sciences Aberystwyth University Aberystwyth, Ceredigion, Wales SY23 3DB UK nfg@aber.ac.uk

xxvi

Manmohan Kumar Goel Water Resources System National Institute of Hydrology Roorkee 247667, Uttarakhand India goel_m_k@yahoo.com mkg@nih.ernet.in

Gavin Gong Department of Earth and Environmental Engineering Henry Krumb School of Mines Columbia University 500 West. 120th Street, MC4711 New York, NY 10027 USA gg2138@columbia.edu

Alastair G. C. Graham Ice Sheets Programme, British Antarctic Survey High Cross, Madingley Road Cambridge CB3 0ET UK alah@bas.ac.uk

Amanda M. Grannas Department of Chemistry Villanova University 800 Lancaster Ave Villanova, PA 19085 USA amanda.grannas@villanova.edu

Thomas C. Grenfell Department of Atmospheric Sciences University of Washington Seattle, WA 98195-1640 USA tcg@atmos.washington.edu

G. Hilmar Gudmundsson British Antarctic Survey High Cross Madingley Road Cambridge CB3 0ET UK ghg@bas.ac.uk

Ravi P. Gupta Department of Earth Sciences Indian Institute of Technology Roorkee Roorkee 247667, UA India rpgupta.iitr@gmail.com rpgesfes@iitr.ernet.in Wilfried Haeberli Glaciology, Geomorphodynamics & Geochronology Geography Department University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland wilfried.haeberli@geo.uzh.ch

Brenda L. Hall Department of Earth Sciences and Climate Change Institute Bryand Global Sciences Center University of Maine Orono, ME 04469 USA BrendaH@maine.edu

Dorothy K. Hall Crysopheric Sciences Branch Code 614.1, NASA/Goddard Space Flight Center Greenbelt, MD 20771 USA dorothy.k.hall@nasa.gov

Michael J. Hambrey Centre for Glaciology Institute of Geography & Earth Sciences Aberystwyth University Aberystwyth, Ceredigion, Wales SY23 3DB UK mjh@aber.ac.uk

Jonathan Harbor Department of Earth and Atmospheric Sciences Purdue University 550 Stadium Mall Dr West Lafayette, IN 47907 USA jharbor@purdue.edu

Douglas R. Hardy Climate System Research Center and Department of Geosciences University of Massachusetts Morrill Science Center 611 North Pleasant Street Amherst, MA 01003-9297 USA dhardy@geo.umass.edu doug.hardy@valley.net

Spencer P. Hardy Hanover High School 41 Lebanon St Hanover, NH 03755 USA

Chelamallu Hariprasad Centre for Studies in Resource Engineering Indian Institute of Technology, Bombay Powai, Mumbai 400076, Maharashtra India chariprasad@iitb.ac.in

Umesh K. Haritashya Department of Geology University of Dayton 300 College Park Dayton, OH 45469-2364 USA ukharit@yahoo.com Umesh.Haritashya@notes.udayton.edu

Stephan Harrison School of Geography, Archaeology and Earth Resources University of Exeter Cornwall Campus Penryn, Cornwall TR10 9EZ UK stephan.harrison@exeter.ac.uk

Kenneth Hewitt Cold Regions Research Centre Wilfrid Laurier University 75 University Avenue West Waterloo, ON N2L 3C5 Canada khewitt@wlu.ca

Christopher A. Hiemstra Cold Regions Research and Engineering Laboratory (CRREL) U.S. Army Corps of Engineers, ERDC P.O. Box 35170 Fort Wainwright, AK 99703-0170 USA Christopher.A.Hiemstra@usace.army.mil

Richard Hodgkins Department of Geography Loughborough University Leicestershire LE11 3TU UK r.hodgkins@lboro.ac.uk

Bryn Hubbard Centre for Glaciology Institute of Geography and Earth Sciences Aberystwyth University Llandinam Building Aberystwyth, Ceredigion, Wales SY23 3DB UK byh@aber.ac.uk Philip D. Hughes Geography, School of Environment and Development The University of Manchester Arthur Lewis Building Manchester M13 9PL UK philip.hughes@manchester.ac.uk

Terry Hughes Department of Earth Science University of Maine Orono, ME 04469-5790 USA and Climate Change Institute University of Maine Orono, ME 04469-5790 USA terry.hughes@maine.edu

Lasafam Iturrizaga Department of Geography/High Mountain Geomorphology Institute of Geography University of Göttingen Goldschmidtstr. 5 37077 Göttingen Germany liturri@gwdg.de

C. K. Jain National Institute of Hydrology Centre for Flood Management Studies G. S. Road, Sapta Sahid Path, Mathura Nagar Dispur, Guwahati 781006, Assam India ckj_1959@yahoo.co.in

Manoj K. Jain Department of Hydrology Indian Institute of Technology Roorkee 247667, Uttarakhand India jain.mkj@gmail.com

Sanjay K. Jain National Institute of Hydrology Roorkee, 247667 Uttarakhand India Sjain@nih.ernet.in

xxviii

Adrian Jenkins British Antarctic Survey Natural Environment Research Council High Cross, Madingley Road Cambridge CB3 0ET UK ajen@bas.ac.uk a.jenkins@bas.ac.uk

Hester Jiskoot Department of Geography University of Lethbridge 4401 University Drive W Lethbridge, AB T1K 3M4 Canada hester.jiskoot@uleth.ca

Jerome B. Johnson Institute of Northern Engineering University of Alaska Fairbanks P.O. Box 755910 Fairbanks, AK 99775-5910 USA jerome.b.johnson@alaska.edu

Tobias Jonas Snow Hydrology Research Group WSL Institute for Snow and Avalanche Research SLF 7260 Davos Switzerland jonas@slf.ch

M. Torre Jorgenson Alaska Ecoscience Fairbanks, AK 99709 USA tjorgenson@abrinc.com

Andreas Kääb Department of Geosciences University of Oslo Sem Sælands vei 1, 1047 Blindern, 0316 Oslo Norway kaeaeb@geo.uio.no

M. Z. Kanevskiy Department of Civil and Environmental Engineering University of Alaska Fairbanks 245 Duckering Building, P.O. Box 755900 Fairbanks, AK 99775-59000 USA mkanevskiy@alaska.edu Shichang Kang Key Laboratory of Tibetan Environmental Changes and Land Surface Processes Institute of Tibetan Plateau Research Chinese Academy of Sciences No.18, Shuangqing Rd., P.O. Box 2871 Haidian District, Beijing 100085 China and State Key Laboratory of Cryospheric Sciences Chinese Academy of Sciences Lanzhou 730000 China Shichang.Kang@itpcas.ac.cn

Martin Kappas Cartography, GIS and Remote Sensing Section Institute of Geography Georg-August University Göttingen Goldschmidtstr. 5 37077 Göttingen Germany mkappas@gwdg.de

Rijan B. Kayastha Himalayan Cryosphere, Climate and Disaster Research Center (HiCCDRC) Kathmandu University Dhulikhel, Kavre P.O. Box 6250, Kathmandu Nepal rijan@ku.edu.np

Matt A. King School of Civil Engineering and Geosciences Newcastle University Cassie Building Newcastle upon Tyne NE1 7RU UK m.a.king@ncl.ac.uk

Martin P. Kirkbride Geography, School of the Environment University of Dundee Perth Road Dundee DD1 4HN, Scotland UK m.p.kirkbride@dundee.ac.uk

Peter G. Knight School of Physical and Geographical Sciences Keele University William Smith Building Staffordshire ST5 5BG UK p.g.knight@esci.keele.ac.uk

Johannes Koch Department of Earth Sciences Simon Fraser University Burnaby, BC V5A 1S6 Canada jkoch@sfu.ca

Lynn Koehler University of Victoria Tree-Ring Laboratory Department of Geography University of Victoria Victoria, British Columbia V8W 3R4 Canada lynn.koehler@gmail.com

Markus Konz Institute of Environmental Engineering Hydrology and Water Resources Management ETH Zürich Wolfgang-Pauli-Str. 15 8093 Zurich Switzerland markus.konz@ifu.baug.ethz.ch

Nadine Konz Institute of Environmental Geosciences University of Basel 4003 Basel Switzerland nadine.konz@unibas.ch

Akhouri Pramod Krishna Department of Remote Sensing Birla Institute of Technology (BIT) Deemed University P.O. Mesra Ranchi 835215, Jharkhand India apkrishna@ewca.eastwestcenter.org apkrishna@bitmesra.ac.in

Matthias Kuhle Department of Geography and High Mountain Geographical Institute University of Göttingen Goldschmidtstr. 5 37077 Göttingen Germany mkuhle@gwdg.de Amit Kumar Department of Geology Centre of Advanced Study in Geology Punjab University Sector-14 Chandigarh 160014, Punjab India amithydrocoin@gmail.com amitwalia@wihg.res.in

Bhishm Kumar Hydrological Investigations Division National Institute of Hydrology Roorkee 247667, Uttarakhand India bk@nih.ernet.in bhishm_nih@yahoo.co.in

Rajesh Kumar School of Engineering and Technology Sharda University 32–34, Knowledge Park-III Greater Noida 201306, NCR India and Remote Sensing Division Birla Institute of Technology, Extension Centre Jaipur 27, Malviya Industrial Area Jaipur 302017, Rajasthan India rajeshbhu@yahoo.com

Vijay Kumar National Institute of Hydrology Roorkee 247667, Uttarakhand India vijay@nih.ernet.in vk_nih@yahoo.com

Christophe Lambiel Institute of Geography University of Lausanne Bâtiment Anthropole 1015 Lausanne Switzerland christophe.lambiel@unil.ch

Wendy Lawson Department of Geography University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand wendy.lawson@canterbury.ac.nz

ххх

Daniel J. Leathers Department of Geography University of Delaware Newark, DE 19716-2541 USA leathers@udel.edu

Jean-Michel Lemieux Département de géologie et de génie géologique Université Laval 1065 avenue de la Médecine Québec, QC G1V 0A6 Canada jmlemieux@ggl.ulaval.ca

Eric M. Leonard Department of Geology Colorado College 14E Cache la Poudre Colorado Springs, CO 80903 USA eleonard@coloradocollege.edu

Matti Leppäranta Department of Physics University of Helsinki P.O. Box 64, (Gustaf Hällströmin katu 2a) 00014 Helsinki Finland matti.lepparanta@helsinki.fi

Delphis F. Levia Department of Geography University of Delaware Newark, DE 19716-2541 USA dlevia@udel.edu

Shunlin Liang Department of Geography University of Maryland 2181 LeFrak Hall College Park, MD 20742 USA sliang@umd.edu

Kenneth G. Libbrecht Department of Physics Caltech 264-33 Caltech Pasadena, CA 91125 USA kgl@caltech.edu Ron Lindsay Polar Science Center Applied Physics Laboratory University of Washington 1013 NE 40th Street Seattle, WA 98105-6698 USA lindsay@apl.washington.edu

Glen E. Liston Cooperative Institute for Research in the Atmosphere Colorado State University 1375 Campus Delivery Fort Collins, CO 80523-1375 USA liston@cira.colostate.edu

Jingshi Liu Institute of Tibetan Plateau Research Chinese Academy of Sciences 18 Shuangqing Rd. Haidian District, Beijing 100085 China jsliu@itpcas.ac.cn

Yongqin Liu Laboratory of Tibetan Environment Changes and Land Surface Processes (TEL) Institute of Tibetan Plateau Research Chinese Academy of Sciences No. 18 Shuangqing Rd, P.O. Box 2871 Haidian District, Beijing 100085 China yqliu@itpcas.ac.cn

Christopher Lloyd Department of Geography University of Sheffield Sheffield S10 2TN UK ggp08ctl@sheffield.ac.uk

Rachel W. Lomonaco Thayer School of Engineering Dartmouth College Hanover, NH 03755 USA

Reginald D. Lorrain Département des Sciences de la Terre et de l'Environnement Université Libre de Bruxelles Bruxelles Belgium rlorrain@ulb.ac.be

Mira Losic Department of Geography University of Calgary Earth Sciences 356, 2500 University Dr NW Calgary, AB T2N 1N4 Canada mlosic@ucalgary.ca

Sven Lukas Department of Geography Queen Mary University of London Mile End Road London E1 4NS UK S.Lukas@qmul.ac.uk

Juha P. Lunkka Institute of Geosciences University of Oulu P.O. Box 3000 90014 Oulu Finland juha.pekka.lunkka@oulu.fi

Kelly MacGregor Geology Department Macalester College 1600 Grand Avenue Saint Paul, MN 55105 USA macgregor@macalester.edu

William C. Mahaney Quaternary Surveys 26 Thornhill Ave Thornhill, ON L4J 1J4 Canada arkose@rogers.com bmahaney@yorku.ca

Shawn J. Marshall Department of Geography University of Calgary Earth Sciences 356, 2500 University Dr NW Calgary, AB T2N 1N4 Canada shawn.marshall@ucalgary.ca

Richard A. Marston Department of Geography Kansas State University 118 Seaton Hall Manhattan, KS 66506-2904 USA Rmarston@ksu.edu Rmarston@ksu.edu Christoph Marty WSL Institute for Snow and Avalanche Research SLF Flüelastr. 11 7260 Davos Switzerland marty@slf.ch

Robert D. McCulloch School of Biological and Environmental Science University of Stirling Stirling FK9 4LA, Scotland UK robert.mcculloch@stir.ac.uk

Brian Menounos Geography Program and Natural Resources and Environmental Studies Institute University of Northern British Columbia 3333 University Way Prince George, BC V2N 4Z9 Canada

Justin R. Minder Department of Atmospheric Science University of Washington Box 351640 Seattle, WA 98195-1640 USA juminder@atmos.washington.edu

Debasmita Misra Department of Mining and Geological Engineering College of Engineering and Mines University of Alaska Fairbanks P.O. Box 755800 Fairbanks, AK 99775-5800 USA debu.misra@alaska.edu

Vanya I. Miteva Department of Biochemistry and Molecular Biology The Pennsylvania State University 211 South Frear University Park, PA 16802 USA vim1@psu.edu

Thomas Mölg Center for Climate & Cryosphere University of Innsbruck 6020 Innsbruck Austria

xxxii

Peter Molnar Institute of Environmental Engineering ETH Zurich 8093 Zurich Switzerland molnar@ifu.baug.ethz.ch

Bruce F. Molnia U.S. Geological Survey 562 National Center, 12201 Sunrise Valley Drive, 12201 Reston, VA 20192 USA bmolnia@usgs.gov

Brian Morse Department of Civil and Water Engineering Laval University 1065, ave de la Médecine Quebec, QC G1V 0A6 Canada

Nozomu Naito Department of Global Environment Studies Hiroshima Institute of Technology Miyake 2-1-1, Saeki-ku Hiroshima 731-5193 Japan naito@cc.it-hiroshima.ac.jp

Jacob Napieralski Department of Natural Sciences University of Michigan-Dearborn Dearborn, MI 48128 USA jnapiera@umd.umich.edu

Atle Nesje Department of Earth Science\Bjerknes Centre for Climate Research University of Bergen Allégaten 41 5007 Bergen Norway atle.nesje@geo.uib.no

Thomas A. Neumann NASA Goddard Space Flight Center Greenbelt, MD 20771 USA thomas.neumann@nasa.gov

Peter W. Nienow School of Geosciences University of Edinburgh Drummond Street Edinburgh EH8 9XP UK pnienow@geo.ed.ac.uk David C. Nobes Department of Geological Sciences University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand david.nobes@canterbury.ac.nz

Rachel W. Obbard Thayer School of Engineering Dartmouth College Hanover, NH 03755 USA Rachel.w.obbard@dartmouth.edu

Øyvind Paasche Bjerknes Centre for Climate Research University of Bergen Allégaten 55 5007 Bergen Norway and Department of Research Management University of Bergen Professor Keysers gt. 8 5020 Bergen Norway oyvind.paasche@uni.no

Thomas H. Painter Jet Propulsion Laboratory/Caltech 4800 Oak Grove Drive Pasadena, CA 91109 USA Thomas.Painter@jpl.nasa.gov

Pratima Pandey Centre of Studies in Resources Engineering Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra India pratimapandey@iitb.ac.in

Himali Panthri Department of Geology D.B.S (P.G) College Dehradun 248001, Uttarakhand India himali.geo@gmail.co

Frank Paul Department of Geography University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland frank.paul@geo.uzh.ch

xxxiv

CONTRIBUTORS

Francesca Pellicciotti Institute of Environmental Engineering ETH Zurich 8093 Zurich Switzerland francesca.pellicciotti@ifu.baug.ethz.ch

Mauri S. Pelto Department of Environmental Science Nichols College Dudley, MA 01571 USA mauri.pelto@nichols.edu

Christine Pielmeier WSL Institute for Snow and Avalanche Research SLF Warning and Prevention Flüelastrasse 11 7260 Davos Dorf Switzerland pielmeier@slf.ch

Jan A. Piotrowski Department of Earth Sciences University of Aarhus Høegh-Guldbergs Gade 2 8000 Aarhus C Denmark and Department of Geography University of Sheffield Sheffield S10 2TN UK jan.piotrowski@geo.au.dk

Philip R. Porter Division of Geography and Environmental Sciences School of Life Sciences University of Hertfordshire Hatfield, Hertfordshire AL10 9AB UK p.r.porter@herts.ac.uk

George Postma Faculty of Geosciences EUROTANK Laboratories P.O. Box 80.021 3508 TA Utrecht The Netherlands gpostma@geo.uu.nl

P. Pradeep Kumar Department of Atmospheric and Space Sciences Pune University Pune 411007, Maharashtra India ppk@physics.unipune.ac.in Daniel J. Pringle Arctic Region Supercomputing Center and Geophysical Institute University of Alaska Fairbanks, AK 99775 USA danielpringle75@gmail.com

John C. Priscu Department of Land Resources and Environmental Sciences Montana State University Bozeman, MT 59717 USA jpriscu@montana.edu

Duncan J. Quincey Institute of Geography and Earth Sciences Penglais Campus Aberystwyth University Aberystwyth, Wales SY23 3DB UK

Camilo Rada Centro de Estudios Científicos, CECS Arturo Prat 514 Valdivia Chile

Y. S. Rao Centre of Studies in Resources Engineering Indian Institute of Technology Powai, Mumbai 400076 India ysrao@iitb.ac.in

Donald Rapp Independent Contractor 1445 Indiana Avenue South Pasadena, CA 91030 USA drdrapp@earthlink.net

Rasik Ravindra National Centre for Antarctic and Ocean Research Headland Sada, Vasco-Da-Gama Goa 403804 India rasik@ncaor.org

Netra R. Regmi Department of Geology and Geophysics Texas A&M University College Station, TX 77843-3115 USA netraregmi@neo.tamu.edu Helen E. Reid School of Environment The University of Auckland 10 Symonds Street Private Bag 92019, Auckland 1142 New Zealand h.reid@auckland.ac.nz

Alan W. Rempel Department of Geological Sciences University of Oregon Eugene, OR 97403-1272 USA rempel@uoregon.edu

Jeffrey Ridley Met Office, Hadley Centre FitzRoy Road Exeter EX1 3PB UK

George A. Riggs SSAI 10210 Greenbelt Road, Suite 600 Lanham, MD 20706 USA george.a.riggs@nasa.gov

Eric Rignot Department of Earth System Science University of California Irvine Irvine, CA 92697 USA and Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91214 USA erignot@uci.edu

Vinvent Rinterknecht School of Geography and Geosciences University of St Andrews North Street St Andrews KY16 9AL, Scotland UK vr10@st-andrews.ac.uk

Daniel Riseborough Geological Survey of Canada 601 Booth Street Ottawa, ON K1A 0E4 Canada drisebor@nrcan.gc.ca Andrés Rivera Centro de Estudios Científicos, CECS Arturo Prat 514 Valdivia Chile and Universidad de Chile Marcoleta 250 Santiago Chile and Centro de Ingeniería de la Innovación. CIN Arturo Prat 514 Valdivia Chile arivera@cecs.cl

Gerard H. Roe Department of Atmospheric Science University of Washington Box 351640 Seattle, WA 98195-1640 USA and Department of Earth and Space Sciences University of Washington 2206 N41 St Seattle, WA 98103 USA gerard@ess.washington.edu

Neil Ross School of Geosciences University of Edinburgh Geography Building Drummond Street Edinburgh EH8 9XP UK neil.ross@ed.ac.uk

Anders Schomacker Institute of Earth Sciences University of Iceland Askja, Sturlugata 7 101 Reykjavík Iceland and Department of Geology Norwegian University of Science and Technology 7491 Trondheim Norway anders@hi.is

xxxvi

CONTRIBUTORS

Bob E. Schutz Center for Space Research University of Texas at Austin Austin, TX 78759 USA schutz@csr.utexas.edu

Annette Semádeni-Davies Department of Water Resources Engineering Lund University 22100 Lund Sweden annette.davies@tvrl.lth.se

Hung Tao Shen Department of Civil and Environmental Engineering Clarkson University P.O. Box 5710 Potsdam, NY 13699-5710 USA htshen@clarkson.edu

Arun B. Shrestha International Centre for Integrated Mountain Development (ICIMOD) Khumaltar, Lalitpur, GP.O. Box 3226 Kathmandu Nepal abshrestha@icimod.org

John F. Shroder Department of Geography and Geology University of Nebraska at Omaha 6001 Dodge Street Omaha, NE 68182 USA jshroder@mail.unomaha.edu

Aparna Shukla Uttarakhand Space Application Centre Dehradun India aparna.shukla22@gmail.com

Yuri Shur Department of Civil and Environmental Engineering University of Alaska Fairbanks 245 Duckering Building, P.O. Box 755900 Fairbanks, AK 99775-59000 USA yshur@alaska.edu Martin J. Siegert School of GeoSciences University of Edinburgh Grant Institute West Mains Road Edinburgh EH9 3JW UK m.j.siegert@ed.ac.uk

Oddur Sigurðsson Veðurstofu Íslands Icelandic Meteorological Office Bústaðavegi 9 150 Reykjavík Iceland oddur@vedur.is

A. K. Singh DIAT (Deemed University) Girinagar Pune 411025, Maharashtra India draksingh@hotmail.com aksingh@diat.ac.in

Gulab Singh Centre of Studies in Resources Engineering Indian Institute of Technology Bombay Powai Mumbai 400076, Maharashtra India gskaliar@iitb.ac.in

Pratap Singh Integrated Natural Resources Management (INRM) Consultants Pvt. Ltd An Incubatee Company of IIT Delhi New Delhi India and Hydro Tasmanier Consulting Nehru Place New Delhi 110019 India pratap_singh_1@yahoo.com pratapsingh.iitd@gmail.com

Vijay P. Singh Department of Biological and Agricultural Engineering Texas A&M University Scoates Hall 2117 TAMU College Station, TX 77843-2117 USA vsingh@tamu.edu Subhajit Sinha DBS College Dehradun, Uttarakhand India sinha_subho@rediffmail.com

Claudio Smiraglia Department of Earth Sciences "A. Desio" University of Milano Via Mangiagalli 34 20133 Milano Italy claudio.smiraglia@unimi.it

Andy M. Smith British Antarctic Survey, High Cross Madingley Road Cambridge CB3 0ET UK amsm@bas.ac.uk

Dan J. Smith University of Victoria Tree-Ring Laboratory Department of Geography University of Victoria Victoria, British Columbia V8W 3R4 Canada

Sharon L. Smith Geological Survey of Canada Natural Resources Canada 601 Booth Street Ottawa, ON K1A 0E8 Canada Sharon.Smith@nrcan-rncan.gc.ca

Rudolph R. Stea Stea Surficial Geology Services 851 Herring Cove Road Halifax, Nova Scotia B3R 1Z1 Canada ralphstea@eastlink.ca

Chris R. Stokes Department of Geography Durham University Science Site, South Road Durham DH1 3LE UK c.r.stokes@durham.ac.uk

Tim Stott Physical Geography and Outdoor Education Liverpool John Moores University I. M. Marsh Campus, Barkhill Road Liverpool L17 6BD UK t.a.stott@ljmu.ac.uk Edward A. Sudicky Department of Earth and Environmental Sciences University of Waterloo Waterloo, ON N2L 3G1 Canada sudicky@sciborg.uwaterloo.ca

Kazuyoshi Suzuki Research Institute for Global Change Japan Agency for Marine-Earth Science and Technology 3173-25 Showa-machi Yokohama 236-0001 Japan skazu@jamstec.go.jp

Ryohei Suzuki Graduate School of Environmental Studies Nagoya University c/o Hydrospheric Atmospheric Research Center Furo-cho Chikusa-ku Nagoya 464-8601 Japan cryosuzuki@nagoya-u.jp

Darrel A. Swift Department of Geography University of Sheffield Sheffield S10 2TN UK D.A.Swift@sheffield.ac.uk

Nozomu Takeuchi Department of Earth Sciences Graduate School of Science Chiba University 1-33 Yayoicho, Inage-ku, Chiba-city Chiba 263-8522 Japan ntakeuch@faculty.chiba-u.jp

Renoj J. Thayyen Western Himalayan Regional Centre National Institute of Hydrology Jammu (J&K) 180003 India renojthayyen@gmail.com

Malte Thoma Bavarian Academy and Sciences, Commission for Glaciology Alfons-Goppel-Str. 11 80539 Munich Germany and

xxxviii

CONTRIBUTORS

Alfred Wegener Institute for Polar and Marine Research Bussestrasse 24 27570 Bremerhaven Germany Malte.Thoma@awi.de

David N. Thomas School of Ocean Sciences, College of Natural Sciences Bangor University Menai Bridge, Anglesey LL59 5AB UK d.thomas@bangor.ac.uk

Anita M. Thompson Department of Biological Systems Engineering University of Wisconsin-Madison 230 Ag. Eng. Building, 460 Henry Mall Madison, WI 53706 USA amthompson2@wisc.edu

Thierry Toutin Canada Centre for Remote Sensing Natural Resources Canada Ottawa, ON K1A 0Y7 Canada thierry.toutin@ccrs.nrcan.gc.ca

Martyn Tranter Bristol Glaciology Centre School of Geographical Sciences University of Bristol University Road Bristol BS8 1SS UK m.tranter@bristol.ac.uk

Donna F. Tucker Department of Geography University of Kansas 1475 Jayhawk Blvd., Room 213 Lawrence, KS 66045-7613 USA dtucker@ku.edu

Hugh Tuffen Lancaster Environment Centre Lancaster University Lancaster LA1 4YQ UK h.tuffen@lancaster.ac.uk Fiona Tweed Department of Geography Staffordshire University College Road Stoke-on-Trent, Staffordshire ST4 2DE UK f.s.tweed@staffs.ac.uk

Michiel Van den Broeke Institute for Marine and Atmospheric Research Utrecht University Princetonplein 5 3584 CC Utrecht Netherlands m.r.vandenbroeke@uu.nl

C. J. van der Veen Department of Geography and Center for Remote Sensing of Ice Sheets University of Kansas 203 Lindley Hall 1475 Jayhawk Blvd Lawrence, KS 66045-7613 USA cjvdv@ku.edu

Veerle Vanacker TECLIM, Earth and Life Institute University of Louvain Place L. Pasteur, 3 1348 Louvain-la-Neuve, BW Belgium veerle.vanacker@uclouvain.be

Dominic Vella Department of Applied Mathematics and Theoretical Physics Institute of Theoretical Geophysics University of Cambridge Wilberforce Road Cambridge CB3 0WA UK d.vella@damtp.cam.ac.uk

G. Venkataraman Centre of Studies of Resources Engineering Indian Institute of Technology Bombay Mumbai 400076 India gv@iitb.ac.in Ashok Kumar Verma Department of Geography and Environmental Studies Cold Regions Research Center Wilfrid Laurier University 75 University Ave. West Waterloo, ON N2L 3C5 Canada ashokpph@gmail.com verm3620@wlu.ca

Andreas Vieli Department of Geography Durham University Durham DH1 3LE UK Andreas.Vieli@durham.ac.uk

Timo Vihma Finnish Meteorological Institute Erik Palménin aukio 1, P.O. Box 503 00101 Helsinki Finland timo.vihma@fmi.fi

John D. Vitek Department of Geology and Geophysics Texas A&M University College Station, TX 77843-3115 USA jvitek@neo.tamu.edu

Mathias Vuille Department of Atmospheric and Environmental Sciences University at Albany State University of New York 1400 Washington Avenue Albany, NY 12222 USA mathias@atmos.albany.edu

John Wahr Department of Physics and CIRES University of Colorado Boulder, CO 80309-0390 USA wahr@lemond.colorado.edu

Stephen J. Walsh Department of Geography University of North Carolina Chapel Hill, NC 27599-3220 USA swalsh@email.unc.edu Charles R. Warren School of Geography and Geosciences University of St. Andrews Irvine Building St. Andrews, Fife KY16 9AL, Scotland UK charles.warren@st-andrews.ac.uk

Daniel J. Weiss Department of Geography University of North Carolina Chapel Hill, NC 27599-3220 USA

John Wettlaufer Yale University New Haven, CT 06520-8109 USA john.wettlaufer@yale.edu

Roger Wheate Geography Program and Natural Resources and Environmental Studies Institute University of Northern British Columbia 3333 University Way Prince George, BC V2N 4Z9 Canada wheate@unbc.ca

Ian C. Willis Department of Geography Scott Polar Research Institute University of Cambridge Lensfield Road Cambridge CB2 1ER UK iw102@cam.ac.uk

John Woodward Division of Geography School of Applied Sciences Northumbria University Ellison Place Newcastle upon Tyne NE1 8ST UK john.woodward@unn.ac.uk

Cunde Xiao State Key Laboratory of Cryospheric Sciences Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences Lanzhou, Gansu 730000 China cdxiao@ns.lzb.ac.cn cdxiao@cams.cma.gov.cn

Zhang Yanwei Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences 40-3 South Beijing Road Urumqi, Xinjiang 830011 China

Tandong Yao Laboratory of Tibetan Environment Changes and Land Surface Processes (TEL) Institute of Tibetan Plateau Research Chinese Academy of Sciences No. 18 Shuangqing Rd, P.O. Box 2871 Haidian District, Beijing 100085 China tdyao@itpcas.ac.cn

Jacob C. Yde Center for Geomicrobiology University of Aarhus Ny Munkegade building 1540 8000 Århus C Denmark and Bjerknes Centre for Climate Research University of Bergen Allégaten 55 5007 Bergen Norway yde@phys.au.dk Wusheng Yu Laboratory of Tibetan Environment Changes and Land Surface Processes (TEL) Institute of Tibetan Plateau Research Chinese Academy of Sciences No. 18 Shuangqing Rd, P.O. Box 2871 Haidian District, Beijing 100085 China

Tingjun Zhang National Snow and Ice Data Center Cooperative Institute for Research in Environmental Sciences University of Colorado at Boulder Boulder, CO 80309-0449 USA tzhang@nsidc.org

Huabiao Zhao Laboratory of Tibetan Environment Changes and Land Surface Processes (TEL) Institute of Tibetan Plateau Research Chinese Academy of Sciences No. 18 Shuangqing Rd, P.O. Box 2871 Haidian District, Beijing 100085 China

H. J. Zwally NASA Goddard Space Flight Center Greenbelt, MD 20771 USA zwally@icesat2.gsfc.nasa.gov

xl

Preface

Snow, ice and glaciers (SIG) are the components constituting what is called cryosphere. They exist at all latitudes and contain the majority of the earth's fresh water. Due to their dominant prevalence, they influence weather, climate, ecosystems, vegetation, and life and human activities in a variety of ways. Indeed they shape human civilization. Owing to looming climate change and global warming, temperature changes now seem inevitable and are changing the landscape of snow, ice and glaciers, or even the existence thereof. In fact, the changes occurring in SIG can be construed as major indicators of climate change. The nature of cryosphere is highly interdisciplinary and calls for an updated interdisciplinary account of its dynamics. Recent decades have witnessed increasing attention to SIG and scientific communities have started working collectively to develop the basic foundation upon which the broad understanding of cryosphere rests. However, there is still a long way to go.

Discussions on climate change and global warming now seem to be occupying the center stage in public debates, professional forums, news media, and political dialog. As a result, the general public has become much more aware of what is happening to our climate. Since both climate change and climate variability have been found to be closely linked with the cryosphere, it is important for scientists and professionals in the field of earth, environmental, oceanic and atmospheric sciences to develop a better understanding of this sphere from conceptual, theoretical, technical and applied viewpoints. This is especially important for snow, ice and glacier covered areas, since they are rarely stable and are continuously changing in their thickness, areal extent, and flow speeds. Recent advances in field-based studies and quantitative and numerical modeling have provided answers to several key questions but have also highlighted the urgent need for cryospheric studies in many areas, for example, contribution of snow, ice and glacier melt to the sea level rise; importance of snow and glacier to water resources; and so on.

The objective of this Encyclopedia is to present the current state of scientific understanding of various aspects of earth's cryosphere - snow, glaciers, ice caps, ice sheets, ice shelves, sea ice, river and lake ice, and permafrost and their related interdisciplinary connections under one umbrella. Therefore, every effort has been made to provide a comprehensive coverage of cryosphere by including a broad array of topics, such as the atmospheric processes responsible for snow formation; snowfall observations; snow cover and snow surveys; transformation of snow to ice and changes in their properties; classification of ice and glaciers and their worldwide distribution; glaciation and ice ages; glacier dynamics; glacier surface and subsurface characteristics; geomorphic processes and landscape formation; hydrology and sedimentary systems; hydrochemical and isotopic properties; permafrost modeling; hazards caused by cryospheric changes; trends of glacier retreat on a global scale along with the impact of climate change; and many more quantitative estimates of various glacier parameters, such as degree-day, mass balance, extent and volume, and downwasting. Also included are articles on GPS application, and satellite image application in glaciology; GPR analysis; and sea level rise.

For purposes of the Encyclopedia 463 articles were selected. Literature on snow, ice and glaciers has grown too large to be fully treated in a single volume; therefore, the selection of articles included some subjectivity but was reviewed by many experts who have long been at the forefront of research in the field of cryosphere. We truly understand that given the scope of this subject it is almost impossible to include each and every topic in this type of reference book, but we have tried our best to avoid any glaring omissions or miss something which could significantly hamper the quality of the Encyclopedia. Therefore, we have made the contents of the Encyclopedia exhaustive, but we understand that we might have missed certain topics. We are also aware of some partial omissions. As it frequently happens, willing contributors cannot unfortunately be always found for all the suggested topics. It may be noted that if the reader does not see an entry for the particular topic that interests him or her, then he or she should look in the index because that topic may have been covered under a different heading and perhaps in more than one article. In making the list exhaustive, it is possible that there might be a little bit of repetition here and there, but we do not want readers to read two articles to understand one.

The material presented in the articles consists of established information on a particular topic and represents easily accessible digested knowledge. The level of material is such that a graduate student can benefit from the presentation which is not necessarily from his or her area of expertise. An effort has been made such that each article stands on its own, without an assumption that a reader will be seeing any other portion of the Encyclopedia. Although entries are presented in alphabetical order, they have been organized under major compilation headings which should become particularly obvious when the reader uses the cross-references with each entry. This is not an exhaustive list but hopefully it gives a structure to the Encyclopedia's contents. Of equal value are the many references given with the entries.

This *Encyclopedia of Snow, Ice and Glaciers* is supposed to provide clear explanations of current topics, and is not structured as a student textbook, but it is rather for quick access to particular terms and concepts in self-contained entries. We hope that this volume will also tempt the casual reader to browse through and become curious about the different facets and foci of cryosphere.

The contributors represent varying backgrounds and many of them represent WHO'S WHO in the cryosphere. It is hoped that the Encyclopedia will serve as a reference to scholars and students. The Encyclopedia will also be a valuable resource for geologists, geographers, climatologists, hydrologists, and water resources engineers; as well as to those who are engaged in the practice of agricultural and civil engineering, earth sciences, environmental sciences and engineering, ecosystems management, and other relevant fields.

The encyclopedia is comprised of articles under three categories: A, B, and C. Tables 1, 2 and 3 provide a list of major headings of articles included in the encyclopedia for a quick reference (see List of Articles, pages 1233–1237). 64 articles in category A represent major divisions and review topics. These also serve to coordinate the widely scattered entries of categories B and C. 182 Category B articles constitute building block items, inspired by textbook subheads, but also the cookbook items. 217 articles in category C are mini-entries dealing with materials, fancy terms, or outdated concepts. All these categorical entries on different topics are compiled in an alphabetical order, with their length being related to their relative importance.

March 2011

Vijay P. Singh Pratap Singh Umesh K. Haritashya (Editors-in-Chief)

Acknowledgments

This Encyclopedia is a result of the collective contributions of the authors who were gracious, generous and willing to write different articles. These authors, representing five continents, have synthesized the body of knowledge in their particular area, and therefore the quality of the Encyclopedia is a reflection of the quality of their efforts. We are grateful to these authors. Any drawbacks are editors', not authors'. The preparation of this Encyclopedia was greatly aided by the assistance we received from our International Advisory Board members:

Richard Armstrong, NSIDC, Boulder, Colorado, USA; Michael P. Bishop, University of Nebraska-Omaha, USA; Helgi Björnsson, Institute of Earth Sciences, Iceland; Wilfried Haeberli, WGMS, University of Zurich, Iceland; Johannes Oerlemans, University of Utrecht, Netherlands; John F. Shroder, University of Nebraska-Omaha, USA; Martyn Tranter, University of Bristol, UK;

We wish to express our deep gratitude to them for their invaluable support and encouragement.

All category A articles and major category B articles were peer reviewed. Reviewers of these articles are gratefully acknowledged for their constructive reviews. Their efforts have greatly enhanced the quality of contributions contained in the Encyclopedia. Special thanks goes to Tom Allen, Andrew Bush, Etienne Berthier, Poul Christoffersen, Graham Cogley, Luke Copland, Moritz Dick, Thomas Grenfell, William Harrison, Robert Hellstrom, Kenneth Jezek, Richard Lindzen, Frederick Nelson, Mauri Pelto, Donald Rapp, and Cornelis Vanderveen.

We would also like to acknowledge the constant support and help we received from Petra van Steenbergen, Senior Publishing Editor, Earth Sciences and Geography, Dr. Sylvia Blago, Associate Editor MRW and Simone Giesler, Editorial Assistant, Springer.

Our families (V.P. Singh: wife Anita, son Vinay, daughter-in-law Sonali, and daughter Arti; P. Singh: wife Anju, sons Arpit and Aman; and U.K. Haritashya: wife Namrata and daughter Vanshika) allowed us to work during holidays, weekends and in night away from them. They provided support and help whenever we needed. Without their patience and love, this volume might not have been completed, and we are much grateful to them.

Guide to the Reader

For the beginners, it is good to start with a general article, then track the list of cross-references provided at the end of the article to locate similar or relevant articles. For example, if one wants to learn about hydrological aspects of snow and glaciers, then one should go to Glacier Hydrology and Snow Hydrology, then Melt Runoff Modeling, then Impacts of Snow and Glaciers on Runoff, then Hydrochemical Characteristics of Snow, Ice and Glaciers, then Hydropower: Hydroelectric Power Generation from Alpine Glacier Melt, or several other specific Snow or Glacier Hydrology related articles. The list of cross-references provided at the end of the article is not exhaustive, otherwise it would lead to a long listing, rather it is a guide for the reader to find other relevant articles, which are further cross-referenced. Experts or other readers with background in cryosphere may directly search for specific topics. For example, Ice Age Cycles: Data, Models, and Uncertainties, or Basal Sediment Evacuation by Subglacial Drainage Systems. If one does not find the topic one is looking for, it is possible that it may have been covered under a different heading. Therefore, one should go to the index that would lead to the articles that may cover the topic of interest. If a reader is looking for more explanation than what is already described under any particular topic, then most articles provide important and landmark bibliographic references that relate to both general and research articles. Some articles provide older references which allow readers to find the historical aspect of the topic. As depth increases, firn porosity decreases and air mixing becomes more restricted (Schwander et al., 1997; Bender et al., 1997). Seasonal layering can also affect the rate of air movement through firn (Albert, 1996) and may produce impermeable layers in the non-diffusive zone. These prevent air from equilibrating with that in the diffusive zone (Sowers et al., 1992; Schwander et al., 1997). While air may mix locally, within the summer layer for example, impermeable winter layers impede its vertical diffusion (Fain et al., 2008).

Firn measurements

Borehole logging is used to measure firn properties in situ. These include temperature, density, and vertical strain. Unlike snow, which must be sampled at depth by digging a large snow pit and sampling from the sides, firn has enough cohesion (Cohesion) to permit the extraction of intact cores that are used to measure density, porosity and permeability, grain size, and anisotropy.

Because firn is compressible, seasonal layers thin with depth. It is also porous and subject to the migration of chemical species deposited with the snow (Chemical Composition of Snow, Ice, and Glaciers). Both of these aspects can complicate age-depth calculations. Where annual layers cannot be distinguished optically or from the geochemical record, a density profile produced from a borehole log of vertical strain or measurements of mass, length, and diameter of core sections can reveal seasonal layering.

Summary

A transitional state between fallen snow and meteoric ice, firn is a complex material where vast morphological and chemical changes are taking place.

Bibliography

- Albert, M., 1996. Modeling heat, mass and species transport in polar firm. Annals of Glaciology, 23, 138–143.
- Albert, M. R., 2002. Effects of snow and firn ventilation of sublimation rates. *Annals of Glaciology*, 35, 52–56.
- Albert, M. R., and Shultz, E. F., 2002. Snow and firn properties and air-snow transport processes at Summit, Greenland. *Atmo*spheric Environment, 36(15/16), 2789–2798.
- Bender, M., Sowers, T., and Brook, E., 1997. Gases in ice cores. Proceedings of the National Academy of Science, 94, 8343–8349.
- Bender, M. L., Floch, G., Chappellaz, J., Suwa, M., Barnola, J.-M., Blunier, T., Dreyfus, G., Jouzel, J., and Parrenin, F., 2006. Gas age-ice age differences and the chronology of the Vostok ice core, 0–100 ka. *Journal of Geophysical Research*, **111**(D21), 115–125.
- Colbeck, S. C., 1983. Theory of metamorphism of dry snow. Journal of Geophysical Research, 88, 5475–5482.
- Colbeck, S. C., 1989. Air movements in snow due to wind pumping. Journal of Glaciology, 35, 209–213.
- Craig, H., Horibe, Y., and Sowers, T., 1988. Gravitation separation of gasses and isotopes in polar ice caps. *Science*, **242**, 1675–1678.

- Domine, F., Lauzier, T., Cabanes, A., Legagneux, L., Kuhs, W. F., Techmer, K., and Heinrichs, T., 2003. Snow metamorphism as revealed by scanning electron microscopy. *Microscopy Research* and Technique, **62**, 33–48.
- Fain, X., Ferrari, C. P., Dommergue, A., Albert, M., Battle, M., Arnaud, L., Barnola, J. M., Cairns, W., Barbante, C., and Boutron, C., 2008. Mercury in the snow and firm at Summit Station, central Greenland and implications for the study of past atmospheric mercury levels. *Atmospheric Chemistry and Physics*, 8, 3441–3457.
- Hawley, R., Waddington, E. D., Morse, D. L., Dunbar, N. W., and Zielinski, G. A., 2002. Dating firn cores by vertical strain measurements. *Journal of Glaciology*, 48(162).
- Schwander, J., Sowers, T., Barnola, J. M., Blunier, T., Fuchs, A., and Malaize, B., 1997. Age scale of air in the summit ice: implications for glacial-interglacial temperature change. *Journal of Geophysical Research*, **102**, 19483–19493.
- Sowers, T., Bender, M., Raynard, D., and Korotkevich, Y. S., 1992. $\delta^{15}N$ of N_2 in air trapped in polar ice: a tracer of gas transport in the firm and a possible constraint on ice age-gas age differences. *Journal of Geophysical Research*, **97**(D14), 15,683–15,697.
- Spencer, M. K., Alley, R. B., Fitzpatrick, J. J., 2006. Developing a bubble number-density paleoclimatic indicator for glacier ice. *Journal of Glaciology*, **52**(178), 358–364.
- Swinkels, F. B., and Ashby, M. F., 1980. A second report on sintering diagrams. *Metallurgica*, 29, 259–281.

Cross-references

Antarctica

Chemical and Microbe Records in Snow and Ice Chemical Composition of Snow, Ice, and Glaciers Cohesion Geochemistry of Snow and Ice Glacier Ice Isotopic Characteristics of Ice, Snow, and Glaciers Layering of Snow Overburden Pressure Snow Grains Stratigraphy of Snowpacks Temperate Glaciers

FJORDS

Umesh K. Haritashya¹, Vijay P. Singh², Pratap Singh³ ¹Department of Geology, University of Dayton, Dayton, OH, USA

²Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, USA ³Tahal Consulting Engineers Ltd, New Delhi, India

Synonyms

Fiord

Definition

Fjords are long, narrow, and over-deepened features with steep sides and are carved into bedrock by the glacial activity and flooded by melting water (Figure 1).

FJORDS

Fjords, Figure 1 Fjord as seen in Milford Sound, New Zealand. Photo courtesy Dr. Luke Copland.

Fjords are erosional landforms that represent the movement of a glacier within a confined channel along the valley bottom. The movement of a glacier and formation of fjords is entirely controlled by topography. They are common in the polar regions, but can also be found in subpolar and temperate regions (Table 1). Fjords have existed for millions of years and they range from a few kilometers to several tens of kilometers wide and several kilometers long. Because of their location and relationship with the sea level on one side and tectonically active high mountains on the other side, they are an important feature. They also possess unique characteristics of oceanic processes and ice-ocean interface (Straneo et al., 2010), and therefore, they are appropriately termed as one of the complex and dynamic landsystems that provide information about glacial, fluvial, and oceanographic features.

Most fjords are a Palimpsest feature which makes them an extremely important feature, because they can provide information about the successive glaciations through floor sediments. However, these sediments need to be carefully analyzed, since they may have been buried by younger glacimarine sediments. Fjords act as natural sediment traps and typically have high sediment accumulation rates, providing the potential for high-resolution palaeoclimatic and palaeoenvironmental studies on decadal to centennial timescales and presenting a unique opportunity to study land-ocean interactions. Cowan et al. (2010) used the fjord sediment to identify two prominent glacial erosion surfaces associated with Last Glacial Maximum advance and Little Ice Age advance. Fjords comprise several rock basins, but many of them are deepest at the beginning and become gradually shallower toward the sea. This could be related to the erosive power of glaciers, which becomes lesser and lesser toward the end of the feature.

Sediment deposition in fjords can be related to retreating glaciers by depositional zones moving in the upward direction and hiatuses in retreat by push moraines or morainal banks. Powell and Molnia (1989) has shown various depositional system models associated with retreating glaciers, and he (Powell, 2003) has discussed such models in various types of environment from polar to temperate. Sediment deposition can also be related to advancing glaciers in the form of increasing till thickness from head of a fjord toward the sea limit.

Fjords also provide critical information about marine limits and relate to with the isostaic uplift of deglaciated outer coasts.

Bibliography

- Cowan, E. A., et al., 2010. Fjords as temporary sediment traps: history of glacial erosion and deposition in Muir Inlet, Glacier Bay National Park, southeastern Alaska. *GSA Bulletin*, **122**(7-8), 1067–1080, doi:10.1130/B26595.1.
- Powell, R. D., 2003. Subaquatic landsystems: fjords. In Evans, D. J. A. (ed.), *Glacial Landsystems*. London: Arnold, pp. 313–347.
- Powell, R. D., and Molnia, B. F., 1989. Glacimarine sedimentary processes, facies and morphology of the South-southeast Alaska shelf and fjords. *Marine Geology*, 85, 359–390.
- Straneo, F., et al., 2010. Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. *Nature Geosci*ence, 3, 182–186, doi:10.1038/ngeo764.

Cross-references

Sediment Core and Glacial Environment Reconstruction

			Wind Modern examples	Alaska, British Columbia Chile	Svalbard, Canadian and Russian Arctic	Antarctic Peninsula	Greenland, Ellesmere Island, Baffin Island	Antarctica (Mackav)	Antarctica (Ferrar and Blue)
		Terrestrial	Wind Mc	I AI	S	Ar	5	Ar S	Ar
								01	01
			al fic	3	-		-	1	-
			Fluvi	3	ŝ	-	7	-	
on modern fjord landsystems (Adopted from Powell, 2003)			Mass biogenic Fluvial flow	1	1	7	-	-	-
			Sea ice		7		-	-	
		Glacifluvial Marine	En-/ supra icebergs	5	_	_	~	_	_
			En-/ supra i	(1	-	_	(1)	-	
	butior		Eı Sub- su	1					
	contri		-/ ra Su	5	$\mathfrak{c}\mathfrak{c}$	0	ξ		
	Sediment contribution	Glacial	En-/ Sub- supra	2			-		-
				2	ŝ	7	ς	б	-
dern fjord landsys	Bed Subglacial condition water free Glacier terminus			Tidewater cliff	Tidewater cliff	Short floating tongue or tidewater cliff	Floating tongue	Floating tongue	Floating tongue or tidewater cliff
ntrols on mo				Conduit flow	Conduit flow	None to minor conduit flow	Local conduit thin film	None	None
ajor local cor				Temperate Deforming Conduit till local flow	Deforming Conduit till flow	Mostly frozen, local till	Deforming Local till con	Moderate Very cold Deforming None till	Mostly frozen, some till
Fjords, Table 1 Some of the major local controls	Internal ice Bed condition condition		Temperate	Slightly cold	Cold	Cold	Very cold	Very cold Mostly frozer some	
h ble 1 Som	Glacial Internal flow ice velocity conditio			Fast	Fast	Moderate Cold	Fast	Moderate	Slow
Fjords, Ta			Climatic zone	Temperate Fast	Subpolar Fast		Polar		