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The chief advantage of the digital computer is that it can
be instructed to perform complex or repetitive arithmetical
operations in a very short period of time. Any sequence of
operations which can be fully analyzed can theoretically be done
by a computer. The method of instruction takes the form of
various precisely defined computer languages. The programs to be
discussed here were written in a Fortran language, Fortran being
a contraction of Formula Translation. There are at least four
variations of Fortran, but the differences are relatively minor.
Fortran is basically intended for scientific and engineering
purposes. The programs discussed here were in one case the
calculation of electron density in an atomic orbital, and in the
other three cases methods of solving systems of equations. No
programs are attached to this paper, as they are rather long and
not self-explanatory, and were turned in separately.

The atomic orbital calculated was a 2p orbital in a hydrogen
atom; the probability of finding an electron at a point in a plane.
is given by V% which is a function of an angle from a base line

and the distance from the nuclefis:

!
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To properly define the shape of the orbital, it is necessary to
know the probability at a large number of points. The digital
computer is admirably suited for calculating these values, as it

can do so rapidly and accurately and output the answers in

tabulated form.



The three programs for solutions of simultaneous equations

deal with systems such as:

ap X +any+ayz =c,
ay X+ a,y+tanz =Cc. (I)
ag; X + a3,y + a2 = 4

One method of solving such a system is to rearrange the equations

in the form:

X = 1//341 (C, -8, ¥y = a,;z)
y = 1/9«22 (e; = 82X = a332) (11)
2 = 1/ap (g - ay X = azy)

Then, an arbitrary value is assigned to each variable, and a new
value of x is calculated from the first equation. This is
inserted in the second equation and a new y calculated. Both
x and y are used to find a new z, which is put back in the first
equation and x recalculated. The process can be continued until
the variables are within any desired range of the true value.
The method works for any system which has a singular solution
so long as no main diagonal coefficient in (I) is zero. It will
sometimes happen that the calculated variables will diverge from
the true values, but this difficulty, as well as the one involving
the zero diagonal element,can be remedied by rearranging the order
of the equations.

The other two methods depend on matrix algebra. System (I)
can be rewritten in matrix form as:

ay a, a;z||x c,

agyy 8,2 823 = jC1 (III)
a3 a4, ayy Cy

N <

which can be abbreviated as:

AX =¢C (Iv)



Now, any nonsingular matrix A has an inverse A'l, such that:
ml=1 (V)
where I is the identity matrix, with the property IY = Y
for any matrix Y which has the same number of rows as I has
columns. The inverse matrix Al can be found by the Gauss=-
Jordan inversion technique, which involves augmenting the matrix
A with an identity matrix, then performing elementary row
operations on the entire matrix until the left-hand side is
converted into an identity matrix, whereupon the right-~hand half
of the matrix will be A~l, Then, multiplying both sides of (IV)
by A~1, and using (V):
A-lax = =X = AC
The product AC is a column matrix whose members are just the
solution of the system.

The third method of solving equations can be considered as
derived from the Gauss-Jordan method and from the echelon form of
a system used in linear algebraic work. For the present, it might
as well be referred to as the echelon method. It is more generally
applicable than the two methods discusses above. In particular,
note that the inversion method fails when A has no inverse, and when
¢y = 0 for all cy. Also, neither of the above methods can be used
for a system with an unequal number of equations and unknowns.

The echelon method begins by taking the matrix A and augmenting it
with the column matrix C. The augmented matrix is then carried
into an identity matrix by operations just like those used in the

Gauss=Jordan method, with the exception that the last column on the



right is not changed to a column of zeroes. If the left-hand
portion is converted perfectly to a diagonal unit matrix, then

the solution of the system is the column of constants which remains
at the right. However, should it be found impossible to prevent
having a zero appear on the main diagonal, it is left there, and
the numbers remaining in the column above it are also left (the
elements below it are already zero, or it would not be necessary
to leave the zero in the diagonal). Suppose that the matrix on
which the operations are begun is the matrix obtained by

augmenting A by C (from (ITI)), and that the final matrix obtained

is:
1 3 0 b,
0 0 1 bs (VI)
0 0 0 bj

The system may be seen not to have a specific solution, but it

does have a general solution if, and only if, b, = 0. If it is

zero, it simply means that tne original system contained a

redundant equation. In this case, part of the solution is

definite: 2 = b,. To find the rest of the solution, which is
general, some arbitrary choice must be made for one variable,

Suppose the cholce made is y = r, where r is any real number. Then,
x = b, = 3r. The method can also be used when the number of equations
and unknowns is unequal. If there are more equations than unknowns, |
the "extra" equations will appear as additional lines at the

bottom of the matrix as written. These rows must be all zeroces in
the final matrix if the system is to have any solution. When there

are more unknowns than equations, it will be necessary to make one



or more arbitrary choices, as was done for (VI).. The computer is
of course incapable of making these choices, but it can perform

all the operations on the matrix and output it in a form where

very little work remains to hs done on it. This last method

should be applicable to any system of linear equations.
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