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INTRODUCTION 
 
         Adaptive/active optical elements are designed to improve optical system 
performance in the presence of phase aberrations. For atmospheric optics and 
astronomical applications, an ideal deformable mirror should have sufficient frequency 
bandwidth for compensation of fast changing wave front aberrations induced by either 
atmospheric turbulences or by turbulent air flows surrounding a flying object (air optical 
effects). In many applications, such as atmospheric target tracking, remote sensing from 
flying aircraft, boundary layer imaging, laser communication and laser beam projection 
over near horizontal propagation paths the phase aberration frequency bandwidth can 
exceed several kHz. These fast changing aberrations are currently compensated using 
relatively small size (a few inches or less) deformable mirrors, such as micro-electro-
mechanical systems (MEMS) based DMs [1], piezoelectric deformable mirrors based on 
semi-active or passive bimorph elements (bimorph mirrors) [2,3], or DMs with an array 
of push-pull type actuators [4-8]. These DMs are difficult to scale to larger size without 
either significant reduction of their operational speed or substantial increase of optical 
system complexity and cost, when DM scaling is performed by combining small size 
DMs to a larger size phased array. To match small size DM diameter d the optical 
telescope aperture of diameter D>>d is re-imaging with demagnification factor M = D/d.  
In most practical applications the demagnification factor M can be extremely large (on 
the order of 100 or even more). Re-imaging of the telescope pupil with a high 
magnification factor requires installation of additional optical elements, including one or 
more optical relay systems, resulting in a substantial increase of size, weight, and cost of 
the entire optical system. This high magnification factor also makes it highly sensitive to 
vibrations, “high g” and high-thermal gradient environmental factors.  
The deformable mirror described in the presented paper intends to overcome the 
mentioned drawbacks of the existing DMs by offering the deformable mirror design 
scalable up to the aperture diameter of the optical telescope primary mirror. The proposed 
Pocket-DM (PDM) can be directly used as a primary adaptive mirror of optical telescope 



and laser beam delivery system eliminating the need for additional optical elements used 
for incorporation of a small size DM into telescope optical train. 
 
POCKET MIRROR DESIGN AND MANUFACTIRING 
 
     The proposed deformable mirror contains an array of pockets machined on backside 
of a bulk substrate of glass or composite material, Fig.1A. A dielectric or metal layer 
reflecting light is deposited on the front surface of the substrate.  The thickness of the 
substrate inside the pocket area is significantly less than outside the pocket. A thin layer 
of an electro-active material, e.g. piezo-electric ceramics, is bonded to the bottom surface 
of each pocket.  
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Fig. 1. A-The design of the 7-pocket deformable mirror. Each pocket contains 7 pixel piezoelectric ceramic 
hexagon (B), bonded to the bottom of the pocket. The electrodes on outer side of hexagon are shown by 
numbers from (0) to (6). 
 
      The patterned conductive films (pixels) are deposited on both sides of the layer of 
electro-active material, Fig.1B.  External voltage applied to the selected areas of the 
piezoelectric layer through the electrical wires connected to the pixels induces the 
contraction or extension of the layer. The transversal electro-mechanical effect based on 
d31 module of piezoelectric material is used for the layer deformations. Due to semi-
passive nature of the bimorph structure formed by the piezoelectric layer and bottom 
layer of the pocket the reflective surface possess the convex or concave deformation in 
response to contraction or to expansion of actuator.  
 
     The fabricated sample of the pocket deformable mirror is shown in Fig.2. 
The performance of the mirror was evaluated using the Zygo interferometer. 
Each pixel from (1) to (6) in Fig.1B of every pocket is connected to two external high-
voltage a. c. power supply, while the central pixel (0) is connected to the third high- 
voltage power supply. 
 



 

 
 
Fig.2. 7-pocket 49-channel deformable mirror with a. c. voltage station (left). 
 
      Selecting the pixels of the piezoelectric layer results in deformation of the pocket 
mirror. In Fig.3 these deformations (response functions) are shown for selected pixels of 
one pocket as well as for a combination of pixels. 
 

   
 

 
 
Fig.3. Response functions of one pocket when the external voltage is applied to the selected pixels. 
 



     This demonstrates that the surface can be individually manipulated, with each channel 
influencing an area of approximately 1 cm diameter. This property of the manufactured 
mirror can be useful for the correction of high spatial frequency atmospheric turbulences. 
     In Table 1 the mirror surface deformation peak values are presented for the 
corresponding combinations of voltages applied to the selected electrodes. 
 
Table 1. Peak values of the reflective surface deformations induced with some combinations of the selected 
pixels under control voltages. 
 
No Voltages applied to a single pocket electrodes Deformation 

peak value, μm 
1 All electrodes at +30V 0.5  
2 All electrodes at +60V 1.2  
3 All electrodes at +100V 2.2  
4 All electrodes at –100V -2.2  
5 Electrode (1) at +120V 0.58  
6 Electrode (4) at +120V 0.66  
7 Electrode (0) at +120V 1.2  
8 Electrodes (1), (3), (5) at +120V, electrodes (2), (4), (6) at –120V 0.9 
9 Electrodes (1), (2), (3) at -90V, electrodes (4), (5), (6) at +90V 1.5 
10 Electrodes (3), (6) at +100V, electrode (0) at –100V 1.2 
11 Electrodes (2), (4), (6) at +100V, electrode (0) at -100V 1.1 
 
     In the case of multi-pocket PDM the areas of mirror between walls of neighbor 
pockets form the rib structure, providing high stiffness to the PDM’s overall optical 
surface when the thickness of glass and thickness of ribs between the neighboring 
pockets are properly chosen. The ribbing pocket structure of the pocket mirror allows one 
to manufacture the mirror surface with good optical quality.  
     Fabrication of the multi-pixel thin-layer electro-active actuators as well as bonding 
them inside the pockets are significantly simpler and less expensive than fabrication of 
mirrors with push/pull actuators located outside of the supporting back structure with a 
comparable density of actuators per unit area of mirror. 
     A unique property of the PDM is that it can provide scalable DM architecture with 
local (inside pocket) compensation of low order phase aberrations.  Independent of the 
number of pockets or mirror diameter, the PDM operational frequency bandwidth 
depends solely on the dynamic characteristics of a single pocket. This allows the 
manufacturing of large aperture size DMs with operational bandwidths on the order of 
tens of kHz.  
 
      In Fig’s. 4 and 5 the examples of the surface deformation are shown for some 
combinations of voltages, applied to the pocket electrodes (the same voltages for each 
pocket).  
 



 
 
Fig.4. Left - Surface profile of 7-pocket DM if pixels (6) and (3) are at +100V, pixel (0) is at –100V. 
Right – opposite polarities are applied to the same pixels in each pocket. 
 
 

 
 
Fig.5. Surface profile of the 7-pocket mirror if three neighbor pixels are at +90V, and other three  
are at –90V. “Scanning” the azimuth direction.  
 



    The first resonance of each pocket was measured while a sine wave voltage was 
applied to all pixels, or to central pixels (0), or to a single side pixel from (1) to (6). The 
resonance frequency was determined as a frequency when the amplitude of deviation of 
the reflected laser beam showed a sharp increase. The scheme of setup is show in Fig.6. 
The resonance frequency for the manufactured mirror was found equal to 15 kHz. 
 

 
 
 
 
 
 
Fig.6. Setup for measurement of the resonance 
frequencies of the deformable areas of pockets. 

 
     The obtained value of the first resonance describes the focus-defocus mode of the 
pocket bottom as it is shown in Fig 6. This mode was excited not only when all pixels of 
the pocket are driven in phase, but as well when any separate pixel of the pocket is 
driven. The resonance frequency was always approximately the same.  
      
 
POCKET MIRRORS IN ADAPTIVE OPTIC SYSTEMS 
 
     According to the presented approach a large deformable mirror can be fabricated by 
means of scaling the number of the described pockets. The shape of pockets can 
arbitrarily chosen e.g. be triangular, rectangular, hexagonal etc. The PDM can contain 
pockets of different shapes. The number of control channels at each pocket depends on 
the chosen number of conductive areas deposited on the actuator plate. 
     Due to good mechanical decoupling between pockets the influence functions of 
separate channels (pixels) are strongly restricted with the dimension of one pocket, hence 
the high order spatial frequencies of the atmospheric induced aberrations can be 
controlled with high speed in range exceeding 10kHz. 
     The PDMs with different geometry of pockets can be combined in a single optical 
system aiming to increase wavefront phase aberration compensation capabilities and 
eliminate uncontrollable PDM zones related with ribbing spacing between the mirror 
pockets. The Fig. 7 shows the combination of three pocket mirrors having the 
overlapping control areas. All beams 1-9 of the incoming wave front have a controllable 
phase after they are reflected sequentially from these 3 mirrors.  
 
 
 



 

  
 
Fig.7. The part of adaptive optic system 
            composed from pocket mirrors with 
            over lapping control areas. 

 
      Fig.8. Telescope utilizing pocket mirrors.  

 
     In Fig.8 the telescope is shown, containing the multi-pocket primary mirror and the 
deformable secondary mirror with a single pocket. The primary mirror controls the high 
order aberrations whereas the secondary mirror controls the low-order aberrations.  
 
 
SUMMARY 
 
     The deformable mirror with adaptive optics elements located inside of mirror is 
discussed. The 49 channel, 100mm diameter deformable mirror is fabricated with 
bimorph piezoelectric actuators inside of mirror pockets. 
     The frequency bandwidth exceeding 10kHz is shown. 
     The amplitude of the response for focus-defocus mode with a stroke of more than 
4μms was obtained. For the highest spatial frequency a stroke of about 1.5μm was 
obtained.  
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