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5.1 Introduction 

Owing to the growing ubiquity of digital image acquisition and display, several factors 
must be considered when developing systems to meet future color image processing needs, 
including improved quality, increased throughput, and greater cost-effectiveness [1], [2], 
[3]. In consumer still-camera and video applications, color images are typically obtained 
via a spatial subsampling procedure implemented as a color filter array (CFA), a physical 
construction whereby only a single component of the color space is measured at each pixel 
location [4], [5], [6], [7]. Substantial work in both industry as well as academia has been 
dedicated to postprocessing this acquired raw image data as part of the so-called image 
processing pipeline, including in particular the canonical demosaicking task of reconstruct­
ing a full color image from the spatially subsampled and incomplete data acquired using 
a CFA [8], [9], [10], [11], [12], [13]. However, as we detail in this chapter, the inherent 
shortcomings of contemporary CFA designs mean that subsequent processing steps often 
yield diminishing returns in terms of image quality. For example, though distortion may be 
masked to some extent by motion blur and compression, the loss of image quality resulting 
from all but the most computationally expensive state-of-the-art methods is unambiguously 
apparent to the practiced eye. Refer to Chapters 1 and 3 for additional information on 
single-sensor imaging fundamentals. 
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As the CFA represents one of the first steps in the image acquisition pipeline, it largely 
determines the maximal resolution and computational efficiencies achievable by subse­
quent processing schemes. Here we show that the attainable spatial resolution yielded by a 
particular choice of CFA is quantifiable, and propose new CFA designs to maximize it [14], 
[15]. In contrast to the majority of the demosaicking literature, we explicitly consider the 
interplay between CFA design and properties of typical image data, and its implications 
for spatial reconstruction quality. Formally, we pose the CFA design problem as simulta­
neously maximizing the allowable spatia-spectral support of luminance and chrominance 
channels, subject to a partitioning requirement in the Fourier representation of the sensor 
data. This classical aliasing-free condition preserves the integrity of the color image data 
and thereby guarantees exact reconstruction when demosaicking is implemented as demod­
ulation (demultiplexing in frequency). 

Surprisingly, from this perspective we can show the suboptimality of CFA designs based 
on pure tristimulus values [15]-a standard design approach long taken by industry, par­
ticularly as manifested by the popular Bayer pattern [4]. Such designs are less resilient to 
spatial aliasing as image resolution increases, requiring both stronger assumptions about 
the image data as well as more computationally demanding nonlinear demosaicking meth­
ods to avoid reconstruction artifacts. Here our interest lies in quantifying the trade-offs 
between performance and complexity for different classes of CFA design; we consider the 
purely linear reconstruction of typical images as an indication of baseline performance, and 
interpret the resultant degree of aliasing as providing a measure of the maximally attainable 
spatia-spectral resolution. 

As an alternative to existing CFA patterns, we provide a constructive method to gen­
erate feasible CFA designs that exhibit robustness to prior assumptions on color channel 
bandlimitedness and yield high performance while implying only low complexity for sub­
sequent processing steps in the imaging pipeline. Because our emphasis is on the effi­
ciencies of the overall color image acquisition pipeline, we omit an explicit comparison of 
demosaicking strategies. However, our analysis yields a general class of linear demosaick­
ing methods that provide state-of-the-art performance and enjoy complexity comparable 
to simple bilinear interpolation. In addition, our proposed CFA designs are also designed 
for increased noise robustness: the color filters themselves are panchromatic, alleviating 
difficulties in low-light conditions, and the linear reconstruction methods we propose can 
also be expected to enable more tractable noise modelling [15]. 

The remainder of this chapter is organized as follows. We begin in Section 5.2 by ex­
amining the spatia-spectral properties of typical CFA designs in the Fourier domain, and 
discuss their susceptibility to aliasing. We propose in Section 5.3 a constructive method to 
specify a physically realizable CFA pattern in terms of its spatia-spectral properties. The 
resultant CFA designs admit fast, optimal linear reconstruction schemes, which we outline 
in Section 5.4. In Section 5.5 we give several explicit examples of these new patterns, 
and provide empirical evaluations on standard color image test sets. We summarize and 
conclude with a discussion in Section 5.6. 
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5.2 Spatio-Spectral Analysis of Existing Patterns 

In this section, the spatia-spectral properties of the sampling induced by existing CFA 
patterns are analyzed. In single-sensor cameras, the pixel sensor at each spati~l location 
is equipped with a color filter, a physical device whose pigments absorb a portiOn of the 
electro-magnetic wave in the visible spectrum while passing the rest to the photosensitive 
element beneath this filter. The measured value at each location is therefore an inner prod­
uct resulting from a spatia-temporal integration of the incident light over each pixel's phys­
ical area and exposure time, taken with respect to the corresponding color filter's spectral 
response. This is similar to the acquisition process in the retina, where each cone measures 
the intensity of the light with respect to its spectrally-shifted response [ 4], [5], [6], [7]. Be­
cause the spectral response functions of the cones can be taken to span a three-dimensional 
space, and cone and sensor measurements are largely proportional to the intensity of the 
light (i.e., linear), the observed light can be uniquely represented (up to linear transforma­
tion) by a color triple. We therefore adopt the standard convention and identify these filters 
by their color names such as red, green, and blue-though these may not be synonymous 
with perceived color, which is a function of the environmental illuminant [1]. As the goal 
of this chapter is the identification and optimization of relevant objective metrics, rather 
than subjective metrics related to perception, we make no further attempt to elaborate on 
the issues of color science. 

5.2.1 Color Filter Arrays 

Here we begin with the Fourier analysis of the spatia-spectral properties of the CFA 
patterns [10], [13]. This spatially global perspective is a logical starting point for a number 
of reasons (a spatially local perspective is provided in the next section). First, color filter 
arrays are physical constructions that are fixed prior to image acquisition, and therefore not 
adapted to local image properties. Second, color filter arrays typically comprise a repetitive 
tiling of the image plane formed by the union of alternating color samples. 1 As we describe 
below, the global spatial periodicity of CFA sampling patterns may be understood in terms 
of lattices, with a so-called dual or reciprocal lattice determining the resultant spectral 
periodicity under Fourier transform. Finally, the linear reconstruction methods we consider 
in the interest of evaluating computation-quality trade-offs preclude adaptation to local 
statistics of the image under consideration. 

To motivate our analysis, let us first consider the interplay between color channels of 
the acquired image. Letx(n) = [x,(n),x!?(n),xb(n)JT denote the RGB tristimulus value 
of the desired color image at pixel location n E Z2. Define c(n) = [c,(n),cl?(n),cb(n)JT 
as the corresponding CFA color combination, so that the measured sensor value y(n) at 
location n can be expressed as the inner product y(n) = c(nf x(n). For the moment, we 
restrict our attention to c(n) E {[l,O,OjT, [0, l,OjT, [0,0, ljT} as a model for CFA schemes 

1 Pseudo-random CFA patterns have also been considered in the past [7]. Despite their potential theoretical 
advantages, we omit them from our discussion, as the corresponding reconstruction schemes incur much greater 
computational expense. 
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(a) 

FIGURES.l 
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(b) (c) (d) (e) 

Log-magnitude spectra of a typical color image (i.e., image flower here) illustrating the lowpass nature of 

difference channels xa and x{J relative to Xr, Xg, and xb. Individual spectra correspond to: (a) red channel, (b) 

green channel, (c) blue channel, (d) difference X a, and (e) difference x{J. 

that multiplex color samples; note that Cr + cg + ch = 1. Each pixel sensor thus measures 

[
xr(n)l [xa(n)l 

y(n) = c(nf x(n) = [cr(n) cg(n) ch(n)] xg(n) = [cr(n) 1 ch(n)] xg(n) , 
xh(n) x~(n) 

(5.1) 

where xa = Xr - Xg and x~ = Xb - Xg are difference channels. As noted in References [1 0] 
and [13], this {xa,xg,x~} representation offers an advantage over the original {xnxg,xh} 
formulation; the difference channels xa and x~ serve as a proxy for chrominance compo­
nents, which enjoy rapid decay in the spatial frequency domain, whereas xg can be taken to 
represent the image luminance component, which embodies edge and texture information. 
In fact, the Pearson correlation coefficient measured between the high-frequency compo­
nents of the color channels {xr,xg,xh} is typically larger than 0.9 [8]-and because of 
this high degree of redundancy, it is often assumed that xa and x~ are lowpass relative to 
{xr,Xg,xh}; see Figure 5.1. 

The key observation to be gleaned from Equation 5.1 is that y constitutes a sum of the 
green channel Xg and the subsampled difference images Cr · xa and ch · x~. In order to 
understand the limitations of existing color filter array designs, it is helpful to consider 
the geometric and algebraic structure of subsampling patterns cr and ch through the notion 
of point lattices [15]. To this end, we say a (nonsingular) sampling matrix ME JR:.2 x 2 

generates a lattice M7l}. Certain sampling patterns cr and ch can in turn be rewritten as 
two-dimensional pulse trains using lattice notation: 

Cr(n) = 8(n -no); 8(n-no), (5.2) 

where Mr,Mh are 2 x 2 sampling matrices; mr,mh E Z2 are termed coset vectors; and 8(n) 
is the Kronecker delta function. 2 Lattices themselves admit the notion of a Fourier trans­
form as specified by a dual lattice 2rrM-T Z2 ; if we define Y ( w) as the Fourier transform 
(in angular frequency w) of sensor data y(n), it follows from Equations 5.1 and 5.2 that 

2In fact, Equation 5.2 represents a special case in which sampling patterns Cr and cb are each themselves 
lattices. More generally, they are defined in terms of unions of lattice cosets [15]; however, this does not 
change the fundamentals of our present discussion. 
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FIGURE 5.2 (See color insert.) 

Examples of existing CFAs: (a) Bayer [4], (b) Yamanaka [5], (c) Lukac [7], (d) vertical stripes [71, (e) diagonal 

stripes [7], (f) modified Bayer [7], (g) cyan-magenta-yellow, (h) Kodak I [16], (i) Kodak II [16], (j) Ko­

dak III [16]. 

Y( w) over the region [ -rr, rr) x [ -rr, rr) is given by 

. T 
Y(w) =Xg(w)+ldet(Mr)l- 1 L e-Jm,wxa(w->..r) 

>., E { 2nM-r Z2 n [ -n, n) 2 } 

+ldet(Mh)l- 1 [. e-jmrwx~(w- >..h)· (5.3) 
>.bE{2nM-rz2n[ -n,n)2 } 

The key point of Equation 5.3 is that these dual lattices specify the carrier frequencies 
{>..r, >..h} about which spectral copies of the difference channels Xa and x~ are replicated 
in the Fourier domain. The popular Bayer CPA [4], for instance, can be specified as Mr = 
Mh = 21, mr = [0, Of, and mh =[I, If -implying dual lattices equal to rrZ2, with nonzero 
{ >..r, >..h} given by [-rr, Of, [0, -nY, and [-rr, -rrf. 

Examples of several existing CFAs c(n) and the corresponding spectra Y (w) of typical 
sensor data are illustrated in Figure 5.2 and Figure 5.3, respectively; note that aliasing 
occurs when, for nonzero >..r or >..h, the spectral supports of Xg ( w) and X a ( w - >..r) or 

X~ ( w - >..h) overlap. 
Despite its widespread use, the spectral periodization about [-rr,Of and [0, -rrf in­

duced by the Bayer CPA severely limits allowable spectral bandwidth for Xg. In fact, all 
CFAs depicted in Figure 5.2 are suboptimal in at least one of two ways: First, as shown 
in Figure 5.3a to Figure 5.3d and Figure 5.3g to Figure 5.3j, spectral copies of the differ­
ence channels appear along the horizontal and/or vertical axes of the Fourier representation, 
leaving the baseband channel Xg vulnerable to the horizontal and vertical features that fre­
quently dominate natural images [17]. Second, as shown in Figure 5.3d to Figure 5.3f and 
Figure 5.3h to Figure 5.3j, maximal separation betweenXg(w) andXa(w- >..r ),X~ (w- >..h) 
is precluded unless all nonzero carrier frequencies { >..r, >..h} lie elsewhere along the perime­
ter of [ -lr, 7r) x [ -rr, 7r). 
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(c) (d) (e) 

,, 

;, ~T 

J ,, 

(f) (g) (h) (i) (j) 

FIGURE 5.3 (See color insert.) 

Log-magnitude spectra of a typical color image (i.e., image flower here) sampled with CFAs corresponding 

to Figure 5.2. Color coding is used to distinguish different components, with the xg(n) component shown in 

green, xa(n) = xr(n) -xg(n) in red, and x13(n) = xb(n) -xg(n) in blue. Individual spectra correspond to: 

(a) Bayer [4], (b) Yamanaka [5], (c) Lukac [7], (d) vertical stripes [7], (e) diagonal stripes [7], (f) modified 

Bayer [7], (g) cyan-magenta-yellow, (h) Kodak I [16], (i) Kodak II [16], (j) Kodak III [ 16]. 

. In ~act, these two conditions can be used to formulate a precise statement of CFA subop­
tlmahty [15]: any CFA design of the form c(n) E {[1, 0, Of, [0, 1, OjT, [0, 0, 1 ]T} that places 
all spectral replicates on the perimeter of [-n,n) x [-n,n), while avoiding [-n,OJT and 
[0, -njT, can only support two distinct colors. While we show in Section 5.3 how panchro­
matic designs can overcome this restriction, those that have emerged to date (including 
four-color CFAs) fail to satisfy the above two conditions. 

5.2.2 Aliased Sensor Data and Demosaicking 

Because the suboptimal CFA designs detailed above are prone to aliasing, linear recon­
struction methods no longer suffice as the spectral support of X ( w) increases. Recon­
struction is then an ill-posed problem, meaning that stronger assu~ptions about the signal 
are needed to recover the full-color image from aliased sensor data. To this end, the most 
common approach is to invoke the principle that local image features are sparse in some 
canonical representation. One explicit form of this principle is directionality-the notion 
that image feat~res are assumed to be oriented in one direction, and thus that the energy of 
the c?rre~pondmg local Fourier coefficients is concentrated accordingly. If Xg is sparse in 
the directton parallel to an image feature orientation, then aliasing can in turn be avoided· 
this principle is exploited either explicitly or implicitly by many state-of-the-art demosaick~ 
ing methods [9], [10], [11], [12], [13]. In a similar manner, under a transformation that is 
~ocal in both space and frequency, the signal energy may be assumed to be compressed 
mto a few transform coefficients; regularization in the transform domain then helps to re­
cover th~ full color image [8], [12]. However, demosaicking methods that exploit these 
assumptiOns are usually highly nonlinear and computationally demanding. Indeed, effec-
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tive detection of image feature orientation (especially under the influence of noise) is an 
active area of research, and the determination of local image statistics requires additional 
computation. Moreover, subsequent interpolation steps are tightly coupled to estimates of 
feature directionality; this type of nonlinearity is effectively a data-driven switching mecha­
nism that is expensive to implement in ASIC or DSP hardware. On the other hand, wavelet­
and filterbank-based methods often employ iterative reconstruction schemes that may not 
easily be implemented in portable imaging devices. 

The difficulties posed by nonlinear reconstruction methods are especially evident in to­
day's digital video camera architectures. In order to meet the required frame rate with 
limited computational complexity, for example, it is common to implement demosaicking 
using methods such as bilinear interpolation that fail to yield satisfactory results. Other pro­
cessing schemes may introduce pixel flickering artifacts, for instance, interframe oscilla­
tion or toggling of pixel colors caused by the susceptibility of edge-detection techniques to 
noise. Finally, nonlinear demosaicking methods are themselves subject to perturbations due 
to noise. Although simultaneous image denoising and interpolation methods have emerged 
in recent years (see, for example, Reference [12]), the difficulties of characterizing noise 
statistics after nonlinear demosaicking often render stand-alone image denoising methods 
ineffective. In contrast, the statistics of noise that undergoes only linear processing remain 
highly tractable, suggesting that a combination of denoising and demosaicking may indeed 
be possible . 

5.3 Spatio-Spectral Color Filter Array Design 

By simultaneously considering both the spectral support of luminance and chrominance 
components, and the spatial sampling requirements of the image acquisition process, we 
may conceive of a new paradigm for designing CFAs. With robustness to aliasing achieved 
via ensuring that spectral replicates lie along the perimeter of the Fourier-domain region 
[ -Jr, n) x [ -Jr, n) while avoiding the values [ -Jr, Of and [0, -nf along the horizontal and 
vertical axes, our CFA design methodology aims to preserve the integrity of color images 
by way of subsampled sensor data. Images acquired in this manner are easily manipulated, 
enjoy simple reconstruction schemes, and admit favorable computation-quality trade-offs 
with the potential to ease subsequent processing in the imaging pipeline [14], [15]. 

5.3.1 Frequency-Domain Specification of Color Filter Array Designs 

Let 0 :S: cr(n),cg(n),ch(n) :S: 1 indicate the CFA projection values at a particular spatial 
location, where cr(n),cg(n),ch(n) now assume continuous values and hence represent a 
mixture of prototype channels. With the additional constraint that Cr +cg +cb = y, it follows 
in analogy to Equation 5.1 that 

[
xa(n )] 

y(n) =c(nfx(n) = [cr(n) ycb(n)] xg(n) , 
x13(n) 
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and we may determine the modulation frequencies of difference channels X a ( n) and x f3 ( n) 
by our choice of c,.(n) and ch(n ). Recalling Equation 5.3, we seek choices such that 
Fourier transforms of the frequency-modulated difference images Xa ( w - .X,), X13 ( w - .Xb) 
are maximally separated from the baseband spectrum Xg ( w). 

In the steps outlined below, we first specify candidate carrier frequencies { r 1} and corre­
sponding weights St, tt E CC for color filters c,.(n) and ch(n ). Recalling that for constants v, K 
we have that g; { Kc, + v} ( w) = Kff c ,( w) + v 8 ( w), we see that it is possible to manipulate 
our candidate color filter values until the realizability condition 0 :S cr(n) ,cg (n), ch(n) :S 1 
is met. This notion leads to the following algorithm for frequency-domain specification of 
color filter array designs (with:- denoting complex conjugation, and Figure 5.4 illustrating 
the algorithmic steps): 

ALGORITHM 5.1 Frequency-domain color filter array design. 

l. Specify initial values { r1, s 1, t1}. Set modulation frequencies: 

c~o) =ff~ 1 Ls;8(w+r;)+s;8(w-rt) 

c~o) =ff~ 1 .Lt;D(w + r;) + t;o(w- rt). 

2. Subtract a constant v, = mind0) (n), vb = minc~o) (n) (non-negativity): 

dl) =dO)- Vr, C~l) = C~O)- Vb. 

3. Scale by K = (maxn d 1) (n) + c~I) (n) )~ 1 (convex combination): 

4. Find green: c~2) = 1 - c~2 ) - c~2 ). 

5. Scale by r =(max{ d 2) (n ), c~2) (n ), c~2\n)} )~I: 

In the first step, candidate carrier frequencies are determined by taking the inverse Fourier 
transform of 8(w ±rt)· The conjugate symmetry in this step guarantees a real-valued color 
filter array; in general, however, the resultant design is not physically realizable (points 
in Figure 5.4a fall outside of the first quadrant, for example). Constants Vr, vb are then 
subtracted to ensure non-negativity of color filters (Figure 5.4b). A scaling by K and com­
putation of the green component in the next two steps projects candidate values onto the 
unit simplex, ensuring convexity and a maximum component value of unity (Figure 5.4c 
and Figure 5.4d). Finally, multiplication by y maximizes the quantum efficiency of the 
color filters (Figure 5.4e). The resultant CFA is physically realizable, with observed spec­
tral data Y given by the sum of baseband components and modulated versions of Xa and 
X/3: 

Y(w) = yXg(w)- YKV,.Xa(w)- yKvbXf3(w) 

+YK [.{stXa +ttX{3}(w +rt) + {stXa +iiX13}(w- rt). 
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(a) (b) 

;; ~ :~_-: ~ ~ ::---~---_.~: ~" l 
:' 

(c) (d) (e) 

FIGURE 5.4 

Color filter array design visualized in Cartesian coordinates (cr. cb, c8 ), with the dotted cube representing the 

space of physically realizable color filters (0::; cr(n),cg(n),cb(n) ::; l). Steps l to 5 in Algorithm 5.1 are 

shown as (a) to (e), respectively. 

This approach enables the specification of CFA design parameters ~irectly in the Fourier 
domain, by way of carrier frequencies { rt} and weights {st,tt}· In domg so, w~ ensur~ t?at 
nonzero carrier frequencies lie along the perimeter of [-n, n) x [-n, n), while avmdmg 

the values [-n,Of and [0, -nf as desired. 

5.3.2 Analysis and Design Trade-Offs 

In this section, some notable features of the above CFA design strategy are considered; 
readers are referred to Reference [15] for a thorough analysis of design trade-offs. We first 
note that CFA designs resulting from Algorithm 5.1 are panchromatic, with the resultant 
filters comprising a mixture of red, green, and blue colors at each spatial location. As color 
filters are commonly realized by pigment layers of cyan, magenta, and yellow dyes over 
an array of pixel sensors (i.e., subtractive colors) [18], designs for which Y > l suggest 
improved quantum efficiency. Furthermore, it becomes easier to control .for sensor. satu­
ration, as the relative quantum efficiency at each pixel location is approximately umform 

(c,. + cg + Cb = y). We also note that the space of ~easible in~tializati.o~ ~ar~mete~s ~ ~' St, tt} 
corresponding to Algorithm 5.1 is underconstramed, offenng flexibiht~ m. optlmiZmg ~he 
CFA design according to other desirable characteristics such as ?emosm~~mg complexity, 
pattern periodicity, resilience to illuminant spectrum, and numencal stability [15]. 

Our design strategy assumes bandlimitedness of the difference images x~ and. Xf3, .and 
therefore its robustness hinges on how well this claim holds in various practical Sltuatwns 
(e.g., under changes in illuminant). Even as the bandwidths of the modulated difference 
spectra grow, the increased distance between these channels and.the baseb.and comp?nent 
serves to reduce the risk of aliasing, effectively increasing the spatial resolutiOn of the Imag­
ing sensor. Consequently, local interpolation methods are less sensitive to the direc~ion.ality 
of image features, and a linear demosaicking method then suffices for many applicatiOns. 
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As described earlier, linearization of the demosaicking step is attractive for several rea­
sons: it can be coded more efficiently in DSP chips, it eliminates the temporal toggling 
pixel problems in video sequences, it provides a more favorable setup for deblurring, and 
it yields more tractable noise and distortion characterizations. 

5.4 Linear Demosaicking via Demodulation 

In this section, we show that the processing pipeline of a typical digital camera can be 
exploited to greatly reduce the complexity of reconstruction methods [14]. Suppose the 

conjugate modulation sequences ca(n) = d0l(n)-1 and c13 (n) = c~0)(n)- 1 exist;3 when 
these sequences are orthogonal, the modulated signal can be recovered via a multiplica­
tion by the conjugate carrier frequency followed by a lowpass filter. Assuming mutual 
exclusivity of the supports of Xg, Xa, and X13 in the frequency domain, we expect an exact 
reconstruction according to 

(5.4) 

where * denotes the discrete convolution operator, and the passbands of lowpass filters 
ha, hg, h13 match the respective bandwidths of the signals xa,Xg,Xf3. 

Given the mutual exclusivity of the signals xa,xg,xf3 in the Fourier domain, we assume 

c~0)ha +hg +c~0)hf3 = 8, where 8(n) is again a Kronecker delta function. Using the linear­
ity and modulation properties of convolution, we obtain: 

hg * y = ( 8- c~O) ha - c~O) h/3) * y 

= Y- {dO) ha} * y- { c~O) h13} * y 

= Y- c~o) {ha * {CaY}}- c~0){h13 * {c13y} }. 

The demodulation in Equation 5.4 in turn takes the following simplified form: 

x(n) = r~ ~ ~] [1(;);) 1~y Vb~Y l [-d~J(n) ~ -cig(n)J [ha*~CaY}l 
0 1 1 0 0 1j(y1C) 0 0 1 h13 *{CJ3Y} 

[Ij(y1C)+v,.jy-c~0)(n)jy 1/r vb/r-ci0)(n)jy J [ha*{cay}l 
v,.jy-d0l(n)jy 1/y vb/r-ci0\n)jy Y . 

v,.jy-d0)(n)jy ljy 1jy+vb/r-ci0)(n)Jr h13 *{cJ3y} 
(5.5) 

The first term in Equation 5.5 is a 3 x 3 matrix multiplication (a completely pixelwise 
operation), whereas the spatial processing component is contained in its second term. In 

3In this chapter, we do not discuss cases in which there are zeros; however, the results presented here generalize 
easily to such cases via an appropriate multiplicative constant. 
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the usual layout of a digital camera architecture, a color conversion module follows im­
mediately, converting the tristimulus output from demosaicking to a standard color space 
representation through another 3 x 3 matrix multiplication on a per-pixel basis. The two 
cascading matrix multiplication steps can therefore be performed together in tandem, with 
the combined matrix computed offline and preloaded into the camera system. 

Given sufficient separation of the modulated signals in the frequency domain, crudely de­
signed low-pass filters suffice for the reconstruction task. Suppose we choose to implement 
Equation 5.5 using a separable two-dimensional odd-length triangle filter- a linear-phase 
filter with a modest cutoff in the frequency domain. Four cascading boxcar filters can be 
used to implement a filter of length 2q - 1 having the following Z transform, with Z1 and 
z2 corresponding to delay lines in horizontal and vertical directions, respectively: 

The computational complexity of the above system is eight adders for ha and h13 each. 
. . . (0) (0) 

Moreover, in 4 x 4 repeatmg CFAs, the carrier frequencies c,. and cb are often propor-
tional to sequences of± 1 's (and by extension, ca and c13 also). In this case, the multiplica­
tion by -1 before addition in Equation 5.6 simply replaces adders with subtracters, which 
is trivial to implement. The overall per-pixel complexity of the demodulation demosaick­
ing in Equation 5.5 is therefore comparable to that of bilinear interpolation (16 add/subtract 
operations per full pixel), despite its state-of-the-art image quality performance. 

5.5 Examples and Analysis 

In this section we provide several examples of CFA designs and analyze their perfor­
mance. These designs, shown in Figure 5.5 and detailed in Table 5.1, were generated in 
the spirit of Algorithm 5.1 by employing an exhaustive search over a restricted parameter 
space {-n,si,ti} [15]. Though some CFAs in Figure 5.5 have rectangular geometries, we 
see that nevertheless every pixel sensor has an equal number of neighboring colors, a con­
dition that helps mitigate cross-talk noise due to leakages of photons and electrons. Their 

TABLES.l 
Example CFA patterns specified in terms of parameter values { T;, s;, t;}. 

pattern i=O i=l pattern i=O i = 1 pattern i=O i=l 

T; (n,~) (n,n) T; (n,zn e;,n) Ti (n.~) (n,n) 
A reds; 1 + 1j l c reds; lj lj E reds; 1 + lj I 

bluet; 1+ lj -1 bluet; 1j -lj bluet; 1 + lj -I 

T; (n,~) (n,n) T; (n,J) (n,n) Ti (n,~) (n,n) 
B reds; 1 + 1j 0 D reds; 3+4j I F reds; l+lj 0 

bluet; 0 1 bluet; 3-4j I bluet; 0 I 

11'1 

II 
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(a) (b) (c) (d) 

FIGURE 5.5 (See color insert.) 

Proposed CFAs (top) and resultant log-magnitude spectra (bottom) of a typical color image (i.e., image flower 

here). Color coding is used as in Figure 5.3 to distinguish components Xa, Xg, and x13 . Sub figures correspond 

to: (a) pattern A, (b) pattern B, (c) pattern C, and (d) pattern D. 
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(d) (e) 

FIGURE5.6 

Spectral sensitivity characteristics (a) of a typical Sony CCD sensor [19], and (b-e) the corresponding pattern 

A color filters derived from these characteristics. 

designs are given in Table 5.1 as combinations of prototype red, green, and blue filters; 
the precise color specifications used in subsequent demosaicking experiments were derived 
from a popular Sony CCD quantum efficiency function [19] shown in Figure 5.6a. The 
resultant spectral responses, shown in Figure 5.6b, may be implemented using subtractive 
color pigments such as cyan, magenta, and yellow. 
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(d) 

(g) (h) 

FIGURE 5.7 (See color insert.) 

Bike image sensor data (top row), with nonlinear and linear reconstruction methods shown for the case of 

clean (middle row) and noisy (bottom row) sensor data. Individual images correspond to: (a) original image, 

(b) Bayer CFA sampling, (c) pattern A sampling, (d) nonlinear Bayer reconstruction [8], (e) linear Bayer 

reconstruction, (f) linear pattern A reconstruction, (g) noisy nonlinear Bayer reconstruction, (h) noisy linear 

Bayer reconstruction, and (i) noisy pattern A linear reconstruction. 

In comparing Figure 5.3 and Figure 5.5, we see that in the latter case spectral copies of 
Xa and x13 are placed farther from the Cartesian axes and the origin, thus achieving a better 
separation of channels in the Fourier domain. The implications of this design improvement 
may be seen in the demosaicking examples of Figure 5.7; while demosaicking performance 
is both algorithm- and CPA-dependent, we may consider state-of-the-art methods for de­
mosaicking Bayer CPA data along with the linear reconstruction methodology outlined in 
Section 5.4, using the well-known bike test image shown in Figure 5.7a. 

To this end, Figure 5.7b and Figure 5.7c show simulated sensor data y(n) = c(n f x(n) 
for the bike image x(n), acquired under c(n) representing the Bayer CPA and pattern A 
of Figure 5.5, respectively. Figure 5.7d to Figure 5.7f show demosaicked images corre­
sponding respectively to a reconstruction of a color image from Bayer CPA data using the 
iterative, nonlinear method of Reference [8], the linear demosaicking algorithm of Sec-
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tion 5.4, and the same linear method applied to the pattern A sampled data. This latter 
reconstruction is competitive with the nonlinear Bayer reconstruction of Figure 5.7d, and 
exhibits significantly reduced zipper artifacts. On the other hand, compared to the purely 
linear Bayer demosaicking shown in Figure 5.7e, the linear pattern A reconstruction shows 
a significant gain in fidelity for equal hardware resolution and computational cost. Finally, 
Figure 5.7g to Figure 5.7i demonstrate its improved resilience to noise, by way of show­
ing the same three reconstructions applied to sensor data corrupted by simulated Poisson 
noise. Compared to the reconstructions using Bayer CFA data depicted in Figure 5.7g and 
Figure 5.7h, the pattern A linear reconstruction of Figure 5.7i renders contributions from 
signal-dependent noise far less noticeable. 

5.6 Conclusion 

By considering the interplay between color filter arrays and typical images, we have 
posed here the CFA design problem as one of simultaneously maximizing the spectral 
support of luminance and chrominance channels subject to their mutual exclusivity in the 
Fourier domain. From this perspective, current design practices were seen to be suboptimal: 
as image resolution increases, existing CFAs are prone to aliasing, linear reconstruction 
methods no longer suffice, stronger assumptions must be made about the underlying signal, 
and additional computational resources are needed to reconstruct the full-color image. 

Key to our design paradigm was the notion that the measurement process, an inner prod­
uct between the color filter array and the image data, induces a modulation in the frequency 
domain. To this end, we chose to modulate the chrominance spectra away from the base­
band luminance channel, and in doing so we proposed a constructive method to design 
a physically realizable CPA by specifying these modulation frequencies directly. This 
method generates panchromatic CPA designs that mitigate aliasing and admit favorable 
computation-quality trade-offs. As we have shown, our corresponding linear demosaicking 
method yields state-of-the-art performance with an order of complexity comparable to that 
of bilinear interpolation. 
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