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Scheduling has been a focal point in operations research (OR) for over fifty yea rs. Traditionally, either special 
purpose algorithms or integer programming (IP) models have been used. More recently, the computer 
science field, and in particular, logic programming from artificial intelligence has developed another 
approach using a declarative style of problem formulation and associated constraint resolution algoritl1ms 
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for solving such combinatorial optimization problems [l-3]. This approach, termed as constraint logic 
programming or CLP (or simply CP), has significant implications for the OR community in general, and 
for scheduling research in particular. 

In this chapter, our goal is to introduce the constraint programming (CP) approach within the context 
of scheduling. We start with an introduction to CP and its di tinct technical vocabulary. We then present 
and illustrate a general algorithm for solving a CP problem with a simple scheduling example. Next, we 
review several published studies where CP has been used in scheduling problems so as to provide a feel 
for its applicability. We discuss the advantages of CP in modeling and solving certain types of scheduling 
problems. We then provide an illustration of the use of a commercial CP tool (OPL Studio®') in modeling 
and designing a solution procedure for a classic problem in scheduling. Finally, we conclude with our 
speculations about the future of scheduling research using this approach. 

47.2 What is Constraint Programming (CP}? 

We define CP as an approach for formulating and solving discrete variable constraint satisfaction or 
constrained optimization problems that systematically employs deductive reasoning to reduce the search 
space and allows for a wide variety of constraints. CP extends the power of logic programming through 
application of more powerful search strategies and the capability to control their design using problem
specific knowledge [1,3]. 

CP involves the use of a mathematical/logical modeling language for encoding the formulation, and 
allows the user to apply a wide range of search strategies, including customized search techniques for 
finding solutions. CP is very flexible in terms of formulation power and solution approach, but requires 
skill in declarative-style logic programming and in developing good search strategies. 

We begin with a description of the structural features of CP problems and then present a general CP 
computational framework. In this process, we introduce several technical CP keywords/concepts (denoted 
in italics) that are either not encountered in typical OR research or are used differently in the CP context. 

47.2.1 Constraint Satisfaction Problem 

At the heart of CP is the constraint satisfaction problem (CSP). Brailsford, Potts, and Smith [ 4] define CSP 
as follows: Given a set of discrete variables, together with finite domains, and a set of constraints involving 
these variables, find a solution that satisfies all the constraints. 

In constraint satisfaction problems, variables can assume different types including: Boolean, integer, 
symbolic, set elements, and subsets of sets. Similarly, a variety of constra ints are possible, including: 

• mathematical: C = s + p (completion time= start time+ processing time) 

• disjunctive: tasks J and K must be done at different times 

• relational: at most five jobs to be allocated at machine RSO 

• explicit: only jobs A, B, and E can be processed on machine YSO 

Finally, a CSP can involve a wide variety of constraint operators, such as:=,<,>,;:::,::=:, -:f=, subset, su
perset, union, member, v (Boolean OR), • (Boolean AND),::::} (implies), and# (iff). In addition to these 
constraints, CP researchers have developed special purpose constraints that can implement combinations 
of the above types of constraints efficiently. For example, the alldifferent constraint for a se t of variables 
implements their pairwise inequalities efficiently through logical filtering schemes [5]. 

A (feasible) solution of a CSP is an assignment of a value from its domain to every variable, in such a 
fashion that every constraint of the problem is satisfied. When tackling a CSP, we may want to identify just 
one or multiple solutions. 

1 OPL Studio® (JLOG, Inc., Mountain View, CA). 
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47.3 How Does Constraint Programming Solve a CSP? 

47.3.1 A General Algorithm for CSP 

Figure 47.1 summarizes a general algorithm for solving a CSP. It starts with CSP formulation including 
defining variables, their domains, and constraints (block 1). Constraints are stored in a constraint store. 

In block 2 of the figure, the domains of individual variables are reduced using logic-based filtering 
algorithms for each constraint that systematically reduce the domains of the variables. As the domain of a 
variable is reduced, each constraint that uses the variable is then activated for application of its associated 
filtering algorithm. This y tematic process is called constraint propagation and domain reduction. 

After constraint propagation and domain reduction, two possibilities arise (block 3), i.e., either a solu
tion is found or not. If a solution is found the algorithm terminates (Endl). If all solutions are required, 
the basic process i repeated. If no olution is found, problem inconsistency (the state where the domain of 
at least one variable has become empty) at the current stage is examined (block 4). 

If inconsistency is not proven, then a search is undertaken using some search strategy for branching 
(block 6). Branching divides the main problem into a set of mutually exclusive and collectively exhaustive 
subproblems by temporarily adding a constraint. Branching selects one of the branches and propagates all 

constraints again u ing the filtering algorithms (block 2). 

-------8 Define variables 
Initialize variable domains 
Initialize constraint store 

Propagate 
constraints 

No 

Branch 

No 

Backtrack 

FIGURE 47.1 A general algorithm for constraint sat isfaction problems (CSP). 
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If, in block 4, inconsistency is proven (a failure), the search tree is examined in block 5 to check if all 
subproblems have been explored (fathomed) . If all branches have been fathomed, problem inconsistency 
is proven. If not, the algorithm backtracks (block 7) to the previous stage and branches to a different 

subproblem (block 6). 

47.3.2 Constraint Propagation 

47.3.2.1 Within-Constraint Domain Reduction 
Constraint propaga tion (Figure 47.l-block2) uses the concept oflogica l arc consistency checking to commu
nicate information about va riable domain reduction within and across constra ints involving the specific 
variab les. Figure 47.2 illustra tes the concept. In this figure, part (a) shows that job 1 has a processing time 
of3 (that may not be interrupted). We start with an initial domain of [O, 1, 2, 3, 4, 5, 6] for the va riables C, 
(completion time of job 1) and s 1 (sta rt time of job 1). In part (b), the constra int C 1 = s 1 +3 reduces the 

domain of C1 using the doma in va lues of s 1, making arc C1 +- s 1 consistent. In part (c), the constraint 

now redu ces the domain of s 1 using the updated domain values of C 1, making arc C 1 --+ s, consistent. 
This bi-directional arc consistency check ensures fu ll reduction of domains of the two variables involved 
in this constra int. 

47.3.2.2 Between-Constraint Domain Reduction 

Constra int propagation also entails communication of information between constra ints involving com 

mon variables to reduce their domains. Figure 47.3 illustrates the concept of constraint propagation across 
related constra ints. In this case, the goal is to schedule two jobs, job 1 (described in Figure 47.2) and a 
second job (job 2) with processing time of2 over the time domain [O, 1, 2, 3, 4, 5, 6] on a single-machine 
(assuming the disjunctive constra int that the machine ca n hand le only one job at a time). In step 1, the 

domain of C" s" C2, and s2 are reduced with the help of arc consistency checking of the constra ints 

binding C, to s, and C2 to s2, respectively. Let us say that there is an additional constra int on C, due to its 

due date ( C, < 5). In step 2, this additional constrain t red uces the domain of C 1 as shown ( C 1 = [3, 4 ]). 
In step 3, this information about the updated domain of C 1 is communicated to the C 1 to s 1 constra int 
and the disjunctive constraint. The domain of s 1 is reduced as shown (s 1 = [O, 1 ]), and the domain of C2 

is reduced as shown ( C2 = [5, 6]). In step 4, the domain of s2 is in turn reduced as shown (s2 = [3, 4] ). 
The sequence of steps illustrates the concep t of sequential and full communica tion between the related 

constraints. Obviously, the actua l sequence can be interchanged with the sa me final result (for example, 
step 3 and 4) . 

I [O. 1. 2. ~: 4. 5. 6) lr----------11 [O. 1. 2. i. 4. 5 , 6) I 
(a) Original domains of C1 and 51 

C1 C1 = 51 + 3 51 
(3, 4, 5, 6) -------~ (0, 1, 2, 3, 4, 5, 6) .__ ___ __;__;_J 

(b) Domains of C 1 with arc 51 to C 1 consistent 

C1 C1 = 51 + 3 I 51 
~-[3_,_4,_5_,_6_J__,t---------~~~--[0_,_1_. _2,_3_)_~ 

(c) Domains of C1 with arc C1 to 51 also consistent 

FIGURE 47.2 An illustration of domain reduction and are consistency checking logic. 
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C1 = [O, 1, 2, 3, 4, 5, 6] S1 = [O, 1, 2, 3, 4' 5, 6,J I C2 = [O, 1, 2, 3, 4, 5, 6] I 
">I.~---..-

Step 1 

C1 = [3, 4, 5, 6] s, = (0, 1, 2, 3] C2= (2, 3, 4, 5, 6] 

Step 2 

Step 3 J c, =[3, 4] He, =S1 +3r~l __ s_,_=_ro_. 1_1 _ _,r either(C, < S:!)or(C2< S,) 

Step 4 C2 = [5, 6] 

FIGURE 47.3 An illustration of constraint propagation logic. 

47.3.3 Branching 

Any branching stra tegy could be deployed in block 6 of Figure 47.1. Typically, a depth -first strategy is 
deployed but other more sophisticated look-ahead strategies could be used (see (4,6) for a more complete 
discussion). In any case, the decision of what to branch on is open as well. Often, we branch by first 

selecting a variable whose domain is not yet bound (reduced to a single value). Selection of the variable is 
often based on a heuristic (rule of thumb used to guide efficient search) such as "smallest current domain / 
first." Once a variable is selected, the branch is established by instantiating the variable to one of the values 
in its current domain. Again, this choice could be made according to a heuristic like "smallest value in 
the current domain first." In fact, decision could be made to branch based on temporary constraint(s) 
involving one value of a variable, multiple values of the variable, multiple values of multiple variables. In 
CP jargon, the points at which the search strategy makes an advance along the search tree using one of 

these several choices are caUed choice points. 

47 .3.4 Adapting the CSP Algorithm to Constrained Optimization Problems 

CSP problems can easily be extended to constrained optimization problems (COP). Suppose our COP 
has an objective Z to be minimized. If and when a first solution to the original CSP is found, its objective 

value is calculated (Z'), constraint Z < Z' is added to the constraint store of the solved CSP to form a new 
CSP, and the CSP algorithm is repeated on this new problem. This process is repeated until inconsistency 
is found and all branches are fathomed. The last found solution is the optimum. 

47.4 An Illustration of CP Formulation and Solution Logic 

In this section we illu trate the concepts of CP formulation and solution logic with a simplified 3-job, 

single-machine scheduling problem with the constraint that all jobs are to be completed on or before 
their due dates and processed without interruption (time unit= day). The formulation of this problem is 
presented in Figure 47.4. 

Note that the domains for the two variables (C j ands j) are finite sets. The start time (s j) and completion 
time ( Cj) for each job are linked by the processing time for the job (p j ). We express the fact that the machine 
can perform only one job at a time through the disjunctive constraints shown in the form ulation. 

The CP solution logic is presented in Figure 47.5. The figure maps the logic of domain reduction, 
constraint propagation, and depth-first search strategy in terms of the domain for the variables representing 
the completion times for the three jobs ( C1, C2, and C3). To track how CP evaluates and screens the solution 
space, at each step, the number of unexplored candidate values for C 1, C2, and C3 are provided. The values 

-
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Parameters: (nonnegative integers) 

n = number of jobs 

Pi = Processing Time of Job j; j = 1, .. . , n 
oj = Due Date of Job j ; j = 1 ,. . ., n 

Variables: (nonnegative integers) 

Ci = Completion Time of Job j; j = 1 ,. . ., n 

si=StartTimeofJobj; j = 1,. . ., n 

Objective: To find all schedules 

(combinations of C1, C2, and C3) 

that result in zero total tardiness 

Variable Domains: 

P = P1 + .. . + Pn 

c1,si E [0, 1,. . ., pl ; j=1 ,. . ., n 

Constraints: 

si = Ci - Pi j=1 ,. . .,n 

C1s di j = 1,. . ., n 

Ci s sk V Cks si;j, k = 1,. . .,n;j ;t k 

FIGURE 47.4 CP formu lat ion of a single-mach ine scheduling problem. 

of the variables that are rendered inconsistent due to domain reduction induced through constra int 
propagation are shaded and labeled with the step at wh ich they were rendered inconsi tent. Finally, the 
bound values are shaded black and labeled with the step at which they were made. Note that, to start wi th, 
there are 343 (7 x 7 x 7) candidate assignments. 

In step 1, domain reduction occurs on all the three variables individually with the constraints involving 
the completion time, processing time, sta rt time, and the due date for each job. For example, because job l 
has a processing time of 3 days, it cannot be completed on days 0, 1, and 2. Also, job 1 is due on day 
5. So, it cannot be completed on day 6. Note that the initial domain reduction results in 90 unexplored 
assignments (based on blank cells in Figure 47.5) after pruning 253 potential ass ignments. 

Since no fu rther domain reduction is possible and we do not have a solution, the depth -first sea rch 
strategy is initiated in step 2. Using the search heuristic of "smal lest current domain first'', C 1 is chosen for 
instantiation. As soon as C1 = 3 is executed, constra int propagation occurs with the effects shown on the 
domains of C 1, C2 and C3. C1 can no longer assume values of 4 and 5. C2 can no longer assume values of 
2, 3, and 4. Finally, C3 can no longer assume values of 1, 2, and 3. Step 2 results in reduction of unexplored 
assignments from 90 to 6. 

In step 3, C2 is chosen to be instantiated aga in using the "smallest current domain first" heuri tic. The 
first value of C2 = 5 renders C2 = 6 inconsistent, and also renders C3 = 4 and C3 = 5 inconsistent. Thus, 
in step 3, the search actually encounters the first feasible solution to this problem ( C 1 = 3, C2 = 5, C3 = 6). 

If we desire to identify all solutions, the depth-first search strategy now backtracks to step 2 for the next 
C2 va lues (note that for C 1 = 3, C2 could be either 5 or 6), and bounds C2 to the next va lue in its current 
domain, namely, C2 = 6. As soon as it instantiates C 1 = 3 and C2 = 6, the propagation process now up
dates the domain of C3 to see what values of C3 might be consistent with these instantiations. It encounters 
the single consistent value of C3 = 4, and identifies the second solution: C 1 = 3, C2 = 6, C3 = 4. 

Backtracking, step 5 now reverts back to the C 1 level and instantiates it to C 1 = 4, and repeating the 
logic mentioned in steps 1 through 3, it identifies the third solution : C1 = 4, C2 = 6, C3 = 1. Finally, 
instantiating C1 = 5 yields the fourth (and last) so lution : C1 = 5, C2 = 2, C3 = 6 . 
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Goal: To find combinations of c1 that satisfy all disjunctive constraints and result in zeio total tardiness. 

Legend: D Unexplored candidate assignment 

OJ Inconsistent assignment at step t 

B Bounded values at step t 

Data: 

Job 

1 
2 

3 

P1 di 

3 5 
2 6 
1 8 

Solution Steps: Step 4: C1 bound to 3; C2 bound to 6 ( => C3 = 4). 

Stap.J; c1 domain reduction based on processing times, 
due dates, and target tardiness constraints. 

Day 0 1 2 3 4 5 6 

Job 1 1 1 1 1 

Job 2 1 1 

Job 3 1 

Step2: C1 bound to 3. 

Day 0 2 4 5 6 

Job 1 2 2 

Job 2 2 2 

Job 3 2 2 

Step 3: C1 bound to 3; C2 bound to 5 ( => C3 = 6). 

Day 0 2 

Job 1 

Job 2 1 2 

Job 3 2 2 

C1 = 3; C2 = 5; C3 = 6 is the first solution. 

Day 0 1 2 

Job 1 

Job 2 2 

Job 3 2 2 

C1 = 3; C2 = 6; C3 = 4 is the second solution. 

Step 5: C1 bound to 4 ( => C2 = 6; C3 = 1). 

Day 0 2 3 

Job 1 5 

Job 2 5 5 

Job 3 5 5 

C
1 

= 4; C2 = 6; C3 = 1 is the third solution. 

Step 6: C1 bound to 5 ( => C2 = 2; C3 = 6). 

Day 0 1 2 3 4 5 6 

Job 1 1 1 1 6 6 Iii 1 

Job 2 1 1 Im 6 6 6 6 

Job 3 1 6 6 6 6 sm 
C

1 
= 5; C2 = 2; C3 = 6 is the fourth solution. 

FIGURE 47.5 CP logic for a single-machine, three-job scheduling problem. 

47.5 Selected CP Applications in the Scheduling Literature 

47-7 

In this section we describe selected app lications of CP to scheduling-related problems from recent studies 
in the literature. We review applications from a number of specific scheduling subject areas: job shop 
scheduling, single-machine sequencing, para llel machine schedLding, vehicle routing, and timetabling2

• 

Final ly, we review rece nt developments in the integration of the CP and IP paradigms. 

2Throughout this section, numerous specific software products are referenced as the specific CP or IP software used 

to implement solu tions. These products are: 
JLOG Solver®, OPL Studio®, and CPLEX®(ILOG, Inc., Mountain View, CA); 

OSL®- Optimization Solutions and Library- (IBM, Inc., Armonk, NY); 

CHARME is a retired predecessor language of !LOG Solve r; 
ECLiPSe, free to researchers through Imperial College, London. http://www. icparc.ic.ac.uk/eclipse; 

Friar Tuck, free software available at http://www.fr iar tuck.net/ 
CPLEX and OSL are MIP softwa re; all others are CP-based software. 
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47.5.1 Job Shop Scheduling 

Brailsford, Potts, and Smith [ 4] reviewed the application of CP in the job shop scheduling environment. 
They described a general job shop scheduling problem, in which there are n jobs each with a set of 
operations which must be conducted in a specific order. The jobs are sched uled on m machines which have 
a capacity of one operation at any one time and the objective is to minimize the makespan. Brailsford et al. 
[4] noted that the problem instances of this type with as few as 15 jobs and 10 machines have not been 
solved with current bra nch and bound algorithms because these methods suffer from weak lower bounds 
which inhibit effective pruning of the branch and bound tree. Further, Brailsford et al. [ 4] concluded that 
"CP compares favorably with OR techniques in terms of ease of implementation and flexibility to add new 
constrain ts." 

Nu ij ten and Aarts [7] addressed the problem described by Brailsford et al. [ 4] above. They provided 
a CP-based approach for solving these classic job shop problems and found that their search performed 
favorab ly compared with branch and bound algorithms when measured by solution speed. Their study 
leveraged the flexibility of CP search by incorporating random ization and restart mechanisms. Lustig 
and Puget [8 ] have given an instructive example of a simple job shop scheduling for mulation in OPL 
Studio. 

Darby-Dowman, Little, Mitra, and Zaffalon [9] applied CP to a generalized job ass ignment machine 
scheduling problem, in which different products with unique processing requirements are assigned to 
machines in order to minimize make pan. The problem is similar to Bra ilsford et al. (4], but in Darby
Dowman et al. [9], "machine cells" have a capacity greater than one. They found CP to be intuitive and 
compact in its formulation. They solved their CP problem using ECLiPSe and the IP ver ion in CPLEX. 
They reported that CP performed more predictably than IP (when measured by search speed). CP's domain 
reductio n approach reduced the search space quickly, contributing to its superior performance. 

47.5.2 Single-Machine Sequencing 

It is noteworthy that relatively little application of CP has taken place in the job sequencing area . The 
majority of this literature uses specia l-purpose codes to take advantage of the specia l problem struc
ture of the job sequencing problem. A notable exception is Jordan and Drexl (10], which addressed the 
single-machine batch sequencing problem with sequence-dependent setup times. They assumed every job 
must be completed before its deadline, and all jobs are available at time zero. They solved this problem 
under a number of different objectives, including minimize setup costs, minimize ea rliness penalties, 
both setup and earliness costs combined , and finally, with no objective fun ction (as a constraint satisfac
tion problem). They used CHARME to solve their CP formulation and compared computational results 
of the same model so lved using OSL, an IP optimization software. They found that CP worked be t 
when the mach ine was at high capacity (tight constra ints; smaller feasible solution space), and IP worked 
best when the shop was at low capacity. Solution speeds are comparable for the two methods, but CP 
showed sma ller variabi lity in solution times overall. Both methods performed disappointingly on larger 
problems. 

47.5.3 Parallel Machine Scheduling 

Jain and Grossman [11] examined an application for assigning customer orders to a set of noniden
tical parallel machines . Their objective was to minimize the processing cost of assignment of jobs to 
machines which have different costs and processing times for each job. Each job had a specific release 
(earl iest start) and due (latest completion ) dates. They found that for their problem, the CP formu
lation required approximately one-half the number of constra ints and two-thirds the number of the 
variables ofIP. They solved the CP problems using ILOG Solver, and the IP problems using CPLEX. They 
found that CP outperforms IP for smaller problems, and its performance is comparable to IP for larger 
problems . 
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47.5.4 Timetabling 

Henz (12] utilized a CP methodology to schedule a double round-robin college basketball schedule in a 

minimal number of dates subject to a number of co nstra ints imposed by the league. Henz [ 12] was able 
to model unusual con traints such as "no more than two away ga mes in a row" and "no two final away 

games" in a direct way with CP. Henz (12] fo und a dramatic improvement in perfo rmance overNemhauser 

and Trick (13]. Nemhauser and Trick (13] so lved the problem in three phases using OR methods such 

as pattern generation, set generation and timetable generation in 24 hours of computer time. Henz [ 12] 

reported solution time under 1 min using Friar Tuck, a CP software written specifically for addressing 

tournament scheduling problem . 

More recently, Baker, Magazine and Polak (14] and Valo uxis and Housos (15] have explored school 

timetabling using CP. Baker et al. [ 14] created a multiyear timetable for courses sectio ns in order to 

maximize contact among student cohorts over a minimum time ho rizon. They found CP straightforwardly 

reduces the size of the solution space, thereby fac ilitating the search for an optimum. Valouxis and Housos 

(15] used a combination ofCP and IP to address a dail y high school timetabling problem in which the 

teachers move to several different clas sections during the day and the students remain in their classrooms. 

Their objective function was to minimize the idle hours between the daily teaching responsibilities ofall the 

teachers while also attempting to satisfy their requests for early or late shift assignments. They developed 

a hybrid search method for improving the upper bounding which helped reduce the search space and 

facilitated faster solution speed. 

47.5.5 Vehicle Dispatching 

The synchronized vehicle dispatching problem of Rousseau, Gend rea u ru1d Pesant (16] requires coordi

nating a number of vehicles such as ambulances with complementary resources such as medics to service 

demands such as patients. These resources are coordinated across time intervals in order to m inimize t11e 

travel cost of the vehicles. Their model is a real-t ime m odel, with customer orders arriving sporadically even 

after veh icles have been di patched (all orders are not known at the beginning of the time horizon) . New 

customers are inserted as con train ts into the model which is then resolved based on the new conditions. 

Rousseau et al. found modeling the complicated nature of the synchroniza tion constraints is simplified in 

a CP environment. Further, because of the real-time n ature of custom er arrivals, insertion of additional 

customer constraints (orders) was fo und to be easy in the CP paradigm. 

47 .5.6 Integration of the CP and IP Paradigms 

One of the m ost active and potentially hi ghest-opportunity areas of recent research is in the exploration of 

hybrid methods for CP and IP search methodologies. It is widely held that CP and IP have complementary 

strengths (e.g., see [ 11,17]). CP's strengths arise from its flexibility in modeling, a rich set of operators, and 

domain reduction in combinatorial problems. IP offers specialized search techniques such as relaxation, 

cutting planes and duals for specific mathematical problem structures. Hooker [ 17], Milano, Ottoson, 

Refalo, and T horsteins on [ 18] and Brailsford et al. [ 4] have provided general discussions on developing 

a fra m ework for integrating CP and IP. 

T here are recent studies which integrate CP and IP for solving specific problems. Darby-Dowman et al. 

[9] made an early attempt at in tegra ting IP and CP by using CP as a preprocessor to limit the sea rch space 

for IP, but had limited success. They suggested, but did n ot develop, using a more integrated combination of 

IP and CP: CP for generating cu ts on the tree and IP for determining search direction. Jain and Grossman 

[ 11] presented a successfu l deeper integration of these m ethods for the machine scheduling problem 

based on a relaxation and decompo ition approach. Finally, Valouxis and Housos [15] used local sea rch 

techniques from OR to tighten the constraints for CP and improve the search time. If efforts at integrating 

these m ethods are successfu l, the end state for these methods may be that researchers view IP and CP as 

special case algorithms fo r a genera! problem type. 
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47.6 The Richness of CP for Modeling Scheduling Problems 

As a general framework for developing search strategies, CP has a rich set of operators and variable types, 
which often allows for a succinct and intuitive formulation of scheduling problems. The following section 
describes the richness of the CP modeling environment with examples of variable indexing, and constraints 
such as strict inequality, logical constraints, and global constraints. 

47.6.1 Variable Indexing 

Just as in other computer programming languages, CP allows "variable indexing", in which one variable 
can be used as an index into another. This capability creates an economy in the formulation which reduces 
the number of required decision variables in the scheduling problem formulation. The result is often a 
more compact and intuitive expression of the problem. 

To illustrate the value of variable indexing capability, an adaptation of single-machine batch sequencing 
problem with sequence-dependent setup costs is taken from Jordan and Drexl [ 10]. Jn this problem, the 
objective is to minimize setup costs and earliness penalties given varying setup costs for adjacent jobs in 
the sequence. In IP, a binary variable, y[i, j], is used to indicate if job i immediately precedes job j. If 
n is the total number of jobs in the problem, with this formulation, there are n(n - 1) binary indicator 
variables to express the potential job sequences. If setup cost [i, j] is the cost of setup for job i immediately 
preceding job j, then the total setup cost for the set of assignments is specified as the sum of setup cost 
[i , j]y[i, j] for all i and j, i ¥- j. 

To formulate the problem in CP, we create the decision variable, job[k] which takes the label of the job 
assigned to position k in the sequence. We then use job[k J as an indexing variable to calculate the total 
setup cost of the assignments as the sum of setup cost[job[k - l], job[k]] for all k > 1. With this indexing 

capability, the number of variables in the problem is reduced to the number of jobs, n. An additional 

benefit of variables indexi ng is that the model is more expressive of the original problem statement. The 
solution to the problem is more naturally thought of as " the sequence of jobs on the machine" as in P, 
than, "the coll ection of immediately adjacent jobs on a machine", as is the case in the IP formulation. 

Another example of the usefulness of variable indexing in the job shop li terature comes from Darby
Dowman et al. [9]. They described a generalized job as ignment problem that IP treats with mn. decision 
variables (m machines, n jobs), but CP addresses with only n decision variables (jobs), which take on 
the value of the machine to which a job is assigned. In this setting a well, the flexibility of CP's variable 
indexing construct more intuitively and compactly expresses the problem as an assignment of jobs to 
machines, rather than !P's expression of a machine-job pair. 

Generally stated, problems that can be expressed as a matching of one set to another can be more 
succinctly expressed using an index into one of the sets (a afforded in CP) than using a binary variable to 
represent every possible combination of the cross product of the two sets (as is the case in IP). 

47.6.2 Constraints 

CP allows for the use ofa number ofoperators such as set operators and logical conditions which enable it to 
handle a variety of special constraints easily. In this section, we describe some of these special constraints 
that are common in sched uling: strict inequality, logical constraints, and global constraints, which, as 
Williams and Wilson (5] describe, are straight forward in CP, but difficult in IP. 

47.6.2.1 Inequalities with Boolean Variables 

We start with the simple example of strict inequality constraint for Boolean variables. Let us say in a 
scheduling application, the assignment of a job to a pair of machines can be expressed a Boolean variables 
(call them MachineA and MachineB) which take the value of 1 if a job is as igned, and the value ofO if no 
job is assigned. Further, let us say that it is desirable for either one of two machines to have a job assigned, 
but not both, or equ ivalen tly that one Boolean variable does not equa l another. We express, the inequality 
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directly in CP as 

MachineA ::f. MachineB 

In IP, we specify the same constraint as: 

MachineA + MachineB = 1 

Both formulations accurately and efficiently impose the condition in a single constraint that either 
MachineA or MachineB receives a job (equals one), but not botl1. However, the CP statement is a more 
intuitive and direct expression of the naturally occurring constraint without tile indirection necessary as 
in the IP formulation to express the constraint as the sum of two variables. 

47.6.2.2 Inequalities with Integer Variables 

Now we consider another situation in which MachineA and MachineB are integer variables representing 
the job number assigned to each machine. Further, we assume the same job cannot be assigned to both 
MachineA and MachineB. In CP, the constraint is again expressed using the simple constraint: 

MachineA ::f. MachineB 

However, in IP, the ::f. condition on integer variables must be modeled as two inequalities (>, <) and an 
exclusive or (Xor) condition: 

(MachineA > MachineB) Xor (MachineB > MachineA) 

Further, in IP we are restricted to 2: and ,:::: constraints. So in order to capture the essence of the strict 

inequality, we add or subtract some small value, e, to the integer values: 

(MachineA 2: MachineB + e) Xor (MachineB 2: MachineA + e) 

Finally, in IP the logical Xor is modeled with a Boolean indicator variable, 8 for each constraint, and a 
"BigM" multiplier is used to ensure that at least one but not both constraints hold: 

MachineA - MachineB - e + 8BigM 2: 0 

MachineB - MachineA - e + (1 - 8) BigM 2: 0 

In this example, 8 = 1 implies MachineB > MachineA; 8 = O implies MachineA > MachineB. Familiar 
and widely-used constructs such as "BigM" and Boolean indicator variables have been borne out of 
necessity to create formulations which meet the linear problem structure requirements for IP. 

47.6.2.3 Logical Constraints 

Logical constraints are common in scheduling. The "precedes" condition is a ubiquitous example from 
sequencing. For example, let us say that the completion of]obA must precede the start of]obB or that the 
completion ofJobB must precede the start ofJobA, but not both. This is an example of the exclusive or 
(Xor) constraint. CP handles constraints of this form with relat ive ease with constraints of the form: 

(A.start > B.end) Xor (B.start > A.end) 

In IP, the relationship is stated as follows: 

A.start - B.end - e + 8BigM 2: 0 

B.start - A.end - e + (1 - 8) BigM 2: 0 

where 8 = 1 implies job A is first and 8 = 0 implies job B is first. 
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CP expresses the Xor condition directly and naturally. It is interesting to note that because the =/= 
cond ition and the Xor condition are logica lly equivalent, both are modeled in the same way in IP, even 
though the basic problem sta temen ts (p recedes and=/=) are perceived differently. 

47.6.2.4 Global Constraints 

Globa l constraints apply across all, or a large subset of, the variables. For example, imagine we are assign ing 
jobs tom machines, and it is desired to assign different jobs to each machine in an efficient way. We may 
want to extend the =/= constraint discussed above to apply to all of the machines under consideration. In 
CP, the alidifferent constra in t is used: 

alldifferent(Mach ine) . 

This constraint assures that no two machines are assigned to the same job. It should be noted that the 
alldifferent constra in t in CP is a si ngle, global constraint, and that a constraint of this form has stronger 
propagation properties than n inequality constra ints (see Hooker, 2002). 

In IP, the alldifferent concept is implemented as an inequality constraint (as described above) for every 
machine pair. Form machines, this would require m(m - 1) con traints, and m(m - 1)/2 indicator 
variables. 

Otl1er global constraint constructs exist in CP. For the preceding example, we may want to assu re that 
each machine gets no mo re than one job in the final solution. In CP, we use the "distribute(Machine)" 
constra int - a globa l constraint restricting the count of jobs on each machine to one. In lP, we create an 
indicator variable and accompanying constraint for each machine which indicates if it has a job assigned 
or not, then, create a constrai nt on the sum of the indicator variables. 

The need for the ind icator variables and "BigM" constructs is obviated in the more general modeling 
framework of CP. Because the problem can be directly and succinctly stated, accurate formulations are 
easily created, maintained, modified and interpreted, and the potential for errant formu lations are reduced . 

Other special-purpose CP constructs have been developed to aid in model building that are useful to the 
sched uling community. For examples, ILOG's OPL includes the "cumulative" constraint, which defines the 
maximu m resource ava ilability for some time period, and "reservoir" constraints, which capture resources 
that ca n be stockpiled and replenished (such as raw materia ls, funds, or inventory). These construct are 
special-purpose routines that take adva ntage of the known properties of the scheduling prob lem in order 
to represent resources accurately and leverage tl1eir properties in order to reduce domains more rapidly. 

47.7 Some Insights into the CP Approach 

We do not want to encourage discussion on "wh ich is better", CP or IP. Which performs better depends on 
a specific problem, the data, the problem size, the researcher, the commercia l software and the model of the 
problem (among other things!). In any case, the debate on wh ich is better, CP or IP, may be moot because 
the two are so di fferent. IP is a well-defined solu tion methodology based on particu lar mathematical 
structures and search algorithms. CP, on the other hand, is a method of modeling using a logic-based 
programming language (see [8]). Also, as covered previously, the two approaches have complementary 
strengths that can be combined in many ways (see [11,17] ). Despite their orthogonality in approach, in this 
section we compare and contrast CP and IP as approaches to solving scheduling problems, and provide 

some insight into when CP may be an appropriate method to consider. 

47.7.1 Contrasting the CP and IP Approaches to Problem Solving 

When applied to schedu ling-related problems, CP and IP both attempt to solve NP-hard combinatorial 
optimiza tion problems; however, tl1ey have different approaches for addressing tl1ern . IP leverages the 
mathematical structure of the problem. In the CP approach, the freedom and responsibility for creating 
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constraints and a search strategy falls primarily to the researcher. This is similar to the requirement of 
developing a good IP model that fits the linear structure required of an IP solver. CP search methods 
rely less on particular mathematical structure of the objective function and constra ints, but more on the 
domain knowledge of specific aspects of the problem. Consider the trivial example of the single-machine 
job sequencing problem to minimize total tardiness. An IP formulation would not likely contain an explicit 
constraint that states there need be no gaps between jobs on a machine; it is rather a logical outcome of the 
optimization process. Using the CP paradigm, the researcher who knows, logica lly, the optimal solution 

has no such gaps might utilize this knowledge by introducing an explicit constraint to that effect, possibly 
reducing the solution space and improving performance of CP search. 

In general, IP is objective-centric while CP is constraint-centric. IP follows a "generate-and-test strategy" 
evaluating the objective function for various values of the decision variables. CP focuses more on the 
constraints in the problem, constantly reevaluating the logical conclusions resulting from the interactions 
of the constraints and, as a result, reducing the domain of feasib le solutions. 

Another difference between CP and IP fa lls in what might be called "modeling philosophy". In IP the 
modeler is encouraged to specify a minimal set of constraints sufficient to capture the essence of a given 
problem. Fewer constraints are generally viewed as "better" or more elegant (for examples, see (19, p. 194] 
and [20, p. 34]). In CP, the modeling philosophy is somewhat different. The modeler is encouraged to add 
constraints that more carefully capture the nuances of a particular problem. More constraints are better, 
because taken together they reduce the solution domain. Contrary to the IP approach, even redundant 
constraints are considered desirable in CP in some cases if they improve constraint propagation and 
domain reduction. 

47.7.2 Appropriateness of CP for Scheduling Problems 

There are certain attr ibutes of problems that researchers can be aware of when deciding if CP is an ap- / 

propriate methodology to employ for solving scheduling problems. First, CP is most appropriate for I 
pure integer, or Boolean decision variable problems; CP methods are not effective for floating point 
decision variables. CP is more successful reducing domains for variables with finite domains at the 

outset. 
Second, CP i well suited for combinatorial optimization problems that tend to have a large number of 

logical, global and disjunctive constraints that CP handles well with its rich set of operators and special
purpose constraints. CP more naturally expresses variable relationships in combinatorial optimization 
problems. It can be useful for quickly formu lating these types of problems without significant formulation 

difficulties. 
Third, CP operates more efficiently when there are a large number of interrelated constraints with 

relatively few variables in each constraint. This character istic results in better constraint propagation and 
domain reduction, and better performance of CP algorithms. For example, if a constraint i.s stated as the 
sum(xl to xlOO) < 1000, and xl is instantiated, not much can be said about x2 to xl OO because there 
are so many variables in the constraint. On the other hand, if x l + x2 < 100, and x l is bound to 50, 
then it follows immediately that x2 < 50, and the domain of x2 is significantly reduced. Further, if x2 is 
in another constraint with only x3, then x2's domain reduction propagates immediately to x3's domain 
reduction. Thus, a problem with a large number of interrelated constraints with few variables in each 
constraint tends to be well suited for CP. 

Finally, in a more general ense, CP applies well to any problem that can be viewed as an optimal 
mapping of one ordered et to another ordered set, where the relation between variables in each set can 

be expressed in mathematical terms that are significant to the objective. Scheduling problems fit into tl1is 
description. An example may be a set ofoperations with precedence conditions being assigned to machines 
over time-indexed periods. Both sets are ordered in some way, and the solution is a mapping between 
them. The decision variables are integer or Boolean, constraints tend to be logical, global or disjunctive 
in nature, and there is a large number of constraints that often contain few variables. The strengths of CP 
seem well suited for appli cation in scheduling research. 
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47.8 Formulating and Solving Scheduling Problems via CP 

We now illustrate how CP might be useful in modeling scheduling problems. We will use the well-known 
single-machine weighted tardiness problem as a specific case in point. In the notation of Pinedo (21] 
this is described as I I I ~w j Tj. The I I I ~w j Tj problem is simple to specify but well known to be NP-hard 
(see (22]). It well serves the purpose of showing the look and feel of a CP approach without excessive 
clutter. Typically I I I ~w j Tj is solved by special purpose branch-and-bound algorithms implemented in 
a high level general purpose programming language such as C++. See for example [23]. Our illustration 
will show several ways the problem can be formulated via CP. In doing this we will use the commercially 
available CP modeling language OPL as implemented in ILOG OPL Studio. For details regarding the OPL 
programming language the reader is directed to Van Hentenryck (24]. 

An OPL program is commonly comprised of three major program blocks including: 

- a Declarations/Initializations block for declaring data structures, initializing, and readjng data 
- an Optimize/Solve block for specifying, in a declarative mode, the problem specifications (either a 

constraint satisfaction or an optimization problem) 
- an optional Search block for specifying how the search is to be conducted 

The absence of any search specification invokes the OPL default search (to be described below). 

47.8.1 A Basic Formulation 

Figure 47.6 shows a fairly compact encoding of l I I ~w j Tj in OPL. We refer to it hereafter as Model 1. 
Lines 2 to 5 in the Declarations/Initializations block define and irutialize the number of jobs, processing 

times, due dates and job weights (n, p [.], d [.], w [.]).The use of "int+" and "float+" specify nonnegative 
in teger and floating point data types, respectively. The notation "= ... ;" signifies that data is to be read 
from an accompanying data file. Lines 6 and 7 define the two nonnegative integer variables C [.], and s [.]. 
Since weighted tardiness is regular, we can ignore schedules with inserted idle time (see, e.g., Baker, 2000, 
P· 2.4) · We take advantage of this fact by 1 imiting the domains for s [.] and C [.] to { 0, 1,. .. , ~ j e 1, .. , 11 p [j]}. 

Lines 9to15 of Figure 47.6 constitute the Optimize/Solve block. The presence of the keyword "minimize" 
signals that this is a minimization problem and that the associated objective follows. The keywords "subject 
to" introduce the so-called "constraint store." The constraint in line 13 assures the desired relation between 
s [.]and C [.] . We could as well have specified C[j] - s [j] >= p[j]. However, the equality specification 
yields a smaller search space. Lines 13 and 14 in Figure 47.6 together define the disjunctive requirement 
that for all pairs of jobs j, k that either j precedes k or k precedes j but not both. 

01 //SINGLE MACHINE WEIGHTED TARDINESS SCHEDULING MODEL 1 
02 int + n= ... ;fin is the number of jobs 
03 int + p[1 .. n] = ... ;//p[i] is the processing time for job i 
04 int + d[1 .. n]= ... ;//d[i] is the due date for job i 
05 float+ w[1 .. n]= ... ;//w[i] is the weight for job i 
06 var int+ C[j in 1 .. n] in O .. sum(j in 1 .. n) p[j];//C[i] is the completion time for job i 
07 var int + s[j in 1 .. n] in o .. sum(j in 1 .. n) p[j];//s[i] is the start time for job i 
08 //END OF DECLARATIONS/INITIALIZATIONS BLOCK 
09 minimize 
10 sum( j in 1 .. n) w[j]*maxl(O,C[j]-d[j]) 
11 subject to{ 
12 forall(j in 1 .. n){ 
13 C[j]-s[j] = p[j]; 
14 forall(k in 1 .. n: k>j) (C[j] <= s[k]) V (C[k] <= s[j]); 
15 }; 
16 };//END OF OPTIMIZE/SOLVE BLOCK 

FIGURE 47.6 Example OPL program for l I I I:w j T j (Model 1). 
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TABLE47.l Sample I I I I:w i Ti Problem 
(Elmaghraby, 1968) 

Job Processing Time Due Date Weight 

l 3 2 l 
2 3 5 3 
3 2 6 4 
4 8 l 
5 5 10 2 
6 4 15 3 
7 4 17 1.5 

TABLE 47.2 OPL Solution Using Model 1 

on Elmaghraby Problem Data 

Optimal Solution with Objective Value: 25.0000 

s[ l] = 19 
s[2) = 0 
s[3] = 3 
s[4] = 5 
s[S) = 6 
s[6] = 11 
s[7]= 15 

C[l] = 22 
C [21=3 
C[3] = s 
C[4) =6 
C[5] = 11 
C[6] = 15 
C[7] = 19 
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Since Model 1 provides no search specifications the default search in OPL is used. It works as foUows . 
AU possible domain reduction is first accomplished. If a solution does not result, then a depth-first search 
ensues. Variables are chosen for instantiation in the order of smallest domain size first. Values within the 
domain of a variable are chosen in order of smallest va lue first. Each instantiation represents a choice point. 

As can be observed, Model 1requires2n variables and n(n + 1)/2 con traints. We executed Model 1 on 
the 7-job instance ofl 11 'Ew j Tj found in Elmaghraby [25) and depicted in Table 47.l. 

Using OPL Studio we arrived at the solution in Table 47.2 after generating 254 choice points. 

47 .8.2 A Second Formulation 

A second formulation (called Model 2) for l I I :Ew j Tj is provided in Figure 47.7. Here the variables[.] is 
replaced with the variable position[.) to represent the position of job j in the sequence. The constraint 
in line 12 assures that for all combinations of job pairs the position numbers are different. Line 13 binds 
the two variables position[.) and C[.] by specifying an equivalence relation for aU permutations of job 
pairs. Line 14 is required to assure the job j in position 1 is completed at time t = p[j]. The formulation 
is relatively compact (211 variables, (3n2 - n)/2 constraints), but the performance is lackluster. Running 
this model for the sample Elmaghraby data causes 5391 choice points to be created. The constraint set as 
specified is sufficient to assure solution , but the filtering algorithms are not strong enough to enable much 
domain reduction as in Model 1. We begin to see with this example that model building in CP is, to a grea t 
degree, a craft. The goal is not to minimally express a problem specification but rather to express as much 
information in the constraint store so as to foster domain reduction. 

47.8.3 Strengthening the Constraint Store 

A first improvement to the Model 2 is accomplished by replacing line 12 with the so-called "all different" 
constraint; i.e., change line 12 to read "alldifferent(position);". This is a good example of a single global 
constraint as described earlier. The alldifferent constraint operates at once on the entire set of variables, 

/ 
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01 //S INGLE MACHINE WEIGHTED TARDINESS SCHEDULING MODEL 2 
02 int+ n = ... ;/In is the number of jobs 
03 int + p[1 .. n] = ... ; //p[i] is the processing time for job i 
04 int + d[1 .. n] = ... ;//d[i] is the due date for job i 
05 float + w[1 .. n] = ... ;//w[i] is the "weight" for job i 
06 var int + C[j in 1 .. n] in O .. sum (i in 1 .. n)p[i]; //C[i] is the completion time for job i 
07 var int+ position[j in 1 .. n] in 1 .. n; //position[i] is job i's position in the sequence 
08 //END OF DECLARATIONS/IN ITIALIZATIONS BLOCK 
09 minimize 
10 sumU in 1 .. n) w[j)*maxl(O,C[j]-d[j]) 
11 subject to{ 
12 forall (j, k in 1 .. n: k>j) position[j] <> position[k]; 
13 forall (j, k in 1 .. n: j<>k) position[j) > position[k] <=> C[k] <= C[j)-p[j]; 
14 forall (j in 1 .. n) position[j] = 1 => C[j] = p[j]; 
15 };//END OF OPTIMIZE/SOLVE BLOCK 

FIGURE47.7 Example OPL program for ll l:Ewi Ti (Model 2). 

and is considered a single constra int. Making this replacement in the code reduces the number of choice 
points for the sample problem from 5391 to 3953. 

We can improve the performance of Model 2 further by adding more detailed information regarding the 
relationship between position and completion time. The equivalence constraints of line 13 can be made 
stronger when jobs are adjacent in the schedule, for then the difference in their completion times is exactly 
the processing time of the first job in the pair. We implement this knowledge by adding the following 
adjacency constraints to the Model 2 formulation. 

fora ll (j, kin l..n: j <> k) position[}) = position[k] + 1 <=> C[k] = C[j] - p[j] 

We applied this additional constraint set to Model 2 and applied the new model to the Elmaghraby sample 
data. The result was a further reduction in the number of choice points from 3953 to 1969. 

47.8.4 A Final Improvement to Model 2 

We can improve Model 2 further by adding problem-specific domain knowledge to the formulation. For 
example, note that when a job occupies position j we can place a lower bound on its completion time, 
namely the sum of its processing time plus the sum of the remaining j - 1 jobs with smallest processing 
times. A revised Model 2 is provided in Figure 47.8 which includes this idea along with all the other 
aforementioned revisions to Model 2. The set of constraints bounding the jobs' minimum completion 

times is implemented in lines 19 to 24. Running this model on the sample problem data drastically reduces 
the number of choice points further from 1969 to 50. Note that in this case for simplicity we assume the 
jobs are numbered in order of nondecreasing processing time so the comparison in performance is not 
100% fa ir. Nevertheless, it vividly illustrates the rather craft- like aspect of model building for scheduling 
using CP. 

47.8.5 Utilizing the Special Scheduling Objects of OPL 

Up to this point we have not taken advantage of tl1e specialized scheduling objects embedded in the OPL 
modeling language. Objects like "activity" and "resource" can be used to relieve the modeler from some 
tedium as well as to take advantage of a number ofbuilt-in functions peculiar to scheduling applications. We 
illustra te with another formulation of 11 I :Ew j Tj as depicted in Figure 47.9 and refer to it as Model 3. Here 
line 6 defines the special object "scheduleHorizon" which is used to limit the domain of the search space. 

Line 7 declares a set of variable structures of type "Activity" with durations p [.].Line 8 defines the variable 
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01 //SCHEDULING MODEL 2 (revised) 
02 int+ n= ... ;/In is the number of jobs 
03 nt + p[1 .. n] = ... ;//p[i] is the processing time for job i 
04 int+ d[1 .. n]= ... ;//d[i] is the due date for job i 
05 float+ w[1 .. n]= ... ;//w[i] is the "weight" for job i 
06 var int+ C[j in 1 .. n] in 0 .. sum (i in 1 .. n)p[i]; //C[i] is the completion time for job i 
07 var int + positionU in 1 .. n] in 1 .. n; //Job position number in sequence 
08 //END OF DECLARATIONS/INITIALIZATIONS BLOCK 
09 minimize 
10 sum(j in 1 .. n) w[j)*maxl(O,C[j]-d[j]) 
11 subject to{ 
12 forall (j in 1 .. n) position(j] = 1 => C[j] = p[j] ; 
13 al ldifferent(position); 
14 forall (j, k in 1 .. n: j<>k){ 
15 position[j] > position[k] <=> C[k] <= C[j]-p[j]; 
16 positionU] = position[k]+ 1 <=> C[k] = C[j]-p[j] ; 
17 }; 
18 //NOTE: The following requires job numbers in non-decreasing processing time order 
19 forall (j in 1 .. n){ 
20 forall (k in 1 .. n){ 
21 position[j]=k & j<=k => C[j] >= sum(I in 1 .. n: i<=k) p[I]; 
22 position(j]=k & j>k => C[j] >= p[j]+sum(I in 1 .. n: l<k) p[I]; 
23 }; 
24 }; 
25 };//END OF OPTIMIZE/SOL VE BLOCK 

FIGURE 47.8 Example OPL program for 111 :Ew j Tj (Model 2 with all revisions). 

01 //SINGLE MACHINE WEIGHTED TARDINESS SCHEDULING MODEL 3 
02 int+ n= ... ;/In is the number of jobs 
03 int+ p[1 .. n] = ... ;//p[i] is the processing time for job i 
04 int+ d[1 .. n]= ... ;//d[i] is the due date for job i 
05 float+ w[1 .. n]= ... ;//w[i] is the weight for job i 
06 scheduleHorizon = sum(j in 1 .. n) p(j]; 
07 Activity job[j in 1 .. n](p[j]); 
08 UnaryResource Machine; 
09 //END OF DECLARATIONS/INITIALIZATIONS BLOCK 
1 O minimize sumU in 1 .. n) w[j]*maxl(O,job[j].end-d[j]) 
11 subject to{ 
12 forall(j in 1 .. n) job[j] requires Machine; 
13 };//END OF OPTIMIZE/SOLVE BLOCK 

FIGURE 47.9 Example OPL program for 11 l:Ewj Tj (Model 3) . 
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"Machine" as a "UnaryResource" (i .e., one that can service only one activity at a time). Li11e 12 specifies 
the constraint that each job (Activity) is to be processed on "Machine." Built in to the UnaryResource type 
along with the special constraint predicate "requires" is the assurance of the disjunctive constraint that 
only one job ca n occupy Machine at a given time. Note that, as with the other models presented earlier, no 
search block is provided so that OPL invokes the default search algorithm as needed. This rather compact 
formulation when run using the Elmaghraby sample data yields a solution after considering 117 choice 
points. We can attribute this relatively good performance to using OPL's special sched uling objects. Their 
use triggers special purpose filtering algorithms leading to more efficient domain reduction. Of course we 
could now commence as before with attempts to improve the performance by the addition of problem 

domain specific knowledge (more constraints). 

/ 
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14 search{ 
15 while(not isRanked(Machine)) do 
16 select (j in 1 .. n: isPossibleFirst(Machine,job[j)) 
17 ordered by increasing maxl(d[j)-dminUob[j).start), p[j])/w[j]) 
18 tryRankFirst(Machine,job[j)); 
19 }; 

FIGURE 47.10 Example OPL search block for 11 II:w j Tj (Model 3). 

47.8.6 Controlling the Search 

OPL allows the modeler significant freedom in designing a search strategy. We provide a few simple exam
ples to illustrate. In solving minimization problems with objective function Z, OPL has the aforementioned 
fea ture of adding the constra int Z < z' to the constraint store where z' is always the objective value of the 
cu rrent best found solution . Suppose for l I I I:w j Tj we wish to steer the search to discover a good trial 
solution early on. We might be motivated then to make use of a good heuristic. A recent paper by Kanet 
and Li (26] reports on a heuristic dispatching rule "weighted modified due date" (WMDD) for l I I I:w j Tj. 

At time t = 0, it computes for each job j the following value: 

WMDD[j] = max{d(j] - t, p[jl}lw[j] 

It then selects the job k with smallest WMDD to occupy the machine. At time t = t + p [k] the process is 
repeated on the remaining jobs so that a schedule is constructed from beginning to end. With OPL we can 
create a search strategy, which first constructs a schedule from beginning to end, plunging to a complete 
solution in confo rmance to WMDD, and then backtracks. To illustrate how we might implement this in 
OPL, we append a search block to Model 3; the OPL specification for which is depicted in Figure 47.10. 
The functionality of the various OPL keywords is almost self-explanatory. In OPL, a unary re ource is 
said to be ranked when a permutation in which it services activities is completely specified. The keyword 
"d min" is a "refl ective" function that returns the current minimum value of the domain for its argu ment. 
In this case the argument is the variable job[j].start. This is what affords the building of the schedule 
from start to finish and the intended dynamic recalculation of WMDD. With each execution of line 18 
another job is appended to the end of the schedule. Doing so clips the domains of the start times for the 
rema ining unscheduled jobs acco rdingly so that on the next call to dmin the WMDD calculation in line 
17 is dynamic. Running this version of the model on the sample Elmaghraby data produces the desired 
result; the number of choice points drops from 117 to 37. 

From the previous examples we see that it is quite simple using OPL to organize the search either over job 
completion times or over jobs' positions. Alternatively, we might want to search over the jobs that occupy 
the different positions. To clarify, consider a variable job[j] to represent the job occupying position j in 
the sequence. After the appropriate declaration we need only the following two lines in the optimize/so lve 
block. 

alldi fferent(job ); 

forall(j in 1..n) C[job[j]] = sum (k in l..n: k <= j)p[job[k]]; 

The second constraint set assures that the completion time for a job occupying position number j is the 
sum of job completion times through j (and illustrates the use of indexing variables described earlier). 

In CP, controlling the organization of the search space is even more flexible than suggested above. As 
described earlier, instead of branching on the different values of a variable with in its domain, we might 
wish to branch on a specific condition (i.e., insert a constraint or set of constra ints). Upon backtrack
ing we introduce its negation. In the aforementioned Model 2, for example, we might wish to define a 
binary search where at each node in the search tree we choose, for some job pair (j, k), either to have 
position[j ] < position[k] or position[k] < position(}]; i.e., at each choice point we first introduce the 



Constraint Programming for Scheduling 47-19 

constraint position [j] < position[k], then upon backtracking introduce position [j] > position [k]. A 
simple OPL im plementation of thi would look like the following. 

search { 

forall (i in l..n-1) 

try position[i] < position[i + l ]} position[i] > position[i+l] endtry; 
}; 
In add ition to controlling the organization of the search space, OPL offers the modeler several choices 

for the basic branch ing strategy. Although depth-first search is the default search strategy, OPL offers a 
number of other choices including a best-first strategy (commonly used in branch-and-bound codes for 
scheduling). 

47.9 Concluding Remarks 

47.9.1 CP and Scheduling Problems 

We have argued thatCP has good ap plication to problems rife with logical constraints, particularly problems 
with many constraints involving few variables, because this affords numerous interactions inducing an 
abundance of domain reduction. Is this an inherent proper ty of scheduling problems? We would so 
argue. Consider the definition of scheduling offered by Baker ([27], p. 2): "Scheduling is the allocation 
of resources over time to perform a collection of tasks." Were it not for the little phrase "over time" then 

scheduling problems might not present the challenge that they do. It is this little phrase that begets the 
logical connections between tl1e allocations. Fo r example, consider the case of unary resources. Here the 
implication of the phrase "over time" means that no two jobs can be allocated in tl1e same time interval 
a set of two-variable (b inary) constraints. For the case of sequence-dependent setup times the phrase "over 
t ime" affects pair of chronologica lly adjacent allocations .(a nother set of binary constraints) . As another 
example consider the problem of assigning basketball referee crews to a league schedule of games. One 
constra in t that makes thi assignment problem a scheduling problem is the obvious requirement tlrnt a 
given crew may not be allocated to two diffe rent games that are scheduled to be played at the same time. 
It is the phrase "over time" which makes sched uling problems rife with logical conditions and constraints 
with few variables and thus amenable to the CP paradigm . 

47.9.2 The Art of Constraint Programming 

We have defined CP as a method fo r formu lating and solving discrete variable constraint 

satisfaction/constrained optimization problems and have highlighted its reliance on logic-based computer 
programming. As such, CP involves choosing variables and data structures, representing the relations 
between these entities in a constraint store, and designing the search strategy t11at may ensue. 

Employing CP for scheduling problems is a craft involving several interrelated skills perhaps not so 
customary to operations researchers. CP involves modeling skills for capturing relations (and including 
them in the constraint sto re) about the nature of the problem so as to enhance constraint propagation and 

domain reduction. Operations researchers have traditionally been trained to believe that, when formu lat
ing integer programs, expressing problems with as few var iables and constraints as possible is ge nerally 
better since it often leads to smaller memory requirements, faster solutions, and means for a clean er, more 
elegant- m ore efficient fo rmulat ion.3 In CP, a compact formulation is not necessarily a good one. The goal 
is not to minimally represent the problem in terms of variable and constra int defi nitions but to use knowl 
edge abou t tl1e nature of the solution to fortify the constra int store. The discussion in the previous section 

3 However, as Wi lliams (1999) points out with the prevalence of "presolve" algorithms in commercial solvers today, 
the modeler can afford to be more verbose in his modeling, without losing computational effi ciency. 
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where the adjacency constraints were added to Model 2 illustrates this point. Although these constraints 
were unnecessary in terms of expressing a correct model specification, their introduction served to boost 
the deductive power of the constraint store and induce more domain reduction . 

A second related skil l in the craft of CP for schedu ling is the abi li ty to embed scheduling knowledge 
into the constraint set or into the design of the search strategy. For almost a half century there has been a 
steady stream of advances in the science of scheduling resulting in a great base of knowledge in the fo rm 
of theorems and algorithms for specific scheduling problems. For scheduling problems we often know 
many pieces of information regarding the nature of optimum solutions, i.e., sufficient (but not necessary) 
conditions for optimality. For example, there are a number of precedence theorems now collected in 
the scheduling literature for the 111 :Ew j T j problem of the previous section [25,28-30] . Such theorems 
(scheduling domain knowledge) take the for m "If <condition> then there exists an optimum schedule in 
which job a precedes job b." Similarly there is a wealth of knowledge in scheduling about heuristic rules with 
empirical evidence to show they provide good results. The WMDD dispatching heuristic fo r l I I ':Ew j Tj 

descr ibed and illustrated in the previous section is a good example. Our experience in working with CP is 
that such scheduling-specific domain knowledge is relatively easy to implement within the CP framewo rk. 
So we can look to CP as a tool that complements scheduling algorithmic knowledge by serving as a vehicle 
for its easy implementation. We see this as a trend, a trend that will undoubted ly be nurtured by further 
development and more widespread ava ilabili ty of CP tools and familiarity of operations researchers to the 
CP paradigm. 
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