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LYAPUNOV FUNCTIONALS THAT LEAD TO

EXPONENTIAL STABILITY AND INSTABILITY IN

FINITE DELAY VOLTERRA DIFFERENCE EQUATIONS

CATHERINE KUBLIK AND YOUSSEF RAFFOUL

Abstract. We use Lyapunov functionals to obtain sufficient conditions
that guarantee exponential stability of the zero solution of the finite
delay Volterra difference equation

x(t + 1) = a(t)x(t) +

t−1∑
s=t−r

b(t, s)x(s).

Also, by displaying a slightly different Lyapunov functional we obtain
conditions that guarantee the instability of the zero solution. The high-
light of the paper is relaxing the condition |a(t)| < 1. Moreover we
provide examples in which we show that our theorems provide an im-
provement of some of the recent literature.

1. Introduction

In this paper we consider the scalar linear difference equation with multiple
delays

x(t+ 1) = a(t)x(t) +
t−1∑
s=t−r

b(t, s)x(s), t ≥ 0, (1.1)

where r ∈ Z+, a : Z+ → R and b : Z+ × [−r,∞) → R. In this paper R
denotes the set of real numbers and Z+ denote the set of positive integers.
We will use Lyapunov functionals and obtain some inequalities regarding
the solutions of (1.1) from which we can deduce exponential asymptotic sta-
bility of the zero solution. Also, we will provide a criteria for the instability
of the zero solution of (1.1) by means of Lyapunov functionals.
Due to the choice of the Lyapunov functionals, we will deduce some inequal-
ities on all solutions. As a consequence, the exponential stability of the zero
solution is concluded. Consider the kth-order scalar difference equation

x(t+ k) + p1x(t+ k − 1) + p2x(t+ k − 2) + · · ·+ pkx(t) = 0, (1.2)

where the pi’s are real numbers. It is well known that the zero solution of
(1.2) is asymptotically stable if and only if |λ| < 1 for every characteristic
root λ of (1.2). There is no easy criteria to test for exponential stability
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2 CATHERINE KUBLIK AND YOUSSEF RAFFOUL

of the zero solution of equations that are similar to (1.2) for variable coeffi-
cients. This itself highlights the importance of the creativity of constructing
a suitable Lyapunov function that leads to the exponential stability. When
using Lyapunov functionals, one faces the difficulties of relating the con-
structed Lyapunov functional back to the solution x so that stability can be
deduced. This task is tedious and we did overcome it. The authors have
done an extensive literature search and could not find any papers that dealt
with exponential stability of Volterra equations of the form of (1.1). This
paper offers easily verifiable conditions that guarantee exponential stability.
Moreover, at the end of this manuscript we give criteria for the instability of
the zero solution. Most importantly, our results will hold for |a(t)| ≥ 1. We
will illustrate our theory with several examples and numerical simulations.

Throughout this paper we use the convention that

b∑
s=a

w(s) = 0, if a > b.

Let ψ : [−h, 0]→ (−∞,∞) be a given bounded initial function with

||ψ|| = max
−h≤s≤0

|ψ(s)|.

It should cause no confusion to denote the norm of a function ϕ : [−h,∞)→
(−∞,∞) with

||ϕ|| = sup
−h≤s<∞

|ϕ(s)|.

The notation xt means that xt(τ) = x(t+ τ), τ ∈ [−h, 0] as long as x(t+ τ)
is defined. Thus, xt is a function mapping an interval [−h, 0] into R. We say
x(t) ≡ x(t, t0, ψ) is a solution of (1.1) if x(t) satisfies (1.1) for t ≥ t0 and
xt0 = x(t0 + s) = ψ(s), s ∈ [−h, 0].
In preparation for our main results, we let

A(t, s) =
r∑

u=t−s
b(u+ s, s). (1.3)

Note that

A(t, t− r − 1) = 0.

Then, (1.1) is equivalent to

4x(t) =
(
a(t) + +A(t+ 1, t)− 1

)
x(t)−4t

t−1∑
s=t−r−1

A(t, s)x(s). (1.4)

In [6], the author used the same method to study the exponential stability
and instability of the zero solution of

x(t+ 1) = a(t)x(t)− b(t)x(t− h).

We end this section with the following definition.
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Definition 1.1. The zero solution of (1.1) is said to be exponentially stable
if any solution x(t, t0, ψ) of (1.1) satisfies

|x(t, t0, ψ)| ≤ C
(
||ψ||, t0

)
ζγ(t−t0), for all t ≥ t0,

where ζ is constant with 0 < ζ < 1, C : R+ × Z+ → R+, and γ is a positive
constant. The zero solution of (1.1) is said to be uniformly exponentially
stable if C is independent of t0.

2. Exponential Stability

Now we turn our attention to the exponential decay of solutions of equa-
tion (1.1). For simplicity we let

Q(t) = a(t) +A(t+ 1, t)− 1.

Assume

4tA
2(t, z) ≤ 0, for all t+ s+ 1 ≤ z ≤ t− 1. (2.1)

Lemma 1. Assume (1.3) and that for δ > 0 the inequality

− δ

(δ + 1)r
≤ Q(t) ≤ −rδA2(t+ 1, t)−Q2(t) (2.2)

holds. If

V (t) =

[
x(t) +

t−1∑
s=t−r−1

A(t, s)x(s)

]2

+ δ
−1∑
s=−r

t−1∑
z=t+s

A2(t, z)x2(z), (2.3)

then along the solutions of (1.1) we have

4V (t) ≤ Q(t)V (t).

Proof. First we note that due to condition (2.2), Q(t) < 0 for all t ≥ 0. Also,
we use the fact that if u(t) is a sequence, then 4u2(t) = u(t + 1)4u(t) +
u(t)4u(t). For more on the calculus of difference equations we refer the
reader to [3] and [4]. Let x(t) = x(t, t0, ψ) be a solution of (1.1) and define
V (t) by (2.3). Then along solutions of (1.4) we have

4V (t) =

[
x(t+ 1) +

t∑
s=t−r

A(t+ 1, s)x(s)

]
4t

[
x(t) +

t−1∑
s=t−r−1

A(t, s)x(s)

]

+

[
x(t) +

t−1∑
s=t−r−1

A(t, s)x(s)

]
4t

[
x(t) +

t−1∑
s=t−r−1

A(t, s)x(s)

]

+ δ4t

−1∑
s=−r

t−1∑
z=t+s

A2(t, z)x2(z) (2.4)
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We note that

x(t+ 1) +

t∑
s=t−r

A(t+ 1, s)x(s) = (Q(t) + 1)x(t)−4t

t−1∑
s=t−r−1

A(t, s)x(s)

+
t∑

s=t−r
A(t+ 1, s)x(s)

= (Q(t) + 1)x(t) +

t−1∑
s=t−r−1

A(t, s)x(s)

= (Q(t) + 1)x(t) +
t−1∑
s=t−r

A(t, s)x(s),

since A(t, t− r − 1) = 0. With this in mind, (2.4) reduces to

4V (t) =

[
(Q(t) + 1)x(t) +

t−1∑
s=t−r

A(t, s)x(s)

]
Q(t)x(t)

+

[
x(t) +

t−1∑
s=t−r

A(t, s)x(s)

]
Q(t)x(t)

+ δ4t

−1∑
s=−r

t−1∑
z=t+s

A2(t, z)x2(z)

= Q(t)V (t) +
(
Q2(t) +Q(t))

)
x2(t)

− δQ(t)
−1∑
s=−r

t−1∑
z=t+s

A2(t, z)x2(z)

+ δ4t

−1∑
s=−r

t−1∑
z=t+s

A2(t, z)x2(z)

− Q(t)

(
t−1∑
s=t−r

A(t, s)x(s)

)2

. (2.5)
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Also, using (1.3), we arrive at

4t

−1∑
s=−r

t−1∑
z=t+s

A2(t, z)x2(z) =
−1∑
s=−r

t∑
z=t+s+1

A2(t+ 1, z)x2(z)

−
−1∑
s=−r

t−1∑
z=t+s

A2(t, z)x2(z)

=

−1∑
s=−r

[
A2(t+ 1, t)x2(t) +

t−1∑
z=t+s+1

A2(t+ 1, z)x2(z)

−
t−1∑

z=t+s+1

A2(t, z)x2(z)−A2(t, t+ s)x2(t+ s)
]

=

−1∑
s=−r

(
A2(t+ 1, t)x2(t)−A2(t, t+ s)x2(t+ s)

)
+

−2∑
s=−r

t−1∑
z=t+s+1

4tA
2(t, z)x2(z)

= rA2(t+ 1, t)x2(t)−
−1∑
s=−r

A2(t, t+ s)x2(t+ s)

+
−2∑
s=−r

t−1∑
z=t+s+1

4tA
2(t, z)x2(z)

≤ rA2(t+ 1, t)x2(t)−
−1∑
s=−r

A2(t, t+ s)x2(t+ s).(2.6)

With the aid of Hölder’s inequality, we have(
t−1∑
s=t−r

A(t, s)x(s)

)2

≤ r
t−1∑
s=t−r

A2(t, s))x2(s). (2.7)

Also,

−1∑
s=−r

t−1∑
z=t+s

A2(t, z)x2(z) ≤ r
t−1∑
s=t−r

A2(t, s)x2(s). (2.8)

By invoking (2.2) and substituting expressions (2.6), (2.7), and (2.8) into
(2.5), we obtain

4V (t) ≤ Q(t)V (t) +
(
Q2(t) +Q(t) + rδA2(t+ 1, t)

)
x2(t)

+ [−
(
δ + 1

)
rQ(t)− δ]

t−1∑
s=t−h

A2(t, s)x2(s)

≤ Q(t)V (t). (2.9)
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Theorem 2.1. Assume the hypothesis of Lemma 1 holds and suppose there
exists a number α < 1 such that 0 < a(t) + +A(t + 1, t)) ≤ α. Then any
solution x(t) = x(t, t0, ψ) of (1.1) satisfies the exponential inequality

|x(t)| ≤

√√√√r + δ

δ
V (t0)

t−1∏
s=t0

(
a(s) + +A(s+ 1, s)

)
(2.10)

for t ≥ t0.

Proof. First we note that condition (2.2) implies that there exists some
positive number α < 1 such that |a(t)++A(t+1, t))| < α. Now by changing
the order of summation we have

δ
−1∑

s=−h

t−1∑
z=t+s

A2(t, z)x2(z) = δ
t−1∑
z=t−r

z−1∑
s=−r

A2(t, z)x2(z)

= δ
t−1∑
z=t−r

A2(t, z)x2(z)(z − t+ r + 1)

≥ δ

t−1∑
z=t−r

A2(t, z)x2(z),

where we have used the fact that t−h ≤ z ≤ t−1 =⇒ 1 ≤ z−t+h+1 ≤ h.
Also (

t−1∑
z=t−r

A(t, s)x(s)

)2

≤ r

t−1∑
z=t−r

A2(t, s)x2(s),

and hence,

δ
−1∑
s=−r

t−1∑
z=t+s

A2(t, z)x2(z) ≥ δ

r

(
t−1∑
z=t−r

A(t, z)x(z)

)2

.

Let V (t) be given by (2.3). Then

V (t) =
[
x(t) + +

t−1∑
s=t−r−1

A(t, s)x(s)
]2

+ δ
−1∑
s=−r

t−1∑
z=t+s

A2(t, z)x2(z)

≥
[
x(t) + +

t−1∑
s=t−r−1

A(t, s)x(s)
]2

+
δ

r

(
t−1∑
z=t−r

A(t, z)x(z)

)2

≥ δ

r + δ
x2(t) +

[√
r

r + δ
x(t) + +

√
r + δ

r

t−1∑
z=t−r

A(t, z)x(z)

]2
≥ δ

r + δ
x2(t).
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Consequently,

δ

r + δ
x2(t) ≤ V (t).

From (2.9) we get

V (t) ≤ V (t0)
t−1∏
s=t0

(
a(s) + +A(s+ 1, s)

)
.

Consequently, we arrive at

|x(t)| ≤

√√√√r + δ

δ
V (t0)

t−1∏
s=t0

(
a(s) + +A(s+ 1, s)

)
for t ≥ t0. This completes the proof.

Corollary 1. Assume the hypothesis of Theorem 2.1 holds. Then the zero
solution of (1.1) is exponentially stable.

Proof. From inequality (2.10) we have that

|x(t)| ≤

√√√√r + δ

δ
V (t0)

t−1∏
s=t0

(
a(s) + +A(s+ 1, s)

)
≤

√
r + δ

δ
V (t0)αt−t0

for t ≥ t0. The proof is complete since α ∈ (0, 1).

Next we give a criterion for instability via Lyapunov functionals.

3. Criterion For Instability

In this section we use a non-negative definite Lyapunov functional and
obtain criteria that can be easily applied to test for instability of the zero
solution of (1.1).

Theorem 3.1. Let H > r be a constant. Assume Q(t) > 0 such that

Q2(t) +Q(t)−HA2(t+ 1, t) ≥ 0. (3.1)

If

V (t) =

[
x(t) + +

t−1∑
s=t−r−1

A(t, s)x(s)

]2

− H
t−1∑

s=t−r−1
A2(t, s)x2(s), (3.2)



8 CATHERINE KUBLIK AND YOUSSEF RAFFOUL

then along the solutions of (1.1) we have

4V (t) ≥ Q(t)V (t).

Proof. Let x(t) = x(t, t0, ψ) be a solution of (1.1) and define V (t) by (3.2).
Since the calculation is similar to the one in Lemma 1, we arrive at

4V (t) = Q(t)V (t) +
(
Q2(t) +Q(t)−HA2(t+ 1, t)

)
x2(t)

+ Q(t)(H − r)

(
t−1∑

s=t−r−1
A2(t, s)x2(s)

)2

≥ Q(t)V (t), (3.3)

where we have used(
t−1∑
s=t−r

A(t, s)x(s)

)2

≤ r
t−1∑
s=t−r

A2(t, s)x2(s)

and (3.1). This completes the proof.

We remark that condition (3.1) is satisfied forQ(t) ≥
−1 +

√
1 + 4HA2(t+ 1, t)

2
.

Theorem 3.2. Suppose the hypothesis of Theorem 4.1 holds. Then the zero
solution of (1.1) is unstable, provided that

∞∏(
a(s) + +A(s+ 1, s)

)
=∞. (3.4)

Proof. From (3.3) we have

V (t) ≥ V (t0)
t−1∏
s=t0

(
a(s) + +A(s+ 1, s)

)
. (3.5)

Let V (t) be given by (3.2). Then

V (t) = x2(t) + +2x(t)

t−1∑
t−r−1

A(t, s)x(s) +

[
t−1∑
t−r−1

A(t, s)x(s)

]2

− H

t−1∑
t−r−1

A2(t, s)x2(s). (3.6)

Let β = H − r. Then from(√
r√
β
a−
√
β√
r
b

)2

≥ 0,

we have

2ab ≤ r

β
a2 +

β

r
b2.
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With this in mind we arrive at

2x(t)
t−1∑
t−r−1

A(t, s)x(s) ≤ 2 |x(t)|

∣∣∣∣∣
t−1∑
t−r−1

A(t, s)x(s)

∣∣∣∣∣
≤ r

β
x2(t) +

β

r

[
t−1∑
t−r−1

A(t, s)x(s)

]2

≤ r

β
x2(t) +

β

r
r

t−1∑
t−r

A2(t, s)x2(s).

A substitution of the above inequality into (3.6) yields

V (t) ≤ x2(t) +
r

β
x2(t) + (β + r −H)

t−1∑
t−r−1

A2(t, s)x2(s)

=
β + r

β
x2(t)

=
H

H − r
x2(t).

Using inequality (3.5), we get

|x(t)| ≥
√
H − r
H

V 1/2(t)

=

√
H − r
H

V 1/2(t0)

(
t−1∏
s=t0

(
a(s) + +A(s+ 1, s)

) 1
2

.

This completes the proof.

4. Applications and Numerical Evidence

In this section we provide examples that illustrate our theoretical results
in two instances: when the coefficients a(t) and b(t, s) are constant, and
when they are functions.

First, if a(t) = a and b(t, s) = b (a, b ∈ R) we have A(t, s) =

r∑
u=t−s

b. Then

A(t,s) = b(r+1-t+s). Hence, 4tA
2(t, s) = b2(r−t+s)2−b2(r+1−t+s)2 ≤ 0

and thus condition (1.3) holds. Also A(t + 1, t) = br, and hence condition
(2.3) becomes

− δ

(δ + 1)r
≤ a+ br − 1 ≤ −

[
δb2r3 + (a+ br − 1)2

]
. (4.1)

It is obvious from (4.1) that when a = 1, b has to be negative.
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Next we give four examples where the emphasis is on |a| ≥ 1.

Example 1. Let a = r = 1, b = −0.3 and δ = 0.5. Then one can easily
verify that (4.1) is satisfied. Hence the zero solution of the delay difference
equation

x(t+ 1) = x(t)− 0.3x(t− 1) (4.2)

is exponentially stable.

Example 2. Let a = 1.2, b = −0.3, r = 1, and δ = 0.5. Then one can easily
verify that (4.1) is satisfied. Hence the zero solution of the delay difference
equation

x(t+ 1) = 1.2x(t)− 0.3x(t− 1) (4.3)

is exponentially stable as illustrated in Figure 1(a).

Example 3. Let a = 1.29, b = −0.6, r = 1, and δ = 0.5. With these
values (4.1) is satisfied, and therefore the zero solution of the delay difference
equation

x(t+ 1) = 1.29x(t)− 0.6x(t− 1)

is exponentially stable as shown in Figure 1(b).

Example 4. Let a = 1.125, b = −0.15, r = 2, and δ = 2
3 . Then one can

easily verify that (4.1) is satisfied. Hence the zero solution of the delay
difference equation

x(t+ 1) = 1.125x(t)− 0.15
(
x(t− 1) + x(t− 2)

)
is exponentially stable as shown in Figure 1(c).

It is worth mentioning that in both papers [5] and [7] it was assumed that

t−1∏
s=0

a(s)→ 0, as t→∞

for the asymptotic stability.

Example 5. Let a = 1.3, b = −0.2, r = 1 and H = 1.1. Then Q(t) = 0.1 >

0. Moreover Q(t) ≥
−1 +

√
1 + 4HA2(t+ 1, t)

2
= 0.0422. Thus conditions

(3.1) and (3.2) are satisfied and the zero solution of

x(t+ 1) = 1.3x(t)− 0.2x(t− 1) (4.4)

is unstable. Actually, all its solutions become unbounded for large t. Figure
2 shows a trajectory for the above equation with initial condition x(0) = −10
and x(1) = −1.3.

Remark: When a(t) and b(t, s) are constant the solution x(t) of the
delay difference equation (1.1) is the same as the sequence (xn)n∈N0 defined
recursively as

xn+r+1 = axn+r + b (xn+r−1 + · · ·+ xn) , n ∈ N0, (4.5)
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Figure 1. Trajectories of (1.1) when a(t) and b(t, s) are constant.
Figure 1(a) refers to Example 2 where a = 1.2, b = −0.3 and r = 1
with initial condition x(0) = −10 and x(1) = 10.3. Figure 1(b) refers
to Example 3 where a = 1.29, b = −0.6 and r = 1 with initial condition
x(0) = −10 and x(1) = 10.3. Figure 1(c) refers to Example 4 where
a = 1.125, b = −0.6 and r = 2 with initial condition x(0) = 15, x(1) = 2
and x(3) = −10.

and for which the general solution can be obtained analytically. For r = 1
in particular, the general solution to (4.5) is easily calculated. For instance,
the exact solution to (4.2) in Example 1 is

x(t) =

(√
30

10

)tx(0) cos (tθ) +

10x(1)√
30
− x(0) cos θ

sin θ
sin (tθ)

 ,

where θ = arctan
(√

5
5

)
. Since

∣∣∣√3010

∣∣∣ < 1 we see that lim
t→+∞

|x(t)| = 0 with

an exponential convergence.
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a=1.3, b=−0.2, r=1

Figure 2. Trajectories of (1.1) when a(t) and b(t, s) are constant.
This graph corresponds to Example 5 where a = 1.3, b = −0.2 and
r = 1 with initial condition x(0) = −10 and x(1) = −1.3.

The exact solution to (4.3) in Example 2 is

x(t) =
1

2

[(
x(0) + 10

x(1)− 6x(0)
10√

6

)(
6 +
√

6

10

)t

+

(
x(0)− 10

x(1)− 6x(0)
10√

6

)(
6−
√

6

10

)t]
.

Since
∣∣∣6±√610

∣∣∣ < 1, we see that the solution x(t) of Example 2 converges

exponentially to zero. Similar calculations can be done for Examples 3 and
4.
Finally, the exact solution to (4.4) in Example 5 is

x(t) =
1

2

[(
x(0) + 20

x(1)− 13x(0)
20√

89

)(
13 +

√
89

20

)t

+

(
x(0)− 20

x(1)− 13x(0)
20√

89

)(
13−

√
89

20

)t]
.

Since
∣∣∣13+√8920

∣∣∣ > 1, we see that lim
t→+∞

|x(t)| = +∞.

We now give two examples that illustrate the exponentially stable and
unstable case when a(t) and b(t, s) are functions. We corroborate our results
with numerical simulations.

Example 6. Let a(t) = d2t+1 + 2
3 and b(t, s) = −dt+s for d ∈ R. Then

A(t, s) = −d2s
r∑

u=t−s
du, and therefore A(t+ 1, t) = −d2t

r∑
u=1

du = −d2t+1 for

r = 1. We can show that ∆tA
2(t, z) ≤ 0 for all t+ s+ 1 ≤ z ≤ t− 1. If we

take r = 1 and δ = 1, we obtain Q(t) = −1

3
. With these choices we see that
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the left inequality of condition (2.2) is trivially satisfied. To obtain the right

inequality, we need to choose d such that

(
d2(d4)t +

1

9

)
≤ −Q(t) =

1

3
for

t large enough. It is therefore sufficient to choose d ∈ (0, 1). In that case,
lim

t→+∞
(d4)t = 0 which implies that the right inequality of condition (2.2) will

eventually be satisfied. Note that condition (2.2) is satisfied for all t ≥ 0

when d ∈ (0,
√
2
3 ]. With these choices for the parameters d, δ and r, we can

conclude that the zero solution of the delay difference equation

x(t+ 1) =

(
d2t+1 +

2

3

)
x(t)− d2t+1x(t− 1)

is exponentially stable. We plotted two of its trajectories in Figure 3.

Example 7. Let a(t) = d2t+1+1.1 and b(t, s) = −dt+s. Then from Example
6 we have A(t + 1, t) = −d2t+1 when r = 1. In that case choosing H = 1
yields Q(t) = 0.1 > 0. With these choices we see that condition (3.1) is
satisfied if d ∈ (0, 1) and hence the zero solution of the delay difference
equation

x(t+ 1) =
(
d2t+1 + 1.1

)
x(t)− d2t+1x(t− 1)

is unstable as illustrated in Figure 4. In fact, the zero solution is unstable
for all choices of a(t) = d2t+1 + ν with ν > 1. We note that with these
choices of a(t) and b(t, s) we have

∞∏(
a(s) + +A(s+ 1, s)

)
=
∞∏
ν = +∞,

and hence (3.4) is verified.
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Figure 3. Trajectories of (1.1) when a(t) = d2t+1 + 2
3

and b(t, s) =

−dt+s. These plots refer to Example 6 with r = 1. The initial condition
was taken to be x(0) = −1 and x(1) = 0.21. In Figure 3(a) we plotted
the trajectory obtained with d = 2

3
, and in Figure 3(b) we plotted

the trajectory with d = 2.99
3

. In the latter case, since condition (2.2) is
verified only after a certain value of t, the first few terms of the trajectory
x(t) are not converging to zero until condition (2.2) is satisfied.
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Figure 4. Trajectories of (1.1) when a(t) = d2t+1 + 1.1 and b(t, s) =
−dt+s. This graph corresponds to Example 7 with r = 1 and initial
condition x(0) = −1 and x(1) = 0.21.
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