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Abstract

Created in the 1970’s, the Art Gallery Problem seeks to answer the question of

how many security guards are necessary to fully survey the floor plan of any

building. These floor plans are modeled by polygons, with guards represented

by points inside these shapes. Shortly after the creation of the problem, it was

theorized that for guards whose positions were limited to the polygon’s

vertices,
⌊

n
3

⌋
guards are sufficient to watch any type of polygon, where n is the

number of the polygon’s vertices. Two proofs accompanied this theorem,

drawing from concepts of computational geometry and graph theory.

This paper explains the Art Gallery Problem along with its two most

famous proofs. Certain methods of polygon partitioning, which can be found

in both proofs, are also discussed. Finally, extensions to the problem involving

subsets of polygons and guards, such as mobile guards, orthogonal polygons,

and polygons with holes, are briefly examined. The paper concludes with a

cursory glance at extensions that have only begun to be considered.

iii





Acknowledgements

I would like to thank my advisor, Professor Kelvey, for his guidance and help

throughout the whole process. I also want to thank the Wooster Math

department, which is full of some of the most supportive teachers I have ever

come across. It was a joy to be taught by them.

I am so very grateful to my parents for their constant encouragement, and

to my favorite brother Sam, who doesn’t particularly like math but promised

to read my IS if I mentioned him in the acknowledgements (a promise is a

promise, Sam. All 72 pages).

Finally, I would like to thank my friends, who never complained about

how much I stressed over IS. My time at Wooster wouldn’t have been the same

without you.

v





Contents

Abstract iii

Acknowledgements v

1 Defining the Problem 1

1.1 The Art Gallery Problem . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Introduction to Graph Theory . . . . . . . . . . . . . . . . . . . . . 4

1.4 Guard’s sight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Proofs by Chvátal and Fisk 9
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Chapter 1

Defining the Problem

1.1 The Art Gallery Problem

Say you are approached by the curator of your local art gallery. He has an

assignment for you: the gallery has recently been broken into, so it is your job

to increase security. You must hire enough guards to station in the gallery so

that every square foot of the floor plan can be watched by a guard. Of course,

the gallery wants to minimize costs, so the less guards you need to hire, the

better. What is the least number of guards you will need to guard the entire

gallery, and where should they be stationed?

Depending on the details, this problem can become quite complicated.

What does the floor plan look like? Are there pillars or large sculptures that

can block the guards’ view? Must the guards remain stationary, or are they

allowed to patrol? Is the gallery on multiple floors, and how are these floors

connected? Are there any any mirrors on the walls? Before we become

overwhelmed, let’s consider this problem in its simplest form: The Art Gallery

1



2 CHAPTER 1. DEFINING THE PROBLEM

Problem, as originally posed by Victor Klee [11]:

Proposition 1. Consider the floor plan of any art gallery. If guards can be stationed

anywhere in the gallery at fixed posts, but with the ability to turn around, how many

guards are needed for every point in the gallery to be watched by a guard?

This problem first made its appearance in 1973 at a conference at Stanford

University. Here, Vasek Chvátal, a mathematics professor, asked Victor Klee,

another mathematician, for a challenging geometric problem. In response,

Klee proposed the problem of finding the minimum number of guards

sufficient to watch the interior of an art gallery room with n walls. Klee

required that every guard must remain at a fixed post, the walls of the gallery

must be straight, and every inch of wall space must be watched by at least one

guard [8]. Chvátal would give his formal answer to the problem in 1975, in the

form of his Watchman Theorem. In the following decades, many people

would enjoy expanding this problem; some added more conditions to the

guard’s abilities, while others specified the shape of the rooms in question.

Several new proofs of the original theorem were produced using areas of math

outside of geometry. Even computer scientists spent time developing the

problem as a way of studying partition algorithms [11]. It is no surprise that

countless extensions of this problem are still being explored today.

1.2 Polygons

It can be reasonable to suggest that any floor plan can be modeled as a

polygon.
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It is usual practice to define polygons as a collection of vertices connected

to each other by line segments, all lying in the Euclidean plane, R2. However,

in consideration of this problem, we are also concerned with points inside the

polygon, and not just its outline. Therefore, we will define a polygon as the

closed region of a plane, bounded by the vertices and edges of the traditional

definition. V is considered to be the set of all vertices in polygon P, so that

V = {v1, v2, ..., vn}. Likewise, E is the set of all edges found in P, where

E = {v1v2, v2v3, ..., vn−1vn, vnv1}. This collection of vertices and edges will be

referred to as the boundary of polygon P, or δP. In set notation, this is:

δP = E ∪ V

For a simple polygon, none of the line segments of E will cross over each other.

It will be assumed that all polygons discussed in the following chapters will be

simple (See fig. 1.1).

The boundary δP divides R2 into two regions: an unbounded region called

the exterior of the polygon, and the bounded region called the interior of the

polygon [11]. This interior will be the second part of our polygon definition.

Definition 1. A polygon P with n sides is the boundary of P, δP, and all points

that lie inside of this boundary, also known as Int(P). Hence, P = Int(P) ∪ δP.

It is quite possible that a floor plan may need to be represented by multiple

polygons. This could be necessary if the gallery consists of multiple stories of

a building, or is contained in non-adjoining rooms (or adjoined rooms that are

separated from closed and opaque doors, where guards cannot patrol between

rooms).
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•
•

•

•

••

•

•

•
•

•

•

••

•

•

(a) The set V = {v1, v2, ..., vn} (b) The set E =
{v1v2, v2v3, ..., vn−1vn, vnv1}

(c) The boundary of the
polygon, δP

•
•

•

•

••

•

•

(d) The interior of the
polygon, Int(P)

(e) The Polygon
P = δP ∪ Int(P)

Figure 1.1: Parts of a Polygon

A Polygon as defined for use in the Art Gallery Problem; usually the interior is not
included in this definition.

As one more requirement for the simple polygons that we will consider,

we do not want more than two adjacent vertices of the polygon to be colinear,

or lying on the same edge. Having nonadjacent colinear vertices would make

polygon partitioning a more difficult process, and partitioning is essential to

proofs that will be mentioned later.

1.3 Introduction to Graph Theory

Instead of using polygons, we can choose to describe art gallery floor plans as

graphs.

A graph is a mathematical model that displays relationships between

objects. In this case, our graphs would show points in the Euclidean plane (or
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floor plan), with two points being related if a wall goes from one point to the

other point.

Definition 2 ([13]). A graph is a set of nodes or vertices, called

V = {v1, v2, v3..., vn}, and a set of edges E = {e1, e2, ..., en}, where each edge is a

line segment connecting two nodes in V. Two vertices that share an edge are

said to be adjacent.

Art gallery graphs will always be simple graphs, meaning that any two

vertices will only be connected by at most one edge, and no vertex is

connected to itself by an edge (this is because we are assuming that all walls in

the gallery are straight). These graphs will also be connected graphs, meaning

that by traveling on the edges of the graph, any one vertex can be reached by

any other vertex. To compare this with polygonal representations of floor

plans, a graph is equivalent to the boundary δP.

Different graph terminology can correspond with different types of

galleries. The most simple styles of one-room floor plans, where there are no

pillars, sculptures, or any structures besides walls that can block one’s view,

can be represented by cycles. A cycle is a type of connected graph where each

node is connected to exactly two other nodes, so that you can travel from any

node back to itself by following edges, in a path that takes you to every other

node in the graph.

Finally, the regions that are bounded by a graph’s vertices and edges are

called the faces of the graph. For simple floor plans, as considered in the

original Art Gallery Theorem, each graph will only have two faces: the

unbounded region outside the cycle, and the bounded region inside. These
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•

•

•

•

•

• Face 1

Face 2

Figure 1.2: Representing the Floor Plan with a Graph

Graphs can also be used to represent gallery floor plans, with nodes and edges being
equivalent to the vertices and edges of their polygonal counterparts. The face found
inside the graph (Face 1) is also identical to the interior of its corresponding polygon.

faces are comparable to a polygon’s exterior and interior (See fig. 1.2).

1.4 Guard’s sight

Whether you use polygons or graphs to describe your gallery, the

mathematical interpretations of their guards are identical. A guard can be

shown as a point placed anywhere in the polygon or graph, including on the

boundary of P, or on an edge or vertex of the graph G. These are assumed to

be standing against the gallery’s wall.

A guard’s sight is any part of the floor plan that the guard can see from

their position, allowing for the guard to turn in place. The extent of the guard’s

vision and the height of the walls is not taken into account; as long as there are

no walls blocking their view, these guards’ lines of sight go on indefinitely.

Definition 3. A guard g’s sight S is the set of all points s ∈ P such that the line

segment between g and s lies completely in P.

The set S is therefore a subset of P, and the art gallery is completely

guarded when the union of every guard’s sight is equal to P.
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The guards can be categorized by where they are located in the gallery.

Generally, we consider three types of guards: vertex guards, edge guards, and

point guards. Their names are self-explanatory; vertex guards can only be

placed at the vertices of the polygon (or nodes of the graph), edge guards can

be placed at any point of δP, and point guards can be placed anywhere in the

polygon, in the interior as well as on the boundary.

Much of the work done on the Art Gallery Problem has only focused on

vertex and edge guards, as there are less potential points of placement to

consider. For example, the main theorem of the problem, identifying how

many guards are sufficient to guard any general polygon, specifies that we are

only considering vertex guards. You can see that vertex guards are types of

edge guards, since the vertices of a polygon are elements of δP, and edge

guards are types of point guards, as δP ⊂ P.

In some situations, it will take more vertex guards than general point

guards to completely watch a polygon, as shown in Figure 1.3.

•

•

•

Figure 1.3: Point and Vertex Guards

This polygon only requires a single point guard to be fully covered, but more than one
guard is needed if only vertex guards can be used.

A polygon is convex if for any two points contained in the polygon, the line
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segment between these points lies completely in the polygon. From this

definition, it quickly follows that any convex polygon needs only one guard to

be thoroughly watched.

Theorem 1 ([1]). One guard is sufficient to guard any convex polygon P, and this

guard can be placed at any point in P.

Proof. Let P be a convex polygon. By definition of convexity, any two points in

P have a line segment between them that lies entirely in P. Therefore, by

placing a guard g at any point in P, every point in P is visible to g, by

definition of g’s sight. Hence, one guard is always sufficient to watch convex

polygons, when placed anywhere in the polygon. �

We will show in a later chapter that any non-convex polygon can be

partitioned into several convex shapes: specifically, triangles.

Conclusion

We now have all the basic knowledge required to dive into some theorems of

the Art Gallery Problem, starting with the first and arguably most important,

the Watchman Theorem. This provides a number for the guards that is

sufficient to fully watch any simple polygon. This theorem is accompanied by

two proofs, which both rely on concepts of polygons and graphs that we have

reviewed in this chapter. Continuing further, we will explore how this

theorem came to be, and how topics we have already covered paved the way

for us to make such an all-encompassing statement about any floor plan.



Chapter 2

The Proofs by Chvátal and Fisk

As mentioned in the previous chapter, the Art Gallery Problem took shape

when mathematician Vasek Chvátal requested a geometric problem from his

colleague Victor Klee in 1973. It did not take Chvátal long to provide an

answer to the problem, complete with a proof; his combinatorial theorem on

the subject was published in 1975. A few years later, another mathematician

named Steven Fisk outlined his own proof of Chvátal’s theorem, so succinct

that when it was published it only took up a single journal page [11].

Interestingly enough, these two proofs, both elegant in their own ways,

rely on different areas of mathematics to prove the same theorem. In this

chapter, the theorem to the Art Gallery Problem, in the form of Chvátal’s

Watchman Theorem, is presented, along with these two earliest proofs.

2.1 The Watchman Theorem

First, let us look at the Watchman Theorem that Chvátal produced in 1975.

9
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Theorem 2. [Chvátal’s Watchman Theorem [11]]
⌊

n
3

⌋
vertex guards are occasionally

necessary and always sufficient to watch an entire polygon with n edges.

It is important to note that Chvátal, and later Fisk, only considered vertex

guards in this theorem; allowing for point guards or edge guards can

sometimes result in the need for less guards (see Figure 1.3). Both

mathematicians also implied that this theorem holds true for all simple

polygons, but are in no way saying that subsets of simple polygons will

require this same amount (subsets of simple polygons that require less than⌊
n
3

⌋
guards will be discussed in later chapters).

2.2 Necessity and Sufficiency

Two key phrases from Chvátal’s Theorem are “occasionally necessary” and

“always sufficient”. We will find these phrases in most theorems relating to

the Art Gallery Problem.

Definition 4. An amount of guards in an art gallery is necessary if the gallery

cannot be fully watched with one less guard.

Definition 5. An amount of guards is sufficient in an art gallery for a certain

type of floor plan if all floor plans of this type can be fully watched by this

number of guards.

Generally, we only need one example of a floor plan that needs a certain

number of guards, while it must be proven that any arbitrary floor plan that

fits the description of the theorem can be sufficiently watched with this
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number of guards. The necessity example acts as a lower bound for the

number of guards; for example, consider the most common floor plan used to

show that
⌊

n
3

⌋
is the least number of guards needed for any simple polygon,

Toussaint’s Necessity Polygon (fig. 2.1).

a• b•

Figure 2.1: Toussaint’s Necessity Polygon

This polygon needs n
3 guards to be fully watched. This will hold even if more prongs

are added to this polygon, as you would have to add three more sides to get another
prong.

This comb-shaped polygon has nine walls and three prongs, and each

prong must be watched by its own guard. One of the guards must also watch

the base of the polygon, and so must be placed at either point a or b. Even so, a

guard can only fully see one prong from either of these points. Therefore, this

polygon requires n
3 guards [1]. If we were to try to prove that less guards are

needed for simple polygons, this floor plan would become a counterexample,

and our proposed theorem would not hold.

2.3 Chvátal’s Proof

Chvátal first assumed that any polygon can be partitioned into triangles, or

triangulated. To do this, we would add internal diagonals between the vertices

of the polygon, until no more can be added without diagonals or edges
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crossing. This would result in a triangulation of the polygon.

Definition 6. An n-triangulation of an n-sided polygon P is a graph G with n

vertices such that one of G’s faces is bound by P, and each of the remaining

faces is bound by a triangle in the interior of P [4].

Figure 2.2: n-Triangulations of a Polygon

A polygon and two of its corresponding triangulations. Note that triangulations are
not always unique.

Why Chvátal’s assumption is correct, and how we could go about

triangulating any polygon, will be discussed in the next chapter.

Chvátal was not just interested in any triangulation, however; he was

specifically interested in fans.

Definition 7. A fan is a collection of triangles that share a vertex, called the

center of the fan.

In the previous chapter it was proven that a guard placed at any point in a

convex n-sided polygon will cause the polygon to be fully guarded

(theorem 1). Because the center of a fan acts as a vertex for all triangles

included in the fan, placing a guard at the center of the fan will cause the fan

to be fully watched.
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•

•

Figure 2.3: Examples of Fans

Chvátal wanted to show that any triangulation of a polygon can be

partitioned into
⌊

n
3

⌋
fans. It would then follow that placing a guard at the

center of each fan in the triangulation allows all the triangles to be watched,

and therefore the whole polygon is watched by
⌊

n
3

⌋
guards [11].

Throughout the proofs of the following lemma and Chvátal’s theorem, we

will be considering an arbitrary polygon P with n ≥ 6 vertices, that is

triangulated into graph G. P and G will have their vertices labelled

0, 1, ...,n − 1, in such a way that vertex i is always adjacent to the vertices i − 1

and i + 1, and the vertex labelled 0 is adjacent to 1 and n − 1. One fan will be

removed from G, creating two triangulations, where G′ is the remaining

portion of G, and G f is the removed fan. Removing a fan means that we ”cut” G

at one of its diagonals, creating two distinct graphs that share at least one edge

and two vertices (see fig. 2.4).

It will not do to simply remove a triangle from G; two of the triangle’s

vertices will still be a part of G′. This means that two out of three times, the fan

center that G f was originally a part of will also be a vertex in G′, meaning that

G′ still has
⌊

n
3

⌋
fans. G f is now considered its own fan, so combining these two

graphs means that G has
⌊

n
3

⌋
+ 1 fans, which is more fans than we need.
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•

•
•

P

•

•
•

v j

v jvi

vi

P1

P2

Figure 2.4: Cutting Polygons

When a polygon P is “cut” along one of its diagonals, we now recognize two
triangulations P1,P2 that both contain the vertices v1, v2 and the edge between them.

Though P2 has five vertices, we would say that we removed three vertices from P1, as
vi and v j are still vertices of P1.

We want to remove one fan exactly, so at least three vertices must be

removed from G. Therefore, we must find a diagonal in G that cuts off a

minimum of four edges, or three vertices, so that G′ has n − 3 vertices or less.

This results in a triangle being completely separate from G′. Because every

triangle was a part of a fan in G, one of the removed triangle’s vertices would

be the center of a fan. Removing the center from G′ means it now has
⌊

n
3

⌋
− 1

fans. On the other hand, we only want to remove one fan from G, so no more

than five vertices should be cut off [11]. We will now prove that every polygon

has a diagonal that allows us to do this.

Lemma 1. For any n-triangulation with n ≥ 6, there exists a diagonal d that cuts off

exactly four, five, or six edges, or three, four, or five vertices, respectively.

Proof. Let d be a diagonal of the triangulation G that cuts off a minimum

number of edges, so long as d cuts off at least four edges. Let k be this
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minimum number, so that k ≥ 4. Also, let d’s endpoints be at 0 and k.

Because G is a triangulation, d is a part of the triangle (0, t, k), where t is

some vertex such that 0 < t < k (see fig. 2.5). Then, the diagonal (0, t) cuts off t

edges from G. By the minimality of d, no diagonal exists that cuts off

4, 5, ..., k − 1 edges. Therefore, because t < k, it must follow that t ≤ 3. Likewise,

the diagonal (t, k) cuts off k − t edges, so k − t ≤ 3 by similar logic. It follows

from these inequalities that k ≤ 6.

Hence, there will always exist some diagonal d which cuts off exactly four,

five, or six edges of G, when G has n ≥ 6 vertices.

t − 1
• t

•

t + 1
•

1•

0•

n − 1•

k − 1•

k•
k + 1•d

Figure 2.5: Diagonal d in an Arbitrary Polygon

In any triangulation, there will exist a diagonal d that cuts off four, five, or six edges
(adapted from [11]).

�

Theorem 3. ([8]) A triangulated polygon with n sides can be partitioned into m fans,

where m ≤
⌊

n
3

⌋
.

Proof. First, we will establish base cases for polygons with n = 3, 4, 5 sides,

since n ≥ 3 for all polygons. If vertex labels are not considered, there is only

one way to triangulate three, four, or five-sided polygons, and these
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•

•

•

•

Figure 2.6: Fans of a Polygon

This twelve-sided polygon can be partitioned into four fans, meaning that four guards
are sufficient for this particular polygon.

triangulations are fans themselves [8]. The theorem therefore holds for these

polygons, as the number of fans in these polygons, m, is:

⌊n
3

⌋
=

⌊3
3

⌋
=

⌊4
3

⌋
=

⌊5
3

⌋
= 1.

•
•

Figure 2.7: Single-Fanned Triangulations

Polygons with three, four, or five vertices and sides can always be triangulated into a
single fan, whether they are convex or not.

Let us now assume an inductive hypothesis: any triangulation with n − 3

or less vertices can be partitioned into
⌊

n−3
3

⌋
=

⌊
n
3

⌋
− 1 fans, given that n ≥ 6.

Given the previous lemma, we know that there is a diagonal in G that can

partition G into G′ and G f , where G f is a polygon with either five, six, or seven

vertices, with k = 4, 5, or 6 being the number of edges that are now no longer a
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part of G′. We will consider the cases for each value of k:

Case 1. k = 4. G f would therefore have five vertices. As shown in the base

cases, this polygon is always able to be triangulated into a single fan (See

fig. 2.8). Hence, G can be partitioned into
⌊

n
3

⌋
− 1 + 1 =

⌊
n
3

⌋
fans [11].

G′
G f

0

k

Figure 2.8: K = 4

The polygon G f can always be triangulated into one fan, no matter where the center of
the fan is located.

Case 2. k = 5. G f would then have six vertices. This only allows for t = 2 or 3,

since k − t ≤ 3 and t ≤ 3. We can assume without loss of generality that t = 2.

We already know that the diagonals (0, t) and (t, k) exist in G f , and we now

have the the 4-vertex polygon, formed by vertices t = 2, 3, 4, and k = 5, to

triangulate. There are two options remaining (See fig. 2.9):

Case 2.1. Let the diagonal (3, 5) be present in G f . Then, G f would

have two fans, as there are no vertices in G f that are found in all

triangles present. Let T be the triangle that contains the vertices

0, t = 2, and k = 5, and consider the triangulation GT to be the union

of G′ and T. GT has n − 3 vertices, so by our hypothesis will have⌊
n−3

3

⌋
=

⌊
n
3

⌋
− 1 fans. Because one of the fans of GT contains T, there

must exist a fan center at one of the vertices of T, either 0, 2, or 5. If

the fan is centered at vertex 2, then it is only possible for T to be the
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only triangle in the fan, and therefore, this fan can be centered at any

of T’s vertices, so without loss of generality assume it is at 0 or 5.

Case 2.1.1. Let the fan center be at vertex 0. We could

then add the triangle (0, 1, 2) to this fan, and GT will still

have
⌊

n
3

⌋
− 1 fans. The remaining four-vertex polygon is

triangulated into a single fan, so G has
⌊

n
3

⌋
fans in total.

Case 2.1.2. Let the fan center be at vertex 5. We could

extend the fan to include the two triangles (3, 4, 5) and

(2, 3, 5), leaving the triangle (0, 1, 2) as its own fan. The

number of fans in G would therefore total
⌊

n
3

⌋
.

Case 2.2. Let the diagonal (2, 4) be present in G f . Then, G f can be

considered a single fan with fan center at t = 2, since every triangle

in G f contains the vertex t = 2. Therefore, G can be partitioned into⌊
n
3

⌋
− 1 + 1 =

⌊
n
3

⌋
fans.

G′

0 k

2 3

1 4
T
•

•

G′

0 k

2 3

1 4
T

•

•

G′

0 k

2 3

1 4
T

•

(a) Case 2.1.1 (b) Case 2.1.2 (c) Case 2.2

Figure 2.9: K = 5

No matter where a center of a fan is placed, G f can be partitioned into two fans or less,
and if G f has two fans, at least one can be considered as part of G′ ([11]).
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Case 3. k = 6, and G f would have seven vertices. Because of the minimality of

d, it is only possible for t = 3, otherwise there would exist a diagonal in G that

cuts off four vertices and is not d. G f is therefore composed of the triangle

(0, t = 3, k = 6), and two four-sided polygons (0, 1, 2, t) and (t, 4, 5, k).

Without loss of generality, after triangulation two of the vertices of the

triangle (0, t, k) will be fan centers, and T = (0, t, k) will be in one of these fans.

It can be seen that at least one of these fans has a center at 0 or k, and can

therefore be grouped into G′, as 0 and k are also vertices in G′. Four cases stem

from this scenario, as there are two four-sided polygons with two ways of

triangulating each of them.

T
0

t

k
G′
• •

T

t

k
G′

•

0 •
T

0

t

G′

•

k•
T

0

t

k
G′

•

(a) Case 3.1 (b) Case 3.2 (c) Case 3.3 (d) Case 3.4

Figure 2.10: K = 6

Given that the triangle T must exist in this manner, no matter how the 7-gon is
triangulated, it can be partitioned into two or less fans. Because G′ has

⌊
n
3

⌋
− 2 fans,

this results in the entire polygon having m ≤
⌊

n
3

⌋
or less fans ([11]).

Case 3.1. The diagonals (0, 2) and (4, k) exist. Then, two fans can be

made with centers at 0 and k. Without loss of generality, assume T

is in the fan centered at k, and this fan can be added to G′. Hence, G′

now has
⌊

n
3

⌋
− 1 fans, and adding the remaining fan gives the entire

polygon
⌊

n
3

⌋
fans.

Case 3.2. The diagonals (0, 2) and (t, 5) exist in G f . Therefore, two
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fans can be made from G f with centers at 0 and t, and the fan

centered at 0 can be added to G′. Then, the total number of fans in

the polygon are the ones in G′,
⌊

n
3

⌋
− 1, plus the remaining fan at t.

Case 3.3. The diagonals (1, t) and (4, k) exist in G f . Then, two fans

can be formed from G f , centered at t and k. The fan centered at k

can be included in G′, giving G′
⌊

n
3

⌋
− 1 fans. With the remaining fan

at t, the entire polygon P has
⌊

n
3

⌋
fans.

Case 3.4. The diagonals (1, t) and (t, 5) exist in G f . Therefore, G f can

be considered a single fan centered at t. Since G′ has at most
⌊

n
3

⌋
− 1

fans by the inductive hypothesis, the largest possible number of

fans P can contain is
⌊

n
3

⌋
.

Therefore, given our inductive hypothesis and base cases, any

triangulation with n vertices can be partitioned into
⌊

n
3

⌋
fans. If a guard is

placed at each fan center in the triangulation, then it follows that the

corresponding polygon can be fully watched with
⌊

n
3

⌋
vertex guards. �

2.4 Graph Coloring and Fisk’s Proof

When Steve Fisk developed his proof of the Watchman Theorem a few years

later, he used a concept called graph coloring, or specifically, vertex coloring.

Graph coloring, or vertex coloring, is the process of assigning colors to the

vertices of a graph so that no adjacent vertices share the same color. These

colorings are not always unique, as shown in fig. 2.11.
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Figure 2.11: Graph Coloring

This graph is 3-colorable, since it is composed of K3 graphs. Placing a guard at every
vertex colored with the least common color will result in the polygon being guarded

by at most
⌊

n
3

⌋
guards.

Definition 8. A graph G is k-colorable if it requires at most k colors for its

vertices to be properly colored. The chromatic number of G is the smallest value

of k such that G is k-colorable [12].

Fisk also includes the use of triangulation in his proof. If we consider the

graph of a triangle, this graph is said to be a complete graph on three vertices, as

any vertex in this graph is adjacent to all other vertices of the graph. Generally,

a complete graph on n vertices is labeled as Kn, so a triangle can be labeled as

K3.

Proposition 2. A complete graph Kn is n-colorable.

Since every two vertices in a complete graph are adjacent to each other, no

two vertices in a complete graph can share the same color, meaning that the

graph must be colored with a number of colors equal to the number of its

vertices. It is therefore assumed that a triangulation, which is composed of

multiple K3 graphs, has a coloring with three colors as well [5].

Proof. (Fisk’s Watchman Proof, [5]) Let P be a simple polygon with n vertices,

and G one of its corresponding triangulations. Let G be colored so that it only
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uses colors 1, 2, and 3. The number of vertices with color 1, color 2, and color 3

will add up to n, by G being 3-colorable. Partitioning n into three groups will

cause one of two things to happen; either each group has n
3 items, or at least

one group will have greater than n
3 items, leading to one group having less

than n
3 items. Therefore, at least one color will appear less than or equal to

⌊
n
3

⌋
times in the coloring (we can consider the floor of this number since this

number will always be an integer). Without loss of generality, let color 1 be the

color for which this is the case, where m is the number of vertices colored color

1. It is known that every triangle in G will have a vertex with color 1, color 2,

and color 3. Then, if a guard is placed at each vertex that has color 1, the

polygon can be fully watched with m ≤
⌊

n
3

⌋
guards. �

Conclusion

In this chapter we have looked at the first theorem of the Art Gallery Problem,

along with the two most well-known methods of proving it. Chvátal, the same

mathematician who theorized the Watchman claim (theorem 2), showed that

any polygon can be partitioned into fans of triangles, and any polygon with n

vertices will have at most
⌊

n
3

⌋
fans, with one guard for each fan. Fisk

conjectured that a triangulated polygon is three-colorable, and placing guards

at the vertices of the least-occurring color results in
⌊

n
3

⌋
guards as well. Both of

these proofs infer that any polygon can be transformed into a triangulation,

but is this always true? Our next step is to explore this question, and if it is

found to be true, to determine efficient ways of performing triangulation on

any polygon.



Chapter 3

Polygon Triangulation

In previous chapters, it was mentioned that both Chavátal’s and Fisk’s

Watchman proofs assumed that any simple polygon can be triangulated. In

this chapter, it will not only be shown why this assumption is correct, but

several algorithms that can turn any simple polygon into a triangulation will

also be presented.

3.1 Triangulation Existence Proof

First, we will show that it is possible to find a triangulation of any simple

polygon P. This proof relies on the presence of convex vertices in the polygon;

luckily, every polygon has at least one convex vertex.

Definition 9. The vertex vc in the polygon P is a convex vertex if the interior

angle formed by vc−1, vc, and vc+1 is 180◦ or smaller.

23
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• •

•

•

••

•

•

•

•
v

•

•

•

(a) An example of a polygon with only
convex vertices. It happens that all convex
polygons will have only convex vertices.

(b) This polygon has one
vertex that is not convex, v.

Figure 3.1: Convex Vertices

Theorem 4. Any n-sided polygon can be triangulated into n − 2 triangles by adding

n − 3 diagonals to the polygon.

Proof. Consider a polygon with vertices n = 3. This is a triangle already, hence

there is no triangulation required.

Now consider the inductive hypothesis that any polygon with n − 1

vertices or less is able to be triangulated into n − 3 triangles, given that n ≥ 4.

Let’s say we have a simple polygon P with n vertices. By definition, there

must exist at least one convex vertex in this polygon. Label one of these

vertices v2, with its two neighbors v1 and v3. Now, consider adding a diagonal

d whose endpoints are v1 and v3 (See fig. 3.2).

Case 1: d is completely internal. The diagonal d lies entirely in the interior

of P, so this diagonal can be added to the polygon.

The polygon is now separated into two smaller polygons, P1 and P2, with

P2 being the triangle with vertices v1, v2, v3. P2 is already triangulated, and P1

now has n − 1 vertices, since it no longer contains v2. Therefore, by the

inductive hypothesis, P1 can be triangulated into n − 3 triangles. Considering
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•
•

•

•v1
•v2

•v3
d

P1

P2

(a)

•
•

•

•v1

•v2

•v3
d

(b)

Figure 3.2: Internal or External Diagonals

(a) The diagonal d is internal, as it lies completely in the interior of polygon P. (b) For
this polygon, v2 is not convex, making d external. A different diagonal will therefore

be used to partition P.

P1 and P2 together, it can be concluded that P can also be triangulated into

n − 3 + 1 = n − 2 triangles.

Case 2: d is not internal. Then, consider the vertex x that is not adjacent to

v2, but lies the closest distance to v2 (where x is not the same vertex as v1 or v3).

Draw a diagonal from v2 to x.

•
•
x

•

•v1

•v2

•v3

d′
P2

P1

Figure 3.3: Partitioning from a Non-convex Vertex

Since v2 is not convex, the diagonal that partitions P into two smaller polygons must
be drawn from the closest non-adjacent vertex to v2, which is x.

The polygon P is now separated into smaller polygons P1 and P2,
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assuming there are no holes in P. Without loss of generality, assume that v1 is a

vertex of P1 only, and therefore v3 is a vertex of P2 only. Therefore, the number

of vertices in P1,P2 is less than or equal to n − 1, so by the inductive hypothesis

they can both be triangulated. Hence, P can also be triangulated.

�

Now that it has been shown that any polygon can be triangulated, let’s

explore a method that can transform any simple polygon, P, into a

triangulation. To better reference the individual vertices of the polygon and

their proximity to each other, we will place P in the xy-coordinate plane. Then,

every vertex v can be defined as a point in R2:

v = (xv, yv).

Let us also define a function h : V → R, that isolates the y-coordinate, also

referred to as the height, of a vertex of P,

h(v) = yv.

Doing this allows us to order the vertices by the value of their respective

y-coordinates; for any v j ∈ V, there exists vi, vk ∈ V such that

h(vi) ≤ h(v j) ≤ h(vk). Now, every polygon will have at least one maximum

vertex, and at least one minimum vertex.

Definition 10. We call a vertex vi in a polygon P maximal when h(vi) ≥ h(v) for

all v ∈ V.
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Definition 11. We call a vertex v j in a polygon P minimal when h(v j) ≤ h(v) for

all v ∈ V.

A method of triangulation that we will explore will require us to first

transform a simple polygon into one or more monotone polygons, and then

convert these monotone polygons into triangulations.

Now that we know it is possible to divide polygons into triangles, we can

use several different algorithms that allow us to complete triangulation

efficiently, or to even allow computers to do the work for us.

Definition 12. A polygon is monotone if, when placed on the x-y plane, the

boundary of the polygon can be described as two chains of vertices and edges,

such that the vertices of each chain can be labelled in such a way that the

y-values of the vertices along each chain are strictly increasing or strictly

decreasing [9].

3.2 Polygon Regularization

The process of converting a simple polygon into a monotone polygon is

sometimes referred to as polygon regularization. Through this method,

diagonals are added to the polygon to partition it into several smaller

polygons, so that in the context of each polygon, each vertex besides the

maximum and minimum vertices will be regular.

Definition 13. A vertex v of a polygon P is said to be a regular vertex if:

1. v is adjacent to a vertex u ∈ P such that h(v) < h(u), given that v is not the

maximum vertex of P, and,
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(a) An example of a
monotone polygon.

(b) Two chains of a monotone
polygon.

(c) An example of a polygon that is
not monotone. Its boundary is made

up of more than two strictly
decreasing chains.

Figure 3.4: Monotone Polygons

For a polygon to be monotone, it must be possible to separate the vertices of the
polygon into two chains, where the heights of the vertices in each chain are either

always decreasing or always increasing.

2. v is adjacent to a vertex w ∈ P such that h(v) > h(w), given that v is not the

minimum vertex of P.

If all the vertices in a polygon are regular besides the maximum and

minimum vertices, then there is no possibility of the polygon possessing

interior cusps.

Definition 14. A vertex vk of polygon P is an interior cusp of P if the interior

angle of vk is greater than 180◦, and one of the following is true for the adjacent

vertices of vk, vk−1 and vk+1:

1. h(vk) < h(vk−1) and h(vk) < h(vk+1).

2. h(vk) > h(vk−1) and h(vk) > h(vk+1).

Figure 3.4c has two interior cusps, and the presence of these interior cusps

causes this polygon to not be monotone.
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Theorem 5. Let Q be an arbitrary simple polygon with n vertices, q1, q2, ..., qn,

appearing in clockwise order around the boundary of Q. Let q1 have the largest

y-coordinate of the vertices of Q (h(q1) > h(qi), i = 1, 2, ...,n), and let qk have the

smallest y-coordinate of Q’s vertices (h(qk) < h(qi), i = 1, 2, ...,n).

Then, the following statements about Q are equivalent:

1. No vertex of Q is an interior cusp.

2. Q is monotone.

3. All vertices of Q are regular, excluding the maximum vertex and minimum

vertex of Q.

Proof. (1→ 2) Assume that Q is not monotone. Then, one of the two chains

that form from q1 to qk is not strictly decreasing.

•

•
q1

•

•

•qc
•qc+1

•qk

(a) •

•
q1

•

•

•qc
•

qc+1

•qk

(b) •

•
q1

•

•

•qc
•qc+1

•qk

•
qi

(c)

Figure 3.5: The Presence of Interior Cusps

(a) If qc+1 lies to the right of qc, then the interior angle of qc is greater than 180◦,
meaning that an interior cusp is at qc. (b) With qc+1 to the left of qc, if qc+2 has a smaller

y-coordinate than qc+1, an interior cusp is at qc+1. (c) It follows that for some qi
between qc and qk, an interior cusp must exist at qi, or else there cannot be a chain

connecting q1 to qk through qc.
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Let qc, where 1 < c < k, be the first vertex on this chain where

h(qc+1) > h(qc). To prevent qc from being an interior cusp, qc+1 must lie to the left

of qc, otherwise the interior angle at qc would be greater than 180◦. Now, to

prevent qc+1 from being an interior cusp, qc+2 must also have a greater

y-coordinate than qc+1, and so on. It must continue in this way until one of two

things happens (see fig. 3.5):

1. There exists a vertex qc+ j, where c + j < k, such that h(qc+ j) > h(qc+ j−1)

which causes qc+ j to be an interior cusp.

2. The path will eventually need to connect to qk, which has the lowest

y-coordinate by definition. Therefore, if no interior cusp has been found

in the vertices q1 to qk−2, then qk−1 is an interior cusp, since h(qk) < h(qk−1)

and h(qk−1) > h(qk−2).

Then, an interior cusp has been found in Q. By contradiction, Q is therefore

monotone [9].

(2→ 3) Because Q is monotone, the boundary of Q can be divided into two

chains, with vertices whose y-coordinates are in strictly decreasing order from

q1 to qk.

Assume that there exists a vertex in Q, besides q1 and qk, that is not regular.

Without loss of generality, let this vertex be q j, where 1 < j < k, and let h(q j−1)

and h(q j+1) be greater than h(q j). If both q j−1 and q j+1 are included in the same

chain, the chain would not be strictly decreasing. Therefore, partitioning the

vertices of Q into strictly decreasing chains based on the vertices’

y-coordinates would require at least four chains.
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•
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•q j+1
•q j

•q j−1

•
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•

This would result in Q not being monotone, by definition. Therefore, by

contradiction, all of Q’s vertices, excluding the maximum and minimum

vertices, are regular.

(3→ 1) Let the vertices of Q be regular, excluding vertices that are

maximal or minimal, qmax = q1 and qmin = qk. For all vertices besides qmax and

qmin, by the definition of regular vertices, each vertex is adjacent to exactly one

vertex with a greater y-coordinate value than itself, and exactly one vertex

with a smaller y-coordinate value than itself. Therefore, no of these vertices

can be interior cusps, by definition.

Consider the vertex qmax. By definition, h(qmax) > h(q), for all vertices q ∈ Q.

Therefore, the greatest interior angle that qmax could have is 180◦, which

disqualifies qmax from being an interior cusp. With similar logic, qmin cannot

have an interior angle greater than 180◦, so qmin cannot be an interior cusp.

Hence, if all the vertices of Q are regular, maximal, or minimal, Q cannot

have an interior cusp. �

From the above theorem, we know that partitioning a simple polygon so

that all of the polygon’s original vertices are regular will result in several

monotone polygons. The following list is one process of partitioning an

arbitrary polygon with diagonals so that all the polygon’s vertices, save its
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maximal and minimal vertices, are regular in the context of the newly formed

polygons [9]. We will use the non-monotone polygon from fig. 3.4c to illustrate

the steps of this regularization, with each step shown in the figures 3.6 and 3.7.

•v9
•v8

•v5
•v6

•v3

•v1

•v2

•v4

•v7
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Figure 3.6: Regularization: Ordering and Checking Vertices

The vertices of a non-monotone polygon are ordered by height, and horizontal lines

are drawn through each vertex of the polygon. If an li intersects the polygon’s

boundary more than two times, then vi can potentially be a non-regular vertex.

Above, the line that intersects v4 and v5 crosses P’s boundary three times. Since v4 is

regular, we know that v5 must not be, so we continue through the algorithm in

consideration of v5.

1. Sort vertices of polygon P by decreasing y-coordinates, resulting in

v0, v1, ..., vn.
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2. For each vertex, starting at v0, draw a horizontal line l through vi.

• If l intersects P’s boundary one or two times, move on to the next

vertex.

• If not, check to see if vi is regular. If it is, continue on to vertex vi+1.

• If vi is not regular, label the points where the polygon’s boundary

intersects l as p1, p2, .... Note that there will exist a pi such that v = pi.

3. For all pi on line l, if pi does not lie on a vertex of the polygon, label the

edge it lies on as ei.

• If vi fails regularity by not having an adjacent vertex with a larger

y-coordinate, mark the endpoint of ei−1 that lies above l as a, and the

endpoint of ei+1 that lies above l as b, if these edges exist.

• Otherwise, mark the endpoints of ei−1 and ei+1 that lie below l as a

and b, respectively.

4. Consider the polygon P′ with vertices pi−1, v, pi+1, a, and b, skipping the

vertices that do not exist.

• If the edge between a and b intersects edges of P, label the vertex of P

that lies inside P′, and has the closest y-coordinate value to v, with u.

• Otherwise, choose a or b to be marked as u.

5. Add an edge between v and u and return to step two, now considering

the vertex vi+1.

6. Once this process has been completed for vn, remove all edges that were

added in the previous steps that lie in P’s exterior.
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Figure 3.7f shows two polygons that result from regularizing the

non-monotone polygon in fig. 3.4c (these polygons are not unique; the

non-monotone polygon could have been partitioned in other ways which

would result in different monotone polygons). It is shown that these polygons

are monotone, as the boundary of each can be partitioned into two chains of

vertices with strictly decreasing y-values (shown in red and blue). The

resulting P2 happens to be a triangle and so is fully triangulated already. One

way of triangulating a polygon with more than three vertices, like P1, is shown

in the next section.
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(a) The shaded region shows the polygon
formed by p2, v, and a.

(b) An external diagonal is added to P, so v5 is
now a regular vertex. We move on to the

non-regular v6.
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(c) p1 and p3 are not vertices of P, so e1, e3, a
and b are marked as shown.

(d) A polygon of p1, v, p3, b and a is formed.
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(e) An interior diagonal between v and u
(formerly b) is created, making v6 regular.

(f) The polygon is cut at the internal diagonal
created, forming two monotone polygons.

Figure 3.7: Regularization: Remaining Iterations

The completion of the regularization process for the polygon in fig. 3.6. The process
leaves us with two or more monotone polygons, which will then need to be

triangulated.
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3.3 Triangulation of Monotone Polygons

The next and final step will be to triangulate each of the monotone polygons

formed through the regularization process. Several algorithms have been

created that allow us to triangulate with ease; one of note was created in 1977

by Garey, Johnson, Preparata, and Tarjan [11].

This algorithm mentions reflex vertices; these are simply vertices that are

not convex.

Definition 15. A vertex v in a polygon P is considered to be reflexive if the

interior angle of v is greater than 180◦.

Algorithm 1: Triangulation of a Monotone Polygon [11, 6]
1 Push p0.
2 Push p1.
3 for i = 2 to n − 1 do
4 if pi is adjacent to v0 then
5 while t > 0 do
6 Draw diagonal pi → vt.
7 Pop.
8 end
9 Pop.

10 Push vt (from when the while loop began).
11 Push pi.
12 else if pi is adjacent to vt then
13 while t > 0 and (vt−1, vt, pi) is not reflex do
14 Draw diagonal pi → vt−1.
15 Pop.
16 end
17 Push pi.
18 end
19 end

We will demonstrate how this algorithm works on the polygon that was
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regularized in the previous section: fig. 3.7. Because the result of that

regularization was more than one monotone polygon, we will only use one of

these as our example. For the sake of its usefulness, let’s consider P1, as P2 is

already a triangle.

A Triangulation Example

First, the vertices must again be ordered by the y-coordinate. Let p0 be the

vertex with the greatest height, and pn−1 be the vertex with the smallest height

(when n is the number of vertices in the polygon).

A stack is used in this algorithm to help keep track of vertices. Stacks are

objects usually employed in computer programming; they are defined as

ordered collections of items, and items can only be added or removed from the

stack at one end, which is referred to as the top of the stack. The act of adding an

item to the top of a stack is called pushing an item, and the act of removing an

item from the top of the stack is called popping the item. In this algorithm, the

items of the stack will be vertices, with the vertex at the bottom of the stack

labeled v0 and the vertex at the stack’s top labeled vt. In the following figures,

the stacks will be represented as towers of vertices next to the polygons, with

the top and bottom labeled with vt and v0, respectively. The vertices of the

polygon will be added or removed from the stack, depending on their

attributes.

We will run through the algorithm with each vertex pi, paying careful

attention to what vertices pi is adjacent to, as well as whether or not pi is

reflexive. For the example polygon we used in the regularization algorithm,
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a
c
d
→ push b →

a
c
d
b

a
c
d
→ pop d →

a
c

Figure 3.8: Stack Operations

An example stack showing how pushing an item onto the stack places the item at the
stack’s top. An item can only be popped if it is at the top of the stack; for example, if

we wanted to pop a, we would first need to pop b, d, and c, in that order.

we will first push p0 and p1 onto the stack (see fig. 3.9). Then, we will

determine if p2 is adjacent to v0 or vt, which refer to p0 and p1, respectively.

Since p2 is adjacent to p0, the algorithm instructs that we draw a diagonal from

p1 to p2. Then, both p0 and p1 are removed from the stack, and p1 and p2 are

pushed onto the stack, with v0 referring to p1 now. We then consider p3.

For each iteration of this algorithm, pi will always be adjacent to v0, for this

particular polygon. We will now look at a different polygon where we have to

consider pi being adjacent to vt instead.

Another Triangulation Example

In fig. 3.10, we see that p2 is adjacent to vt, which is p1, during this iteration.

Therefore, we consider the interior angle formed by the vertices p0, p1, and p2.

Because this angle is reflexive, we simply push p2 onto the stack and move on

to p3. This vertex is adjacent to v0. Therefore, as long as t , 0, we add a

diagonal between vt and p3. We do this by adding diagonals between p2 and

p3, and between p1 and p3, and remove p2 and p1 from the stack. Then, since

vt = v0, we remove p0 from the stack and push p2, as it was vt at the beginning

of this iteration, and p3 (fig. 3.10e).
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We have come to the end of this iteration of the algorithm, so we start

again in consideration of p4. The vertex p4 is adjacent to p2, which is v0 on the

stack, and at the moment t = 1, since there are t + 1 vertices on the stack. We

will therefore draw a diagonal between p4 and p3, and pop p3 from the stack.

Now that t = 0, we will pop p2, as it is the last vertex left on the stack, and

push p3 and then p4, so that p3 = v0 and p4 = vt.

We now come to p5, which is found to be adjacent to both v0 and vt. This is

usually a sign that the polygon has been fully triangulated, and in some cases

a line is added to the algorithm to end the iteration early when this happens.

In algorithm 1, one more iteration than necessary is allowed instead, which

causes us to draw a superfluous line between vertices already connected by an

edge. For our particular example, this extra diagonal is drawn between p4 and

p5, as this algorithm first considers if pi is adjacent to v0, then vt. Either method

results in a triangulated polygon; which algorithm to use is up to the user’s

discretion. O’Rourke, in his evaluation of this particular algorithm, mentions

that it has an O(n) overall time complexity [11].
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Figure 3.9: Triangulation: An Example

The first steps of the triangulation of the monotone polygon from fig. 3.7. For each
iteration, we find that pi is adjacent to v0. To see the other case of the algorithm in

action, check out fig. 3.10.
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Figure 3.10: Triangulation: Another Example

Another example of the iterations of the triangulation algorithm with a monotone
polygon. The iteration in consideration of p5 is not shown, as it only results in a

superfluous diagonal between p4 and p5.



42 CHAPTER 3. POLYGON TRIANGULATION

Conclusion

This chapter has shown that it is possible to turn any simple polygon into a

collection of triangulations, and has provided methods for doing so. Using a

two-step process, a simple polygon can first be transformed into a set of

monotone polygons, and then each of these can be triangulated using an

algorithm. Therefore, combined with the watchmen proofs from chapter 2, we

have shown how any arbitrary polygon need only have
⌊

n
3

⌋
guards at most to

be fully watched. However, not all polygons are the same - certain

characteristics of different subsets of floor plans can cause the necessary

number of guards to rise or fall. What aspects of a floor plan cause the needed

number of guards to drop? What type of floor plans are the most difficult to

watch? How can the guards’ abilities affect the manpower required to fully

watch a polygon? These questioned will be explored in the next chapter.



Chapter 4

Extensions of the Problem

Since the theorems for simple polygons in general have been copiously

explored in the past decades, some have become curious about adding

conditions to the Art Gallery Problem. By considering only certain subsets of

floor plans or types of guards, new findings on lower sufficiency and necessity

numbers specifically for these subsets have emerged. Some extensions have

sought to make the problem more realistic, giving guards new abilities and

focusing on floor plans that would not cause architects to recoil in horror. This

chapter includes three extensions that take on this goal, and all three end up

with results quite different from those for general polygons.

4.1 Polygons with Holes

Of course, one would expect art in an art gallery, and not all art can be hung on

the walls. In cases where art galleries, or any floor plans, have sculptures,

pillars, support walls, and other such features that can block one’s view, we

43
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consider the concept of polygons with holes.

•
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•

Figure 4.1: Holes in a Polygon

A polygon P is said to have holes when one or more polygons lie fully inside of P’s
interior. The presence of holes in a polygon can restrict the sight of the polygon’s

guards, shown in red.

Definition 16. A polygon with holes can be considered a polygon P where all

edges and vertices of one or more polygons H1,H2, ...,Hn lie completely inside

of P’s interior. The interiors of H1,H2, ...,Hn are not considered to be part of the

interior of P. A polygon without holes can be referred to as a simply-connected

polygon.

Because of how we identify polygons at the beginning of chapter one (see

fig. 1.1), a polygon P which shares one or more vertices with a hole Hi is still

considered a polygon with holes; the nodes and vertices of Hi would not be

considered as part of P’s boundary. This must be so as we have stated earlier

that we are only considering simple polygons when contemplating the Art

Gallery Problem. However, our definition of a polygon allows us to ignore a

hole in a polygon P if there is an edge connecting a vertex of Hi to a vertex of P

(see fig. 4.2). If Hi and P share an edge in this way, then the vertices and edges

of Hi can instead be considered as part of the boundary of P.
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Figure 4.2: Holes Sharing Vertices or Edges

Polygons that lie inside polygon P, but share vertices with P, are still considered holes.
However, if a potential hole and its polygon are connected by an edge, the vertices

and edges of that hole can be considered as part of the P’s boundary.

In 1982, Joseph O’Rourke used this definition of simple polygons, and the

concept of holes and polygons sharing edges, to show that simple polygons

with holes can also be triangulated. The method of doing so is very similar to

the triangulation existence proof found in theorem 4 of chapter three.

Theorem 6. A polygon P with h holes and n vertices, where the vertices on the holes

of P are included in n, can be triangulated.

Proof. We will use induction in terms of the value h.

Base Case: h = 0. Theorem 4 states that any simple polygon without holes

can be triangulated.

Inductive Hypothesis: A polygon with h′ ≤ h holes and n′ < n vertices can

be triangulated.

Inductive Step: Because it is impossible to form a planar polygon with

only reflex vertices, there must exist a convex vertex v2 in P’s boundary with

adjacent vertices v1 and v3. Consider adding a diagonal d whose endpoints are

v1 and v3.

Case 1: d is internal. The diagonal d then partitions the polygon into two
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polygons P1 and P2, where n1,n2 are the number of vertices for P1,P2, and h1, h2

are the number of holes in P1,P2. It follows that n1,n2 < n and h1, h2 ≤ h. By the

inductive hypothesis, P1 and P2 can be triangulated.

Case 2: d lies partially in the exterior. Then, either v2 is reflexive, or v2 is

convex, but there exists at least one vertex that lies closer to v2 than v1 and v3.

This vertex, x, is either on the boundary of P, or on the boundary of a hole.

Case 2.1: x lies on δP. By placing a diagonal from x to v2,P then has

been partitioned into polygons P1 and P2, where n1 and n2 are the

number of vertices in P1 and P2 and h1 and h2 are the number of

holes. By the inductive hypothesis, it is possible to triangulate P1

and P2, and so P is able to be triangulated as well.

Case 2.2: x lies on the boundary of a hole. Then, consider the

diagonal from x to v2. With this diagonal, P has n + 2 vertices

(traveling along the boundary of P requires v2 and x to be passed

over twice) and h − 1 holes. Since P is still a polygon, P still has at

least one convex vertex, so consider the placement of more

diagonals until P satisfies the conditions for the inductive

hypothesis, or h = 0. �

The number of triangles that result from partitioning a polygon with holes

in such a way will vary from the number that a simply-connected polygon

triangulation has. Remember that triangulations can be treated as graphs, so

several results from graph theory are at our disposal: most notably, Euler’s

theorem.

Theorem 7 (Euler’s Theorem). For any planar triangulation T, V − E + F = 2,



CHAPTER 4. EXTENSIONS OF THE PROBLEM 47

where V is the number of vertices in T, E is the number of edges, and F is the number

of faces, or enclosed regions, partitioned by T.

•

•

•

•

•

•

1
2

3

4

5 V− E + F = 2

6 − 9 + 5 = 2

Figure 4.3: Euler’s Theorem with Triangulations

An example of Euler’s Theorem applied to a triangulation, though the theorem holds
for any planar graph.

With this equation, we can find the number of triangles that a

triangulation with n nodes and h holes will have. The number of triangles, t,

will be t = F − 1 − h, since we cannot count the interiors of holes or the exterior

of the polygon. Naturally, V = n, and E = 3t+n
2 , as we count each edge of each

triangle and every boundary edge, then divide by two since we counted every

edge twice.

V − E + F = 2

n −
3t + n

2
+ h + t + 1 = 2

n − t + 2h = 2

t = n + 2h + 2

O’Rourke argued that because a simply-connected polygon has n − 2

triangles in its triangulation, and requires
⌊

n
3

⌋
guards, then for any polygon
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with h holes and n + 2h − 2 triangles in its triangulation, it is sufficient to have⌊
n+2h

3

⌋
guards. However, no polygons have been found yet showing that

⌊
n+2h

3

⌋
vertex guards are necessary, leading some to believe that this number can be

lowered.

•

•

• •

•

• •

•

•

Figure 4.4: Necessity Polygon with Holes

An example of a polygon that requires
⌊

n+h
3

⌋
guards. This polygon has 24 vertices and

3 holes, and 9 guards are required for the polygon to be fully watched. This is true
both in consideration of point guards and vertex guards.

In later years, mathematicians have found that
⌊

n+h
3

⌋
guards are sufficient

and sometimes necessary for polygons with holes, when these guards are

allowed to be placed anywhere in the polygon as opposed to only on the

vertices (these are point guards, not necessarily vertex guards). Hoffman,

Kaufmann, and Kriegel, who proved theorem 8 in 1991, conjecture that
⌊

n+h
3

⌋
vertex guards are needed for polygons with holes as well.

Theorem 8. ([7]) It is sufficient and sometimes necessary to watch a polygon with n

vertices and h holes with
⌊

n+h
3

⌋
point guards.
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4.2 Mobile Guards

It is reasonable to assume that the number of guards needed to watch any floor

plan will be reduced if the amount of area each guard can watch is increased.

To do this, we can assume that guards no longer have to remain stationary.

Definition 17. A guard is considered mobile if it is able to move along an edge

or diagonal in a polygon. A mobile guard who is able to patrol along an edge e

or a diagonal d can watch a point p in polygon P if p can be seen by some point

on e or d.
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•
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Figure 4.5: Two Types of Mobile Guards

(a) It is not possible for a single stationary guard to watch this entire polygon. (b) An
open-edge mobile guard is able to watch all points in the polygon that can be seen
from any point in its patrol path, excluding the endpoints. This results in the guard
not being able to peek around corners. (c) A closed-edge mobile guard can see all

points visible from any point on its patrol path, including the endpoints. As shown,
one closed-edge mobile guard is sufficient to fully watch this polygon.

This classification of guards can be further divided by considering

open-edge mobile guards and closed-edge mobile guards. The technicalities of
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closed-edge mobile guards have been explored for almost as long as the art

gallery problem has been around; the question of open-edge mobile guards

was first introduced in 2011 by mathematician Viglietta [2].

Definition 18. A point p in polygon P can be seen by an open-edge mobile guard

if p can be seen from some interior point on the edge or diagonal that the

guard patrols. The endpoints of the edge or diagonal are included in a

closed-edge mobile guard’s patrol path.

Unlike other extensions of the art gallery problem, using triangulations in

consideration of mobile guards is not as helpful as it is for vertex guards. By

the definition of a guard’s sight (as seen in definition 3), by placing a guard on

an interior diagonal of a triangulation, we can only conclude that this guard

can watch the two triangles that include this diagonal. Other methods must

therefore be used to find the sufficient number of mobile guards for any

polygon.

It is also important to make a distinction between edges and diagonals

when it comes to a mobile guard’s patrol path. A floor plan that requires its

guards to patrol along walls will need more guards than a floor plan whose

guards can patrol between any two vertices.

The difference between open and closed-edge mobile guards is equivalent

to whether or not the guard can peek around the corners at the ends of their

patrol route. Apparently, this ability has a sizable effect on a guard’s

effectiveness, as it has been found that open-edge mobile guards are only as

useful as vertex guards.

Theorem 9. ([2]) Any monotone polygon with n vertices is sufficiently watched by
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⌊
n
3

⌋
open-edge mobile guards, and sometimes this number is necessary.

The proof of this theorem is nearly identical to the theorem that a

triangulated polygon can be partitioned into
⌊

n
3

⌋
fans; in fact, lemma 1 is

explicitly used in this proof as well. Because we know that any polygon has a

diagonal that cuts off exactly four, five, or six edges, we can first assume that a

polygon with less than n vertices requires less than
⌊

n
3

⌋
open-edge mobile

guards, and then prove that any polygon with five, six, or seven edges needs

only one open-edge mobile guard. Using induction, we can then conclude that⌊
n
3

⌋
is sufficient for any monotone polygon [2].
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Figure 4.6: Closed-Edge Guards on Edges or Diagonals

A polygon with seven vertices that requires two edge guards but only one diagonal
guard. This is therefore a necessity polygon for closed-edge mobile guards that are

restricted to edges (
⌊

n+1
4

⌋
=

⌊
8
4

⌋
= 2). Allowing guards to travel between non-adjacent

vertices means that less guards are needed, which is the case in this example
(
⌊

n
4

⌋
=

⌊
7
4

⌋
= 1).

Meanwhile, closed-edge mobile guards are generally more effective than

their open counterparts.

Theorem 10. ([11]) For any monotone polygon P with n vertices,
⌊

n+1
4

⌋
closed-edge

mobile guards that patrol strictly on edges are always sufficient and sometimes

necessary to watch P, while
⌊

n
4

⌋
closed-edge mobile guards that are allowed to travel
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between any two vertices are sufficient to guard P, and are also sometimes necessary.

A necessity polygon for theorem 10 was already shown in fig. 4.6, where

the seven-vertex shape needs two edge guards when no diagonal guards are

allowed, and one diagonal guard if that guard is allowed to patrol between

any two vertices in the polygon.

4.3 Orthogonal Polygons

Although one can argue that art galleries have allowance to take on much more

unique appearances, most galleries are structurally very similar to any other

building - namely, they are rectangular. Most galleries have ninety degree

corners and strictly parallel or perpendicular walls, just like the majority of

floor plans you would come across. In the context of the Art Gallery Problem,

we will represent these traditional floor plans with orthogonal polygons.

(a) (b) (c)

Figure 4.7: Examples of Orthogonal Polygons

All orthogonal polygons have right angles exclusively. The polygon in (c) can be
rotated so that its edges are horizontal and vertical, making it orthogonal as well.

Definition 19. A polygon P is orthogonal if every interior angle of P is 90◦ or
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270◦. When placed in the xy-plane, P can be positioned so that all edges are

horizontal or vertical. These polygons can also be referred to as rectilinear or

traditional. It is always true that orthogonal polygons have an even number of

vertices.

As shown in chapter 3, these types of polygons are still able to be

triangulated, and like any other polygon,
⌊

n
3

⌋
guards are sufficient to fully

watch any orthogonal polygon. However, it can be shown that we can do even

better than that.

Theorem 11.
⌊

n
4

⌋
guards are always sufficient and sometimes necessary to fully

watch any simple orthogonal polygon.

Figure 4.8: An Orthogonal Necessity Polygon

This comb-shaped polygon is an orthogonal interpretation of Toussaint’s necessity
polygon from chapter two. This polygon requires

⌊
n
4

⌋
guards, as it has sixteen vertices,

and needs one guard to watch each of its four prongs [11].

The polygon in fig. 4.8 shows that
⌊

n
4

⌋
guards are necessary for some

orthogonal polygons. Showing that this number is also sufficient for all

polygons of this type is very similar to the proof of the Watchman theorem in

chapter 2. However, instead of showing that these polygons can be

triangulated, it is instead shown that any orthogonal polygon can be

partitioned into convex quadrilaterals. If you thought the triangulation

existence proof was tedious, you will not like this one any better; we will leave

O’Rourke to explain the logic behind it in his 1988 book [11].
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Figure 4.9: Convex Quadrilateralization

An example of an orthogonal polygon that has been partitioned into convex
quadrilaterals. Convex quadrilateralization is not always unique.

Now that we can assume any orthogonal polygon can be convexly

quadrilateralized, we will show that any orthogonal polygon can be fully

watched by
⌊

n
4

⌋
guards. First, let us look at two small theorems that will aid us

in this proof.

Theorem 12. A convex quadrilateralization of a simple orthogonal polygon has n−2
2

quadrilaterals.

Proof. Let Q be a convex quadrilateralization of orthogonal polygon P. For

each quadrilateral in Q, choose two non-adjacent vertices and draw a diagonal

between them (this is always possible as the quadrilaterals are convex). Then,

for each quadrilateral, there now exists two triangles, and we have

transformed Q into a triangulation T. By a previous theorem, we know that

every triangulation of a polygon with n vertices has n − 2 triangles (see

theorem 4). Therefore, because we used one quadrilateral of Q to form every

two triangles in T, there are n−2
2 convex quadrilaterals in Q. �
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Theorem 13. Two convex quadrilaterals within a quadrilateralized polygon P can

share at most 2 vertices.

Proof. Let Q1 and Q2 be distinct convex quadrilaterals.

Case 1: For the purpose of contradiction, assume that quadrilaterals Q1

and Q2 share four vertices. Then, it must be the case that Q1 = Q2, but Q1 and

Q2 are distinct. Therefore, they cannot share four vertices.

Case 2: For contradiction, assume Q1 and Q2 share three vertices, and let

these vertices be v1, v2, and v3. Without loss of generality, assume v2 is adjacent

to both v1 and v3, and therefore v1 is not adjacent to v3 by definition. Because

v1, v3 ∈ Q1,Q2, the line segment between v1 and v3 must lie completely inside

Q1 and Q2, as these quadrilaterals are convex. This can only occur if the line

segment lies completely on the boundary of Q1 and Q2, and v2 must lie on the

boundary as well. However, this would make v1, v2, and v3 colinear, which is

not allowed by our definition of polygons. Hence, Q1 and Q2 cannot share

three vertices.

We can therefore conclude that Q1 and Q2 must share two vertices or

less. �

To show that
⌊

n
4

⌋
are sufficient, we will adapt Fisk’s proof from chapter two

and use a little bit of induction to show that an orthogonal polygon is

four-colorable, and then place guards at every instance of a vertex with a

least-occurring color.

It is almost enough to simply say that a quadrilateralization is

four-colorable by the Four Color Theorem. However, this theorem only states

that any planar graph (as in any graph that can be drawn in such a way that its
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edges do not cross over each other) can be colored with four colorings, but not

every possible four-coloring can be used to position guards.

Note that because these quadrilaterals are convex, one guard placed at any

point inside this shape causes it to be fully watched. This includes the vertices

of the quadrilateral. However, it is possible to color a quadrilateralization with

four colors, but in such a way where some quadrilaterals do not have vertices

of all possible colors.

• •

• •

••

••

••

Figure 4.10: An Uncooperative Four-Coloring

This four-coloring of a quadrilateralization is not helpful for placing guards. Placing a
guard at the blue or pink vertices results in the polygon not being fully guarded;

placing guards at the green or orange vertices results in a number of guards greater
than

⌊
10
4

⌋
= 2.

Therefore, we can show that it is possible to four-color a

quadrilateralization so that each quadrilateral has one vertex of every color.
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• •

• •

••

••

••

(a)

• •

•

•

(b)

• •

•

•

•

•

(c)

• •

•

•

•

•

• •

(d)

• •

•

•

•

•

• •

•

•

(e)

•

•

( f )

Figure 4.11: Coloring a Quadrilateralization

Using induction to four-color a quadrilateralization. Note that a four-coloring is not
always unique, but it is required that each quadrilateral has a vertex of each of the

four colors. In (e), both blue and yellow appear the least amount of times, so guards
can be positioned at either color vertices (at blue in ( f )) to have the polygon be fully

watched.
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First, we only consider one quadrilateral from the quadrilateralization. We

then take four colors and assign each one to one of the vertices of the

quadrilateral. Now, we are able to consider one of the quadrilaterals adjacent

(sharing an edge) to this first one. We know that two of this second

quadrilateral’s vertices are shared with the first, so their colors are already

determined. For the two remaining vertices, we color them with the two

colors not used on this quadrilateral yet. Therefore, both quadrilaterals have

all four colors on their vertices. In fig. 4.11, we see that quadrilateralizations

with one quadrilateral require
⌊

4
4

⌋
= 1 guard, as a quadrilateral is convex.

Assigning guards to the color that is least occurring in a vertex-colored

quadrilateralization will result in it being fully watched. In the worst case,

where n = 4 and only one quadrilateral exists, the number of guards necessary

is strictly n
4 . However, in most situations quadrilaterals share vertices, so it is

highly likely that guards are able to watch more than one quadrilateral at

once, making the sufficiency number for any orthogonal polygon
⌊

n
4

⌋
.

4.4 Considering Multiple Extensions

The extensions mentioned in this chapter, and many more, can be considered

simultaneous to each other. For example, we can think about orthogonal

polygons that are surveyed with mobile guards exclusively.

Theorem 14. A simple orthogonal polygon can be sufficiently watched with
⌊

n
4

⌋
open-edge mobile guards, or

⌊
3n+4

16

⌋
closed-edge mobile guards [2, 3].

In fig. 4.12 we can see that each prong of the polygon must have its own
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◦

◦

◦

◦

◦

◦

◦◦

◦

◦

◦

◦

◦

◦

◦

Figure 4.12: Open-Edge Mobile Guards on Orthogonal Polygons

A necessity polygon for open-edge mobile guards on orthogonal polygons. This
polygon has 32 vertices, and must be watched by at least eight guards (

⌊
32
4

⌋
= 8).

guard, since open-edge mobile guards are unable to peek around corners.

A useful property when placing open-edge mobile guards is that there are

four types of edges in orthogonal polygons (considering the position of the

polygon’s interior in relation to these edges). Note that an edge can be

horizontal or vertical; if an edge is horizontal, the interior of the polygon can

exist above or below this edge. If the edge is vertical, the interior exists to the

left or right of the edge. This gives us the four types of edges: upper, lower,

right, and left. By the Pigeonhole Principle, at least one of these types must

make up one fourth or less of the edges of the polygon (consider the

contradiction of a polygon with n sides having all four types of edges occur

more than n
4 times at once). Placing open-edge mobile guards at the

least-occurring type of edge of a polygon causes it to be fully watched. In

fig. 4.12, each type of edge occurs eight times, so placing guards at any of the

edge types will be sufficient (the figure shows the guards placed at all of the

right edges).

Meanwhile, closed-edge mobile guards are more powerful as they are able
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to peek around corners.

•

•

• •

••••

• •

Figure 4.13: Closed-Edge Mobile Guards on Orthogonal Polygons

Here, an orthogonal with 26 vertices is fully watched by
⌊

3(26)+4
16

⌋
=

⌊
82
16

⌋
= 5

closed-edge mobile guards.

For one more combination of extensions to mull over, let us examine

orthogonal polygons with holes.

For many years after the creation of the Art Gallery Theorem, it was

conjectured that if there are only one or two holes in an orthogonal polygon,⌊
n+h

4

⌋
guards would still be sufficient, just as it would be for an orthogonal

polygon without holes. In the 1990’s, the mathematician Hoffman proved that

this number held for any number of holes, so long as the guards were point

guards [7].

The previous conjectures about vertex guards were replaced by a theorem

in the 1980’s, as they were proven true, but there is still little to be said about

orthogonal polygons with more than two holes in general if we are restricted

to vertex guards.
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•

•

•

•

•

•

••

Figure 4.14: Orthogonal Polygons with Holes

The polygon on the left is sufficiently covered by
⌊

12
4

⌋
= 3 guards. The polygon on the

right, with two holes, can be sufficiently guarded with
⌊

n+h
4

⌋
guards (

⌊
20+2

4

⌋
= 5

guards).

Conclusion

Though a result has been found overall for the guarding of all general

polygons, varied results can be discovered when one focuses on certain

subsets of polygons or guards. In this chapter, we have shown the results for

three of the more well-known extensions, though there are many more to

examine. In the next chapter, we will quickly look over some more strange

extensions, along with some developments of the problem that I wanted to

personally look into.
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Chapter 5

Stranger Extensions and Further

Work

In the previous chapter, we looked at extensions with already existent results.

The Art Gallery Problem is such a large topic, however, that there are still

extensions of it that have yet to be considered. If I had more time to spend on

this topic, the following are some of the extensions I would like to explore.

5.1 Adding Cameras to Galleries

In some cases, an art gallery may look into using technology to partially

automate the gallery’s security. If the gallery is willing to sacrifice a guard’s

ability to physically confront thieves, they may choose to swap guards for

cameras.

We will also model cameras as points in the polygon; stationary, but able

to rotate 360◦ just as with guards. The live feed from the camera can be viewed

63
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from a device on a guard’s person, or from control monitors, which are also

points or locations inside the polygon. Control monitors will mainly be useful

with mobile guards.

Now, assuming that the gallery wants at least one guard present to watch

cameras, we can replace the rest of the guards with cameras if we want to.

Proposition 3. For any simple polygon with n vertices, it is always sufficient and

sometimes necessary for this polygon to be fully watched with one vertex guard with a

monitor, and
⌊

n
3

⌋
− 1 cameras.

•

• •

Figure 5.1: Toussaint’s Polygon with Cameras

If the guard (shown in black) has access to the cameras (shown in magenta), then only
this one guard is sufficient to watch this polygon.

In regards to non-stationary guards, if a mobile guard has a device on their

person to watch cameras, he can see the camera’s line of vision at any point in

their patrol. If the camera’s feed is viewed by a control monitor, then this

monitor must exist on a point in a mobile guard’s patrol, and the guard can

only access the monitor when the guard is also at the control monitor’s

location.

It may be possible to get more interesting results from this extension by

restricting the capabilities of the cameras. This can be done by limiting the

number of cameras that can be accessed from a single control monitor or

guard’s device, or by establishing a maximum distance that a camera can be
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from a control monitor in order to access it’s view (see fig. 5.2). For example, if

there are five cameras in a floor plan, but a guard is only able to access the

view of four from a control monitor, than more than one control monitor is

required. Another solution would be for a guard to be used instead of the

unaccessible camera.

•c1 •c2

•m1 •m2•g

Figure 5.2: Cameras with Limited Range

Suppose that camera one (c1) can only be viewed by control monitor one (m1), and
camera two can only be viewed by monitor two. Then, either a mobile guard can be
placed so that it patrols between the two monitors (as shown in the above figure), or

two vertex guards are placed at the monitor’s positions.

Given more time, I would be interested in seeing how the above

limitations would affect the number of sufficient or necessary guards, of both

the vertex and mobile variety.

5.2 Mirrors

We can imagine that some walls of a gallery, or some edges of the polygon

representing the floor plan, are mirrors (for simplicity’s sake, any mirror we

consider will make up an entire edge).

If a guard can see the two ends of a mirror, then the guard is able to see

every point that the mirror reflects (acting as an open-edge mobile guard on

the mirror’s wall).
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The tricky issue about considering mirrors is the angle of reflection. We

will adhere to the rule that a mirror’s angle of reflection always equals its

angle of incidence.

Definition 20. A point p in a polygon can be watched by a guard g using a

mirror on edge e, whose endpoints are e1 and e2, when there exists a point m on

the mirror such that line segments gm and pm can be drawn such that gm and

pm are completely interior to the polygon, and the angle gme1 = pme2.

•g
•p

•e1 •e2•
m

(a)

•g •
p

•e1 •e2•
m

(b)

•

(c)

•

(d)

Figure 5.3: Mirrors in Galleries

In parts (a) and (b), the point p can be seen by the guard g, since the point m on the
mirror is visible to g. Figure (c) shows the area of the polygon a vertex guard can see

from a certain place; figure (d) shows the visible parts of the polygon for the same
vertex guard if a mirror is placed on a certain edge.

When considering this type of problem, we will want to establish a few

conditions for mirrors and the guards who use them. As stated before, we will

only look at mirrors that span the entire edge they are attached to. Also, to

ignore polygons with useless mirrors, at least one guard in each floor plan
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must be able to see at least one point of the mirror (in a fully watched polygon,

it follows that every point of the mirror can be seen by one or more guards, as

its edge is a part of the polygon).

In fig. 5.3, the polygon can be fully watched by one guard if it is placed in a

certain spot. Now, let’s consider a variation of this polygon that must be

guarded by more than one guard.

For Toussaint’s necessity polygon, a guard placed at any vertex can only

see one prong, meaning that each prong needs its own guard.

•

•

•

Figure 5.4: Toussaint’s Polygon with a Mirror

Despite the presence of a mirror, any vertex guard in Toussaint’s necessity polygon
can watch only one prong of the polygon, though is some cases the mirror allows the

guard to watch portions of the second and third prong.

Considering only one mirror in the same polygon, it is still only possible

for a guard to fully watch one prong, although in some cases they can see parts

of other prongs (see fig. 5.4). Therefore, the necessary number of guards is still⌊
n
3

⌋
, even with the presence of one mirror.

Because of this, we would like to make the following conjecture about the

number of necessary vertex guards in a gallery with a single mirror:

Conjecture 1. For any simple n-sided polygon that has one edge which
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functions as a mirror,
⌊

n
3

⌋
guards are always sufficient and sometimes

necessary to fully guard the polygon.

We can use Toussaint’s Necessity Polygon (fig. 5.4) as a necessity polygon

for this case, as even with the presence of the mirror, three guards are still

required to watch the nine-sided shape. In consideration of sufficiency, we

already know that
⌊

n
3

⌋
vertex guards are sufficient to guard any simple

polygon (theorem 2), so the presence of a mirror in the polygon is trivial.

•

• •

• •

•

Figure 5.5: An Example of the View of Vertex Guards

The view of a single vertex guard at each vertex in an L-shaped polygon. The polygon
is able to be fully-watched from two of the vertices.

If conjecture 1 is true, is there any point of using mirrors? Let us look at the

polygon in fig. 5.5, fig. 5.6, and fig. 5.7, and consider the guard’s sight for each

vertex of the polygon (or edge, for open-edge mobile guards). For both vertex

and open-edge mobile guards, their are six options for the guard’s position,

and one can notice that there are corresponding positions that cause the same

portion of the polygon to be viewed. This follows from theorem 9 in chapter

four that says vertex guards and open-edge mobile guards have the same

power (as they have the same requirements for guards).
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◦◦
◦

◦ ◦

◦

◦ ◦

◦◦

◦

◦

Figure 5.6: The View of Open-Edge Mobile Guards

The view of an open-edge mobile guard from each edge of an L-shaped polygon. The
polygon is able to be fully watched by this guard from two of its edges. Comparing
these polygons to those in fig. 5.5, we can see that the same portions of the polygons

can be watched with vertex guards, and so corroborates the fact that
⌊

n
3

⌋
of both vertex

guards and open-edge mobile guards are sufficient for any general polygon.

Considering all positions for mirror guards, however, gives us more than

six possibilities, as there are multiple options for placing a mirror that is

viewable but non-adjacent to the guard. In some positions, this guard can see

just as much as its corresponding vertex and open-edge mobile guard.

However, when a mirror is placed on a certain edge, the guard can see a larger

part of the polygon (the added area is shown in fig. 5.7 in blue). This leads us

to believe that for any position of a vertex guard, there is an optimal position

for a corresponding mirror that causes the guard to see more than without it.

Conjecture 2. In terms of the area that a guard can see, the power of the

combination of a vertex guard and a mirror is greater than or equal to the

power of a vertex guard or an open-edge mobile guard.
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• •

•

• •

•

• •

•

•

Figure 5.7: View of Vertex Guards with Mirrors

The view of a single vertex guard at each vertex in an L-shaped polygon, with the
help of a single mirror. For each guard, there are two or more edges where a mirror

can be placed so that it is not on an edge adjacent to the guard, and so that the guard
can see at least one point of the mirror. Depending on where the mirror is positioned,
the guard either sees as much as if they did not have a mirror, or an additional area of

the polygon is added to their sight (pictured in blue).
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• •

Figure 5.8: Considering Edge Lengths with Mirrors

In the first image, one guard and one mirror are sufficient to fully watch the polygon.
If some of the polygon’s edges are lengthened, this is no longer the case.

Given more time, I would like to look into how to determine the optimal

position for a mirror, given the position of a guard in a polygon. I would also

be interested in finding out if there is a type of polygon where the presence of

mirrors is most useful; that is, where mirrors add the most area to a guard’s

sight.

From the polygons earlier in this section, it would be reasonable to say that

the length of the edges of the polygon can have a role in the efficacy of a

mirror (see fig. 5.8). Looking further into this extension, it may be useful to

place weights on the edges of polygons, or their respective graphs, to keep

track of edge length.



72 CHAPTER 5. STRANGER EXTENSIONS AND FURTHER WORK

5.3 Conclusion

Now we have briefly explained the Art Gallery Problem and some of its more

well-known results. We have gone into detail about the Watchman theorem,

and how the two most popular proofs of it work. Finally, we explored some

extensions of the problem, both with results and without. As this chapter has

shown, there are many more undiscovered topics in the Art Gallery Problem

to interest us. We conclude by expressing excitement about what results may

come from this problem in the future.
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