
The College of Wooster Libraries
Open Works

Senior Independent Study Theses

2018

Logic -> Proof -> REST
Maxwell Taylor
The College of Wooster, mtaylor18@wooster.edu

Follow this and additional works at: https://openworks.wooster.edu/independentstudy

Part of the Algebra Commons, Logic and Foundations Commons, Other Mathematics
Commons, Software Engineering Commons, Systems Architecture Commons, and the Theory and
Algorithms Commons

This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The College of Wooster Libraries. It has been accepted
for inclusion in Senior Independent Study Theses by an authorized administrator of Open Works. For more information, please contact
openworks@wooster.edu.

© Copyright 2018 Maxwell Taylor

Recommended Citation
Taylor, Maxwell, "Logic -> Proof -> REST" (2018). Senior Independent Study Theses. Paper 8289.
https://openworks.wooster.edu/independentstudy/8289

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The College of Wooster

https://core.ac.uk/display/232817831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openworks.wooster.edu?utm_source=openworks.wooster.edu%2Findependentstudy%2F8289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F8289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F8289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=openworks.wooster.edu%2Findependentstudy%2F8289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=openworks.wooster.edu%2Findependentstudy%2F8289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=openworks.wooster.edu%2Findependentstudy%2F8289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=openworks.wooster.edu%2Findependentstudy%2F8289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=openworks.wooster.edu%2Findependentstudy%2F8289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=openworks.wooster.edu%2Findependentstudy%2F8289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=openworks.wooster.edu%2Findependentstudy%2F8289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=openworks.wooster.edu%2Findependentstudy%2F8289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy/8289?utm_source=openworks.wooster.edu%2Findependentstudy%2F8289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy/8289
mailto:openworks@wooster.edu

Logic→ Proof→ REST

Independent Study Thesis

Presented in Partial Fulfillment of the
Requirements for the Degree Bachelor of Arts in
the Department of Mathematics and Computer

Science at The College of Wooster

by
Maxwell Taylor

The College of Wooster
2018

Advised by:

Dr. Denise Byrnes

Dr. Robert Kelvey

Abstract

REST is a common architecture for networked applications. Applications that

adhere to the REST constraints enjoy significant scaling advantages over other

architectures. But REST is not a panacea for the task of building correct

software. Algebraic models of computation, particularly CSP, prove useful to

describe the composition of applications using REST. CSP enables us to

describe and verify the behavior of RESTful systems. The descriptions of each

component can be used independently to verify that a system behaves as

expected. This thesis demonstrates and develops CSP methodology to verify

the behavior of RESTful applications.

iii

Acknowledgements

I would like to thank my advisors, Dr. Byrnes and Dr. Kelvey, who have been

simply amazing to work with. I would also like to express my gratitude

towards my parents, Don and Kerry. Pratistha Bhandari has been incredibly

supportive throughout the process of creating this thesis. Last, but certainly

not least, I wish to acknowledge my Grandma and the support that she has

given me throughout my life.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 RESTful Architectures 3

2.0.1 REST and the Web . 4

2.1 RESTful Architectural Principles 4

2.1.1 Client-Server Architecture 4

2.1.2 Stateless Communication 6

2.1.3 Cache . 7

2.1.4 Uniform Interface . 8

2.1.5 Layered System . 8

2.1.6 Code on Demand . 10

2.2 REST Architectural Elements . 10

2.3 Actors in a RESTful System . 11

vii

viii CONTENTS

2.4 Conclusion . 12

3 Introduction to Process Algebra 15

3.1 Sequent Calculus . 15

3.2 Process Algebra . 17

3.2.1 Semantics . 17

3.2.2 Concurrent and Parallel Processes 20

3.3 Communicating Sequential Processes (CSP) 22

3.3.1 Basic CSP Terms . 22

3.3.2 Communication . 24

3.3.3 Extended Operators of CSP 27

3.4 Parallel Composition in CSP . 30

3.5 Traces of CSP . 32

3.5.1 Finding traces . 33

3.5.2 Traces of Recursive Processes 33

3.5.3 Traces and Specification . 37

3.5.4 Additional Trace Notation 38

3.6 Conclusion . 41

4 Formalizing REST with CSP 43

4.1 Introduction to Terminology . 43

4.1.1 Communication Channels 44

4.1.2 Set Semantics . 46

4.2 Process Definitions . 48

4.3 Conclusion . 54

5 Concurrency Abstracted 57

5.1 Trace Theory and Other Formalizations 58

5.1.1 Preliminary Definitions . 58

5.1.2 The Trace Monoid . 59

5.1.3 Hoare Structures . 62

5.2 Trace Structures and Hoare Structures 63

5.2.1 Some Category Theory . 63

5.2.2 The Relationship . 67

5.3 Other Models of Concurrency . 69

5.4 Conclusion . 70

6 Description of Software 71

6.1 Overview of Tools . 71

6.2 Case Study of RESTful Application 73

6.2.1 Entrypoint . 74

6.2.2 Creating a New Queue . 74

6.2.3 Writing to a Queue . 75

6.2.4 Retrieving Objects from a Queue 76

6.2.5 Deleting a Queue . 76

6.3 Dynamic Error State Observations 77

6.4 Modeling Application with CSP and formalized REST 82

6.5 Conclusion . 84

7 Future Work 87

List of Figures

2.1 A diagram of a client-server network architecture. 5

2.2 A general diagram of a layered RESTful system. 9

4.1 Overview of REST modeled in CSP. 45

5.1 A diagram to visualize objects in a category. 64

5.2 Diagram demonstrating the properties of a functor. 65

5.3 Diagram describing adjunction. 66

5.4 Diagram of relationship between trace and Hoare structures. . . . 69

xi

xii LIST OF FIGURES

List of Tables

3.1 Equation specifications for basic process algebra. 18

3.2 Equation specifications for CSP. 27

3.3 Overview of CSP’s syntax. 31

4.1 The various sets of objects found in the CSP model of REST. . . . 46

xiii

xiv LIST OF TABLES

Listings

4.1 UserAgent process definition. 48

4.2 Intermediary process definition. 51

4.3 OriginServer process definition. 53

6.1 A simple Clojure web service using replay middleware. 80

6.2 Sample test generated by middleware. 80

i

ii LISTINGS

1

Introduction

“But I don’t want to go among mad people,” Alice remarked. “Oh, you can’t

help that,” said the Cat: “we’re all mad here. I’m mad. You’re mad.” “How

do you know I’m mad?” said Alice. “You must be,” said the Cat, “or you

wouldn’t have come here.”

– Lewis Carroll, Alice in Wonderland

Verifying that the behavior of a program meets some specification is a

challenging task. In fact, the problem is unsolvable, in general. So why are we

devoting time to a task that is both difficult and impossible? Because software

is ubiquitous and has become necessary to sustain the modern world. This

statement is so obvious that it has become trite, but the significance of the

implications of this clear fact cannot be overstated. We must negotiate a world

increasingly governed by information systems. Understanding the behavior of

these systems must be a priority.

Meanwhile, data breaches occur daily. We are beginning to trust

1

2 1. INTRODUCTION

automated systems in tasks such as transportation, grid infrastructure control,

and decisions about healthcare. Clearly, we have a problem. Each new

technology stands on the shoulders of those that have come before, yet not

much attention is paid to the underlying process of composition that permits

this phenomenon to safely manifest itself. At times, we suffer the

consequences for this lack of respect.

Representational State Transfer, or REST, is one of the fastest growing

approaches to application architectures. This thesis concerns itself with two

tasks. First, we seek to provide an algebraic system to permit formal reasoning

of RESTful architectures. Second, we demonstrate how the tools that we use to

understand REST interact with other approaches to software verification and

concurrency.

Like Alice, we are about to fall down a rabbit hole, albeit one that tests the

limits of formal systems. We encounter all kinds of beasts in this wonderland:

strange models of computation, bizarre nondeterminism, exotic abstractions in

mathematics, all in a beautiful landscape of theory. With that said, enjoy the

thesis.

2

RESTful Architectures

Roy Fielding proposed a new architectural style for network based software

applications in [13]. This style, called REST (for “Representational State

Transfer”), solves issues unique to the challenges of the then-emerging world

wide web, albeit in a more general fashion. These problems include handling

a large number of clients accessing shared resources simultaneously,

managing large information systems involving ephemeral hypermedia, and

coordinating the efforts of a large enterprise (specifically the functions of

discrete entities with competing interests, like quality assurance, application

support, and application development.) RESTful architectures are virtually

omnipresent in modern enterprises, and its users include technology giants

such as Google and Amazon [1] [3]. This section provides an overview of the

RESTful paradigm, highlights the components of a RESTful system, and

defines its actors.

3

4 2. RESTFUL ARCHITECTURES

2.0.1 REST and the Web

We frequently use the world wide web as an example when speaking of a

RESTful system. Applications built on the world wide web are not necessarily

RESTful, although it is possible and common to design applications on the

web that are. In particular, it is important to understand that the protocol of

the web, called the “hypertext transfer protocol” (HTTP), can be used to

develop RESTful applications. REST itself is protocol agnostic; it is simply a

set of architectural principles and elements that are useful when designing

applications.

2.1 RESTful Architectural Principles

RESTful architectures are built on several key principles including a

client-server design, stateless communication, data caches, uniform interfaces,

layered design, and code on demand. Here, we define these principles,

provide an analysis of their benefits and drawbacks in application

development, and provide examples of their usage.

2.1.1 Client-Server Architecture

REST does not seek to be a peer-to-peer architecture (i.e. various nodes in a

network communicate directly with one another.) The alternative to this

approach is a client-server architecture. A client-server architecture has two

agents operating:

1. Server - the node responsible for providing services (logically related

2. RESTFUL ARCHITECTURES 5

functional units) and that actively listens for requests.

2. Client - the node that is responsible for initiating communication with the

server via requests.

A diagram of this architecture is presented in Figure 2.1. Here, each client

communicates with a central server. In an alternative peer to peer application,

each client also functions as a server and is therefore in direct communcation

with other clients.

Figure 2.1: A diagram of a client-server network architecture.

The main advantage to the client-server approach lies in its separation of

concerns. Consider the following example: applications on the world wide

web may be viewed as a RESTful system. Since the user interface rendering is

implemented on the client side (i.e. a web browser like Mozilla Firefox) and is

therefore separate from the data storage and access concerns handled by the

server, then the application is more portable. Observe that the server also does

not need to utilize resources rendering an interface, thereby increasing the

scalability of the application.

6 2. RESTFUL ARCHITECTURES

2.1.2 Stateless Communication

Arguably the most important principle to RESTful design, Stateless

Communication, is the architectural principle that each request contains all

information required by the server to create an appropriate response. This

necessarily implies that all session state is stored on the client. A

counter-example to this principle is the common usage of session identifiers in

web applications. Web applications usually issue a session id that is stored on

the client in the form of a cookie. Requests from the client to the server contain

this session id, and the server associates the current state of the client in a

key-value store internally.

Applications that emphasize stateless communication enjoy several

benefits. First, visability improves. Visability is the degree that a response can

be debugged given its corresponding request. Since each request contains all

necessary information for the server to fulfill it, debugging is much simpler.

The reliability of the application is improved since a partial failure of any

particular server does not result in the loss of any client state. If a particular

request fails, a client may simply retry. Finally, the application itself is more

scalable since the server can quickly release any resource associated with a

request, and the server does not need to manage any client resources.

Drawbacks to this approach include decreased network performance. Since

duplicate information (i.e. authentication information) is sent with each

request, the network is unnecessarily strained. Also, the server loses control of

client interactions. Clients can potentially enter states that the application

developers did not consider as a possibility, resulting in scenarios that are

2. RESTFUL ARCHITECTURES 7

difficult to debug. For example, a website might require a user to complete

several forms. If a user “bookmarks” a particular page in that sequence of

forms and revisits it, previous form data might be missing, thus leading to

undefined interactions.

2.1.3 Cache

Data in a response is implicitly or explicitly labeled as cacheable or

non-cacheable by the server. If data is cacheable, then the client reserves the

right to reuse the data for an identical request. For example, web servers

commonly give the documents that they serve a lifetime. Clients (i.e. web

browsers) request the headers for a particular resource. The server responds

with the meta-data for the particular resource, including its last modified time.

The client can then reuse the resource if it has a local copy within its lifetime.

This has the positive effect of mitigating the poor network performance caused

by stateless communication. Note that the client need not be associated with a

particular end-user, but rather could be a component in a layered system.

However, this principle can introduce new issues because data can become

stale, or no longer valid. Application developers must take great care to ensure

proper lifetimes are associated with each particular resource, and this

potentially causes a complexity bloom. Different resources have different

reasonable default lifetimes, and so managing the lifetime of all resources can

become a significant challenge.

8 2. RESTFUL ARCHITECTURES

2.1.4 Uniform Interface

All components of a system must be exposed with an identical interface. For

example, consider the world wide web. All resources are accessed using the

same methods – GET, POST, PUT, DELETE, HEAD, PATCH, and OPTIONS.

Applications that expose resources uniformly are simplified. Clients are more

general, as they only need to implement several predefined operations to use a

server. Furthermore, visibility is improved since each request is composed of

well-understood methods with generalized semantics. A potential drawback

to this approach is degraded efficiency. Custom protocols usually can exploit

the format of its data to improve the network efficiency for a particular request.

2.1.5 Layered System

REST allows for the composition of separate services into a hierarchical model

by adding an application-layer constraint that services can only communicate

with layers immediately adjacent to them. This allows application developers

to encapsulate legacy services (services that have been deprecated and

replaced) and easily provide support for legacy clients (clients that rely on

legacy services). Furthermore, since communication is stateless, layers can

perform load balancing across services in layers below them. The main

drawback associated with this approach is that unnecessary overhead and

data processing is added, decreasing the overall efficiency of the system.

Consider Figure 2.2. Here, the client is communicating to a load balancer, a

specialized piece of software or hardware designed to handle a large number

of concurrent connections and forward them to a set of services based on some

2. RESTFUL ARCHITECTURES 9

Figure 2.2: A general diagram of a layered RESTful system.

set of rules. In this case, the load balancer is distributing requests among REST

API gateways – services that might provide features like API versioning, secure

socket layer encryption (SSL), and expose additional services as a logical

resource according to some scheme. These gateways expose functionality

provided by the business logic layer that contain custom services to support

the main functionality of the application. Notice that these gateways provide

an additional layer of load-balancing across the services implementing the

business logic layer. Architectures similar to this are widely used today and

are a good example of layered design in REST.

10 2. RESTFUL ARCHITECTURES

2.1.6 Code on Demand

REST clients can be arbitrarily extended by downloading and executing code

in the form of applets or scripts. As an example, consider a web browser.

Servers often provide scripts that are executed inside of the browser. The

client is free to request whatever code is necessary to accomplish its particular

goals. This principle is perhaps one of the most difficult to implement in

general, since it requires the client to implement a language or provide other

mechanisms for arbitrary code execution, and consequentially it is often

relaxed as a requirement.

2.2 REST Architectural Elements

REST defines several high-level elements of interest. These elements are

deliberately designed to be vague so that REST can be employed in virtually

any application involving networked communications. Here, we define these

elements and provide examples. For a more detailed analysis of these

elements, consult Fielding’s original thesis [13].

1. Resource – the conceptual target of a hypermedia reference. Hypermedia

refers to a particular resource (i.e. a document, image, mp3 file, etc.) or a

reference to such a resource. A resource can also be viewed as any

information that can be named, such as “today’s weather.” Note that

such a relationship is only persistent in the sense that the concept itself is

persistent, although the underlying data may vary temporally.

2. Resource Identifier – a way to refer to a unique resource. An example of

2. RESTFUL ARCHITECTURES 11

this is a URL for a website.

3. Representation Metadata – metadata for a resource’s representation. For

instance, a “Text-Encoding” header that represents how a textual

resource is encoded.

4. Resource Metadata – metadata for a particular resource itself, such as

source links or alternate versions.

5. Control Data – data used to control access to a resource. As an example,

consider the “if-modified-since” hypertext transfer protocol (HTTP)

header that requests a response only if a resource was modified after a

particular time.

2.3 Actors in a RESTful System

Fielding describes several agents that are at work in any RESTful system.

Here, we provide an overview and examples of these entities, and

describe how they operate in conjunction with one another.

(a) Origin Server – an authoritative entity for resource representations.

Origin servers govern the namespace of a requested resource. For

example, Apache’s HTTP daemon is a common origin server.

(b) Gateway – the entrypoint to an origin server. Consider NGINX and

similar reverse proxies as an example.

(c) Proxy – an intermediary connector between a client and a gateway.

12 2. RESTFUL ARCHITECTURES

(d) User Agent – the client-side entity responsible for initiating requests.

Consider a web browser like Mozilla Firefox as an example.

Furthermore, Fielding describes the concept of connectors that are

responsible for encapsulating logically discrete activities involved in the

act of accessing a hypermedia resource. These connectors include:

(a) Client – the connector responsible for initiating requests.

(b) Server – the connector that actively listens for and responds to client

requests.

(c) Cache – the connector responsible for implementing the cache

described in REST’s architectural principles. This connector can

reside on the client or the server.

(d) Resolver – the connector responsible for translating universal

resource identifiers (URIs) into a format that is network-addressable.

As an example, consider the domain name system (DNS).

(e) Tunnel – the connector that relays communication across the client

and server boundaries. For instance, consider a firewall or SSL.

2.4 Conclusion

REST is among the most widely used application architectures today. It

is designed to be highly scalable, both organizationally and functionally.

By separating concerns to create entities that are as simple as required,

applications increase in reliability and organizations can more easily

2. RESTFUL ARCHITECTURES 13

manage complex and evolving technologies. Finally, REST itself is

protocol agnostic and therefore its applications range from

internet-of-things devices (i.e. devices communicating with the

“Constrained Application Protocol” or COAP) to full-featured web

applications over HTTP.

In the next chapter, we introduce Process Algebra. Process Algebra is

used to construct a formal model of REST. This model allows us to verify

the behavior of RESTful systems with both component and system level

granularities.

14 2. RESTFUL ARCHITECTURES

3

Introduction to Process Algebra

This chapter presents an overview of Process Algebra, particularly the variant

we use to model and verify REST, called Communicating Sequential Processes

(CSP). First, we describe a style of formal logic called Sequent Calculus, where

each statement in the system is inferred by previous statements. Then, we use

sequent calculus to describe process algebra. Finally, we present fundamental

results of process algebra in general, as well as particular results of CSP.

3.1 Sequent Calculus

Sequent Calculus is an approach to proof theory developed by the logician

Gerhard Gentzen between 1934 and 1935 [12]. A sequent is a sequence of

formulae of the form Γ ` ∆, where both Γ and ∆ are formulae themselves. The

operator `, called the “turnstile operator,” can be read as entails. The

antecedent Γ is understood to be read conjunctively, while the consequent ∆ is

read as a disjunction. Hence, a sequent is derivable if and only if ∧Γ =⇒ ∨∆

15

16 3. INTRODUCTION TO PROCESS ALGEBRA

is a theorem in the logic of the particular sequent calculus. In the case of

process algebra, we restrict ourselves to propositional calculus.

There is one axiom that is required in all sequent systems. This is called

the identity axiom, which is described as:

a ` a .

The horizontal line here is referred to as an inference line. If all the premises

above the inference line are true, then the conclusion below the inference line is

also true. Notice that the definition of the identity axiom does not include any

premises, hence it is an axiom.

As an example of more complex formulae, we look at classical logical

operators as presented by Mark Tarver in Logic, Proof, and Computation [21].

Consider logical conjunction. To prove A ∧ B, we must prove both formulae A

and B. We can easily describe this in sequent calculus:

A B
A ∧ B

.

We can read this rule as “Any sequent with a conclusion of A ∧ B is provable if

both A and B can be proved.”

A more comprehensive treatment of sequent calculus can be found in

Mark Tarver’s “Logic, Proof, and Computation” [21]. An excellent overview

of sequent calculus and its place in the timeline of the development of formal

logic is provided in “A Dictionary of Logic” [12].

3. INTRODUCTION TO PROCESS ALGEBRA 17

3.2 Process Algebra

Process algebra is the study of concurrent communicating processes in an

algebraic framework. Hence, we treat the theory of concurrent

communicating processes in an axiomatic way. We begin by presenting a

theory of “Basic Process Algebra (BPA),” as described in [8] and [9].

Definition 3.2.1. An equational specification is given by the tuple (Σ,E). E is a

set of equations in the form t1 = t2 where t1 and t2 are called terms and Σ is their

signature; that is, the set of constant and function symbols that may appear in the

equations. E is the set of axioms of an equational specification.

For our basic process algebra, we have the equational specification

BPA = (ΣBPA,EBPA). Here, ΣBPA =
{
+, ∗,T, ‖, δ, ε

}
∪ A. The binary operators that

can be applied to terms in basic process algebra are elements of the the set{
+, ∗, T, ‖

}
. Often, we simply omit the ∗ symbol in equations, i.e. a ∗ b is

equivalent to ab. The set A contains the actions that a process is able to perform,

which are usually denoted by latin characters. The equational specification of

basic process algebra, EBPA, is shown in Table 3.1.

3.2.1 Semantics

We begin by presenting a precise definition of atomic actions for the set A in

basic process algebra.

Definition 3.2.2. An atomic action is an abstract step of computation that cannot

be interrupted or subdivided.

18 3. INTRODUCTION TO PROCESS ALGEBRA

Table 3.1: Equation specifications for basic process algebra.
x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
(x + y)z = xz + yz A4
(xy)z = x(yz) A5
x + δ = x A6
δx = δ A7
xε = x A8
εx = x A9
x ‖ y = xTy + yTx A10
aTx = ax A11
(x + y)Tz = xTz + yTz A12
axTy = a(x ‖ y) A13

Examples of atomic actions include sending and receiving messages, or

updating a memory location [8]. Since the base actions that a process can

perform are atomic, we do not need to concern ourselves with the possibility

that an action is somehow affected by another process. In other words, all

atomic actions are executed independently of each other. Therefore, we need

only worry about the composition of actions.

We have two basic operators responsible for sequentially composing

processes in basic process algebra. First, ∗ is the sequential composition operator.

The process x ∗ y first executes x, and upon completion of x executes y. Second,

+ is called the alternative composition operator. x + y is the process that either

executes x or y, but never both.

A1 states that a choice between executing processes x and y is identical to

the choice between executing processes y and x. This property is called the

commutativity of +. Axiom A2 says that a choice between x and choosing

3. INTRODUCTION TO PROCESS ALGEBRA 19

between y and z is identical to making a choice between x and y, and then

choosing between that result and z. This property is known as associativity.

Axiom A3 states that choosing between x and itself is the same as choosing x.

This property is referred to as idempotency. Axiom A4 (called right distributivity)

states that a choice between x and y followed by z is identical to choosing

between xz and yz. Finally, axiom A5 states that executing x followed by yz is

the same as executing xy and then z. This is the associativity property of ∗.

Axioms A6-A9 introduce specifications for operations on δ and ε. δ is used

to represent a state of deadlock, while ε represents the empty process.

Definition 3.2.3. Deadlock, denoted as the process δ, is a process in an error state,

unable to proceed.

Axiom A6 states that if an alternative to deadlock exists, then the process

always “chooses” that alternative. A7 is a very intuitive specification; if an

action is specified to occur after the process enters deadlock, then that action

shall never take place.

Definition 3.2.4. The empty process, denoted as ε, performs no actions.

Axioms A8 and A9 state that prefixing or postfixing any action with the

empty process is equivalent to only taking the original action. Therefore, the

empty process serves as the unit element under sequential composition.

Notice that left distributivity is not present in this algebra, hence

x(y + z) 6= xy + xz. This is because in the equation x(y + z), first x is executed,

and then a choice between y and z is made. In the equation xy + xz, first a

choice between xy and xz is made, and then the term is executed. Thus, the

behavior is not identical between these two expressions.

20 3. INTRODUCTION TO PROCESS ALGEBRA

As an example of the difference between x(y + z) and xy + xz, consider the

following scenario. Imagine you are standing in a plane, preparing to

parachute to the ground. There are two parachutes to choose from; one is

going to fail, and the other is safe. Let x denote the act of jumping, y indicate

that the parachute is safe, and z denote the parachute is unsafe. Then, this

scenario is modeled with the process xy + xz. Since after we jump we are

unable to retroactively change the parachute that we chose, this behavior is

very different from x(y + z), which first executes the jump and then chooses

between the parachutes.

Although left distributivity is not present in this system in general, for a

specific case this property is present. Specifically, the equation

a(b + b) = ab + ab. The proof of this theorem is straightforward:

Proof. Observe that a(b + b) = ab by A3. Also by A3, we have that ab = ab + ab.

So, we have that a(b + b) = ab = ab + ab, as desired. �

3.2.2 Concurrent and Parallel Processes

Axioms A10-A13 provide a primitive model useful for describing concurrent

processes using the merge operator (‖).

Definition 3.2.5. The merge operator applied to processes x and y in the equation

x ‖ y arbitrarily interleaves the actions of x with the actions of y.

This approach to modeling concurrency is often called arbitrary interleaving

or shuffling.

In order to totally axiomize the merge operator, we add another operator

to the system (T) called left merge.

3. INTRODUCTION TO PROCESS ALGEBRA 21

Definition 3.2.6. The operator T applied to processes x = az (where a is some atomic

action and z is some process, possibly ε) and y in the equation xTy is equivalent to

a(z ‖ y).

Left merge performs exactly the same operation as the merge operator,

albeit the first action must come from the term on the left of the operator.

Axiom A11 states that an atomic action a left merged with some process x

is equivalent to ax. Meanwhile, axiom A12 provides the right distributive law

for the left merge operator. Finally, axiom A13 provides a formal specification

of our assertion that left merge first executes an action from the leftmost term

and then merges the remainder of both processes.

With A11 and A12, we provide the specification of the merge operator

applied to two processes. Axiom A10 states that the merge operator on x and y

is equivalent to the arbitrary choice between left merging x and y and left

merging y and x. This matches our intuition fairly well; we do not care what

term from what process is actually executed first.

Example 3.2.1. As an example application of the merge operator, consider a

spider that is responsible for crawling over a fixed set of websites and indexing

their contents. Let W denote the set of websites, and crawl.w be an atomic

action that crawls the site w ∈W. We sequentially crawl W with the process

CRAWL = crawl.w0 ∗ crawl.w1 ∗ . . . ∗ crawl.wn for w0,w1, . . . ,wn ∈W. However, in

this specific scenario we are not concerned with the order of these operations.

In practice, an implementor might decide to have each of these actions

performed concurrently. To model this behavior algebraically, we use the

merge operator. We write the concurrent crawl process as

22 3. INTRODUCTION TO PROCESS ALGEBRA

CRAWLCONCURRENT = crawl.w0 ‖ crawl.w1 ‖ . . . ‖ crawl.wn for w0,w1, . . . ,wn ∈W.

3.3 Communicating Sequential Processes (CSP)

Tony Hoare’s seminal 1978 article “Communicating Sequential Processes”

presents one of the most common variants of process algebra [16]. Over the

years, the theory he presented has been extended and modified in non-trivial

ways. The majority of the modern theory of CSP is described well in [20].

Here, we present the background of the theory of CSP and connect it to the

theory of basic process algebra presented earlier. Later in Chapter 4, we

proceed to formally describe REST using CSP.

CSP has a unique view of computation as a form of communication. The

alphabet of actions, Σ, defines allowed communications. A process might

communicate an action to the global environment so that some computation is

performed, or communication from one process can be redirected to another

process. Actions can also come from the environment, as in the case of a user

pressing a key. In short, action in CSP is equivalent to communication. This

has a profound impact on the simplicity of this model with respect to

interprocess communication.

3.3.1 Basic CSP Terms

Just as basic process algebra permits sequential process prefixing through the

binary ∗ operator, CSP permits sequential prefixing through the→ operator.

So, given an action a ∈ Σ and a process P, a→ P is the process that is initially

3. INTRODUCTION TO PROCESS ALGEBRA 23

willing to communicate a and then behaves like P. Notice that this is exactly

identical to how ∗ behaves in basic process algebra. As an example, let

Σ =
{
getup, break f ast,work, lunch, dinner, gotobed,STOP

}
. Then we can define

the process Day given in example 3.3.1.

Example 3.3.1.

Day = getup→ break f ast→ work→ lunch→ work→ dinner→ gotobed→ STOP.

Note that the STOP term in CSP corresponds directly to the δ symbol in

basic process algebra.

We can also specify arbitrary choice between processes in CSP. The +

operator from basic process algebra is written as | in CSP. The process

described by (a1 → P1|a2 → P2|. . . |an → Pn) therefore performs any one of

ai ∈ {a1 . . . an} and then behaves like the corresponding Pi. This is known as the

guarded alternative form for processes. Later in Section 3.3.3, we see that | is a

specific case of a more generic external choice operator.

Notice that the Day process defined in example 3.3.1 concludes by

communicating STOP to the environment and then halts completely. We can

remedy this situation by allowing recursive specifications such as:

Example 3.3.2.

Day = getup→ break f ast→ work→ lunch→ work→ dinner→ gotobed→ Day.

We consider such a specification valid in CSP.

Since resursive processes are permitted in CSP, we add the operator µ to

24 3. INTRODUCTION TO PROCESS ALGEBRA

create anonymous (unnamed) recursive processes.

Definition 3.3.1. The operator µ, provided with a variable x and a process P in the

equation µx.P, is equivalent to PJµx.P/xK where PJµx.P/xK denotes the substitution of

all instances of x that are not bound in another recursive expression in P with the

expression µx.P.

Consider the process P = le f t→ right→ P over the alphabet

Σ =
{
le f t, right

}
. Using the µ operator, we can rewrite this process as

µy.le f t→ right→ y. After applying the definition of µ a single time (since this

definition is recursive and there is no terminating behavior, we can apply this

definition an unbounded number of times) we have

le f t→ right→ (µy.le f t→ right→ y). Notice that we can continue applying

the definition of µ indefinitely to achieve an expansion of this anonymous

expression that is equivalent to the original recursive definition provided in P.

3.3.2 Communication

We also have processes that can accept a variety of communications and then

behave like some process. The ? operator, called prefix choice, permits a process

to accept communication from its environment.

Definition 3.3.2. Let Σ be a set of actions. Then, for A ⊆ Σ, the process

? x : A→ P(x) accepts any communication x of type A and then behaves like the

corresponding P(x).

When the type of x is left unspecified, we assume that x ∈ Σ. There are

several obvious results of prefix choice. First, observe that

3. INTRODUCTION TO PROCESS ALGEBRA 25

? x : ∅ → P(x) = STOP. Since no communications are accepted by this process,

it indefinitely waits for a communication that it cannot receive. Furthermore,

? x : {a} → P(x) = a→ P(a) because there is only a single communication

accepted by the process. As an example of the prefix choice operator in a

useful process, consider the following definition of a process that accepts any

communication x from its alphabet Σ and communicates x back to its

environment:

Example 3.3.3.

Repeat =? x : Σ→ x→ Repeat.

Communication is not confined to only occur between processes and their

environments. CSP provides an abstraction called a channel that allows

processes to direct their communication to a specific location. We require that

all channels have a name.

Definition 3.3.3. The string c! x denotes communication of a datum x over channel c.

We extend any alphabet Σ to allow communication over a channel c of

objects of type T by defining c.T = {c! x|x ∈ T} and unioning c.T with the

original alphabet.

CSP also provides facilities for receiving objects over a particular channel.

Definition 3.3.4. The string c? x : T→ P(x) denotes a process that receives and

binds a datum of type T to a variable x over channel c and then behaves like the

corresponding P(x).

The alphabet is further extended to allow a process to receive objects of

type T over a channel c by defining c? T = {c? x|x ∈ T} and unioning c? T and

26 3. INTRODUCTION TO PROCESS ALGEBRA

the original alphabet.

As an example of the communication features of CSP, consider a very

simple buffer between channels le f t and right that holds only a single element

of type T. We define this buffer as:

Example 3.3.4.

Bu f f er = le f t? x : T→ right! x→ Bu f f er.

This process first receives from le f t some object of type T and binds x to

that datum. Then, Bu f f er communicates the datum x over channel right.

Finally, Bu f f er transitions back into itself with the recursive transition to

Bu f f er.

All input over a channel is coordinated, so a process is unable to move on

after placing an element into a channel until some process completes the

action by removing that element from the channel. With that in mind, consider

an example of a buffer than can store an infinite number of objects. We define

this buffer as:

Example 3.3.5.

Bu f f er∞
〈〉

= le f t? x : T→ Bu f f er∞
〈x〉

Bu f f er∞
s〈y〉

= (le f t? x : T→ Bu f f er∞
〈x〉s〈y〉

|right! y→ Bu f f er∞s).

Here, we use the notation
〈
y
〉

to denote a sequence containing only y, while

s denotes the prefix of datums stored in the buffer. Placing two sequences

adjacent to one another denotes their concatenation. The subscript parameter

3. INTRODUCTION TO PROCESS ALGEBRA 27

of Bu f f er∞ signifies the sequence of objects currently in the buffer. When the

sequence of objects in the buffer is empty, then Bu f f er∞ waits for some datum

to be placed in channel le f t. Otherwise, Bu f f er∞ either receives another object

and evolves into a new process containing that object in the stored sequence,

or it succeeds in writing the earliest received datum in the sequence s
〈
y
〉

to

channel right. This demonstrates two important features of CSP: (1) processes

may have parameters associated with them, and (2) processes may have

named identifiers, as is the case with the identifiers s and y.

3.3.3 Extended Operators of CSP

Table 3.2: Equation specifications for CSP.
P�P = P A14
P u P = P A15
P�Q = Q�P A16
P uQ = Q u P A17
P�(Q�R) = (P�Q)�R A18
P u (Q u R) = (P uQ) u R A19

Table 3.2 presents the core axioms of the algebraic theory of CSP. We omit

certain axioms of operators with direct equivalences in basic process algebra.

Here, we provide an overview of how these operators function and provide

examples of their applications.

Definition 3.3.5. The external choice operator, written P�Q, offers the

environment the choice between the first actions communicated by P and Q, and then

behaves like the process that communicated the action. Further, if S is a finite indexing

28 3. INTRODUCTION TO PROCESS ALGEBRA

set over a collection of processes Pα, then � {Pα|α ∈ S} = Pα�Pβ� . . .�Pγ for

α, β, . . . , γ ∈ S.

This external choice operator is provided in conjunction to the | operator.

We see that external choice is a more general operator. First, observe that

(a→ P)�(b→ Q) behaves like (a→ P)|(b→ Q). External choice has the

advantage over | in that P�STOP does not deadlock unless P deadlocks, since

there are no actions offered by STOP for the environment to choose.

Consider the formula ((a→ P)�(a→ Q)). Since the action a must be chosen

by the environment, it is undefined whether this process behaves like P or Q

after a. We intentionally leave this choice ambiguous. We define a deterministic

process as one where the range of events offered to the environment depends

only on the sequence of observed communications to this point. So, a process

is nondeterministic if it is not deterministic. Since the trace (the sequence of

communications) of the execution of ((a→ P)�(a→ Q)) depends on the

implementation (and cannot be determined by the history of the process) it

follows that this is a nondeterministic formulae. Since nondeterminism is

present in CSP, we provide an operator to make this phenomenon simpler to

reason about.

Definition 3.3.6. Nondeterministic or internal choice between processes P and Q,

written as PuQ, represents a choice between executing process P or Q. Further, if S is

a finite indexing set over a set of processes P, u {Pα|α ∈ S} = Pα u Pβ u . . . u Pγ for

α, β, . . . , γ ∈ S.

The difference between internal (u) and external (�) choice is highlighted

by comparing the formulae (a→ STOP)�(b→ STOP) and

3. INTRODUCTION TO PROCESS ALGEBRA 29

(a→ STOP) u (b→ STOP). In the first formula, the process can proceed if

either a or b is supplied by the environment. However, in the case of internal

choice, if only one action is supplied by the environment then the process

might not advance. Consider when a is provided to the environment, but not

b. Then, the system might choose to execute the side b→ STOP, and block

indefinitely waiting on b, which will never be provided. This is because the

choice of what side of u is executed occurs without regard of communication

in the environment.

For an example of the internal choice operator applied, once again

consider a buffer. The extended buffer provided in example 3.3.5 is somewhat

unrealistic in the sense that it may store infinite data. We can model a buffer

that stores an arbitrarily large amount of data before encountering some

system fault using the internal choice operator. This process is given by:

Example 3.3.6.

Bu f f er = le f t? x : T→ Bu f f er<x>

Bu f f ers<y> = (STOP u le f t? x : T→ Bu f f er<x>s<y>)�right! y→ Bu f f ers.

This is similar to the definition provided in example 3.3.5 except that there

is an option that the system enters a deadlock state if it is unable to write

contents of the buffer to the right channel. In practice, this might signify

something like an out of memory error.

CSP also provides conditional flow control. This is written in the form

P / b .Q and is read as “If b then P, else Q.” In general, we allow any

computable expression to serve as the condition. For example, we define a

30 3. INTRODUCTION TO PROCESS ALGEBRA

process that echoes all even numbers that it receives over channel le f t as:

Example 3.3.7.

EVEN ECHO = le f t? x : Z→ (le f t! x→ EVEN ECHO)/(even? x).EVEN ECHO.

3.4 Parallel Composition in CSP

Recall that action in CSP is equivalent to communication. The interleaving ‖

operator present in basic process algebra does have a direct analogue in CSP

(the 9 operator), however ‖ itself takes on a slightly new meaning.

Definition 3.4.1. The process given by P ‖X Q synchronizes P and Q on events

a ∈ X ⊆ Σ.

As an example of the parallel synchronization operator, consider the

following:

Example 3.4.1. Let Σ =
{
le f t, right,work, sleep

}
. Then, the process

P = (le f t→ work→ right) ‖
{le f t,right} (le f t→ right) first communicates “le f t”,

then communicates “work” since the communication “right” must be

synchronized. Finally, “right” is communicated.

This parallel synchronization operator can introduce scenarios where the

process deadlocks. For example:

Example 3.4.2. Let Σ = Σ be as in example 3.4.1. Let

P = (le f t→ STOP) ‖
{le f t,right} (right→ STOP). Because the left-hand side of the

P communicates “le f t” initially, and the right-hand side of P communicates

“right”, P is unable to proceed, since these events must be synchronized.

3. INTRODUCTION TO PROCESS ALGEBRA 31

Table 3.3: Overview of CSP’s syntax.
Syntax Description
a→ b Sequentially communicate a and then b
µx.P Execute P, with the variable x bound to P
? x : A→ P(x) Accept x ∈ A ⊆ Σ, then behave like the corresponding P(x)
c! x Communicate object x over channel c
c? x : T→ P(x) Accept x ∈ T ⊆ Σ over channel c, and then behave like P(x)
P�Q Offer the 1st actions of P and Q, behave like chosen term’s process
P uQ Non-deterministically choose between P and Q
P / a .Q If a then execute P, otherwise execute Q
P ‖X Q Execute P and Q while sychronizing on events in X
P 9 Q Arbitrarily interleave the communications of P and Q
P[|X|]Q Execute P and Q communicating over channels in set X

Definition 3.4.2. The process P 9 Q arbitrarily interleaves the communications from

processes P and Q. Hence, we have the law that:

(x→ P) 9 (y→ Q) = (x→ (P 9 (y→ Q)))�(y→ ((x→ P) 9 Q)).

Example 3.4.3. Let Σ = {a, b, c}. Then, the process P = (a→ b→ c)9 (b→ a→ c)

has possible traces of communication 〈a, b, c, b, a, c〉 and 〈a, b, b, a, c, c〉 , among

other permutations of these communications.

Table 3.3 provides a reference for CSP’s syntax. As we proceed through

this dissertation, refer to it to refresh the meaning of the operators. CSP

contains enough useful operators that we can adequately describe any

computable process, given the proper atomic actions. Furthermore, as we will

see, CSP equations can also be viewed as a specification for how a process

ought to behave. Since actions correspond to communication, this begs the

question: can we track the communication of processes? Can we verify that

communication between processes complies to a formal specification? We

32 3. INTRODUCTION TO PROCESS ALGEBRA

consider these questions in the next section.

3.5 Traces of CSP

A CSP environment can observe any of the communications between itself

and an executing process. Imagine that an environment that keeps an ordered

journal of communication with a process, P. We call such a journal a trace of P.

Definition 3.5.1. The traces of a process P with alphabet Σ, denoted traces(P), is the

set of all possible sequences of P’s communication. Furthermore, traces(P) ⊆ Σ∗ (the

set of all strings over Σ).

Definition 3.5.2. Let P and Q be processes. If traces(P) = traces(Q), then P and Q

are trace-equivalent, written as P =T Q.

Example 3.5.1. Let P = STOP. Then, traces(P) = {} since P communicates

nothing.

Example 3.5.2. Let P = (a→ b→ STOP). Then, traces(P) = {〈〉 , 〈a〉 , 〈a, b〉} .

Example 3.5.3. Let P = (x→ STOP)�(y→ STOP). Then,

traces(P) =
{
〈〉 , 〈x〉 ,

〈
y
〉}
.

Observe that for any process P, ∀t ∈ traces(P), t is a finite sequence.

Furthermore, for any process P, 〈〉 ∈ traces(P). Finally, if s is the prefix of the

trace st, then s ∈ traces(P).

Definition 3.5.3. Let P and Q be processes. We say that Q trace-refines P, written

as P vT Q, if traces(P) ⊇ traces(Q).

3. INTRODUCTION TO PROCESS ALGEBRA 33

3.5.1 Finding traces

In order for process traces to actually be useful, we must have laws to generate

them. Here, we describe these traces rigorously, based on the descriptions

provided by Hoare in [16], although we use sequent calculus. Often, trace

laws are presented as equational specifications. Our approach has the

advantage of making trace specifications a more obvious development from

the rules needed to generate them.

Definition 3.5.4. Let P,Q, and R be processes in CSP over Σ. Let A ⊆ Σ. Then, we

have:

•
P = STOP

traces(P) = {〈〉}
.

•
P = a→ Q

traces(P) = {〈〉} ∪ {〈a〉 s|s ∈ traces(Q)}
.

•
P =? x : A→ Q(x)

traces(P) = {〈〉} ∪
{
〈a〉 s|s ∈ traces(QJa/xK) and a ∈ A

} .

•
P = c? x : A→ Q(x)

traces(P) = {〈〉} ∪
{
〈c.a〉 s|s ∈ traces(QJa/xK) and a ∈ A

} .

•
P = Q�R

traces(P) = traces(Q) ∪ traces(R)
.

•
P = Q u R

traces(P) = traces(Q) ∪ traces(R)
.

•
b (P = Q / b . R)

traces(P) = traces(Q)
¬b (P = Q / b . R)

traces(P) = traces(R)
.

3.5.2 Traces of Recursive Processes

Finding the traces of recursive processes proves to be difficult, in general.

Consider the example:

34 3. INTRODUCTION TO PROCESS ALGEBRA

Example 3.5.4. Let P1 = up→ down→ P1, Pu = up→ Pd, and Pd = down→ Pu.

We can show that P1 and Pu are trace equivalent.

We do not yet have the tools to show this result. Here, we provide an

overview of recursion theory to develop and understand the Unique Fix-Point

Theorem described in [11] and [10].

Recursive Functions and Fix-Points

Consider the factorial function defined by:

factorial :: Integer -> Integer

factorial 0 = 1

factorial n = n * factorial (n - 1)

Now, hoist the recursive appearance of factorial as a function parameter:

factorialGenerator :: (Integer -> Integer) -> (Integer -> Integer)

factorialGenerator f 0 = 1

factorialGenerator f n = n * f (n - 1)

We are interested in examining the fix-points of f actorialGenerator.

Definition 3.5.5. A function f has a fix-point a if and only if f (a) = a.

Observe that f actorialGenerator partially applied to f actorial gives the

result:

factorialGenerator factorial 0 = 1

factorialGenerator factorial n = n * factorial (n - 1),

3. INTRODUCTION TO PROCESS ALGEBRA 35

which is precisely the factorial function. Hence,

f actorialGenerator(f actorial) = f actorial. Therefore, we conclude that f actorial is

a fix-point of f actorialGenerator.

In general, we can apply this “hoisting” procedure to any recursive

function. The original recursive function is the fix-point of the new hoisted

function. Does each hoisted recursive function have a solution? We consider

this question after introducing an alternative model of computation.

One model of computing is called lambda calculus. Lambda calculus is an

extremely simple function system that allows for function definitions with λ.

Consider the example:

Example 3.5.5. ID = λx.x. Then, ID ID = ID, ID y = y, etc.

The terms that follow λ are the parameters of the function. Following the

function parameters, a “.” is placed to separate the function body from the

arguments. Finally, the function body can be any expression involving the

function arguments or a previously defined and named lambda-term. To

evaluate a function application, say IDy, simply replace each lexical

occurrence of the function parameters with the supplied argument. This

process is called lambda-reduction. For example:

Example 3.5.6. (λx.(λx.x)x)y = (λx.x)y = y.

This knowledge of lambda calculus is sufficient to demonstrate that each

function has a fix-point.

Theorem 3.5.1. Let F be a function in untyped lambda calculus. Then, F has a

fix-point.

36 3. INTRODUCTION TO PROCESS ALGEBRA

Proof. Let X = λx.F(xx) and W = XX. Then, we have:

W = XX

= (λx.F(xx))X

= F(XX)

= F(W)

Since W = F(W), it follows that W is a fix-point of F. Since F is an arbitrary

function, we conclude that every function has a fix-point. �

Now, consider example 3.5.4. We seek to provide a recursive function that

generates the traces of the mutual recursion between Pu and Pd that hoists

these functions in a similar way to f actorialGenerator. Define

Fud

(〈
~A1, ~A2

〉)
=

〈
up→ ~A2, down→ ~A1

〉
. Observe that 〈Pu,Pd〉 is a fix-point of

Fud.

Theorem 3.5.2. The Unique Fix-Point (UFP) Theorem: If Z = f (Z) is a fix-point

equation generated by any recursion X on trace-sets, and Y is a process whose

trace-set satisfies this equation (i.e. traces(Y) = f (traces(Y))), then Y =T X.

Now, we can conclude example 3.5.4. First, observe that

〈C,D〉 =T 〈A,B〉 =⇒ C =T A and D =T B. So, we seek to show that

〈Pu,Pd〉 =T

〈
P1, ~A2

〉
where ~A2 = down→ P1. By the UFP, it is sufficient to

3. INTRODUCTION TO PROCESS ALGEBRA 37

demonstrate
〈
P1, ~A2

〉
is a fix-point of Fud. We have:

Fud

(〈
P1, ~A2

〉)
1

= up→ ~A2

= up→ down→ P1

= P1.

Furthermore, the second component of this vector is fixed:

Fud

(〈
P1, ~A2

〉)
2

= down→ ~A1

= down→ P1

= ~A2.

So, we have that Fud

(〈
P1, ~A2

〉)
=

〈
P1, ~A2

〉
. By the UFP, it follows that〈

P1, ~A2

〉
=T 〈Pu,Pd〉 . Therefore, we see that P1 =T Pu as desired.

3.5.3 Traces and Specification

Now that we have laws that allow us to logically construct the traces of a

given process, we can create a trace specification for a problem and

demonstrate that a given implementation satisfies the specification. Rather

than specifying the traces of a process, we can also give a specification in CSP.

This approach involves creating a specification, S, and showing that an

implementation P satisfies the expression S vT P.

38 3. INTRODUCTION TO PROCESS ALGEBRA

3.5.4 Additional Trace Notation

In [16], Hoare provides additional notation describing common operations on

traces. This includes:

• If t is a finite trace, then #t denotes the length of t

• If t ∈ Σ∗ and A ⊆ Σ, then t ↑ A denotes t restricted to A. We have that:

– 〈〉 ↑ A = 〈〉

– s 〈a〉 ↑ A = (s ↑ A) 〈a〉when a ∈ A

– s 〈a〉 ↑ A = (s ↑ A) when a 6∈ A

Example 3.5.7. Let Σ = {a, b, c, d} , A = {b, c} , and s = 〈a, b, b, d, c, a〉 . Then,

s ↑ A = 〈b, b, c〉 .

• If t = 〈a〉 s ∈ Σ∗, then t′ = s. So, t′ denotes the tail of t.

Example 3.5.8. If t = 〈a, b, a, c〉 , then t′ = 〈b, a, c〉 .

• If t ∈ Σ∗, then t ↓ c denotes:

1. If c is an event in Σ then t ↓ c is the number of times c appears in t.

So, t ↓ c = #(t ↑ {c}).

2. If c is a channel, then t ↓ c denotes the sequence of values

communicated along c in t.

Example 3.5.9. Let c and d be channels and consider the trace

t = 〈c.1, d.2, d.3, c.4〉 . Then, t ↓ c = 〈1, 4〉 .

3. INTRODUCTION TO PROCESS ALGEBRA 39

• Let p, s, and t be traces. We write p ≤ t to denote that p is a prefix of t, i.e.

t = ps

• Let P be some process. We write P sat R(tr) if ∀tr ∈ traces(P), R(tr) is true

Specifications as a Logical Assertion

One common approach to process specification is to define a predicate R and

demonstrate that it holds for each trace of a particular process P. This is

generally accomplished by applying the definitions of traces of a process to

deduce that the specific predicate holds.

We consider an early example of process specification provided by Hoare

[16]. Foocorp is a vending machine manufacturer who creates wonderful

machines that never run out of product. One of Foocorp’s clients orders a

vending machine that accepts a single quarter and provides the customer with

a bar of chocolate. We might specify this vending machine as:

VMS = quarter→ chocolate→ VMS.

The client demands that the vending machine meet two requirements.

First, the vending machine must not deposit more chocolate than the number

of quarters that it has accepted. Second, the vending machine must be fair to

the customer and deposit chocolates incrementally as it receives payment. We

40 3. INTRODUCTION TO PROCESS ALGEBRA

codify these requirements as propositions NOLOSS and FAIR respectively:

NOLOSS = (tr ↓ chocolate) < (tr ↓ quarter)

FAIR = (tr ↓ quarter) ≤ (tr ↓ chocolate + 1).

Finally, we combine these product requirements and simplify the resulting

expression:

VMSPEC = NOLOSS ∧ FAIR

= (0 ≤ (tr ↓ quarter) − (tr ↓ chocolate) ≤ 1).

Proof. We seek to demonstrate that the vending machine specification VMS

meets the product requirement VMSPEC by induction. First, consider the

STOP process. Observe that:

STOP sat tr = 〈〉

0 ≤ (tr ↓ quarter) − (tr ↓ chocolate) ≤ 1
.

Now, assume that some trace X of VMS satisfies VMSPEC. We show that

after prefixing X with the sequence of communications offered by VMS,

VMSPEC is still satisfied:
X sat (0 ≤ (tr ↓ quarter) − (tr ↓ chocolate) ≤ 1)〈
quarter, chocolate

〉
X sat tr ≤

〈
quarter, chocolate

〉
0 ≤ ((tr′′ ↓ quarter) − (tr′′ ↓ chocolate)) ≤ 1

0 ≤ ((tr ↓ quarter) − (tr ↓ chocolate)) ≤ 1

.

Notice that the last conclusion is precisely VMSPEC. Because X is an

arbitrary trace of VMS and
〈
quarter, chocolate

〉
X satisfies VMSPEC, we

conclude that all traces of VMS satisfy VMSPEC. �

3. INTRODUCTION TO PROCESS ALGEBRA 41

3.6 Conclusion

This chapter distills the theory of Process Algebra into a palatable form. We

presented sequent calculus, the logical tool used in describing the traces of

processes. Then, we introduced a basic form of process algebra to serve as a

foundation when considering traces and more advanced communication

styles. Next, Hoare’s Communicating Sequential Processes is described in

great detail. In particular, we described the operations of CSP and showed

how traces are generated from a CSP process. Finally, we described the

procedure of specifying the behavior of more complex recursive processes.

42 3. INTRODUCTION TO PROCESS ALGEBRA

4

Formalizing REST with CSP

Xi Wu and Huibiao Zhu provide the initial approach to the formalization of

REST with CSP [22]. We extend this approach in a novel way. The approach of

Wu et al consolidates the various resources into a single process. Because we

desire to model microservices, we seek to model multiple resource providers.

With this approach, the origin server can be thought of as an API Gateway that

controls dispatch to various resources. We begin by introducing the work and

notation of Wu et al that is used as a basis for our refinements. Then, we

introduce the definition of the various components that we model, including

our extension.

4.1 Introduction to Terminology

Our approach is to model the several distinct components of RESTful systems

using CSP processes. For an overview of the role of each component, consult

Chapter 2. These processes include:

43

44 4. FORMALIZING REST WITH CSP

1. UserAgent

2. Intermediary

3. OriginServer

4. Resources Resource 0, Resource 1, . . . , Resource n corresponding to

multiple service providers

5. Caches corresponding to all processes except resources

4.1.1 Communication Channels

Each component of a RESTful system communicates with its corresponding

cache over channels. Here, we explicitly name these channels as:

1. InUAC, UserAgent′s internal channel allowing communication with its

cache

2. InIC, Intermediary′s internal channel allowing communication with its

cache

3. InOSC, OriginServer′s internal channel allowing communication with its

cache

We model the communication of data through a network as data through

channels. In accordance with the layered design of REST, we permit only

adjacent layers in the system to communicate with one another. We define

these channels as:

4. FORMALIZING REST WITH CSP 45

1. ComUAI, the channel that the User Agent and Intermediary use for

communication

2. ComIOS, the channel that the Intermediary and Origin Server

communicate over

3. ComSR 0,ComSR 1, . . . ,ComSR n, the channels for communication

between the Origin Server and n resources

Figure 4.1: Overview of REST modeled in CSP.

Figure 4.1 provides a graphical illustration of this architecture to

accompany these descriptions. Graphically, we visualize that each component

in the system is only capable of communicating with immediately adjacent

components. Furthermore, each of the component’s caches is totally

independent. Finally, we see that the Origin Server is responsible for

distributing communication (presumably originating from the Intermediary)

46 4. FORMALIZING REST WITH CSP

over the various resources. This might indicate load balancing, an API

gateway, etc.

4.1.2 Set Semantics

Table 4.1 describes the sets that are used by the CSP model of REST. These are

useful when describing the construction of messages and trace predicates over

RESTful systems, so we refer to this table throughout this chapter.

Table 4.1: The various sets of objects found in the CSP model of REST.
Set Description Set Description

User all user agents in system Server all origin servers in system
Representation all resource representations SDIn f ormation all self-descriptive messages

Cache all caches in the system Intermediary all proxies and gateways
Operation

{
get, put, post, delete

}
Hypermedia all hypermedia resources

Resource all resources ID all resource identifiers

REST is concerned with how and what messages should be exchanged in a

client-server architecture. We formally define the messages that are exchanged

in a protocol-independent fashion. Any protocol that supports REST (i.e.

HTTP, COAP) supports this abstract message definition.

Much of the context of a message is stored in its interface component.

Indeed, the information most important to the application itself is stored in

this location. Consult table 4.1 for descriptions of the sets referred to in the

next few definitions.

Definition 4.1.1. The interface component of a message is a 4-tuple

(id, oper, data, link) where id ∈ ID, oper ∈ Operation, data ∈ SDIn f ormation, and

link ⊆ HyperMedia.

4. FORMALIZING REST WITH CSP 47

Definition 4.1.2. A request message is defined as a 3-tuple

(inter f ace, sender, receiver), where sender ∈ User ∪ Intermediary ∪ Server,

receiver ∈ Intermediary ∪ Server ∪ {Resource0,Resource1, . . . ,Resourcen} , and

inter f ace is a valid message interface. The set of all message requests is denoted as

MSGreq.

Note that for convenience, we usually write msgreq.inter f ace.sender.receiver

in place of the usual notation for a tuple.

Definition 4.1.3. The content component of a response message is defined as a

4-tuple (id, repr, data, link), where id ∈ ID, repr ∈ Representation,

data ∈ SDIn f ormation, and link ⊆ HyperMedia.

Definition 4.1.4. A response message is defined as a 3-tuple

(content, sender, receiver), where content is the previously described content

component of a message,

sender ∈ Cache ∪ Intermediary ∪ Server ∪ {Resource0,Resource1, . . . ,Resourcen} ,

and receiver ∈ User ∪ Intermediary ∪ Server. The set of all response messages is

denoted as MSGrep.

Once again, we usually write something similar to

msgrep.content.sender.receiver rather than use the tuple notation, as it appears

more natural alongside terms in CSP.

Definition 4.1.5. The set of all messages in a RESTful system is defined as:

MSG = MSGreq ∪MSGrep.

48 4. FORMALIZING REST WITH CSP

4.2 Process Definitions

In this section we present the definition of the various processes that compose

a RESTful system. We begin by providing a top-level overview of the entire

system, and then gradually provide the specific model for each component.

Definition 4.2.1. The CSP model for a generic RESTful system is defined as:

System = UserAgent [|{ComUAI} |] Intermediary [|{ComIOS} |]

OriginServer [|{ComSR 0, ComSR 1, . . . ,ComSR n} |]

(Resource 0,Resource 1, . . . ,Resource n).

The User Agent process is given an interface that is used to construct a

request message. We use the notation inter f ace′ to denote the next interface in

the system. If inter f ace specifies that a get request is to be sent, then UserAgent

first checks its cache to see if there is an existing saved reply that can be

reused. When no such reply exists, then UserAgent communicates the request

to Intermediary over ComUAI. Then, if the response from Intermediary indicates

that the resource can be cached, then UserAgent updates its local cache before

proceeding to the next interface in the system. Meanwhile, when inter f ace

does not specify a get request, then UserAgent immediately communicates

with intermediary, since other requests can not be cached. Listing 4.1 provides

a definition of the UserAgent process. U denotes the UserAgent identifier, C

denotes the Cache identifier, and I is the Intermediary identifier.

UserAgent = UserAgent(interface) [|{InUAC}|] Cache(interface)

UserAgent(interface) =

4. FORMALIZING REST WITH CSP 49

((InUAC ! request.interface.U.C →

InUAC?reply.content.C.U →

UserAgent(interface ’))

/ (content.id != NULL) . 1

(ComUAI!request.interface.U.I →

ComUAI?reply.content.I.U →

((InUAC!store_request.content.U.C →

UserAgent(interface ’))

/ (cacheable? content.data.flag) . 2

UserAgent(interface ’))))

/(interface.oper == get). 3

(ComUAI!request.interface.U.I →

ComUAI?reply.content.I.U →

UserAgent(interface ’))

1 If the resource is present in the User Agent’s cache, return the cached

value

2 Otherwise, request the resource from intermediary. If the response is

cacheable, communicate the response to the cache for storage

3 If the request’s method is not get, then immediately communicate with

Intermediary

Listing 4.1: UserAgent process definition.

We are interested in describing the cache for each of these components.

50 4. FORMALIZING REST WITH CSP

Each cache operates essentially the same way, so we describe the process in

very general terms. Cache listens over the communication channel with its

corresponding component. When a store request is sent, Cache simply stores

the interface of the request. Otherwise, Cache checks its store for the interface

in the request message. When Cache contains the requested resource, it

communicates the resource with its corresponding process. Cache indicates a

missing resource by responding with a NULL resource ID.

Definition 4.2.2. Let InXC denote the communication channel between a REST

component X and its corresponding cache, C. We define Cache as:

Cache(interface) =

(InXC?request.interface.X.C → store(interface))

/ (request == store_request) .

((InXC!reply.content.C.X → Cache(interface))

/ ((find interface.id) ∧ interface.oper == get) .

(InUAC!reply.(content.id = NULL).C.X → Cache(interface)))

where store implements the cache storage functionality and f ind locates a resource by

its identifier and binds it to the lexical variable content.

The Intermediary process corresponds to components similar to

application-level load balancers; that is, a load balancer that distributes traffic

across a set of origin servers. Similarly, Intermediary could be viewed as a

firewall or other gateway to the origin server. Intermediary operates by

listening for requests from a UserAgent process. When UserAgent performs a

get request, then Intermediary checks its cache for an appropriate saved

resource. If that cache-check fails, Intermediary must slightly modify the

4. FORMALIZING REST WITH CSP 51

request message by changing the sender and receiver fields. The modified

message is forwarded to OriginServer, and the response is cached if

appropriate. Finally, the response is communicated to the original UserAgent.

If the request does not perform a get operation, then Intermediary forwards the

traffic along, similar to the failed cached lookup operation. Listing 4.2

provides the definition of the Intermediary process. Here, U denotes the

UserAgent identifier, I denotes the Intermediary identifier, C denotes the

identifier of the Intermediary’s cache, and S is the identity of the origin server.

Intermediary = Intermediary(interface) [|{InUAC} |] Cache(interface)

Intermediary(interface) =

ComUAI?request.interface.U.I →

((IncIC!request.interface.I.C →

InIC?reply.content.C.I →

ComUAI!reply.content.I.U →

Intermediary(interface))

/ (content.id != NULL) . 1

((ComIOS!changeFormat(request).interface ’.I.S →

ComIOS?reply.content.S.I →

InIC!store_request.content.I.C →

ComUAI!changeFormat(reply).content ’.I.U →

Intermediary(interface))

/ (content.data.flag == cacheable) . 2

(ComIOS!changeFormat(request).interface ’.I.S →

ComIOS?reply.content.S.I →

52 4. FORMALIZING REST WITH CSP

ComUAI!changeFormat(reply).content ’.I.U →

Intermediary(interface))))

/ (interface.oper == get) . 3

(ComIOS!changeFormat(request).interface ’.I.S →

ComIOS?reply.content.S.I →

ComUAI!changeFormat(reply).content ’.I.U →

Intermediary(interface))

1 Receive a get request over ComUAI. If the cache contains a response,

issue the cached resource as a reply to UserAgent

2 If the resource is not cached, forward the request to OriginServer. If it is

possible to cache the response, do so

3 If we are not working with a get request, then we must immediately

forward the request to OriginServer

Listing 4.2: Intermediary process definition.

We depart from the model described in [22] for the origin server. We

permit resources to be composed of several processes, called

Resource 0, Resource 1, . . . , Resource n. The origin server provides some

function, c f or(inter f ace) that provides the appropriate channel to

communicate over, and r f or(inter f ace) that provides the appropriate resource

identifier for the given interface. This matches our intuition that routing is

simply a function.

The basic functionality of the origin server is to route requests over

4. FORMALIZING REST WITH CSP 53

ComIOS to the corresponding resource. Because the origin server is ultimately

the final destination and resources are simply implementation-details, we are

not concerned with updating any fields in the message. Once a get request is

received, the origin server checks its cache for the resource. Should the cache

check fail, then the origin server communicates with the resource. Finally, the

origin server passes the communication from the resource back to the

intermediary. Listing 4.3 is the CSP specification of the Origin Server process.

Here, I is understood to be the Intermediary identifier, S is the Origin Server

identifier, and C is the origin server’s cache.

OriginServer = Server(interface) [|{InUAC} |] Cache(interface)

Server(interface) = ComIOS?request.interface.I.S →

(InOSC!request.interface.S.C → InOSC?reply.content.C.S →

((ComIOS!reply.content.S.I → Server(interface))

/ (content.id != NULL) . 1

(c_for(interface)!request.interface.S.r_for(interface) →

c_for(interface)?reply.content.r_for(interface).S →

(InOSC!store_request.content.S.C →

ComIOS!reply.content.S.I →

Server(interface)))

/ (content.data.flag == cacheable) . 2

ComIOS!reply.content.S.I))

/ (interface.oper == get) . 3

(c_for(interface)!request.interface.S.r_for(interface) →

c_for(interface)?reply.content.r_for(interface).S →

54 4. FORMALIZING REST WITH CSP

ComIOS!reply.content.S.I → Server(interface)).

1 If the cache holds the resource, respond with the cached value to

Intermediary

2 If the cache does not contain the resource, reach out to the resource

provider. If it is possible to cache the response, do so. Regardless,

respond to Intermediary with the resource

3 If the request is not a get operation, then reach out to the resource

provider for the appropriate response

Listing 4.3: OriginServer process definition.

There is flexibility as to how individual resources are modeled. So long as

a resource provider (the process responsible for creating a response for a

particular set of resources) is given a unique numeric identifier and

communicates over the corresponding resource channel, we are not concerned

with how the internals function specifically.

4.3 Conclusion

The principles of REST are modeled easily as CSP processes. We extend the

approach provided by Wu et al in [22] to adequately express a multi-process

environment. This approach permits us to employ the techniques presented in

Chapter 3 to describe and verify the behavior of a RESTful application

4. FORMALIZING REST WITH CSP 55

composed of micro-services. Hence, we are able to create behavioral

guarantees of general RESTful systems and particular applications.

56 4. FORMALIZING REST WITH CSP

5

Concurrency Abstracted

Besides Process Algebra, there are alternative formal theories that seek to

model concurrency. Examples of these theories include Petri Nets and

Asynchronous Transition Systems. Traces prove to be a fairly useful model for

describing the behavior for each of these systems. By developing a

sophisticated theory of traces we are able to generalize the behavior of

concurrent systems in a model-independent fashion. Here, we begin by

reviewing elementary algebraic concepts. Then, we discuss the theory of

traces. The structures present in the behavioral-semantics of CSP are formally

defined as Hoare structures. We present foundational concepts in category

theory to demonstrate the important relationship between trace and Hoare

structures.

57

58 5. CONCURRENCY ABSTRACTED

5.1 Trace Theory and Other Formalizations

5.1.1 Preliminary Definitions

We begin by reviewing basic definitions of abstract algebra.

Definition 5.1.1. Let M be a set closed under the operator ∗. M is a monoid if:

1. There exists an identity element e ∈M such that ∀m ∈M, e ∗m = m = m ∗ e

2. For all a, b, c ∈M we have that (a ∗ b) ∗ c = a ∗ (b ∗ c)

Usually, we do not not include the ∗ symbol when writing expressions

over a monoid.

Example 5.1.1. Consider the setN0 =N ∪ {0}with the operator +. N0 is a

monoid, with 0 functioning as the identity element.

Definition 5.1.2. Let f : M→M′ be a function over monoids M and M′ with

identity elements e ∈M and e′ ∈M′. If ∀a, b ∈M we have that f (ab) = f (a) f (b) then

f is a homomorphism.

Example 5.1.2. Let M and M′ be monoids, with respective identity elements e

and e′. Define the operator ∗ on the product monoid on M ×M′ as

(m1,m′1) ∗ (m2,m′2) = (m1m2,m′1m′2). The identity element of this monoid is (e, e′).

Now, consider φ : M′
→M ×M′ defined as φ(m′) = (e,m′). We see that φ is a

homomorphism.

Definition 5.1.3. Let f : M→M′ be a homomorphism. If f is onto and injective,

then f is an isomorphism between monoids.

5. CONCURRENCY ABSTRACTED 59

Definition 5.1.4. Let Σ be a set. The free monoid on Σ is defined on all possible

finite sequences under the operation of string concatenation. The identity element of

the free monoid is the empty string, denoted ε.

Example 5.1.3. Let Σ = {a, b} . The free monoid on Σ includes, among other

elements, the subset {ε, 〈ab〉 , 〈bab〉 , . . .} .

Definition 5.1.5. Let M be a monoid and ρ be an equivalence relation on M. Then,

the quotient of M modulo ρ (denoted M/ρ) is the quotient monoid of M with

respect to ρ. This induces the natural homomorphism f : M→M/ρ given by

f (x) = [x] , i.e. f (x) is defined as the equivalence class of x.

Example 5.1.4. ConsiderZ/Zn, the integers modulo n. The congruence modulo

n places each integer into its equivalence class modulo n. Note that each

integer has an inverse in this set, and so it follows that this set has a little more

structure than a monoid, and it is called group. But all groups are monoids, so

this is a simple example of a quotient monoid.

5.1.2 The Trace Monoid

Recall that a behavioral-semantics based approach to process verification

holds that two processes are equivalent if they produce the same set of traces.

This is reified by Unique Fixed Point theorem that states that if two processes

satisfy the same recursive equation on their trace sets, then they are trace

equivalent. To cope with the possibility of concurrent behavior, we

acknowledge that a process might communicate a different sequence of events

between different executions. The intuition is that if two primitive actions in

60 5. CONCURRENCY ABSTRACTED

the process alphabet may be swapped in the traces of that particular process,

then those actions must execute independently of one another. Here, we

formalize this intuition and describe the result using traditional algebraic

methods. The definitive resource discussing the theory of traces is [11], which

should be consulted for further reference.

Definition 5.1.6. Let A be a set with a relation D. If D is symmetric and reflexive,

then it is called a dependency relation on A.

Example 5.1.5. Let Σ = {a, b, c} . Then,

D = ({a, b} × {a, b}) ∪ ({a, c} × {a, c}) = {(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, a)} is a

dependency relation on Σ.

Definition 5.1.7. Let A be a set with a dependency relation D. The independence

relation induced by D on A is defined as ID = (A × A) −D.

Example 5.1.6. Let Σ = {a, b, c} and D = ({a, b} × {a, b}) ∪ ({a, c} × {a, c}) (as in

Example 5.1.5.) The independence relation induced by D is ID = {(b, c), (c, b)} .

Definition 5.1.8. Let D be a dependency on Σ. We define trace equivalence as the

least congruence ≡D (the transitive, reflexive, and symmetric closure of D) in the free

monoid on Σ such that ∀a, b ∈ Σ

(a, b) ∈ ID =⇒ ab ≡D ba.

Equivalence classes of ≡D are called traces over D.

Example 5.1.7. Let Σ = {a, b, c} and D = ({a, b} × {a, b}) ∪ ({a, c} × {a, c}) (as above

in example 5.1.5.) The trace over D given by the string abbca is

[abbca] = {abbca, abcba, acbba} .

5. CONCURRENCY ABSTRACTED 61

In other words, the independence relation states that two actions b and c are

independent, and hence can be safely swapped.

Definition 5.1.9. For an alphabet Σ and dependency relation D, the free partially

commutative quotient monoid M(D) = Σ∗/≡D is called the trace monoid.

When describing a concurrent system, usually not all possible strings over

the trace monoid are permitted. So, we define a sub-collection of the trace

monoid called a trace structure.

Definition 5.1.10. A trace structure is a tuple T = (M,Σ, I) where (Σ, I) describes

an independence relation, and M is a subset of the trace monoid generated on (Σ, I)

with the following properties for t, t′ ∈ Σ∗ and a, b ∈ Σ:

1. consistency: if t ≡DI t′ and t′ ∈M, then t ∈M

2. prefix-closed: if t 〈a〉 ∈M, then t ∈M

3. proper: if t 〈a〉 , t 〈b〉 ∈M and aIb, then t 〈ab〉 ∈M

Example 5.1.8. Let Σ = {a, b, c} and D = ({a, b} × {a, b}) ∪ ({a, c} × {a, c}) (as in

example 5.1.5.) Define M = {abc, acb, a, ac, ab} . Then, (M,Σ, ID) is a trace

structure.

We are also interested in describing behavior-preserving morphisms

between different trace structures. First, we describe how to translate strings

from one alphabet to another given a partial alphabet map λ.

Definition 5.1.11. A function λ : Σ→ Σ′ extends over strings with the function:

λ̂(s 〈a〉) =

λ̂(s)λ(a) i f λ(a) de f ined

λ̂(s) i f λ(a) unde f ined

62 5. CONCURRENCY ABSTRACTED

Definition 5.1.12. A morphism of trace structures (M,Σ, I)→ (M′,Σ′, I′) is

induced by a partial function λ : Σ→ Σ′ that satisfies:

1. independence preservation: let a, b ∈ Σ. If λ(a) and λ(b) are defined, then

λ(a)I′λ(b)

2. string preservation: if s ∈M then λ̂(s) ∈M′

Example 5.1.9. Let Σ = {a, b, c} and D = ({a, b} × {a, b}) ∪ ({a, c} × {a, c}) (as in

example 5.1.5.) Further, let Σ′ = {a′, b′, c′} and

D′ = ({a′, b′} × {a′, b′}) ∪ ({a′, c′} × {a′, c′}) . Define λ(t : Σ) = t′. Since λ is simply a

renaming of symbols of Σ, we have string and independence preservation.

Hence, λ is a morphism between trace structures.

This example demonstrates the fundamental mode of trace morphisms:

symbol renaming. In certain instances, a trace morphism may also embed a

trace structure into another, in the sense that the image of the domain is

strictly finer than the range.

5.1.3 Hoare Structures

In chapter 3, we used the term trace to refer to objects that do not quite meet

the trace criteria we have established. The primary difference is that they lack

an explicit dependency relation between the various atomic actions. We

formalize what we have been calling traces using the notion of Hoare structures

described in [11].

Definition 5.1.13. A Hoare structure is a tuple (H,Σ) where Σ is a set of atomic

actions and H is a nonempty, prefix-closed subset of the free monoid Σ∗.

5. CONCURRENCY ABSTRACTED 63

Once again, we are interested in defining behavior-preseving morphisms

between Hoare structures.

Definition 5.1.14. A morphism between Hoare structures (H,Σ)→ (H,Σ′) is

induced by a partial function λ : Σ→ Σ′ so that for all strings in H we have λ̂(s) ∈ H′.

It is easier to reason about trace structures because the explicit dependency

relation captures the intent regarding the dependency of particular actions.

Intuitively, we might guess that trace structures and Hoare structures have a

special relationship. Indeed, this is the case. To discuss this, we introduce

some fundamental ideas of category theory and demonstrate how trace

structures may be viewed as an abstraction over Hoare structures.

5.2 Trace Structures and Hoare Structures

5.2.1 Some Category Theory

Here, we introduce a few fundamental concepts in category theory. For more

specific details, [17] provides a fair introduction to category theory and is

reasonably accessible. We seek to rigorously construct some notion of an

abstract model. Specifically, we want to be able to construct morphisms

between different theories of concurrency. We introduce the ideas of adjoints

and coreflectors to accomplish this.

Definition 5.2.1. A directed graph is composed of a set O of objects and A of arrows,

alongside two functions. These functions are domain, which maps arrows to their

domain object, and codomain, which maps arrows to their corresponding codomain.

64 5. CONCURRENCY ABSTRACTED

a b

c

f

g◦ f
g

Figure 5.1: A diagram to visualize objects in a category.

Definition 5.2.2. A category is a directed graph (O,A) with two additional

properties. First, for each o ∈ O, there is an identity arrow ido : o→ o. Second, let

a, b, c ∈ O with a
f
→ b

g
→ c. Then, there exists an arrow a

g◦ f
→ c.

Figure 5.1 provides a diagram of some category. Here, there are objects

a, b, c and arrows f , g, g ◦ f . The identity arrows are omitted, as is common in

category diagrams. Those arrows would just be loops on each object.

Example 5.2.1. Consider the category of all sets. Arrows in this category are

simply set-maps.

Example 5.2.2. Consider the category of all monoids. Arrows in this category

are homomorphisms.

Definition 5.2.3. A functor is a morphism between categories. Particularly, if C and

B are categories, a functor T : C→ B consists of:

1. object function - for each c ∈ C, there is a corresponding b ∈ B so that Tc = b

and T(idc) = idb

2. arrow function - consider two arrows in C, f : c→ c′ and g : c′ → c′′. Then,

we have T f : Tc→ Tc′ and Tg : Tc′ → Tc′′ so that T(g ◦ f) = Tg ◦ T f .

Figure 5.2 is a diagram of a functor T between two categories. We visualize

quite easily that T preserves the composition of g and f across the categories.

5. CONCURRENCY ABSTRACTED 65

c Tc

c′ Tc′

c′′ Tc′′

f

g◦ f

T f

Tg◦T f

g

T

Tg

Figure 5.2: Diagram demonstrating the properties of a functor.

This matches our intuition that a functor (being a morphism between

categories) should generally preserve the properties associated with all

categories.

Example 5.2.3. Consider the category of all monoids M and the category of all

sets S. There is a functor called the forgetful functor U : M→ S that “forgets”

the underlying structure of its domain. In this case, U sends each monoid to

the set containing the elements.

We seek to generalize the notion of isomorphisms between objects in

arbitrary categories. If the objects in the category are not sets, our previous

definition does not apply. Observe that isomorphisms between monoids are

behavior-preserving bijections. Generally, we can encapsulate this behavior by

examining the inverses of arrows and their composition.

Definition 5.2.4. Let C be a category with objects a and b. An arrow e : a→ b is

invertible if there is a morphism e′ : b→ a so that e′e = ida and ee′ = idb. These

arrows are considered isomorphisms.

Definition 5.2.5. Let C be a category with objects a and b. We say that a and b are

isomorphic (denoted a ∼= b) if there is an invertible arrow e : a→ b.

66 5. CONCURRENCY ABSTRACTED

mo R(m1)

R ◦ L(m0)

u

f0

R(f1)

Figure 5.3: Diagram describing adjunction.

We introduce the concept of adjunctions to describe how to embed

categories into each other.

Definition 5.2.6. Let M0 and M1 be categories, with functors L : M0 →M1 and

R : M1 →M0. L and R form an adjunction if for any object m0 ∈M0, there is a

morphism u : m0 → R ◦ L(m0) (called the unit at m0) such that for any object m1 of

M1, if there is a morphism f0 : m0 → R(m1), then there is a unique morphism

f1 : L(m0)→ m1 so that f0 = R(f1) ◦ u.

Figure 5.3 is a diagram describing the concept of adjunction. We see that

the central idea is that each object mo in M0 has an arrow to R ◦ L(m0). Then, if

m1 is an object in M1, and there is some arrow from m0 to R(m1), there is a

unique arrow f1 in M1 so that the diagram commutes.

Example 5.2.4. Consider the category of all sets S and the category of monoids

M. Arrows in S are set-maps, while arrows on M are homomorphisms. We

have the functor F : S→M and U : M→ S, with U being the familiar forgetful

functor. We define F as:

F X = X∗

F f = f̂

5. CONCURRENCY ABSTRACTED 67

where f̂ (s 〈a〉) = f̂ (s) f (a). So, F maps sets to their corresponding free monoid.

Now, if u : X→ U ◦ F(X), define f1 : F(X)→M as f1 = F(f) = f̂ . This yields the

commutative diagram:

X U(M)

U ◦ F(X) = X∗

u

f

U(f1)

which indicates that S and M form an adjunction. Notice that the unit must be

the canonical embedding of X into X∗.

Definition 5.2.7. If each unit of an adjunction is an isomorphism, then the

adjunction is a coreflection.

Intuitively, an adjunction (particularly a coreflection) describes how

objects can be expanded and collapsed in a formulaic method. Our example

demonstrates that free monoids and sets can be expanded and collapsed into

one another. A similar result applies to Trace and Hoare structures.

5.2.2 The Relationship

Now, we have a well-defined general model of concurrency with the trace

monoid and trace structures. Indeed, this model serves as an abstraction for

several popular approaches to describing concurrent systems, including Petri

nets and asynchronous transition systems [11]. Here, we formally describe

trace structures as an abstraction over the Hoare structures that are used when

analyzing CSP using behavioral semantics.

68 5. CONCURRENCY ABSTRACTED

Definition 5.2.8. T denotes the category of trace structures with their

behavior-preserving morphisms. H signifies the category of Hoare structures with

their behavior-preserving morphisms.

We can define functors between these categories ht : H→ T and

th : T→ H on objects as:

ht(H,Σ) = (H,Σ, ∅)

th(M,Σ, I) = (M,Σ).

Similarly, these functors are defined on morphisms λ as:

ht(λ) = λ

th(λ) = λ.

Notice that th is simply the forgetful functor. Meanwhile, Hoare structures are

mapped by ht as a trace structure lacking an explicit dependence relation.

Theorem 5.2.1. Trace and Hoare structures are coreflective.

Proof. Suppose that (H,Σ) is an arbitrary Hoare structure. As Figure 5.4

demonstrates, we have an arrow id(H,Σ) from (H,Σ) to (th ◦ ht)(H,Σ). Clearly,

this is an isomorphism. Now, let f0 : (H,Σ)→ th(M,Σ′, I). We want to find

some morphism f1 : ht(H,Σ)→ (M,Σ′, I). Observe that ht(H,Σ) = (H,Σ, ∅).

Because f0 is a morphism on Hoare structures, it follows that it preserves

strings. Since there is no independence relationship to preserve, then ht(f0)

adequately forms the commutative diagram in Figure 5.4. Hence, T and H

5. CONCURRENCY ABSTRACTED 69

(H,Σ) th(M,Σ′, I)

(th ◦ ht)(H,Σ) = (H,Σ)

f0

id(H,Σ)
th(f1)= f0

Figure 5.4: Diagram of relationship between trace and Hoare structures.

form an adjunction. Furthermore, all units are isomorphic since units are

identity morphisms. Thus, T and H are coreflective. �

5.3 Other Models of Concurrency

A system is concurrent when there are possibly two or more events happening

simultaneously. Note that we need not restrict this behavior to computer

systems. For instance, we might be interested in describing the behavior of

chemical reactions. To accomplish this, we use Petri nets. It is demonstrated in

[11] that the trace monoid is an abstraction of Petri nets.

As another example, a software engineer might describe a simple

application with a diagram consisting of a set of states and asynchronous

actions that trigger the transition between these states. Such a diagram is

called a labeled transition system. Once again, trace structures are adequate to

describe labeled transition systems.

Since trace structures are coreflective with several models of concurrency,

it is possible to translate from one concurrency model to another. This result

enables each of the models to share results and provides a common

framework to describe concurrent systems. Furthermore, when one model is

more appropriate to use when solving a particular problem, it may be safely

70 5. CONCURRENCY ABSTRACTED

incorporated into a solution employing heterogeneous concurrency systems.

5.4 Conclusion

The trace monoid and trace structures are an abstract model that is useful

when analyzing the behavior of concurrent systems. The traces of CSP are

formalized as a Hoare structure, and we have the result that the categories of

trace and Hoare structures are coreflective. This implies that the theory of

Hoare structures can be embedded into trace structures. There are several

other common models of concurrency that are also coreflective to trace

structures, thus demonstrating that these models are roughly equivalent.

6

Description of Software

There are two subcomponents of the software portion of this IS. A case study

of a RESTful system is demontrated by a queue application. We explore the

usage of the REST architectural constraints in this system, and present a CSP

model. Second, we exploit the structure of RESTful systems to dynamically

capture error states in running RESTful applications and create new unit tests.

We present that system as a library that can easily be included in existing

systems. Finally, we discuss potential future work for this project.

6.1 Overview of Tools

All software components of this project are written in the Clojure

programming language [6]. Clojure is a member of the Lisp family of

programming languages with a special emphasis on functional programming

through immutable data structures. In particular, Clojure employs a

shared-memory model with destructive operations coordinated through a

71

72 6. DESCRIPTION OF SOFTWARE

highly sophisticated software transactional memory system. This permits us

to create software composed of sequences of “atomic” data mutations, placing

us close to the model of CSP.

Clojure software is generally built using Leiningen (“Lein”) [18]. Lein is

similar to tools such as Make and Maven [15] [14]. Make is traditionally used

to build C and C++ software, while Maven is a popular choice as a build tool

for Java software. Since Clojure is hosted on the Java Virtual Machine, it is

actually possible to generate Maven’s project object model using Lein, thus

permitting existing Java applications to make use of Clojure. Similarly, Lein is

capable of taking libraries from Maven repositories and integrating them into

new Clojure applications.

Two major Clojure libraries are employed to construct the software.

Compojure [2] is a project that enables the declarative configuration of web

systems. By this, we mean that Compojure invokes forms corresponding to

matched URLs according to a stateless specification. The actual request

handling is performed by Ring, a library that abstracts the details of HTTP into

a simple API [5].

All of the complexities involved with managing the installation of the Java

Virtual Machine and Lein are handled with a tool called Docker [7]. Docker is

a container engine that executes processes in an isolated environment. Docker is

capable of bundling the various components of a complete software system

into a portable image that is easily shared across heterogeneous computer

systems. We use Docker to package and deploy our applications.

6. DESCRIPTION OF SOFTWARE 73

6.2 Case Study of RESTful Application

We consider a queue application as an example of a RESTful application. We

walk through the story of a client interacting with the server to demonstrate

an important emergent property of REST, Hypertext as the Engine of Application

State (HATEOAS) [19]. In applications satisfying HATEOAS, a client interacts

with a server through an initial request to a widely-known root resource (i.e.

“/”) and progresses through the various states of an application by following

hyperlinks. Notice that this architectural style generally corresponds with how

many web applications are built; the website’s homepage is visited and the

user navigates through different application states by following hyperlinks.

The client and server use JavaScript Object Notation (JSON) as their

data-interchange format. JSON is a simple data format that is a subset of the

JavaScript programming language [4]. JSON supports several primitive data

types, including:

• Unicode strings, i.e. “A String”

• Numbers, i.e. 2.5 (note that there are no specific floating point types, just

a generic Number type)

• Booleans, true or false

• Null, or no value

• Objects, i.e. {“Key”: “Value”, “otherKey” : 2}

• Heterogeneous arrays, i.e. [1, 2, “foo”]

74 6. DESCRIPTION OF SOFTWARE

We include snippets of JSON throughout this chapter to demonstrate potential

interactions between the client and server.

6.2.1 Entrypoint

Clients begin any interaction by first making a GET request to

“/api/1.0/queues”. The server response takes the form of:

{"Version": "1.0",

"Queues": [{"QueueName": "queue0",

"QueueURL": "/api/1.0/queues/queue0"}, ...],

"NewQueueURL": "/api/1.0/queues"}

The client has several options with how to proceed. It has enough information

to either create a new queue, place or receive messages over an existing queue,

or delete an existing queue. Notice that we always include a version field in

our responses that allows the client to be made aware of any modifications to

the data interchange format. Supporting legacy clients is easily achieved by

routing the client’s request based off the version field in the URL, which is

commonly accomplished with load balancers.

6.2.2 Creating a New Queue

After initial successful contact with the server, the client might wish to create a

new queue. The “NewQueueURL” field informs the client what URL to use to

perform this operation. Hence, the client is not tied to the particular

implementation details of the server. The well-defined semantics of REST

6. DESCRIPTION OF SOFTWARE 75

indicate to the client that in order to create a new queue it must POST to this

URL.

The client POSTS to the value of “NewQueueURL” a message in the

format:

{"QueueName": <queue-name>}.

If the queue does not exist, then the server responds with a message:

{"Status": "Success", "Version": "1.0",

"QueueURL": <queue-url>}.

Meanwhile, if the queue already exists, the server does not modify the existing

resource. Instead, a message is returned to the client indicating this condition:

{"Status": "QueueExists", "Version": "1.0",

"QueueURL": <queue-url>}.

6.2.3 Writing to a Queue

Once the URL of a queue is discovered (either by creation or through a GET

request to the entrypoint) the client enqueues by performing a POST request

directed at the URL. The client POSTs to this URL a message similar to:

{"Object": <json-object >}.

Assuming the request is to a valid queue, the server responds with a message

in the form:

{"Status": "Success", "Version": "1.0",

"QueueURL": <queue-url>}.

76 6. DESCRIPTION OF SOFTWARE

If the queue does not exist in the system, a 404 status code is returned with an

appropriate error message:

{"Status": "DNE", "Version": "1.0"}.

6.2.4 Retrieving Objects from a Queue

GET requests are sent to a queue URL to dequeue objects. Once again, this

URL is discovered dynamically by the client through its sequence of

interactions. When there is an object in the queue, the server responds with a

success message containing the message:

{"Status": "Success", "Object": <json-object>,

"Version": "1.0"}

If no object is present in the queue, this information is conveyed through an

appropriate response:

{"Status": "QueueEmpty", "Version": "1.0"}.

6.2.5 Deleting a Queue

HTTP provides a DELETE method that is used to remove resources. In order

to delete a queue, the client first discovers the queue’s corresponding URL

through its sequence of interactions with the server. Then, the client sends a

DELETE request to the discovered URL and the queue is removed. The server

responds with a success message in the form:

{"Status": "Success", "Version": "1.0"}.

6. DESCRIPTION OF SOFTWARE 77

If the queue does not exist, then the server responds with a 404 status code

with a body of:

{"Status": "DNE", "Version": "1.0"}.

6.3 Dynamic Error State Observations

To support rapid debugging of RESTful applications using the Ring library in

Clojure, we develop a piece of middleware that captures error states and

automatically generates unit tests. Middleware is an interesting concept in

Ring. Consider an application that employs JSON as its data interchange

format. When handling a request, the application might explicitly call a

library to transform the JSON object into a native Clojure object. Performing

this task quickly becomes tedious. Ring allows us to define a function that

accepts a handler – a function that corresponds to the next piece of

middleware to be invoked in the processing pipeline – that returns a function

that deals with the response, presumably invoking the next handler in that

returned function. Similar approaches can be used to handle authorization to

resources, parsing URL encoded structures, and similar repetitive tasks.

Note that the choice of Clojure is very deliberate. Being a dialect of Lisp,

Clojure recognizes its own source code as a data structure. Similarly, Clojure is

capable of easily transforming its data structures into source code. This

enables us to dynamically generate human-readable test cases while avoiding

painful and error-prone workarounds.

What error states ought we be concerned about? There are two approaches

78 6. DESCRIPTION OF SOFTWARE

to this problem: either provide an abstract specification for the construction of

responses for any given request, or leverage the existing error system in the

Java Virtual Machine. We proceed with the second approach, primarily due to

its simplicity and performance. Any specification system provides a

verification overhead to processing client requests. Our approach detects

errors by waiting for unhandled exceptions and can be safely integrated into

existing systems.

Once the program enters into an error state, how do we recreate the error?

This depends on the way that the individual resources interact:

• Resource Indepedence - if all resources in the system are totally

independent (i.e. operations on different resources only entail local state

change) then only the traces of requests to the failed resource need to be

considered

• Resource Dependence - if modifications to a pair of resources may entail

non-local state changes, then the traces of requests to that pair of

resources must be replayed to recreate the error state

In the resource independence model, there are two further considerations:

• Stateful Resources - a trace of all interactions is required to recreate an

error state

• Stateless Resources - a single request is all that is necessary to recreate an

error state

Note that resources that actually encapsulate state can safely be considered

stateless if they are not modified over the course of a client’s interaction with

6. DESCRIPTION OF SOFTWARE 79

them.

Our replay middleware provides support for stateless and stateful

resource independent systems. Once an error state is discovered, a

meaningfully named test is created in the project’s ”replays/” directory. This

test can be integrated into a unit-test system. Furthermore, an application

might wait for changes in the ”replays/” directory. Once a new test is

discovered, the application could create a new ticket in a system similar to Jira

and assign the task of correcting the error to an engineer.

Stateful resources are enabled and disabled by invoking the functions

“state-on!” and “state-off!” respectively. Similarly, logging all traces is enabled

with calls to the “traces-on!” and “traces-off!” functions. Logging traces is

complicated business. When trace logs are enabled, the system consumes

significantly more memory. Consequently, this feature does not make sense in

a production facing system.

However, there are alternative use-cases that render this feature useful.

Generally speaking, total trace logging provides more useful generated

test-cases. So, for local development, logging traces is a sane default. By

making use of environment variables, this functionality can be disabled when

the application is deployed.

Moreover, with the advent of platform-as-a-service technologies that

abstract infrastructure concerns away from the process of software

deployment, customer support agents are now in a position to deploy

software in a sandboxed environment. If a customer is experiencing an error,

the customer support agent simply deploys an instance of the application with

traces enabled that only that specific customer is allowed access to. The

80 6. DESCRIPTION OF SOFTWARE

customer then recreates their error, and the generated test contains enough

information for a developer to successfully resolve the fault.

Example 6.3.1. Consider a very simple Clojure web service using Compojure

and the replay middleware:

(ns my-namespace

(:require [replay-middleware.core :as replay] ...))

(defroutes app-routes

(GET "/" _ (response "Hello, world!"))

(GET "/this-will-error" _

(throw (ex-info "SomeError" {:message "A problem!"}))))

(replay/state-on!)

(def app

(-> (wrap-defaults app-routes

(assoc-in site-defaults

[:security :anti-forgery] false))

replay/wrap-traces))

Listing 6.1: A simple Clojure web service using replay middleware.

Obviously, the sequence of GET requests to “/” and “/this-will-error”

causes the program to enter a fault state, as the handler for “/this-will-error” is

defined as an unhandled exception. Under the “replays” directory in the

software, a time-stamped test named “replay-this-will-error(timestamp)” is

created. This file contains:

(clojure.core/ns replay (:require [clj-http.client]))

(def replay

6. DESCRIPTION OF SOFTWARE 81

(clojure.core/fn []

(do (clj-http.client/get

"http://localhost:3000/"

{:cookies {},

:headers {"accept" "*/*", "connection" "close",

"accept-encoding" "gzip, deflate",

"user-agent" "curl/7.51.0",

"content-type" "text/plain; charset=UTF-8",

"cookie" "",

"content-length" "0",

"host" "localhost:3000"},

:body ""})

(clj-http.client/get

"http://localhost:3000/this-will-error"

{:cookies {},

:headers {"accept" "*/*",

"connection" "close",

"accept-encoding" "gzip, deflate",

"user-agent" "curl/7.51.0",

"content-type" "text/plain; charset=UTF-8",

"cookie" "",

"content-length" "0",

"host" "localhost:3000"},

82 6. DESCRIPTION OF SOFTWARE

:body ""}))))

Listing 6.2: Sample test generated by middleware.

To use this test, a user opens a Clojure read-eval-print loop (REPL) and loads

the file. Then, by invoking the function “replay/replay,” the sequence of

requests that led to the error are replayed.

6.4 Modeling Application with CSP and

formalized REST

We model a component of the queue application in CSP and verify one of its

properties to demonstrate how this task is performed in general. Let S denote

an identifier of a server and R denote the queue’s resource identifier (consult

Chapter 4 for more details.) Furthermore, we define messages empty message

denoting an empty queue, enqueue message indicating a successful enqueue

operation, a 404 message describing a missing resource, and finally an

object message that encapsulates the representation of some object. Observe

that a single queue can adequately be expressed as the following CSP process:

QUEUE〈〉 = (ComSR ? request.interface.S.R →

(ComSR ! reply.empty_message.R.S →

QUEUE〈〉)

/ (interface.oper == GET) .

(ComSR ! reply.enqueue_message.R.S →

QUEUE inter f ace.message.object)

6. DESCRIPTION OF SOFTWARE 83

/ (interface.oper == POST) .

(ComSR ! reply.404_message.R.S → QUEUE〈〉))

QUEUE〈a〉b = (ComSR ? request.interface.S.R →

(ComSR ! reply.object_message(a).R.S →

QUEUE〈〉)

/ (interface.oper == GET) .

(ComSR ! reply.enqueue_message.R.S →

QUEUE〈a〉b inter f ace.message.object)

/ (interface.oper == POST) .

(ComSR ! reply.404_message.R.S → QUEUE〈〉))

Define a ghost object as an object returned to satisfy a GET request on an

empty queue. Obviously, such an object should never exist, so it would indeed

be spooky if one is detected in a trace of the system! This behavior is observed

by counting the number of successful enqueue and dequeue operations and

comparing. We can codify this requirement as the trace proposition:

NOGHOSTS = (QUEUE ↓ enqueue success) − (QUEUE ↓ dequeue success) ≥ 0.

Consult Chapter 3 for information regarding the semantics of trace

propositions. Here, we slightly abuse notation and write enqueue success to

stand in for a sequence of actions corresponding to the successful enqueue of

an object. Similarly, dequeue success denotes a sequence of actions

corresponding to a successful dequeue operation. It is left as an exercise to the

reader to write out what sequences of actions in particular these names refer to.

84 6. DESCRIPTION OF SOFTWARE

Proof. We seek to demonstrate that no ghost objects exist in the traces of a

queue process. We have for the trivial process:

STOP sat tr = 〈〉

(tr ↓ enqueue) − (tr ↓ dequeue) = 0 ≥ 0
.

Now, assume that X
〈p〉s is a trace-set of a queue process that satisfies the

NOGHOSTS specification. Let a = ComSR.request.inter f ace.S.R and

b = ComSR! reply.object message(p).R.S. Then, we have that:

X
〈p〉s sat (tr ↓ enqueue) − (tr ↓ dequeue) > 0; inter f ace.oper = GET

〈a, b〉Xs sat tr ≤ 〈a, b〉
0 < ((tr′′ ↓ enqueue) − (tr′′ ↓ dequeue))

0 ≤ ((tr ↓ enqueue) − (tr ↓ dequeue))

.

A similar but simpler argument holds for when the queue is empty. Hence, we

see that the trivial process satisfies the trace proposition. Furthermore,

prefixing an arbitrary trace of the queue with the additional communications

of a queue process does not cause degenerate behavior to manifest itself. We

conclude that there are no ghost objects returned by the queue. �

6.5 Conclusion

We discuss the software developed for this project. This includes a queue

application that provides a case-study pertaining to the behavior and

verification of RESTful systems. We provide a model of an aspect of this

system and demonstrate that a trace proposition holds for this model. We also

discuss the development of instrumentation for the facilitation of debugging

in RESTful applications built in the Clojure programming language. This

includes an investigation into the various strategies of trace collection and

6. DESCRIPTION OF SOFTWARE 85

error state exploration. Use-cases of this component are explored and the

utility value of the middleware is discussed.

86 6. DESCRIPTION OF SOFTWARE

7

Future Work

We have discussed the general problem of verifying concurrent systems

through an algebraic approach. REST has been formalized using CSP, and

with this formalization new implementations of REST components can be

integrated into existing architectures. Moreover, these implementations are

guaranteed to compose correctly if they trace-refine their corresponding CSP

descriptions.

There are exciting directions to take this work. The software can be

extended to provide support for resource dependence. This can be

accomplished by creating a declarative domain specific language that

configures resource dependencies. These dependencies can be used to form a

graph structure that can easily be used to generate replays for failed requests.

The replay middleware can be improved by providing mechanisms for

specifying trace retention. Furthermore, it is interesting to consider the

possibility of reducing the size of the error space that needs replayed.

Finally, consider the behavior of the system, as a whole. There are many

87

88 7. FUTURE WORK

communicating components where failures can “bubble up” and cause ironic

problems. Perhaps the constraints of REST allow us to easily consider the total

possible failure states of the system. Adding timing constraints to the model

could help achieve this and also further improve its utility value.

Bibliography

[1] Amazon REST API Reference.

https://docs.aws.amazon.com/apigateway/api-reference/.

Accessed: 2018-01-30.

[2] Compojure. https://github.com/weavejester/compojure. Accessed:

2018-02-25.

[3] Google Compute Engine API Reference.

https://cloud.google.com/compute/docs/reference/latest/.

Accessed: 2018-01-30.

[4] Introducing JSON. https://www.json.org. Accessed: 2018-02-21.

[5] Ring. https://github.com/ring-clojure/ring. Accessed: 2018-02-25.

[6] The Clojure Programming Language. https://clojure.org. Accessed:

2018-02-20.

[7] What Is Docker? https://www.docker.com/what-docker. Accessed:

2018-02-20.

89

90 BIBLIOGRAPHY

[8] J.C.M Baeten and W.P. Weijland. Process Algebra. Cambridge University

Press, New York, NY, 1990.

[9] J. A. Bergstra. Handbook of Process Algebra. Elsevier Science Inc., New

York, NY, USA, 2001.

[10] Chi Tat Chong. Recursion theory: a generalized point of view. De Gruyter,

Berlin, Germany, 2015.

[11] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,

PO Box 128, Farrer Road, Singapore, 1995.

[12] Thomas Macaulay Ferguson and Graham Prieset. A Dictionary of Logic.

Oxford University Press, 2016.

[13] Roy Thomas Fielding. Architectural Styles and the design of Network Based

Software Applications. PhD thesis, University of California, Irvine, 2000.

[14] The Apache Software Foundation. What is Maven?

https://maven.apache.org/what-is-maven.html. Accessed:

2018-02-26.

[15] GNU Operating System. GNU Make.

https://www.gnu.org/software/make/. Accessed: 2018-02-26.

[16] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,

21(8):666–677, August 1978.

[17] Saunders Mac Lane. Categories for the Working Mathematician. Springer,

New York, NY, 2000.

BIBLIOGRAPHY 91

[18] Phil Hagelberg. Leiningen – for automating Clojure projects without

setting your hair on fire. https://leiningen.org. Accessed: 2018-02-20.

[19] Pivotal Software, Inc. Understanding HATEOAS.

https://spring.io/understanding/HATEOAS. Accessed: 2018-02-20.

[20] A.W. Roscoe. Understanding Concurrent Systems. Springer-Verlag New

York, Inc., New York, NY, USA, 1st edition, 2010.

[21] Mark Tarver. Logic, Proof, and Computation. Fastprint Publishing, 2nd

edition, 2014.

[22] Xi Wu and Huibiao Zhu. Formalization and analysis of the rest

architecture from the process algebra perspective. Future Generation

Computer Systems, 56:153–168, March 2016.

	The College of Wooster Libraries
	Open Works
	2018

	Logic -> Proof -> REST
	Maxwell Taylor
	Recommended Citation

	tmp.1520539402.pdf.RmoUz

