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Abstract

The ability to make the right decision is an asset in many areas and lines of

profession including social work, business, national economics, and

international security. However, decision makers often have difficulty

choosing the best option since they might not have a full understanding of

their preferences, or lack a systematic approach to solve the decision making

problems at hand. The Analytic Hierarchy Process (AHP) provides a

mathematical model that helps the decision makers arrive at the most logical

choice, based on their preferences. We investigate the theory of positive,

reciprocal matrices, which provides the theoretical justification of the method

of the AHP. At its heart, the AHP relies on three principles: Decomposition,

Measurement of preferences, and Synthesis. Throughout the first five chapters

of this thesis, we use a simple example to illustrate these principles. The last

chapter presents a more sophisticated application of the AHP, which in turn

illustrates the Analytic Network Process, a generalization of the AHP to

systems with dependence and feedback.
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Chapter 1

Introduction

1.1 Motivation

We make decisions every day. High school graduates decide which college to

attend. Moms make up their minds as to how much time they should let their

children watch TV each day. Chefs choose the spices to use in dishes. The

Federal Reserve makes judgments about its monetary policy. Decision making

is a part of everyday life, whether it be a personal choice, a decision with

global impact, or anything in between. Being able to make right decisions can

have a tremendously positive impact on individuals’ lives.

However, making the right decision is often easier said than done. For

starters, assuming that the decision makers are aware of their options, they

need to identify their goals in choosing among these options. (As a simple

example, consider a buyer, who is trying to decide between two kinds of

tomatoes. He or she needs to know what qualities in tomatoes he or she

values: the color, the shape, or the price.) Then, the decision makers need to

1



2 CHAPTER 1. INTRODUCTION

determine how well each option satisfies their goals. Even when the decision

makers have clear ideas of their goals and the qualities of their options, their

judgments can still exhibit inconsistency, or can vary according to time.

Variations can also occur due to the environment that surrounds the decision

making process.

The Analytic Hierarchy Process (AHP), developed by Thomas Saaty [10] is

a model that helps the decision makers arrive at the most logical choice. Using

the AHP, we first determine the options available to the decision makers and

their goals in making decisions. These goals and options will then be used to

construct an analytic hierarchy, which reflects the various factors in the

decision making process and their importance. The outcome of the AHP is a

priority vector, which gives us an insight into the best option for the decision

makers. In order to understand the strengths of the AHP, in the next section,

we consider a simple problem of choosing universities.

1.2 The Initial Problem

Alice is in her last year of high school. She has been accepted to three major

universities and is trying to decide which one to attend. Those universities are

City University, Suburb University, and Town University. In evaluating a

university, Alice considers three factors: the academic quality of the university,

the financial aid package that the university offers her, and the quality of the

town or city that surrounds the university. In our discussion of the AHP, we

will refer to the universities that extend their acceptance to Alice as

alternatives and the three factors as objectives.
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One solution to Alice’s problem is to directly assess her opinion of each

university. For example, Alice can assign a score to each university, on a scale

of 1–10, based on each of her objectives. Then the total score of each university

is the sum of the scores of that university on the three objectives. The

university with the highest total score is the one that Alice should attend. The

solution to the problem seems easy enough.

However, what will happen if Alice has ten, instead of three, objectives?

Then scoring the universities will be a more complicated and error-prone task.

How about the possibility that each objective has a different level of

importance to Alice? Then we have to take into account not only the score of

each university on each objective, but also the weight of each objective to

Alice’s decision. The problem quickly escalates in terms of complexity if Alice

also has different potential majors in mind, and her choice of university affects

her choice of major. For example, one of the universities might not have a

Pre-Health program, but it has a strong Music department (assuming that

Alice is considering studying Pre-Health and Music). Another university has a

prestigious Pre-Health curriculum, but it does not have a Music major. The

third university has both Pre-Health and Music, allowing Alice more

opportunities to explore her interest, but both of the programs are only

average.

The AHP provides a systematic method of solving problems such as the

one that Alice is facing. We mentioned in the last section that in order to apply

the AHP, we first identify clearly the objectives and alternatives available to

the decision makers. Then there are two steps that we need to carry out. First,

we measure the importance of each objective to the decision maker, compared
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to the importance of the other objectives. This relative importance is called the

weight of the objective. For ease of computing, we require that the measured

weights sum to 1 [4, p. 30]. For this example, suppose that the AHP has found

the weights for academic quality, financial aid, and quality of location to be

0.6, 0.3, and 0.1, respectively. According to these weights, Alice considers the

quality of a university’s education the most important factor in making her

decision. Following in importance are the financial aid package that she is

offered, and then the quality of the university’s location.

In the next step, the AHP measures how well each of the decision maker’s

alternatives satisfies each of the objectives. The extent to which each

alternative meets the decision maker’s expectation in each objective is

measured as a numerical value. This value is referred to as the score of the

alternative on that objective. In this example, suppose that the AHP has found

the scores for one of the universities, City University, on academic quality,

financial aid, and quality of location, to be 5, 7.5, and 10, respectively. These

scores indicate that Alice loves the setting of City University, while the

financial aid that she is offered is moderately good, and the academic quality is

only average. We noted earlier that a decision maker’s preferences can exhibit

inconsistency. The scores found by the AHP are not simply the decision

maker’s assessment of his or her own preferences. The AHP achieves these

scores using a systematic approach that will be discussed in Chapter 4, helping

the decision maker make the most logical choice given his or her preferences.

The reader might have guessed that in order for Alice to make a decision,

both the weights of her objectives and the score of each alternative on those

objectives must be taken into account. Indeed, we utilize both kinds of
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information to compute the total score for each alternative. For the first

alternative, City University, we first take the products of each of City

University’s scores on an objective and the weight of that objective. Taking the

sum of those products will give us the total score of City University. Using the

values in this example, the total score of City University is computed as

follows:

5 × 0.6 + 7.5 × 0.3 + 10 × 0.1 = 6.25.

Given that we also know the score of the other alternatives on Alice’s

objectives, we can compute the total score of those alternatives using the same

method explained above. The alternative with the highest total score should

be chosen.

In subsequent chapters, it will be clear that the AHP involves more than

just finding the weights of the objectives and the scores of the alternatives. In

fact, the two steps outlined above are merely part of a hierarchy that is used to

model the decision makers’ preferences. The same idea of a hierarchy that is

used to solve Alice’s problem could be used to answer questions about

promotion and tenure in higher education [10, p. 162], the optimum choice of

coal plants [10, p. 156], and measuring the world influence of nations such as

the U.S., China, France, the U.K., Japan, . . . [10, p. 40]. For the purpose of

understanding the foundations of the AHP, the next three chapters will

investigate the two outlined tasks: finding the weights of the objectives and

the scores of the alternatives. The discussion of the hierarchy will soon follow.

At this stage, the AHP problem is summarized in mathematical notations

as follows: Suppose a decision maker has n objectives and m alternatives. In
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the first step of the AHP, for the ith objective, the AHP generates a weight wi. In

the second step, for the ith objective and the kth alternative, the AHP obtains a

score sik of the kth alternative on the ith objective. The total score of the kth

alternative is then computed by the following formula:

n∑
i=1

wisik. (1.1)

After the total scores of all alternatives have been calculated, the decision

maker should choose the alternative that has the highest total score.

1.3 Research Outline

This thesis focuses on the method and mathematical reasoning of the AHP.

The next two chapters cover the task of finding the weights of the objectives.

Specifically, in Chapter 2, we will develop Alice’s problem, introducing the

basic terms and concepts of the AHP. As will be clear in this chapter, an

essential concept of the AHP is the consistency of the decision maker’s

preferences. We will include the definition of consistency, and then focus on

the consistent decision maker. In Chapter 3, we investigate the case of an

inconsistent decision maker. We turn our attention to finding the scores of the

alternatives in Chapter 4. The discussion of the scores naturally leads to the

idea of a hierarchy. Having discussed the hierarchy, we apply it to extend our

Alice’s problem. In Chapter 5, we examine some measurement issues of the

AHP. Specifically, we will provide an explanation for the measure of the

decision maker’s consistency, and comment on the scale that is used to
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measure the decision maker’s pairwise preferences.

In the second-to-last chapter, we present a more sophisticated application

of the AHP in medical diagnosis. The application in turn illustrates the

Analytic Network Process, a generalization of the AHP to systems with

dependence and feedback. Included in Chapter 7 are final remarks and ideas

for future research.

The terminologies of the AHP are defined as they are first used in the

subsequent chapters. Unless otherwise noted, these definitions apply

throughout the thesis.
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Chapter 2

The Consistent Decision Maker

2.1 The Eigenvalue Problem

In this chapter, we tackle the first task of the AHP: finding the weight of each

objective of the decision maker. We continue with the Alice example presented

in the last chapter, introducing terms and concepts that are fundamental to the

AHP. One such concept is what is called the pairwise comparison matrix. This

concept will naturally lead to the idea of the decision maker’s consistency in

preferences. The AHP problem will then be divided into two sub-problems:

one for the consistent and the other for the inconsistent decision maker. In the

rest of the chapter, we present the method of finding the weight vector for the

consistent case. This method involves the eigenvalue problem, a concept

central to the AHP. Finally, we provide an illustration of the eigenvalue

problem for the Alice example.

It is the writer’s intention to start the discussion of the AHP with a simple,

instructive example such as the problem of choosing university for Alice.

9
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However, the AHP has a wide array of applications in more complicated

situations. The complexity of these situations is enhanced by the fact that

(i) the decision maker has a large number of objectives,

(ii) the objectives are divided into layers of importance,

(iii) there exists a relationship between objectives and alternatives,

or any combination of those mentioned above. For more sophisticated

applications of the AHP, the interested reader is referred to [10, p. 91–163],

which covers topics such as prediction of the number of children in a

household, designing the transport system for the Sudan, and the future of

higher education in the United States.

In decision making problems that involve a large number of objectives, it is

difficult to compare each objective to the rest of the objectives. The process

tends to result in error, much like the process of scoring each alternative on a

scale of 1–10, compared to the other alternatives, that we mentioned in the

introduction. A method that provides a more accurate assessment of the

available objectives is to compare the importance of each objective to that of

each other objective. This method results in the pairwise comparisons of

objectives.

Returning to the Alice example, the AHP assumes that Alice knows the

pairwise comparisons of her objectives. Suppose she values the quality of a

university’s education twice as much as the financial aid that the university

offers, and six times as much as the quality of the university’s location.

Similarly, financial aid is three times as important to Alice as the quality of
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location. These numerical values that represent the pairwise comparisons of

objectives are placed into a pairwise comparison matrix A:

A =


1 2 6

1
2 1 3

1
6

1
3 1

 .

The entry in the ith row and the jth column of matrix A is the importance of

objective i compared to that of objective j. For example, a13 = 6 means that the

first objective, academic quality, is six times as important as the third objective,

location. It follows that the entries in the diagonal of matrix A are equal to 1.

Moreover, if objective i is twice as important as objective j, then objective j

must be half as important as objective i. In other words, a ji = 1
ai j

. We also note

that if Alice is consistent in her preferences, then ai ja jk = aik. That is, if she

prefers academic quality twice as much as financial aid, and financial aid three

times as much as location, then she must prefer academic quality six times as

much as location to be considered a consistent decision maker. According to

this definition, Alice in our example is consistent. However, a decision maker

in real life is rarely consistent in her preferences. In Chapter 3, we will discuss

the process of obtaining the weights of the objectives in the inconsistent case.

It is in this inconsistent case that the mathematical reasoning becomes more

complicated. For now, we turn our attention to the consistent case.

The next definitions formalize our discussion of the pairwise comparison

matrix.

Definition 2.1 (Pairwise Comparison Matrix). The pairwise comparison
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matrix for a decision maker with n objectives is an n × n matrix A =
[
ai j

]
such

that:

(i) ai j > 0 for i, j = 1, . . . ,n, and

(ii) a ji = 1
ai j

for i, j = 1, . . . ,n.

A matrix A that satisfies condition (i) is defined to be a positive matrix. If

A satisfies condition (ii), then it is said to be a reciprocal matrix. In the next

chapters, when we refer to the pairwise comparison matrix of a decision

maker, the assumption is that the matrix is positive and reciprocal. Also note

that conditions (i) and (ii) in Definition 2.1 imply that aii = 1 for i = 1, . . . ,n.

Definition 2.2 (Pairwise Comparison Matrix of a Consistent Decision Maker).

If a decision maker is consistent, then the pairwise comparison matrix A

satisfies the conditions in Definition 2.1, and

(iii) aik = ai ja jk for i, j, k = 1, . . . ,n.

Recall that the ai j entry in A represents the importance of objective i,

compared to that of objective j. Let wi be the (unknown for the time being)

weight of objective i. We assume each of the weights is positive, and the

weights sum to 1. Then for a consistent decision maker, the i j entry of A can be

written as:

ai j =
wi

w j
.

We note that the above equality is guaranteed to be true only if the

decision maker is consistent. Thus, we have an alternative definition of the

pairwise comparison matrix for a consistent decision maker:
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Definition 2.3. The pairwise comparison matrix A of a consistent decision

maker has the following form:

A =
[
ai j

]
=



w1
w1

w1
w2
· · ·

w1
wn

w2
w1

w2
w2
· · ·

w2
wn

...
...

...
...

wn
w1

wn
w2
· · ·

wn
wn


,

where wi > 0 and
∑n

i=1 wi = 1.

Definition 2.3 leads to the formal definition of the weight vector of the

decision maker:

Definition 2.4. The weight vector w of a decision maker is of the form:

w = [wi] =
[

w1 w2 · · · wn

]T
,

where wi > 0 and
∑n

i=1 wi = 1. The weight vector w is also referred to as the

priority vector of the decision maker.

As mentioned in the introduction, the goal of the AHP is to find w. The

next theorem guarantees that for a consistent decision maker, we can always

obtain this weight vector from the pairwise comparison matrix A .

Theorem 2.1. Suppose a decision maker is consistent and has n objectives. Let A be

the corresponding pairwise comparison matrix, and w the weight vector. Then w is an

eigenvector of A with corresponding eigenvalue λ = n.
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Proof. By Definition 2.3 and Definition 2.4

Aw =



w1
w1

w1
w2
· · ·

w1
wn

w2
w1

w2
w2
· · ·

w2
wn

...
...

...
...

wn
w1

wn
w2
· · ·

wn
wn





w1

w2

...

wn


=



w1
w1

w1 + w1
w2

w2 + · · · + w1
wn

wn

w2
w1

w1 + w2
w2

w2 + · · · + w2
wn

wn

...

wn
w1

w1 + wn
w2

w2 + · · · + wn
wn

wn



=



nw1

nw2

...

nwn


= n



w1

w2

...

wn


= nw.

Thus, w is an eigenvector of A with corresponding eigenvalue n. �

From Theorem 2.1, we have a way to obtain the weight for each objective,

given that we know the number of objectives n and the pairwise comparison

matrix A. We know this by observing that:

Aw = nw

⇔ Aw − nw = 0

⇔ Aw − nIw = 0

⇔ (A − nI)w = 0.

Thus, w is in null(A − nI), where I is the identity matrix of an appropriate

dimension.
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The equation

Aw = nw (2.1)

proved in Theorem 2.1 is critical to the AHP. In Chapter 3, we will discuss

certain conditions that allow us to apply Equation 2.1 to solve the decision

making problem when the decision maker is inconsistent. In Chapter 5, this

equation is once again important to our discussion of the decision maker’s

consistency. Throughout the rest of this thesis, we shall refer to Equation 2.1 as

the eigenvalue problem.

The purpose of this section has been to present the eigenvalue problem in

Equation 2.1. We close the section by the next theorem, which provides a quick

and easy way to identify the weight vector when the decision maker is

consistent.

Theorem 2.2. The normalized form of any column of the matrix A =
[

wi
w j

]
is a

solution to the eigenvalue problem Aw = nw, where w =
[

w1 w2 · · · wn

]T
is the

weight vector solution and n is the number of objectives.

Proof. By Definition 2.3, the j column of A has the form

[
w1
w j

w2
w j
· · ·

wn
w j

]T
,

for j = 1, 2, . . . ,n. Therefore, each column of A is simply a constant multiple of

w. It follows that the normalized form of any column of A is a solution to the

eigenvalue problem. �

In the next section, we apply both Theorem 2.1 and Theorem 2.2 to find the
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weights of Alice’s objectives. Our expectation is that the methods from both

theorems give the same weight vectors.

2.2 Finding the Weight Vector for the Alice

Example

In this section, we illustrate the process of finding the weight vectors for the

Alice example, using both Theorem 2.1 and Theorem 2.2. By our definition of

consistent pairwise comparison matrices, the matrix A in the Alice example,

which was given in the last section, is consistent. This guarantees that we can

apply both theorems to obtain the weight vectors to solve Alice’s problem.

First, applying Theorem 2.1, we know that λ = 3 is an eigenvalue of A and

that w is in the null space of A − 3I. In order to find the solutions of the

homogeneous system (A − 3I)w = 0, we first find:

A − nI = A − 3I =


1 2 6

1
2 1 3

1
6

1
3 1

 −


3 0 0

0 3 0

0 0 3

 =


−2 2 6

1
2 −2 3

1
6

1
3 −2

 .

The reduced row echelon form of A − 3I is:


1 0 −6

0 1 −3

0 0 0

. Using

Gauss-Jordan elimination [8, p. 78], the eigenvectors of A with corresponding

eigenvalue 3 have the form
[

6s 3s s
]T

(s ∈ R).

It can be easily seen that an eigenvector of A with corresponding
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eigenvalue 3 is
[

6 3 1
]T
. Since the weights of all of the objectives sum to 1,

the weight vector is

w =
[

6
10

3
10

1
10

]T
.

According to this weight vector, the weights of the three objectives—academic

quality, financial aid, and location—are 0.6, 0.3, and 0.1, respectively. This

weight vector is indeed a constant multiple of any of the columns in A. So the

methods of Theorem 2.1 and Theorem 2.2 yield the same result.

In this chapter, we have discussed the components essential to the

theoretical reasoning of the AHP. The discussion of the pairwise comparison

matrix at the beginning of the chapter brought about the bifurcation of the

AHP problem into the consistent and the inconsistent sub-problems. We also

justified the existence of a solution to the AHP in the consistent case by the

eigenvalue problem. In the next chapter, we shall see how this problem is

utilized in solving for the weight vector in the inconsistent case.
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Chapter 3

The Inconsistent Decision Maker

3.1 From Consistent to Inconsistent

In reality, decision makers are usually inconsistent. For example, if a

prospective college student prefers academic quality twice as much as

financial aid, and financial aid three times as much as location, it is unlikely

that she will prefer academic quality six times as much as location. As a result,

for the n × n pairwise comparison matrix A =
[
ai j

]
, it no longer holds that

aik = ai ja jk for i, j, k = 1, . . . ,n. Therefore, we cannot directly apply the

eigenvalue problem presented in the last chapter to the inconsistent case. (We

note that A is still a positive, reciprocal matrix. This means that ai j > 0 and

ai j = 1
a ji

for all i and j.)

Saaty contends that if the entries of a positive reciprocal matrix change by

small amounts, then the eigenvalues of that matrix also change by small

amounts [10, p. 51]. In addition, the corresponding eigenvectors do not vary

by much. Provided that our decision maker is not too inconsistent, the

19
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inconsistent pairwise comparison matrix will not deviate much from the

consistent matrix. We can find the weight vector for an inconsistent decision

maker based on the weight vector in the consistent case. Thus, we want to

further explore the eigenvalues and corresponding eigenvectors of a consistent

pairwise matrix. The next theorem serves that purpose.

Theorem 3.1. Suppose a decision maker is consistent and has n objectives. Then the

pairwise comparison matrix has a unique largest eigenvalue n. All of the other

eigenvalues are zero.

Proof. In the last chapter, we proved that

Aw = nw.

So w is an eigenvector of A with corresponding eigenvalue λ = n.

Consider:

A



w1

0
...

0

−wn


=



w1
w1

w1
w2
· · ·

w1
wn

w2
w1

w2
w2
· · ·

w2
wn

...
... · · ·

...

wn−1
w1

wn−1
w2
· · ·

wn−1
wn

wn
w1

wn
w2
· · ·

wn
wn





w1

0
...

0

−wn


=



w1 − w1

w2 − w2

...

wn−1 − wn−1

wn − wn


=



0

0
...

0

0


= 0



w1

0
...

0

−wn


.
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Thus, the vector



w1

0
...

0

−wn


is an eigenvector of A with corresponding eigenvalue

λ = 0. Using the same approach, we can prove that the following vectors are

the eigenvectors corresponding to the eigenvalue λ = 0 for A:



w1

0

0
...

0

−wn


,



0

w2

0
...

0

−wn


,



0

0

w3

...

0

−wn


, . . . ,



0

0

0
...

wn−1

−wn


.

︸                                                ︷︷                                                ︸
n-1 vectors

It can be easily seen that these n − 1 vectors are linearly independent, since

none of them could be written as a linear combination of the others. So the

basis of the eigenspace associated with the eigenvalue λ = 0 has at least n − 1

vectors. In other words, the geometric multiplicity of the eigenvalue λ = 0,

which is the dimension of the eigenspace associated with that eigenvalue, is at

least n − 1. Since the algebraic multiplicity of the eigenvalue λ = 0, which is

the number of times its factor occurs in the characteristic polynomial, is

always bigger than or equal to its geometric multiplicity, the factor of the

eigenvalue 0 occurs at least n − 1 times in the characteristic polynomial.

The characteristic polynomial has a degree of n. In the proof of Theorem



22 CHAPTER 3. THE INCONSISTENT DECISION MAKER

2.1, we already proved that λ = n is an eigenvalue of A. Therefore, the factor of

the eigenvalue λ = 0 can only occur in the characteristic polynomial n − 1

times, since the factor of the eigenvalue λ = n has to occur at least once in the

characteristic polynomial with degree n. Therefore, the characteristic

polynomial of A is p(λ) = λn−1(λ − n).

Thus, the matrix A has a unique largest eigenvalue λ = n and all of the

other eigenvalues equal zero. �

From the proof above, when the eigenvalue of A is 0, the corresponding

eigenvectors violate the assumption wi > 0. Therefore, the only useful

eigenvalue of A is λ = n. Provided that the decision maker is slightly

inconsistent, we expect that A has a unique largest eigenvalue that

approximates n. The corresponding eigenvector, denoted w0, approximates w.

Our problem for the inconsistent case becomes: given a decision maker

that is inconsistent in her preferences, find the weight vector w0 that satisfies

Aw0 = λmaxw0, (3.1)

where λmax is the unique largest eigenvalue for A. In Section 3.2, we will

discuss Perron’s theorem, which guarantees that Equation 3.1 always has a

unique solution.

3.2 Positive Matrices and Their Eigenvalues

In this section, we discuss Perron’s theorem for positive matrices. The proof of

this theorem provides the theoretical foundation for the method of finding the
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weight vector in the inconsistent case. We begin by introducing several

concepts and theorems about stochastic matrices. These results will be useful

for our proof of Perron’s theorem later. The statement and the proof of

Perron’s theorem are presented in the second half of the section. The idea of

the proof of Perron’s theorem in this section draws from an outline provided

by Saaty [10, p. 170–176].

In Chapter 2, we mentioned the condition that makes a matrix positive.

For the purpose of the theorems in this section, we provide a formal definition

of the terms non-negative matrix and positive matrix.

Definition 3.1. A real matrix A is non-negative (or positive) if all of the entries

of A are non-negative (or positive). We write A ≥ 0 (or A > 0).

Definition 3.2. A non-negative matrix M is a stochastic matrix if each of the

row sums equal 1 [16, p. 189].

In another common definition of stochastic matrix, the entries in each of the

columns of M sum to 1. We can also say that the columns of M are probability

vectors. An example of a column stochastic matrix is M =

 0.7 0.2

0.3 0.8

 .
Theorem 3.2. For a positive, n × n, row stochastic matrix M

lim
k→∞

Mk = ev,

where v =
[
v1 v2 · · · vn

]
is a positive row vector,

∑n
i=1 vi = 1, and

e =
[
1 1 · · · 1

]T
.
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Proof. Theorem 3.2 states that for large k, Mk approaches a matrix with

identical rows. In order to prove this theorem, we prove that each column of

Mk approaches a column vector with identical entries. Let

y0 =
[

y1
0 y2

0 · · · yn
0

]T
be an arbitrary column vector in Rn. Define

yk = Mky0, with k = 0, 1, 2, . . .. Let ak and bk be the maximum and minimum

components of yk, respectively. Further, let α be the minimum entry in M.

The outline of the proof is as follows: (i) first, we demonstrate that the

sequences (ak) and (bk) are monotone, and (ii) bounded. As a result, (ak) and

(bk) converge. (iii) Next, we prove that the difference between (ak) and (bk)

approaches 0 as k approaches infinity. Therefore, (ak) and (bk) tend to a

common limit, and all of the components in yk also approach this limit. So yk

approaches a column vector with identical entries. (iv) Lastly, we choose y0 so

that for each y0, yk represent a column of Mk. Putting everything together,

each column of Mk approaches a column vector whose entries are the same,

and Mk approaches a matrix whose rows are identical.

(i) The sequences (ak) and (bk) are monotone:

We observe that for k = 0, 1, 2, . . ., yk+1 = Mk+1y0 = MMky0 = Myk. Let

yi
k+1 be the ith component of yk+1, y j

k be the jth component of yk, and mi, j be

the entry in the ith row and jth column of M, we have

yi
k+1 =

n∑
j=1

mi, jy
j
k = mi,1y1

k + mi,2y2
k + . . . + mi,nyn

k . (3.2)

Without loss of generality, assume that y1
k is the maximum component of
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yk. Then y1
k = ak. Equation 3.2 could be rewritten as

yi
k+1 = mi,1ak + mi,2y2

k + . . . + mi,nyn
k .

Since bk is the minimum component of yk,

yi
k+1 = mi,1ak + mi,2y2

k + . . . + mi,nyn
k

≥ mi,1ak + mi,2bk + . . . + mi,nbk

= mi,1ak + (1 −mi,1)bk.

The last line was achieved because the entries in each row of M sum to

unity. Further, since α is the minimum entry in M, α ≤ mi,1 and

1 − α ≥ 1 −mi,1. Therefore

yi
k+1 ≥ mi,1ak + (1 −mi,1)bk

≥ αak + (1 − α)bk.

Similarly, without loss of generality, assume that y2
k is the minimum

component of yk. Then y2
k = bk. Equation 3.2 could be rewritten as

yi
k+1 = mi,1y1

k + mi,2bk + mi,3y3
k + . . . + mi,nyn

k .
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With the same reasoning as the case above, we could write

yi
k+1 = mi,1y1

k + mi,2bk + . . . + mi,nyn
k

≤ mi,1ak + mi,2bk + . . . + mi,nak

= mi,2bk + (1 −mi,2)ak

≤ αbk + (1 − α)ak.

We just showed that an arbitrary component of yk+1 has the following

bounds:

αak + (1 − α)bk ≤ yi
k+1 ≤ αbk + (1 − α)ak. (3.3)

Since the bounds hold for the largest component of yk+1

ak+1 ≤ αbk + (1 − α)ak, (3.4)

which is equivalent to

ak+1 − ak ≤ α(bk − ak).

Because bk ≤ ak for k = 0, 1, 2, . . .

ak+1 − ak ≤ α(bk − ak) ≤ 0

for k = 0, 1, 2, . . .. Thus, (ak) is decreasing.

Similarly, the bounds in Equation 3.3 hold for the smallest component of
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yk+1. As a result

bk+1 ≥ αak + (1 − α)bk, (3.5)

which is equivalent to

bk+1 − bk ≥ α(ak − bk) ≥ 0,

for all k = 0, 1, 2, . . .. Thus, (bk) is increasing.

(ii) The sequences (ak) and (bk) are bounded and convergent:

We showed that (ak) is decreasing and (bk) is increasing. Thus, for

k = 0, 1, 2, . . ., ak ≤ a0 and bk ≥ b0.

For k = 0, 1, 2, . . ., bk ≤ ak ≤ a0. Thus, the increasing sequence (bk) is

bounded above by the number a0.

Similarly, for k = 0, 1, 2, . . ., ak ≥ bk ≥ b0. Therefore, the decreasing

sequence (ak) is bounded below by the number b0.

By the Monotone Convergence Theorem [1, p. 51], since (ak) is monotone

and bounded, it converges. Likewise, (bk) converges.

(iii) The vector yk approaches a column vector with identical entries:

Combining Equation 3.4 and Equation 3.5, we have

ak+1 − bk+1 ≤ αbk + (1 − α)ak − (αak + (1 − α)bk),
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which is equivalent to

ak+1 − bk+1 ≤ (1 − 2α)(ak − bk). (3.6)

Next, we prove that (ak − bk) ≤ (1 − 2α)k(a0 − b0) by induction.

Choosing k = 0 and applying Equation 3.6, we have

a1 − b1 ≤ (1 − 2α)1(a0 − b0),

so the base case is satisfied.

Assume an − bn ≤ (1 − 2α)n(a0 − b0). Then by Equation 3.6

an+1 − bn+1 ≤ (1 − 2α)(an − bn).

By our assumption of the induction hypothesis, the quantity on the

left-hand side of the above inequality is less than or equal to

(1 − 2α)(1 − 2α)n(a0 − b0). Thus

an+1 − bn+1 ≤ (1 − 2α)n+1(a0 − b0).

By induction,

ak − bk ≤ (1 − 2α)k(a0 − b0). (3.7)

We showed that (ak) and (bk) converge. Therefore, the Algebraic Limit

Theorem [1, p. 45] implies that (ak − bk) also converges. Next, we

compute the limit of (ak − bk).
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Since M is a positive matrix whose row sums are ones, 0 < α < 1. Thus

0 < 2α < 2⇔ −1 < 1 − 2α < 1⇔ |1 − 2α| < 1,

which means limk→∞(1 − 2α)k = 0 [1, p. 56].

From Equation 3.7 and the way we defined ak and bk, we have

0 ≤ ak − bk ≤ (1 − 2α)k(a0 − b0).

We know limk→∞0 = 0 and

limk→∞((1 − 2α)k(a0 − b0)) = (a0 − b0) limk→∞((1 − 2α)k) = (a0 − b0)0 = 0.

Using the Squeeze Theorem [1, p. 49], limk→∞(ak − bk) = 0.

We showed that lim(ak) and lim(bk) exist. Again, by the Algebraic Limit

Theorem

lim
k→∞

(ak − bk) = 0 = lim
k→∞

(ak) − lim
k→∞

(bk).

Thus, (ak) and (bk) approach a common limit. Since ak and bk are the

maximum and minimum components of yk, respectively, all of the

components in yk also approach this limit. In other words, as k

approaches infinity, the vector yk approaches a column vector whose

entries are all the same. Since the decreasing sequence (ak) is bounded

below by b0 and the increasing sequence (bk) is bounded above by a0,

limk→∞yk = Ce,
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where b0 ≤ C ≤ a0 and e =
[
1 1 · · · 1

]T
.

(iv) Mk approaches a matrix with identical rows:

Let y0 =
[

y1
0 y2

0 · · · yn
0

]T
, with yi

0 = 1 and y j
0 = 0 for any j , i. Then

yk = Mky0 is the ith column of Mk.

We showed that as k approaches infinity, the vector yk approaches a

column vector with identical entries. Therefore, the ith column of Mk also

approaches a column vector with identical entries, as k approaches

infinity.

Let Ce =
[

ci ci · · · ci

]T
. Since ci is an entry in Mk and M is positive, ci

is also positive. Let v be a row vector such that v j = ci, we have

lim
k→∞

Mk =



c1 c2 · · · cn

c1 c2 · · · cn

...
. . .

...

c1 c2 · · · cn


=



1

1
...

1


[

c1 c2 · · · cn

]
=



1

1
...

1


[

v1 v2 · · · vn

]
= ev.

Since ci is positive, v is a positive row vector. The last item in the proof is

to show that the sum of all of the components of v is 1.

Since the rows of M all sum to 1, Me = e, with e =
[
1 1 · · · 1

]T
. We

prove that Mk is also a stochastic matrix by induction.

First, since M1e = e as shown above, the base case is satisfied.

Assume that Mne = e. Then Mn+1e = M(Mne) = Me = e.

Therefore, Mke = e, by induction. So each of the rows of Mk sums to
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unity, and therefore
∑n

j=1 v j = 1.

�

We just proved that the powers of a positive, row stochastic matrix

eventually reach a stable stage. This result will be important to the proof of the

next lemma, which is in turn useful for the proof of Perron’s theorem.

Lemma 3.1. If A is a positive n × n matrix, then

lim
k→∞

Ak

λk
= wv,

where λ is a positive constant, v a positive row vector, and w is a positive column

vector.

Proof. Let S be the set of all non-negative, column n-vectors such that the

entries of each of those vectors sum to 1. We denote

S = {x|x = [xi]n×1 , xi ≥ 0,
n∑

i=1

xi = 1, i = 1, 2, . . . ,n}.

For any vector y, define the function

f (y) =

n∑
i=1

yi,

and the matrix transformation

T(y) =
1

f (Ay)
Ay,

where A is a positive, n × n matrix.
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The outline of the proof is as follows: (i) first, we demonstrate that the

transformation T is a continuous function, and T(S) ⊂ S. That is for an

arbitrary x ∈ S, T(x) ∈ S. (ii) Next, using the Brouwer Fixed Point Theorem

with the function T and the space S, we are able to find a positive fixed point

w. (iii) Finally, we apply Theorem 3.2 to prove the proposed limit.

(i) T is a continuous function which transforms S to S:

For an arbitrary x ∈ S, the matrix transformation Ax is continuous, since

each component of Ax is a linear function of x1, x2, . . . , xn and therefore

continuous. As a result, T(x) is continuous.

Let (Ax)i be the ith component of Ax. Consider

n∑
i=1

(T(x))i =

n∑
i=1

(
1

f (Ax)
(Ax))i

= f (
1

f (Ax)
Ax)

=
(Ax)1

f (Ax)
+

(Ax)2

f (Ax)
+ . . . +

(Ax)n

f (Ax)

=
1

f (Ax)

n∑
i=1

(Ax)i =
1

f (Ax)
f (Ax)

= 1.

Since A is n × n and x is n × 1, T(x) is n × 1.

Further, since x ≥ 0 and
∑n

i=1 xi = 1, x has at least one positive component.

Since A is positive, Ax > 0, which leads to f (Ax) =
∑n

i=1(Ax)i > 0.

Therefore, T(x) > 0.

To sum up, for i = 1, 2, . . . ,n, T(x) = [(T(x))i]n×1 ,T(x) > 0,
∑n

i=1(T(x))i = 1.
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Therefore, T(x) ∈ S. In other words, T : S→ S.

(ii) Find w and λ such that Aw = λw:

The space S is a closed bounded n − 1 dimensional convex set in Rn.

Thus S is topologically equivalent to a closed disk in Rn−1.

By the Brouwer Fixed Point Theorem [14, p. 277], there exists a fixed

point w ∈ S such that

T(w) = w.

By our definition of T, the above equation could be written as

1
f (Aw)

Aw = w, (3.8)

which is equivalent to

Aw = f (Aw)w.

Like x, w is non-negative, with entries that sum to 1, so w has at least one

positive component. So Aw > 0. Therefore, the right-hand side of the

above equation has to be positive. Since we know that w is non-negative,

f (Aw) > 0 and therefore w > 0.

Set λ = f (Aw). Then we have

Aw = λw, (3.9)

where λ is a positive real number and w is a positive column n-vector.

(iii) Proof of the proposed limit:



34 CHAPTER 3. THE INCONSISTENT DECISION MAKER

Let D be a diagonal matrix, dii = wi and di j = 0 whenever i , j (wi is the ith

component of w). Then it follows that w = De, with e =
[
1 1 · · · 1

]T
.

For an arbitrary column n-vector z, Dz = 0 has only the trivial solution

z = 0. Therefore, D is invertible. D−1 is a diagonal matrix, with diagonal

entries 1
wi

. It follows that D−1w = e.

We observe that

(D−1(
1
λ

)AD)e = (D−1(
1
λ

)A)De = D−1(
1
λ

)Aw = D−1w = e.

Thus, D−1( 1
λ )AD is a row stochastic matrix. Further, since D−1 and D are

non-negative n × n matrices, A is a positive n × n matrix, and λ is

positive, D−1( 1
λ )AD is a positive n × n matrix. Using Theorem 3.2,

lim
k→∞

(D−1(
1
λ

)AD)k = ev∗,

where v∗ =
[
v∗i
]

1×n
> 0, and

∑n
i=1 v∗i = 1.

On the other hand,

limk→∞(D−1(
1
λ

)AD)k = lim
k→∞

(D−1(
1
λ

)AD)(D−1(
1
λ

)AD) . . . (D−1(
1
λ

)AD)︸                                               ︷︷                                               ︸
kterms

)

= lim
k→∞

D−1(
1
λ

A)kD

= D−1(lim
k→∞

1
λk

Ak)D.
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Therefore,

D−1(lim
k→∞

1
λk

Ak)D = ev∗

⇔ lim
k→∞

Ak

λk
= Dev∗D−1 = wv∗D−1.

Let v = v∗D−1. Since v∗ is a positive, row n-vector and D−1 is a

non-negative, n × n matrix, v is a positive row n-vector.

We have shown that for a positive n × n matrix A,

lim
k→∞

Ak

λk
= wv,

where λ is a positive real number, v a positive row vector, and w is a

positive column vector.

�

We are now ready to state and prove Perron’s theorem, which justifies the

existence of a unique largest eigenvalue and a corresponding eigenvector w0

that satisfies Equation 3.1.

Theorem 3.3 (Perron’s Theorem). Let A be a positive matrix. Then

1. A has a real positive simple (i.e., not multiple) eigenvalue λmax, whose modulus

is larger than the modulus of any other eigenvalues.

2. Each of the right and left eigenvectors of A corresponding to the eigenvalue λmax

has positive components, and is essentially (to within multiplication by a

constant) unique.
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3. The number λmax (also called the Perron root of A) is bounded above by the

maximum row (or column) sum of A, and bounded below by the minimum row

(or column) sum of A.

Proof. We claim that for a matrix A > 0, the real number λ and the vectors w

and v constructed in Lemma 3.1 satisfy Perron’s theorem. We present the

proof in the following steps: (i) We first prove that λ is a eigenvalue of A with

corresponding right eigenvector w and left eigenvector v, with λ, w, and v

constructed in Lemma 3.1. (ii) Next, we prove that λ is the unique, largest

eigenvalue of A, which is the first item in Perron’s theorem. (iii) The proof that

w and v are unique will be presented next. (iv) Lastly, we prove that λ is

bounded above by the maximum row (or column) sum, and bounded below

by the minimum row (or column) sum of A.

(i) The real number λ is an eigenvalue of A with corresponding right

eigenvector w and left eigenvector v:

From Equation 3.9, we know that λ is an eigenvalue of A with

corresponding right eigenvector w.

Using the result of Lemma 3.1

1
λ

wvA =
1
λ

lim
k→∞

Ak

λk
A = lim

k→∞

Ak+1

λk+1
= wv.

Therefore

wvA = λwv,

which is equivalent to

ewvA = λewv,
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in which e =
[
1 1 · · · 1

]
is a row n-vector. Since ew is a constant, we

have

vA = λv, (3.10)

which means that v is a left eigenvector of A with eigenvalue λ.

We just showed that w and v are the right and left eigenvectors of A,

respectively, with eigenvalue λ. The vectors w and v, as well as λ, are

constructed in Lemma 3.1. In Lemma 3.1, we proved that λ is a positive

real number, w is a positive column vector and v is a positive row vector.

(ii) The eigenvalue λ is the unique, largest eigenvalue of A:

Suppose h is another eigenvalue of A with corresponding eigenvector u.

Then Au = hu. For any positive integer k, Aku = hku [8, p. 307]. This

means 1
λk Aku = ( h

λ )ku.

Taking the limit of both sides of the above equality and using the result

of Lemma 3.1, we have: wvu = limk→∞( h
λ )ku.

Since wvu is an column n-vector, the limit on the right-hand side of the

above equality has to exist, which means that limk→∞( h
λ )k has to exist.

Therefore, | hλ | < 1, which is equivalent to

|h| < |λ|,

in which case limk→∞( h
λ )k = 0. Thus, λ is the unique, largest eigenvalue of

A.

(iii) The right and left eigenvectors w and v of A corresponding to λ are
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unique to within multiplication by a constant:

We first prove that w is unique to within multiplication by a constant.

Suppose u is another right eigenvector of A corresponding to the

eigenvalue λ. Then Au = λu. For any positive integer k, Aku = λku [8,

p. 307]. Therefore 1
λk Aku = u.

Taking the limit of both sides of the above equality and using the result

of Lemma 3.1, we have: limk→∞( 1
λk Aku) = limk→∞ u⇔ wvu = u. Since vu

is a constant, we can set a = vu. Thus

aw = u.

Similarly, to prove that any other left eigenvector of A corresponding to

λ is a constant multiple of v, suppose yA = λy. Then yAk = λky (for any

k ∈ Z, k > 0)[8, p. 307]. Therefore 1
λk yAk = y, which means y 1

λk Ak = y.

Taking the limit of both sides of the above equation and using the result

of Lemma 3.1, we have y limk→∞
Ak

λk = limk→∞ y⇔ ywv = y. Since yw is a

constant, we can set c = yw. Thus

cv = y.

λ is also called the principal eigenvalue of A, with corresponding

principal eigenvectors w and v. Up to this point, we have proved the

first two items in Perron’s theorem. What remains to be shown is the

upper and lower bounds of λ.
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(iv) The eigenvalue λ is bounded above by the maximum row (or column)

sum of A and bounded below by the minimum row (or column) sum

of A:

Let e =
[
1 1 · · · 1

]T
be a column n-vector. The row sums of A are

given by the components of Ae. Let M be the maximum row sum and m

be the minimum row sum of A. Then

me ≤ Ae ≤Me. (3.11)

We proved that v is a left eigenvector of A with corresponding

eigenvalue λ. From Equation 3.10, we have vAe = λve.

In addition, from 3.11, we have

vme ≤ vAe ≤ vMe.

Therefore

vme ≤ λve ≤ vMe. (3.12)

Since ve is a positive real number (we proved that v > 0), we can divide

3.12 by ve, yielding:

m ≤ λ ≤M.

Using similar techniques, we can prove that λ is bounded above by the

maximum column sum and bounded below by the minimum column

sum. This time, let e =
[
1 1 · · · 1

]
be a row n-vector. Then the column
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sums of A are given by the components of eA. Let N be the maximum

column sum and n be the minimum column sum of A. Then

en ≤ eA ≤ eN.

Using Equation 3.9, we have eAw = eλw. Therefore, enw ≤ eλw ≤ eNw,

which is equivalent to

n ≤ λ ≤ N.

�

Perron’s theorem guarantees that in the inconsistent case, we can always

find the weight vector from a positive, reciprocal pairwise comparison matrix

A. (Equation 3.1 has a unique solution). The next theorem provides the

justification for the method of finding the weight vector.

Theorem 3.4.

lim
k→∞

Ake
eTAke

= w1,

where A > 0, w1 is its principal eigenvector corresponding to the maximum

eigenvalue λ1, such that
∑n

i=1(w1)i = 1.

For the proof of this theorem, the reader is referred to [10, p. 176]. Theorem

3.4 states that in order to compute the weight vector of an inconsistent

pairwise comparison matrix, we raise the matrix to an arbitrarily large power,

and then divide the sum of each row by the sum of the entries in the matrix .

In the next section, we illustrate this method of finding the weight vector

for an inconsistent decision maker.
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3.3 Finding the Weight Vector for the Inconsistent

Alice Example

In this section, we illustrate the use of Theorem 3.4 with the inconsistent

version of our Alice example. The consistent pairwise comparison matrix A is

modified so that Alice is inconsistent in her preferences:

A =


1 2 5

1
2 1 3

1
5

1
3 1

 .

Since a12a23 = 6 , 5 = a13, A is not consistent. For k = 1:

A1e = Ae =


1 2 5

1
2 1 3

1
5

1
3 1




1

1

1

 =


8

9
2

23
15

 ,

eTA1e =
[

1 1 1
] 

1 2 5

1
2 1 3

1
5

1
3 1




1

1

1

 =
421
30
.

Applying Theorem 3.4 and approximating the result to five decimal places,

the eigenvector is

w1 =
A1e

eTA1e
=

30
421


8

9
2

23
15

 =


0.57007

0.32066

0.10926

 .
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Replicating this process for larger values of k yields:

w2 =
A2e

eTA2e
=


0.58176

0.30896

0.10928



w3 =
A3e

eTA3e
=


0.58157

0.30898

0.10945



w4 =
A4e

eTA4e
=


0.58155

0.30900

0.10945



w5 =
A5e

eTA5e
=


0.58155

0.30900

0.10945

 .

The values of the eigenvector have stabilized after five iterations. In

general, we stop when

‖wi
−wi+1

‖ < ε,

where ε > 0 is predetermined. The weights of Alice’s objectives are the entries

of w5: the weight of the first objective is the first entry of w5, the weight of the

second objective is the second entry, and so on. From w5, we can see that the

weights of academic quality, financial aid, and location are 0.58155, 0.30900,

and 0.10945, respectively. These weights are close to the weights in the
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consistent case, which were found in Chapter 2 to be 0.6, 0.3 and 0.1. This

indicates that Alice is not too inconsistent in her preferences. The method to

measure the degree of inconsistency will be presented in Chapter 5.

Up until now, we have explained the methods used to find the weight

vectors in both the consistent and the inconsistent sub-problems of the AHP. If

a decision maker is consistent, Equation 2.1 states that the desired weight

vector w is an eigenvector of A with corresponding eigenvalue n. By Theorem

2.2, we are assured that w is simply the normalized form of any column in A.

If the decision maker is inconsistent, we find the largest eigenvector of A

corresponding to the principal eigenvalue λmax. (In other words, we find a

solution to Equation 3.1). Theorem 3.3 (Perron’s theorem) guarantees the

existence of a unique solution to Equation 3.1. In order to find this unique

principal eigenvector, we apply Theorem 3.4: raising A to an arbitrarily large

power, and then dividing each row sum by the sum of the entries in the

matrix. The iterations are stopped when the difference between two resulting

vectors is less than a prescribed value. Since the goal is for the resulting

vectors to converge, a quick way to obtain the weight vector is to raise A to the

2 · i power at the i iteration, for i = 1, . . . ,n [10, p. 179].

In the next chapter, we turn our attention to the second task of the AHP:

finding how well each alternative satisfies each objective.
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Chapter 4

Finding the Score of an Alternative

on an Objective

In this chapter, we present the method to determine the score of each

alternative on each objective. After the scores have been obtained, we will be

able to calculate the priority of each alternative. As it turns out, the method to

compute the scores of the alternatives is by nature similar to the process used

to obtain the weights of the objectives. This leads to the generalization of the

AHP, which at its heart involves the construction of a hierarchy with different

levels (or strata) in order to model the various elements in a decision maker’s

preferences.

45
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4.1 Finding the Score of Each Alternative in the

Alice Example

The computation of the scores starts with the construction of a pairwise

comparison matrix. In Chapter 2 and Chapter 3, the pairwise comparison

matrix has been used to compare each pair of the objectives in terms of their

importance to the goal. In this chapter, we construct a pairwise comparison

matrix for each objective, assessing how well each alternative satisfies that

objective, compared to each other alternative. In other words, we are now

interested in the pairwise comparisons of alternatives on each objective.

Not surprisingly, we aim to obtain the score vector s on an objective from

the pairwise comparison matrix for that objective. If the matrix is consistent,

we apply Theorem 2.2 to find s. If the matrix is inconsistent, we find s by using

Theorem 3.4. In a nutshell, finding the scores of the alternatives on an

objective uses the same process as finding the weights of the objectives on the

decision maker’s final choice. The only difference is that we have to repeat this

process for each objective. We illustrate this process with the Alice example.

Recall that Alice has been accepted into three universities: City University,

Suburb University, and Town University. Suppose further that we know how

well each university satisfies each objective, compared to how well each other

university satisfies the same objective. The extent to which alternative i

satisfies an objective, compared to the extent to which alternative j satisfies

that same objective, is measured on an integer-valued, 1–9 scale.1 These

1This scale is the same scale that was used to measure the pairwise comparisons of objectives
in Chapter 2. This scale will be further discussed in Chapter 5.
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pairwise comparative scores are placed into a pairwise comparison matrix for

each objective. For example, for the first objective, academic quality, the

pairwise comparison matrix comparing each pair of the three universities is

B1 =


1 4 8

1
4 1 3

1
8

1
3 1

 .

The i j entry in B1 reflects the score of university i on academic quality,

compared to the score of university j on the same objective. In this example,

suppose we refer to City University, Suburb University, and Town University

as the first, second, and third university, respectively. Then the entry in the

second row and the first column of B1, which is 1
4 , means that Suburb

University scores one fourth as well as City University on academic quality.

Though B1 is a positive, reciprocal matrix as required, it is inconsistent,

since b12b23 = 4 · 3 = 12 , 8 = b13. Applying Theorem 3.4, we find the score

vector s1 for B1:

s1
1 =

B1
1e

eTB1
1e

=


0.69488

0.22717

0.07795



s2
1 =

B2
1e

eTB2
1e

=


0.71788

0.20459

0.07753
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s3
1 =

B3
1e

eTB3
1e

=


0.71677

0.20496

0.07826



s4
1 =

B4
1e

eTB4
1e

=


0.71664

0.20509

0.07826



s5
1 =

B5
1e

eTB5
1e

=


0.71665

0.20509

0.07826



s6
1 =

B6
1e

eTB6
1e

=


0.71665

0.20509

0.07826

 .

The values of s1 are within our convergence tolerance ε = 0.00001 after the

sixth iteration. The first entry of this vector is the score of the first alternative

on the objective academic quality, the second entry corresponds to the score of

the second alternative on that objective, and so on. Based on s6
1, we know that

the scores of City University, Suburb University, and Town University on the

objective academic quality are 0.71665, 0.20509, and 0.07826, respectively. Note

that just like the weights of the objectives, these scores sum to 1.

We can use the same process to compute the score vectors of the three

universities for the other two objectives. Suppose the pairwise comparison

matrix comparing each pair of the three universities on the objective financial
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aid is

B2 =


1 1

7
1
4

7 1 2

4 1
2 1

 .

Like B1, B2 is also inconsistent. Applying Theorem 3.4, we find that the

values of the score vector s2 are within our convergence tolerance ε = 0.00001

after the fifth iteration. The score vector for B2 is

s5
2 =

B5
2e

eTB5
2e

=


0.08234

0.60263

0.31503

 .

Based on this vector, the scores of City University, Suburb University, and

Town University on financial aid are 0.08234, 0.60263, and 0.31503, respectively.

Finally, the pairwise comparison matrix comparing each pair of the three

universities on location is

B3 =


1 1

2 4

2 1 9

1
4

1
9 1

 .

The score vector s3, whose values are within our convergence tolerance

ε = 0.00001 after five iterations of Theorem 3.4, is

s5
3 =

B5
3e

eTB5
3e

=


0.30116

0.62644

0.07239

 .
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The interpretation of this score vector is the same as the interpretations of

the two previous score vectors. For the objective location, the scores of the City,

Suburb, and Town University are 0.30116, 0.62644, and 0.07239, in that order.

Now that we have calculated the weights of the objectives, as well as the

scores of the alternatives on the objectives, we can compute the priorities of

the three alternatives. Applying Equation 1.1, we find the total score of City

University:

0.71665 × 0.58155 + 0.08234 × 0.30900 + 0.30116 × 0.10945 = 0.4751728295,

the total score of Suburb University:

0.20509 × 0.58155 + 0.60263 × 0.30900 + 0.62644 × 0.10945 = 0.3740466175,

and the total score of Town University:

0.07826 × 0.58155 + 0.31503 × 0.30900 + 0.07239 × 0.10945 = 0.1507794585.

We observe that these total scores can be computed by matrix

multiplication. We put the three column score vectors into a 3 × 3 score matrix

called S, and then right-multiply this matrix by the weight vector w, computed

in Chapter 3. The result is the column 3-vector, whose entries are the priorities

of the alternatives. This method provides a short computational way for

problems in which the decision makers have a large number of objectives.
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Sw =


0.71665 0.08234 0.30116

0.20509 0.60263 0.62644

0.07826 0.31503 0.07239




0.58155

0.30900

0.10945

 =


0.475172829500000

0.374046617500000

0.150779458500000

 .

One way to think of the computation Sw is that we are weighing the scores

of each university on the objectives by the importance of those objectives.

From the obtained priority matrix, the priorities (or total scores) of City

University, Suburb University, and Town University, are 0.48, 0.37, and 0.15,

respectively. These scores are the same as the scores calculated separately for

each alternative. Based on these scores, Alice should choose to go to City

University, as it has the highest total score.

4.2 The Hierarchy

The similarity of the methods used to compute the weights of the objectives

and the scores of the alternatives might have led the reader to guess that there

is a connection between the roles of the objectives and the alternatives in the

AHP. Indeed, this similarity results from the fundamental idea of the AHP: the

construction of a hierarchy, which consists of different levels, in order to

reflect the various layers of factors that affect the decision making process.

There is no set of rules that prescribes the construction of a hierarchy.

However, it is ideal to choose layers that reflect the decision maker’s

preferences as well as the complexity of the decision making problem [10,

p. 14]. Figure 4.1 shows the hierarchy for the Alice example. The first level is



52
CHAPTER 4. FINDING THE SCORE OF AN ALTERNATIVE ON AN

OBJECTIVE

Figure 4.1: The Hierarchy for the Alice Example

the goal of the decision making process, choosing a university. The second

level consists of the objectives used when choosing a university, academic

quality, financial aid, and location. The third level specifies the alternatives

available to Alice: City University, Suburb University, and Town University.

In Figure 4.1, each line segment represents the influence (or impact) that

an element of a higher level has on an element of a lower level. Through the

intermediary level (which is Objectives in this case), the goal has an impact on

the alternatives. In our Alice example, the influence of the second level on the

lowest level is how well each alternative satisfies each objective. This influence



CHAPTER 4. FINDING THE SCORE OF AN ALTERNATIVE ON AN
OBJECTIVE 53

is expressed mathematically by the score matrix S. The influence of the first

level on the second level is the weights of the objectives, represented by the

weight vector w. Finally, the overall influence of the first level on the lowest

level is the values of the alternatives to Alice. These values are computed by

the matrix multiplication Sw.

The hierarchy in Figure 4.1 is of the simplest form. It is a linear system,

extending from one level down to the next. A more complicated form of the

hierarchy is a system with feedback, in which case the levels in the hierarchy

interact with one another in a nonlinear manner. An example of this nonlinear

system will be presented in Chapter 6. In the next section, we perform a

simple extension of the linear hierarchy for the Alice example.

4.3 Extension of the Hierarchy in the Alice Example

The hierarchy for the Alice example can be easily extended to solve a slightly

different problem. Suppose Alice is trying to decide between studying

Engineering and studying Medicine in college. All of the three universities

that she considers offer these two programs, and her choice of major will affect

her choice of university. The two majors add a fourth layer to the hierarchy

called the Sub-alternatives. Figure 4.2 shows this extended hierarchy.

In Figure 4.2, each alternative has an influence on each of the

sub-alternatives. In this example, this influence is interpreted as the academic

strength and reputation of each major in each university. Each of the objectives

also has an influence on each major through the alternatives in the third level.

Likewise, the overall goal has an influence on the majors through the
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Figure 4.2: The Extended Hierarchy for the Alice Example
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objectives in the second level and the alternatives in the third level.

We aim to find the score of the sub-alternatives on each alternative. The

computation of the score vectors introduced earlier in this chapter is easily

applicable to this new layer of sub-alternatives. We begin with a pairwise

comparison matrix for each university. The i j entry in each matrix represents

the strength of program i, compared to the strength of program j, at the

university. In this example, let Engineering be the first, and Medicine be the

second program. Suppose that the pairwise comparison matrices for the City,

Suburb and Town Universities are C1, C2, and C3, respectively:

C1 =

 1 2

1
2 1

 C2 =

 1 4

1
4 1

 C3 =

 1 1
3

3 1

 .

We observe that all of the three matrices are consistent. This is in fact the

case for every 2 × 2 positive, reciprocal matrix, since it always holds that

aik = ai ja jk. The corresponding eigenvectors of these matrices are:

s1 =


2
3

1
3

 s2 =


4
5

1
5

 s3 =


1
4

3
4

 .

In order to compute the priority vector of the two majors, we first put s1,

s2, and s3 into a 2 × 3 matrix S0. Right-multiplying S0 by Sw, we obtain the

desired priority vector.
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S0Sw =


2
3

4
5

1
4

1
3

1
5

3
4




0.71665 0.08234 0.30116

0.20509 0.60263 0.62644

0.07826 0.31503 0.07239




0.58155

0.30900

0.10945

 =

 0.65371

0.34628

 .

According to this result, the priority of studying Engineering is 0.65, while

the priority of studying Medicine is 0.35. Therefore, studying Engineering is

the most logical choice for Alice, given her objectives and alternatives.

This example serves its purpose to illustrate an extension of the AHP.

However, the example does not provide a good model for a real-world

problem. The sub-alternatives have been chosen as if Alice is "partially" going

to all of the three universities. Since the calculation of the priorities of the

sub-alternatives takes into account the priorities of the alternatives, the

priorities of Engineering and of Medicine have been weighed accordingly to

the weights of the three Universities. Specifically, the priority of Engineering

has been calculated as if Alice would divide her Engineering curriculum into

47% at City University, 37% at Suburb University, and 15% at Town University.

The same argument can be made for the calculation of the priority of Medicine.

Further, since we have already determined that City University is the most

logical choice for Alice, among the three universities, and Engineering is twice

as strong as Medicine at City University (the entry in the first row and the

second column of C1 is 2), we can easily conclude that Alice should study

Engineering at City University, without using the pairwise comparison

matrices to find S0. A reasonable argument would be that if the strength of
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Medicine greatly exceeds the strength of Engineering at a university that has a

lower score than City University, that would tilt the odds in this lower-scored

university’s favor. We changed the pairwise comparison matrix C2 for the next

best university, Suburb University, so that Medicine is 9 times as strong as

Engineering at this university. The AHP recommends that Alice should study

Medicine (priority of 0.61, as opposed to 0.39 for Engineering). Again, this

recommendation assumes that Alice studies Medicine 47% at City University,

37% at Suburb University, and 15% at Town University, which is a condition

that cannot be satisfied in real life.

It is interesting that changing the relative strength of Medicine from 1
4 to 9

times of Engineering in C2 does not affect the AHP’s recommendation that

Alice goes to City University. This strange result is due to the fact that the

influence among levels in a hierarchy extends downward. In Figure 4.2, the

choice of universities affects the choice of majors, but not vice versa. A

problem in which the choice of majors affects the choice of universities

requires a system with feedback, a generalization of the hierarchy. In Chapter

6, after our understanding of the fundamental components of the AHP has

been complete, we will present an example that illustrates this kind of system.

In this section, we have discussed the hierarchy, an essential component of

the AHP. As mentioned in the introduction, the hierarchy has been applied to

solve complicated problems in the social sciences. For a more detailed analysis

of the advantages of hierarchies, we refer the reader to [10, p. 14]. The

construction of a hierarchy for each decision making problem requires an

in-depth understanding of the various factors of that problem. Saaty proposes

a few suggestions on the construction a hierarchy. These suggestions are not
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based on theories in mathematics and are therefore beyond the scope of this

thesis. For more information, the interested reader can refer to [10, p. 14–16].

At this stage, we have investigated most of the foundations of the AHP,

including the idea of hierarchy, and the justification and computation of the

weights of the elements in a hierarchy. However, we still need to fill some

remaining gaps in the theory of the AHP. These are two of the metrics utilized

in the AHP: measure of a decision maker’s consistency, and the integer-valued

1–9 scale that was used to quantify the pairwise comparisons. We will spend

more time developing both of these metrics in the next chapter.



Chapter 5

Metrics

In Chapter 3, we presented the argument made by Saaty [10, p. 179] that when

the entries of a positive reciprocal matrix change by small amounts, then the

eigenvalues change by small amounts. This argument provides the foundation

necessary for us to move from an eigenvalue problem in the consistent case to

the same problem in the inconsistent case. In this chapter, we shall provide the

theoretical justification for our argument. The central content of this

justification is the first metric utilized in the AHP to measure a decision

maker’s consistency.

As we shall see, a positive, reciprocal matrix A is consistent if and only if

the principal eigenvalue λmax equals the number of objectives n. In addition, if

the perturbation of the entries ai j is small, and the number of objectives n is

also small, then the principal eigenvalue λmax does not deviate much from its

original value n. This leads to a method to measure a decision maker’s

consistency. In the second half of the chapter, we discuss a second metric used

in the AHP: the integer-valued 1–9 scale that was used to measure the decision

59
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maker’s pairwise preferences.

5.1 Measure of Consistency

5.1.1 Consistency of a Pairwise Reciprocal Matrix

In Chapter 2, we defined the pairwise comparison matrix A =
[
ai j

]
to be a

positive, reciprocal matrix. The weight vector w =
[
wi

]
is a positive, column

n-vector, where wi is the weight of objective i, and
∑n

i=1 wi = 1.

Recall that in the consistent case, A0 =
[

wi
w j

]
, and the weight vector w0 is the

solution to the following equation:

A0w0 = nw0,

where n is the number of objectives.

For an inconsistent pairwise comparison matrix A, the priority vector w is

the solution to the following equation:

Aw = λmaxw. (5.1)

We found that λmax is the principal eigenvalue of A corresponding to the

principal eigenvector w.

The objective of this subsection is to show that if the perturbation of the

entries in A from those in A0 is small, then λmax does not deviate much from n,

provided that n is small. (Saaty contends that n should be less than 10 [10,

p. 181]). For a discussion of the sensitivity of the eigenvector, see section 7-7 of
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[10, p. 192].

We assume that all perturbations of the entries in the original pairwise

comparison matrix A can be represented by ai j = wi
w j
εi j. Specifically,

wi
w j

+ αi j = wi
w j

(1 +
w j

wi
αi j). Then A is consistent when εi j = 1. We note that since A

is a positive matrix in both the consistent and the inconsistent cases, εi j > 0.

Furthermore, since A is reciprocal, ε ji = 1
εi j

for all i and j.

From Equation 5.1, for each i = 1, 2, . . . ,n:

n∑
j=1

ai jw j = λmaxwi.

Therefore

λmax =

n∑
j=1

ai j
w j

wi

= ai1
w1

wi
+ ai2

w2

wi
+ . . . + aii

wi

wi
+ . . . + ain

wn

wi

=
∑
j,i

ai j
w j

wi
+ 1,

for each i = 1, 2, . . . ,n.

The last line was achieved because by construction, the entries on the

diagonal of the pairwise matrix A are ones. Taking the sum of λmax over n rows

yield:

nλmax =
∑
j,1

a1 j
w j

w1
+ 1 +

∑
j,2

a2 j
w j

w2
+ 1 + . . . +

∑
j,n

anj
w j

wn
+ 1.
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We can rewrite the above equation as:

nλmax =
∑

1≤i< j≤n

ai j
w j

wi
+

∑
1≤ j<i≤n

ai j
w j

wi
+ n. (5.2)

The first quantity on the right-hand side of Equation 5.2 corresponds to the

entries above the diagonal of A, and the second quantity corresponds to the

entries below the diagonal. Combining these two quantities, we have

nλmax =
∑

1≤i< j≤n

(ai j
w j

wi
+ a ji

wi

w j
) + n,

which is equivalent to

nλmax − n =
∑

1≤i< j≤n

(ai j
w j

wi
+ a ji

wi

w j
). (5.3)

The eigenvalue of the consistent pairwise comparison matrix is n, and the

eigenvalue of the inconsistent pairwise comparison matrix is λmax. Therefore,

λmax − n gives an intuitively reasonable measure of consistency. As it turns out,

the measure of consistency depends on both λmax − n and the number of

objectives n.

Define

µ =
λmax − n

n − 1
. (5.4)

We shall prove later that µ is a measure of consistency.

We have

µ =
λmax − 1 + 1 − n

n − 1
=

n(λmax − 1)
n(n − 1)

+
1 − n
n − 1

,
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and by Equation 5.3

µ = −1 +
1

n(n − 1)

∑
1≤i< j≤n

(ai j
w j

wi
+ a ji

wi

w j
). (5.5)

We want to express µ in terms of εi j so that µ is tractable for our discussion

of the inconsistent case. Since the relation a ji = 1
ai j

still holds when the decision

maker is inconsistent, and by assumption

ai j =
wi

w j
εi j, (5.6)

we have

a ji =
w j

wi

1
εi j
. (5.7)

Substituting Equation 5.6 and Equation 5.7 into Equation 5.5, we have

µ = −1 +
1

n(n − 1)

∑
1≤i< j≤n

(
wi

w j
εi j

w j

wi
+

w j

wi

1
εi j

wi

w j
).

Thus

µ = −1 +
1

n(n − 1)

∑
1≤i< j≤n

(εi j +
1
εi j

). (5.8)
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We note that

lim
εi j→1

µ = −1 +
1

n(n − 1)

∑
1≤i< j≤n

lim
εi j→1

(εi j +
1
εi j

)

= −1 +
1

n(n − 1)

∑
1≤i< j≤n

2

= −1 +
1

n(n − 1)
2n(n − 1)

2

= 0.

The second to last line was achieved because the number of entries that are

above the diagonal of A is
∑n−1

i=1 i = n(n−1)
2 .

The above limit states that as consistency is approached (εi j approaches 1),

µ approaches 0. This suggests that we choose µ as a measure of the decision

maker’s inconsistency. We will show that the general form of µ in Equation 5.4

suffices as a measure of consistency. In order to accomplish this goal, we need

to introduce the next three theorems.

First, we define

δi j =


εi j − 1 εi j ≥ 1

ε ji − 1 εi j < 1.

Since A is reciprocal, if εi j < 1, then ε ji = 1
εi j
> 1. Thus,

δi j ≥ 0,

for all i and j. We note that δi j = 0 when A is consistent (because then
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εi j = ε ji = 1). Developing from Equation 5.8 we have:

µ =
1

n(n − 1)

∑
1≤i< j≤n

(εi j +
1
εi j

) − 1

=
1

n(n − 1)
(

∑
1≤i< j≤n

(εi j +
1
εi j

) −
2n(n − 1)

2
).

In computing the limit of µ, we found that 2n(n−1)
2 =

∑
1≤i< j≤n 2. Therefore we

can write µ as

µ =
1

n(n − 1)

∑
1≤i< j≤n

(εi j +
1
εi j
− 2).

If εi j > 1, then εi j + 1
εi j

= 1 + δi j + 1
1+δi j

.

If εi j < 1, and consequently ε ji > 1, then εi j + 1
εi j

= 1
ε ji

+ ε ji = 1
1+δi j

+ 1 + δi j.

Therefore

µ =
1

n(n − 1)

∑
1≤i< j≤n

(1 + δi j +
1

1 + δi j
− 2).

Further simplification yields

µ =
1

n(n − 1)

∑
1≤i< j≤n

δ2
i j

1 + δi j
. (5.9)

With this new notion of µ, we can proceed to prove the next theorems,

which will be helpful to our discussion of the measure of consistency.

Theorem 5.1. For an n × n positive, reciprocal matrix A, the principal eigenvalue

λmax ≥ n.



66 CHAPTER 5. METRICS

Proof. From Equation 5.4 and Equation 5.9

λmax − n
n − 1

= µ =
1

n(n − 1)

∑
1≤i< j≤n

δ2
i j

1 + δi j
,

which is non-negative, since δi j ≥ 0 by its construction.

Thus,

λmax ≥ n. (5.10)

�

Theorem 5.2. An n × n positive, reciprocal matrix A is consistent if and only if

λmax = n.

Proof. If A is consistent, then δi j = 0 (by construction of δi j). As a result, µ = 0,

by Equation 5.9. This means that λmax−n
n−1 = µ = 0, by Equation 5.4. Thus,

λmax = n.

Conversely, if λmax = n, by Equation 5.4, µ = λmax−n
n−1 = 0. Then, by Equation

5.9, 1
n(n−1)

∑
1≤i< j≤n

δ2
i j

1+δi j
= µ = 0. This implies that δi j = 0 for each choice of i and

j. As a result, A is consistent. �

Theorem 5.3. Let

δ = max
i, j

δi j.

Then

λmax − n <
n − 1

2
δ2.
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Proof. From Equation 5.4 and Equation 5.9

λmax − n =
1
n

∑
1≤i< j≤n

δ2
i j

1 + δi j

<
1
n

∑
1≤i< j≤n

δ2
i j

≤
1
n

∑
1≤i< j≤n

δ2

=
1
n

n(n − 1)
2

δ2

=
n − 1

2
δ2.

To arrive at the conclusion above, we have used the fact that δi j > 0 for some i, j

(by construction of δi j), assuming that A is inconsistent. Consequently,

1 + δi j ≥ 1 for all i, j and 1 + δi j > 1 for at least one i, j. Therefore,
δ2

i j

1+δi j
< δ2

i j. This

justifies the second step of our argument. To arrive at the fourth step, we used

the fact that the number of the entries above the diagonal of a matrix is∑n−1
i=1 i = n(n−1)

2 . �

Theorem 5.3 states that the deviation of λmax from n depends on the

maximum perturbation δ of the entries in A and the number of objectives n.

Small perturbations in the entries of A would cause λmax to deviate from n by a

small amount. Therefore, we can find the weight vector of the inconsistent

case using the same eigenvalue problem in the consistent case, which is

A0w0 = nw0. Theorem 5.3 thus provides the theoretical reasoning for our

method in Chapter 3.

However, one issue remains: a decision maker can be extremely
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inconsistent. In this case, the entries of A will deviate from the entries of a

consistent matrix by large amounts. The weight vector that results from our

approach will be meaningless. As such, it is necessary that we develop a

measure of consistency. This measure will provide some insight into the

accuracy of the weight vector obtained from our eigenvalue approach. In the

next subsection, we will present this measure of consistency.

5.1.2 Consistency Index

We have argued that an n × n positive, reciprocal matrix A is consistent if and

only if its principal eigenvalue λmax equals the number of objectives n.

Theorem 5.3 shows that the difference λmax − n depends on the magnitude of

the maximum perturbation of the entries in A and n − 1. For this reason,

µ =
λmax − n

n − 1

is used as a measure of the closeness of A to consistency. The quantity µ is

called the consistency index (C.I.) [10, p. 21].

From Theorem 5.3, we have

µ =
λmax − n

n − 1
<
δ2

2
.

Therefore, δ
2

2 provides an upper bound for our measure of the consistency

index. However, we note that if n is large, then µ < δ2

2 even if λmax is far away

from n. Therefore, for a large number of objectives, µ might not provide a

meaningful measure of consistency. For n small, µ provides a reasonable
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measure of how far λmax is from n, and, consequently, how far the decision

maker is from consistency. Saaty suggests that n should be less than 10 [10,

p. 181].

In order to check for consistency, Saaty uses both the consistency index

and another measure called the random index. A random sample of 500

pairwise reciprocal matrices is constructed. Each matrix is generated

randomly, and its entries are subject to the constraints that

(i) ai j are values from the integer scale 1–9, and

(ii) ai j = 1 if i = j, and

(iii) ai j = 1
a ji

for i, j = 1, 2, . . . ,n.

The average value of the consistency indexes of these 500 matrices is called

the random index (R.I.). Table 5.1 gives the random indexes and the

corresponding matrix orders [10, p. 21]. Since Saaty suggests using the AHP

when the number of objectives is less than 10, this table only lists the R.I. for

matrices up to order 10.

Table 5.1: Values of the Random Index (R.I.)

n 1 2 3 4 5 6 7 8 9 10

R.I. 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

The consistency ratio (C.R.) of a matrix is the ratio of the C.I. of that matrix

to the R.I. for the same matrix order. Thus, for a specific decision maker, the

consistency ratio takes into account both the measure of consistency for that
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specific decision maker (through the consistency index), and the measure of

consistency of a random sample of 500 other decision makers (through the

random index). Therefore, the consistency ratio provides a reasonable

measure of the consistency of the decision maker in question.

If the consistency ratio is 0.10 or less, the decision maker is not too

inconsistent and the result obtained by the AHP is acceptable. However, if the

C.R. is larger than 0.10, more serious inconsistency exists and the priority

vector might not provide an accurate solution to the decision making process

[17, p. 788]. We illustrate the use of the consistency ratio with our Alice

example.

5.1.3 Finding the Consistency Ratio for the Alice Example

In Chapter 3, we discussed the eigenvalue problem of the Alice example:

Aw0 = λmaxw0, (5.11)

where

A =


1 2 5

1
2 1 3

1
5

1
3 1

 .
We found the weight vector to be

w0 =
A5e

eTA5e
=


0.58155

0.30900

0.10945

 .



CHAPTER 5. METRICS 71

From Equation 5.11 and the rule of matrix multiplication, we know that

λmax =

3∑
j=1

ai j
w j

wi
,

for i = 1, 2, 3, A =
[
ai j

]
, and w0 = [wi]. Thus, λmax can be computed as the ratio

of any component in Aw0 to the corresponding component in w0. Computing

these ratios for all pairs of components in Aw0 and w0 yield

3∑
j=1

a1 j
w j

w1
=

1(0.58155) + 2(0.30900) + 5(0.10945)
0.58155

= 3.003694708,

3∑
j=1

a2 j
w j

w2
=

1
2 (0.58155) + 1(0.30900) + 3(0.10945)

0.30900
= 3.003694450,

3∑
j=1

a3 j
w j

w3
=

1
5 (0.58155) + 1

3 (0.30900) + 1(0.10945)
0.10945

= 3.003694636.

Taking λmax = 3.003694, we have the consistency index

λmax − n
n − 1

=
3.003694 − 3

3 − 1
= 0.001847.

For a matrix of order 3, the random index (as in Table 5.1) is 0.58. Therefore,

the consistency ratio is

0.001847
0.58

= 0.003184 < 0.1.

So the inconsistency is acceptable and the weight vector w0 provides an

accurate solution to the Alice example.
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In this section, we have investigated the theories that allow us to apply the

same eigenvalue approach in the consistent case to the inconsistent case. In

the process, we also derived the consistency index µ = λmax−n
n−1 , which is used

together with the random index to measure the decision maker’s inconsistency.

In the next section, we will discuss the integer-valued scale 1–9 that was used

to represent the decision maker’s preferences for each pair of objectives.

5.2 Measure of Pairwise Preferences

In Chapter 2, we introduced the pairwise comparison matrix A. Recall that the

ai j entry in A represents the importance of objective i for the decision maker,

compared to that of objective j. In this section, we explain the metric that is

used to measure the decision maker’s pairwise preferences. We will not aim to

investigate the derivation of this metric, since this derivation is based on

theories in the social sciences.

The values of these pairwise comparisons are drawn from a scale of

integers ranging from 1 to 9. The values of this scale and their interpretations

are presented in Table 5.2 [17, p. 787]. The interpretations of the values in this

table are modified in wording so that they fit the context of our decision

making problem. For the original table by Saaty, see [10, p. 54].
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Table 5.2: Interpretations of Entries in a Pairwise Comparison Matrix

Value of ai j Interpretations

1 Objectives i and j are of equal importance.

3 Objective i is weakly more important than objective j.

5 Experience and judgment indicate that objective i is

strongly more important than objective j.

7 Objective i is very strongly or demonstrably more

important than objective j.

9 Objective i is absolutely more important than objective j.

2, 4, 6, 8 Intermediate values. For example, a value of 8 means

that objective i is midway between strongly and absolutely

more important than objective j.

Since A is reciprocal, if ai j is assigned one of the values in the above table,

a ji is simply the reciprocal of that value. The derivation of Table 5.2 is based on

the theories of stimulus and response in psychology. For a discussion of this

derivation, we refer the interested reader to the section on scale comparison

written by Saaty [10, p. 53–64].

The discussion in this chapter has completed our understanding of the

fundamental components of the AHP. At this stage, we have presented the

method and theories of the AHP. The next chapter will focus on an application

of the AHP in medical diagnosis. As mentioned in Chapter 4, this application

illustrates a system with feedback, a generalization of the hierarchy to include

feedback among levels of the hierarchy.
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Chapter 6

An Application in Medical

Diagnosis

In the previous chapters, we have used the simple Alice example to illustrate

the method of the AHP. The objective of this chapter is to present a more

sophisticated application of the AHP in medical diagnosis. We first introduce a

few concepts that are useful to the execution of this application. Such concepts,

e.g. the supermatrix, are not fundamental elements of the AHP and therefore

are presented in this chapter as extensions of the AHP. The second half of the

chapter is dedicated to the application of the AHP in medical diagnosis.

75
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6.1 The Supermatrix

6.1.1 The Supermatrix Approach for the Alice Example

We make use of this section to develop several key ideas for the medical

application of the AHP. In Chapter 4, we mentioned that the hierarchy for the

Alice example was a linear system: we start with the highest level, and then

extend downward from one level to the next. In terms of the relationship

between two consecutive levels, the higher has an influence on the lower, as

was pointed out in the extended Alice example (where the sub-alternatives

were added). However, in a real-world problem, it is possible that the lower

level of a hierarchy has an influence on a higher level as well, or the elements

in a level have dependent relationships. In fact, the hierarchy for the medical

application that will be presented in the next section exhibits both of those

characteristics. A hierarchic structure with such nonlinear relationship

between layers, or between elements in a layer, is called a system with

feedback. We will soon demonstrate how a linear hierarchy, such as that for

the Alice example, is modified to display the feedback relationship. In order to

do that, we first represent the hierarchy in the form of a network, which shows

clearly the relationship between levels in the hierarchy.

Figure 6.1 shows the network for the Alice example. The network has

three nodes, which correspond to the three levels in the hierarchy given in

Figure 4.1. Each node in turn includes one or more elements. For example, the

node Goal consists of only one element: the goal of choosing a university,

while the node Objectives has three elements: academic quality, financial aid,
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Figure 6.1: Network for the Alice Example

and location. Each arrow in the network represents an influence that the

elements in the higher node has on the elements in a lower node. In this

example, the influence of the elements in the node Objectives on the elements

in the node Alternatives is represented by the scores of the alternatives on the

objectives. Similarly, the influence of the element in the node Goal on the

elements in the node Objectives corresponds to the weights of the objectives

on the goal of choosing a university. In Chapter 4, we expressed these scores

and weights as the score matrix S and the weight vector w, respectively.

In order to obtain the priorities of the three alternatives on Alice’s goal of

choosing a university, we enter S and w into a matrix W that displays the
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interactions among elements in the nodes of a network.

W =



Goal Objectives Alternatives

Goal W11 W12 W13

Objectives W21 W22 W23

Alternatives W31 W32 W33

. (6.1)

Equation 6.1 shows the matrix W for a network with three nodes. The

construction of W is as follows. Let the first, second, and third node of the

network correspond to the first, second, and third row (column) of W,

respectively. Then the i j component in W reflects the influence of the elements

in the j node on the elements in the i node of the network. By influence, we

mean the priorities of the elements in the i node, with respect to the elements in

the j node of the network.

Each i j component in W is itself a matrix. For this reason, W is referred to

as a supermatrix. (In the rest of this thesis, whenever we refer to the

components of W, we mean the matrices that reflect the relationship between

elements in the nodes in a network, as opposed to the entries in W.) If there is

no dependent relationship between the i and the j nodes of the network, then

the i j component in W is the zero matrix. If dependent relationship exists, Wi j

is nonzero. In the Alice example, the weight vector w reflects the influence of

the goal on the objectives. Therefore, w is entered in the 2,1 position of W.

Using the same reasoning, the score matrix S is entered into the 3,2 position of

W. The form of the supermatrix for the Alice example is as follows:
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W =


0 0 0

w 0 0

0 S I

 . (6.2)

Since w is a weight vector, the entries in w are positive and sum to 1. Each

of the columns in S is itself a weight vector, so S is a column stochastic matrix.

By putting the identity matrix in the 3,3 position of W, we have made W a

column stochastic matrix. Saaty contends that the powers of W will eventually

reach a stable stage, denoted Wk, and that by raising W to powers, we will

obtain the desired priorities [13, p. 494]. Since the purpose of this chapter is to

illustrate a sophisticated application of the AHP, we will not investigate the

theoretical justification of this claim. However, for more theoretical discussion,

we refer the reader to [10, p. 206–214] and [11].

The target priority vector can be found as a column in Wk or as a

component in Wk, depending on the form of W. Thus, we need several

definitions about certain types of matrix that will help us categorize W.

Definition 6.1. A square matrix is irreducible (by permutations) if it cannot be

decomposed into the form

 A1 0

A2 A3

, where A1 and A3 are square matrices

and 0 is the zero matrix. Otherwise the matrix is said to be reducible [10, p. 168].

Definition 6.2. A non-negative, irreducible matrix A is primitive if and only if

there is an integer m ≥ 1 such that Am > 0. Otherwise A is called imprimitive

[10, p. 176].

Thus, W can be reducible, irreducible and primitive, or irreducible and

imprimitive. If W is reducible, the priorities of the elements in the n node of
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the network, with respect to the elements in the j node, is given by the

component at the n, j position of Wk, where n is the number of nodes in the

hierarchy. Thus, the priorities of the elements in the lowest node, with respect

to the elements in the remaining nodes, can always be read from the last row

of components in W. We note that by component of Wk, we are also referring

to a matrix, since Wk is the result of raising the supermatrix W to powers.

If W is primitive, Wk has identical columns. Each of these columns gives

the desired priorities. For the theoretical justification of the cases when W is

reducible, or primitive, the reader is referred to [13, p. 494] and [10,

p. 208–214]. If W is imprimitive, Saaty shows that W can always be made

primitive by substituting arbitrarily small positive numbers for the zero

entries in W, subject to the condition that W remains column stochastic. More

detailed discussion on this topic is available at [11], [2], and [12]. In the

remaining of this chapter, we will apply the supermatrix approach to obtain

the target priorities both when W is reducible (the Alice example) and when it

is primitive (the application in medical diagnosis).

Substituting the entries of S and w into W in Equation 6.2, we have the

supermatrix for the Alice example, where the entries in w are in bold, and the
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entries in S are italicized:

W =



0 0 0 0 0 0 0

0.58155 0 0 0 0 0 0

0.30900 0 0 0 0 0 0

0.10945 0 0 0 0 0 0

0 0.71665 0.08234 0.30116 1 0 0

0 0.20509 0.60263 0.62644 0 1 0

0 0.07826 0.31503 0.07239 0 0 1



.

It is obvious that W is reducible. W can be decomposed into the form

 A1 0

A2 A3

, where A1 =



0 0 0 0

0.58155 0 0 0

0.30900 0 0 0

0.10945 0 0 0


is a square matrix, and A3 is the

3 × 3 identity matrix.

Raising W to powers, we find that the entries in W stabilize after three

iterations. In other words, W3 is the stable form of W:

W3 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.47517282950 0.71665 0.08234 0.30116 1 0 0

0.37404661750 0.20509 0.60263 0.62644 0 1 0

0.15077945850 0.07826 0.31503 0.07239 0 0 1



.
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The component in the 3,1 position of W3 (in bold) gives the priorities of the

elements in the last node (Alternatives) of the network, with respect to the

element in the first node (Goal). These priorities are precisely what we found

by multiplying Sw in Chapter 4. The component in the 3,2 position of W3

gives the priorities of the alternatives with respective to the objectives. This

component is exactly the score matrix S that we found in Chapter 4. For the

Alice example, raising the supermatrix W to powers yields the same result as

successively weighing the elements in a hierarchy.

The purpose of our discussion thus far has been to introduce the network

and the supermatrix, so that we can utilize them to solve a decision making

problem in a more complex system. The next subsection will present the

supermatrix approach in light of a system with feedback.

6.1.2 The Supermatrix Approach for a System with Feedback

We open this section with a brief discussion of the usefulness of systems with

feedback, which itself necessitates the supermatrix approach to obtain the

desired priority vector. Saaty contends that many problems in the social

sciences have such complex situations that the linear form of a hierarchy fails

to capture. An example is the various forms of organizations that cannot be

put in a hierarchic structure [10, p. 199].

In both the initial and the extended versions of the Alice example, the

desired priority vector was obtained by matrix multiplication. In other words,

the priorities of the elements in the lowest level, with respect to the element in

the highest level of the hierarchy, were obtained by successively weighing the
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priorities of the elements in each level with respect to the elements in the level

immediately above. In the initial Alice example, the priorities of the three

alternatives on the goal were obtained by weighing the priorities of the

alternatives on the objectives, and then the priorities of the objectives on the

goal. In terms of matrix multiplication, this successive weighing process is

represented by Sw. However, this approach is impossible to execute in a

system with feedback, since we no longer have a hierarchy extending from

one level down to the next. We now have a network, in which it is no longer

clear which node is lower and which is higher. Furthermore, there might be

more than one interaction between the elements in two nodes. The

supermatrix comes to our rescue. A supermatrix enables us to express and

compute two-way interactions between elements in different nodes, as well as

the relationship among elements in the same node.

Figure 6.2 illustrates the network for a system with feedback. As in the

network for the Alice example, each arrow represents the influence that the

elements in the node at the starting point of the arrow has on the elements in

the node at the ending point of the arrow. In this network, the elements in the

node Objectives exhibit dependent relationship. The matrix multiplication

approach used in Chapter 4 has no procedure to take into account this

relationship while deriving the priorities of the alternatives. The supermatrix

approach, however, offers a solution to this problem. Let us take a look at the

corresponding supermatrix for this system with feedback:
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Figure 6.2: Network for a System with Feedback
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W0 =



Goal Objectives Alternatives

Goal 0 0 0

Objectives W21 W22 0

Alternatives 0 W32 I


.

The construction of W0 follows the same rule that we used to construct W

in Equation 6.1: the component at the i, j position of W0 reflects the priorities of

the elements in the i node of the network, with respect to the elements in the j

node. To express the dependent relationship among elements in the i node, we

use the component Wii. A zero matrix in the i j component of W0 signifies that

there is no relationship between the elements in the i node and those in the j

node. We note that the 3,3 position of W is the identity matrix, instead of the

zero matrix, even though the alternatives are independent of one another. The

purpose is that the transformed form of W will be column stochastic. From

here on, any recurrence of the placement of I in the component in the last row

and the last column of the supermatrix will serve the same purpose.

This rule for construction of the supermatrix extends to the general case, as

given in the next definition.

Definition 6.3. Let N be a network with n nodes, denoted N1, N2, . . ., Nn. The
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supermatrix W for the network N is:

W =



N1 N2 · · · Nn

N1 W11 W12 · · · W1n

N2 W21 W22 · · · W2n

...
...

...
...

...

Nn Wn1 Wn2 · · · Wnn


,

where each Wi j is a matrix [10, p. 207].

We recall that the network for a hierarchy is of a linear form, in which

there are only one-way interactions, extending from the highest node down to

the lowest node. Thus, the supermatrix for a hierarchy always has the form

WH =



N1 N2 N3 · · · Nn−2 Nn−1 Nn

N1 0 0 0 · · · 0 0 0

N2 W21 0 0 · · · 0 0 0

N3 0 W32 0 · · · 0 0 0

...
...

...
...

...
...

...
...

Nn−1 0 0 0 · · · Wn−1,n−2 0 0

Nn 0 0 0 · · · 0 Wn,n−1 I



,

where each WH
ij is a matrix [10, p. 209].

As in the case with W, each component of WH is a matrix. We can obtain

the target priorities by looking at the last row of components in the stable form



CHAPTER 6. AN APPLICATION IN MEDICAL DIAGNOSIS 87

of WH, as illustrated in the Alice example. We observe that WH is simply a

special case of W defined in Definition 6.3. More generally, our method of

using the hierarchy to find the desired priorities is a special case of the

supermatrix approach.

In this section, we have introduced the network, as well as the important

supermatrix approach, which allows us to solve problems in systems with

feedback. We also noted that the matrix multiplication method to obtain target

priorities is a special case of the supermatrix approach. Before ending this

section, we make an important observation that W might not be column

stochastic, even though each of its components is a column stochastic matrix.

An example is the matrix W0 introduced in this section. In order to apply the

method of raising W to powers to obtain the target priorities, we need to

transform W into a column stochastic matrix. This is achieved by deriving the

pairwise priorities of the appropriate nodes, and then weighing each

component in those nodes by the priorities. The execution of this idea will be

illustrated in the case study in medical diagnosis in the next section.

6.2 A Case Study in Medical Diagnosis

6.2.1 Preliminary Analysis of the Case Study

In this section, we apply the ideas developed in the first half of the chapter to

solve a problem in medical diagnosis. The case study in this section, as well as

the data on the pairwise comparison matrices and the supermatrix, is drawn

from an article by Saaty [13].
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The medical case is described as follows.

Case Study: A woman in her second trimester of pregnancy was admitted

to a local hospital. The tests at the hospital revealed the following seven

symptoms:

• Anemia (An),

• Low Platelets (LP),

• Abnormal Liver (ABL),

• Blood Clotting (BC),

• High Activated Partial ThromboPlastin Time (APTT-H),

• High AntiNuclear Antibody (ANA-H), and

• High AntiCardiolipin Antibody (ACA-H).

At this point the physicians considered four possible diseases that could

cause the symptoms:

• Lupus,

• Thrombotic Thrombocytopenic Purpura (TTP),

• Hemolysis, Elevated Liver function, and Low Platelets (HELLP), and

• AntiCardiolipin Antibody Syndrome (ACA Syn).

For more information on these medical terms, the reader can consult the

encyclopedic reference [3].
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Figure 6.3: Network for the Case Study in Medical Diagnosis

Given the condition of the patient, the physicians need to make a decision

between two alternatives: to terminate the pregnancy, or to treat the patient

for her symptoms and let her proceed with the pregnancy. The network for

this case study is given in Figure 6.3.

As in the previous networks, the arrow reflects the influence of the

elements in one node on the elements in another, or the same, node. As we can

see in Figure 6.3, the diseases and the symptoms have two-way interactions,

which would be impossible to depict a linear hierarchic structure.

Furthermore, each symptom also has an influence on other symptoms. This

dependent relationship among symptoms is in fact the reason for the

desirability of the AHP in solving this problem. An alternative approach,

Bayes’ theorem, has been particularly popular in medical diagnostics. (See, for
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example, [5], [15], and [9].) However, the use of Bayes’ theorem in diagnosing

diseases requires an assumption that is seldom satisfied in real life: the

symptoms are independent of one another [6].

Saaty suggests that the reason for this assumption is the lack of

information on the relationship of symptoms, as well as the daunting task of

conducting a sufficient number of experiments to obtain the necessary

statistical data to apply Bayes’ theorem [10, p. 492]. Using the AHP, on the

other hand, allows the incorporation of physicians’ judgment in order to take

into account the relationship among symptoms.

From Figure 6.3, the interactions among the elements in the nodes of the

network for the case study are described as follows.

(i) Each symptom observed in the patient has an influence on the possible

diseases. This influence is interpreted as the likelihood of the diseases,

given the symptom;

(ii) Each possible disease has an influence on the observed symptoms. This

influence means the extent to which the symptoms are characteristic of

the disease;

(iii) Each observed symptom has an influence on other observed symptoms.

This influence means the likelihood that a given symptom is associated

with or occurs jointly with other symptoms;

(iv) Each possible disease has an influence on the alternative treatments. This

influence is precisely the priority of the alternative treatments, given the

possible diseases.
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We proceed to construct a supermatrix, whose components represent these

interactions among the elements in the nodes of the network. Let the nodes

Diseases, Symptoms and Alternative Treatments correspond to the first,

second, and third row (column) of W. Then using Definition 6.3, the

supermatrix for this case study is:

W =



Diseases Symptoms Alternatives

Diseases 0 W12 0

Symptoms W21 W22 0

Alternatives W31 0 I


.

We would like to obtain the priorities of the alternative treatments from W.

Since W is not column stochastic, we cannot directly apply the method of

raising W to powers introduced in the last section. However, we can transform

W into a column stochastic matrix by the following method.

Consider the first column of components in W, which consists of the zero

matrix, W21, and W31. Let α1 be the weight of the node Symptoms with respect

to the node Diseases, and α2 the weight of Alternatives with respect to

Diseases, such that α1 and α2 are positive real numbers, and α1 + α2 = 1. We

obtain α1 and α2, then multiply each entry in W21 by α1, and each entry in W31

by α2. Recall that each of W21 and W31 is a matrix of weight vectors and is

therefore column stochastic. By multiplying the entries in W21 and W31 by α1
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and α2, we will make the block


0

W21

W31

 in W column stochastic.

To obtain α1 and α2, we construct a pairwise comparison matrix M for

Diseases:

M =


Diseases Symptoms Alternatives

Symptoms 1 m12

Alternatives m21 1

,
where the i j entry in M is the weight of the i node with respect to Diseases,

compared to the weight of the j node with respect to Diseases. In particular,

the entry m21 reflects the importance of knowing about the alternatives,

compared to the importance of knowing about the symptoms, in diagnosing the

disease(s). Then the eigenvector u =
[

u1 u2

]T
of M such that u1 + u2 = 1

gives the weights of the nodes Symptoms and Alternatives on the node

Diseases. By our construction of M, we have that u1 = α1 and u2 = α2.

The reader must have realized that this process of finding the weight

vector for the nodes Symptoms and Alternatives, with respect to Diseases,

resembles the process of finding the priority vector that we discussed in

Chapter 2. Indeed, these two procedures are the same. In Chapter 2 and

Chapter 3, we discussed the method to find the weights of the objectives on

the goal, and of the alternatives on an objective. In light of our recent

discussion of network, what we did in those chapters was finding the weights
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of a group of elements (in a node) on another element (in another node). We

now apply the same principles to find the weights of a group of nodes on

another node. This approach yields the desired priorities in this case as long as

we keep in mind that we are finding the weights of the nodes, not of the

elements in the nodes. As long as this condition is satisfied, the discussion in

Chapter 2 through Chapter 5 applies.

Let β1 and β2 be the weights of Diseases and Symptoms, respectively, with

respect to Symptoms. Using the same process outlined above, we can obtain

β1 ad β2. By multiplying each entry in W12 by β1, and each entry in W22 by β2,

we will make the block


W12

W22

0

 in W column stochastic. Thus, the transformed

form of W:

T =


0 β1W12 0

α1W21 β2W22 0

α2W31 0 I


is column stochastic. Each of W12, W21, W22, and W31 in T reflects the weights

of the elements in a node, with respect to the elements in another node. Each

of the coefficients α1, α2, β1, and β2 reflects the weight of a node, with respect to

another node. Therefore, T represents all of the interactions of the factors in

this case study. Raising T to powers would give us the target priorities of the

alternatives.

Before proceeding to find T, we make two important observations:
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First, in finding the weights of Symptoms and Alternatives with respect to

Diseases, we used the pairwise comparison matrix approach. Recall that in the

initial Alice example, the merit of using a pairwise comparison matrix lies in

the fact that this matrix allows utilization of the information on all the

objectives. Further, comparing the weight of each objective to the weights of

all other objectives is an error-prone task. However, when we have to find the

weights of only two nodes on another node, as in the supermatrix for this case

study, it is quicker to directly compare the importance of the two nodes,

instead of using the pairwise comparison matrix approach.

In particular, to find α1 and α2, we ask the question: Is the diagnosis of a

disease more a direct result of knowing about the symptoms, or of knowing

about the alternatives, and how much more so? If the answer is that knowing

about the symptoms contributes 80% to the diagnosis of a disease, then

α1 = 0.8, and α2 = 0.2. To estimate β1 and β2, we ask: Is knowledge of a

symptom and its usefulness in making the diagnosis more a direct result of

knowing about the diseases, or of knowing about the other symptoms, and

how much more so? If the answer is that knowing about the disease

contributes 40% to the knowledge of the symptom, then β1 = 0.4, and β2 = 0.6.

These two questions are answered by physicians, taking into account their

knowledge of the diseases, the symptoms and the medical history of the

patient.

Second, we note that the question asked in finding α1 and α2 does not

make much sense. Certainly, knowing about the alternatives, which can only

be "terminate" or "not terminate the pregnancy", does not have any

contribution whatsoever to the diagnosis of a disease. Thus, α2 must be 0,
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Figure 6.4: Reduced Network for the Case Study in Medical Diagnosis

which makes α2W31 the zero matrix. T is reduced to

Q =


Diseases Symptoms

Diseases 0 β1W12

Symptoms W21 β2W22

, (6.3)

which corresponds to the network in Figure 6.4.

By raising Q to powers, we will obtain the priorities of the possible

diseases, given the symptoms. However, the ultimate goal is to find the

priorities of the alternatives, given the diseases. We overcome this issue by

observing that the problem in this case study can be presented in the form of a
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Figure 6.5: Linear Network for the Case Study in Medical Diagnosis

linear network as in Figure 6.5, provided that we have obtained the priorities of the

possible diseases.

The case study becomes a problem that can be solved in three steps:

1. Finding the likelihood of the diseases. In Figure 6.5, this is represented

as the influence of the element in the node Goal on the elements in the

node Diseases. We achieve this likelihood by applying the supermatrix

approach to the network in Figure 6.4. The supermatrix approach in turn

has the following five steps:

(a) Finding the priorities of the observed symptoms with respect to the

possible diseases. This is W21 in Q.
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(b) Finding the priorities of the possible diseases with respect to the

observed symptoms. This is W12 in Q.

(c) Finding the priorities of the observed symptoms with respect to one

another, which is W22 in Q.

(d) Finding the weights β1 and β2 of Diseases on Symptoms and of

Symptoms on Symptoms, respectively.

(e) Putting W21, W12, W22, β1, and β2 into Q. Raising Q to powers to

obtain the priorities of the possible diseases, given the observed

symptoms.

2. Finding the priorities of the alternative treatments with respect to the

possible diseases. This is represented in Figure 6.5 as the influence of

the elements in the node Diseases on the elements in the node

Alternative Treatments. The priorities are obtained as principal

eigenvectors of the pairwise comparison matrices that compare the

alternatives for each disease.

3. Finding the priorities of the alternative treatments for the patient,

which is the influence of the element in the node Goal on the elements in

the node Alternative Treatments in Figure 6.5. We achieve this by the

matrix multiplication approach presented in Chapter 4. Specifically, we

right-multiply the matrix of priorities obtained in step 2 by the priority

matrix obtained in step 1.

The information on the relationship among diseases, symptoms, and

alternatives for the patient is obtained based on the physicians’ answers. The
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rest of this chapter will be devoted to finding the priorities of the alternatives

using the presented approach.

6.2.2 Finding the Likelihood of the Diseases

In this subsection, we explain how Saaty found the likelihood of the possible

diseases. The method is to apply the supermatrix approach to the network in

Figure 6.4. Recall that the supermatrix associated with this network is Q given

in Equation 6.3. Each of the nonzero components in Q is a matrix of priorities,

comprised of principal eigenvectors of pairwise comparison matrices. We

illustrate the process to find these components below.

Finding the priorities of the observed symptoms with respect to the

possible diseases (W21)

For each of the diseases, a pairwise comparison matrix is constructed. The

entry in the i j position of this matrix reflects the extent to which symptom i is

characteristic of the disease, compared to the extent to which symptom j is

characteristic of the disease, as judged by the physicians. In order to help

obtain the entries in the pairwise comparison matrix, the physicians answered

the following question:

For (the given) disease and for two symptoms, which symptom is more

characteristic of the disease, and how much more is it?

The judgments are provided verbally as equally, weakly, strongly, very

strongly, or absolutely (more characteristic of the disease). The judgments are

interpreted into numerical values according to Table 5.2, and these numerical

values are placed into the pairwise comparison matrix for the disease. The
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method presented in Chapter 2 and Chapter 3 are used to obtain the principal

eigenvector of the pairwise comparison matrix, which gives the priorities of

symptoms with respect to the disease.

The process outlined above follows closely what we have described in the

first five chapters. In the rest of this chapter, we will encounter more

opportunities in which our knowledge of the pairwise comparison matrix and

the procedure to find the priority vector is utilized. In such situations, our

discussion in Chapter 2 through Chapter 5 applies.

For the disease Lupus, the pairwise comparison matrix A that provides

comparisons on the pairs of symptoms is

A =



Lupus An LP BC APTT-H ANA-H ACA-H

An 1 5 4 4 1
9 2

LP 1
5 1 1 1 1

9 1

BC 1
4 1 1 1 1

9
1
2

APTT-H 1
4 1 1 1 1

9
1
2

ANA-H 9 9 9 9 1 9

ACA-H 1
2 1 2 2 1

9 1



.

For example, the entry in the fifth row and the sixth column in A is 9, so

ANA-H is absolutely more characteristic of Lupus, compared to ACA-H. The

symptom ABL was not included in this matrix because ABL is not

characteristic of the disease Lupus. The priority of ABL with respect to Lupus

is therefore 0. The weight vector w, which is the principal eigenvector of A,
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gives the priorities of all of the symptoms, except for ABL, with respect to

Lupus.

w1 =
[
0.156 0.050 0.046 0.046 0.630 0.072

]T
.

For the other diseases, the original article does not provide the pairwise

comparison matrices, but information about the corresponding eigenvectors is

available. Next, the priority vectors are placed into Table 6.1. The entries of w1

are placed in the first column of the table.

Table 6.1: Priorities of Symptoms with Respect to Diseases

Lupus TTP HELLP ACA Syn

An 0.156 0.133 0.313 0.053

LP 0.050 0.789 0.313 0.158

ABL 0.000 0.000 0.313 0.000

BC 0.046 0.026 0.000 0.263

APTT-H 0.046 0.026 0.061 0.263

ANA-H 0.630 0.000 0.000 0.000

ACA-H 0.072 0.026 0.000 0.263

In Table 6.1, the entries in the j column give the priorities of the symptoms,

with respect to the j disease. In terms of our case study, these entries represent

the relative probabilities that the symptoms are observed, given the j disease.

By relative probabilities, we mean, for example, the probability that the

symptom An, out of all of the other symptoms, is observed in the patient if she
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has Lupus. According to the first column of the table, the probability that An

is observed in the patient if she has Lupus is 0.156. Thus, by looking at all of

the entries in a column, we can identify the symptom that is most prevalent for

a given disease. From the first column of the table, given that the disease is

Lupus, ANA-H is the most likely symptom to be exhibited, with a probability

of 0.63.

We note that Table 6.1 gives the entries in W21. Since the table is obtained

from the eigenvectors of the pairwise comparison matrices, such that the

entries of each vector sum to 1, each column sum of the table is 1, and W21 is

column stochastic.

Before moving on to the next step, we note that the probabilities in Table

6.1 are not for a general, hypothetical pair of disease-symptom, but for the pair

of disease-symptom pertinent to the patient in this case study. This means that

the physicians whose judgments allowed the derivation of these probabilities

gave their answers based on their knowledge both of the disease-symptom

pair, and of the patient’s medical history and current condition. This subtle

difference also applies to the probabilities found in the next two steps.

Finding the priorities of the possible diseases with respect to the

observed symptoms (W12)

For each of the symptoms, a pairwise comparison matrix is constructed.

The i j entry in this matrix represents the likelihood that the i disease exhibits

the given symptom, compared to the likelihood that the j disease exhibits the

symptom. By likelihood, we mean the chance that the disease causes the

symptom, as judged by the physicians. The following question was answered

by the physicians:
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For (the given) symptom and two diseases, which disease is more likely to exhibit

this symptom, and how much more likely is it?

For the symptom An, the pairwise comparison matrix B that provides

paired comparisons of all the diseases, with respect to An, is

B =



An Lupus TTP HELLP ACA Syn

Lupus 1 1
5

1
9

1
5

TTP 5 1 1 1

HELLP 9 1 1 1

ACA Syn 5 1 1 1


.

For example, the entry in the 2,1 position of B is 5. This means that TTP is

strongly more likely than Lupus to exhibit An as a symptom. The principal

eigenvector of B gives the priorities of all of the diseases, with respect to An:

w2 =
[
0.052 0.299 0.350 0.299

]T
.

The pairwise comparison matrices for the other symptoms are not

available in the original article. The priority vectors are available and were

placed into Table 6.2. The entries of w2 are placed in the first column of the

table.
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Table 6.2: Priorities of Diseases with Respect to Symptoms

An LP ABL BC APTT-H ANA-H ACA-H

Lupus 0.052 0.231 0.000 0.279 0.222 0.706 0.119

TTP 0.299 0.461 0.000 0.070 0.056 0.088 0.030

HELLP 0.350 0.231 1.000 0.093 0.056 0.088 0.020

ACA Syn 0.299 0.077 0.000 0.558 0.666 0.118 0.831

In Table 6.2, the j column gives the priorities of the possible diseases with

respect to the j symptom. In other words, the entries in the j column

represents the relative probabilities that the possible diseases cause the j

symptom. Relative probabilities mean, for example, the probability that the

disease HELLP, among all of the other possible diseases, causes the symptom

LP. From the table, the probabilities that HELLP causes LP is 0.231, which

corresponds to the entry in the 3,2 position in the table. Therefore, by looking

at all of the entries in the j column, we can identify the disease that is most

likely to cause the symptom j. For example, by looking at the second column

in the table, we know that the disease that is most likely to cause LP is TTP,

with a probability of 0.461.

Table 6.2 gives the entries in W12. Since each column in Table 6.2 is

obtained from a priority vector, the sum of the entries in each column is 1, and

W12 is column stochastic.

Finding the priorities of the observed symptoms with respect to one

another (W22)

For each of the symptoms, a pairwise comparison matrix is constructed.
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The entry in the i j position of this matrix reflects the likelihood that the i

symptom occurs at the same time as the given symptom, compared to the

likelihood that the j symptom occurs jointly with the given symptom.

Likelihood means the chance that a symptom occurs at the same time as the

given symptom, as judged by the physicians. The physicians answered the

following question in order to help derive the pairwise comparison matrix:

Given a symptom, e.g., ANA-H, and two other symptoms that may be related to

it, e.g., An and LP, which of the two latter symptoms is more likely to be associated

with, or occur jointly with, the given symptom? How much more likely is it?

The pairwise comparison matrix C that compare pairs of symptoms, with

respect to the symptom ANA-H is

C =



ANA-H An LP BC ACA-H

An 1 1 4 4

LP 1 1 1 1

BC 1
4 1 1 1

ACA-H 1
4 1 1 1


.

For example, the entry in the first row and the second column in C is 1,

which means that An is as equally likely as LP to occur jointly with ANA-H.

Note that ABL and APTT-H were omitted from C because these symptoms are

not related to ANA-H, as judged by the physicians. ANA-H is also skipped,

since the question asks about a symptom and two other symptoms that are

different from the original one. The priorities of ABL, APTT-H, and ANA-H,
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with respect to ANA-H, are 0. The principal eigenvector w3 of C gives the

priorities of all of the other symptoms with respect to ANA-H:

w3 =
[
0.455 0.235 0.155 0.155

]T
.

The pairwise comparison matrices for the other symptoms are not

available from the original articles. The priority vectors are available and

placed into Table 6.3. The entries of w3 are placed in the sixth column of this

table.

Table 6.3: Priorities of Symptoms with Respect to Symptoms

An LP ABL BC APTT-H ANA-H ACA-H

An 1.000 0.000 0.250 0.000 0.000 0.455 0.095

LP 0.000 0.000 0.750 0.105 0.106 0.235 0.048

ABL 0.000 0.500 0.000 0.000 0.000 0.000 0.000

BC 0.000 0.000 0.000 0.000 0.429 0.155 0.381

APTT-H 0.000 0.000 0.000 0.421 0.000 0.000 0.381

ANA-H 0.000 0.500 0.000 0.053 0.036 0.000 0.095

ACA-H 0.000 0.000 0.000 0.421 0.429 0.155 0.000

The j column in Table 6.3 gives the priorities of the observed symptoms

with respect to the j symptom. These priorities mean the relative probabilities

that given symptom j, the other symptoms that are observed in the patient are

also present. In particular, the entry in the i row and the j column of the table

represents the relative probability that the i symptom occurs jointly with the j



106 CHAPTER 6. AN APPLICATION IN MEDICAL DIAGNOSIS

symptom. Relative probability means the probability that symptom i, among

all of the other symptoms, occurs jointly with symptom j. For example, among

all of the symptoms, the probability that An occurs jointly with ABL is 0.25,

and the probability that LP occurs jointly with ABL is 0.75. As a special case,

the ii entry of the table, which technically represents the probability that

symptom i occurs jointly with itself, is 0 if at least one of the other entries in the

i column is nonzero. The ii entry is 1 if all of the other entries in the i column is

0. The purpose is that each of the column vectors in W22, which are precisely

the columns from Table 6.3, sums to 1. As a result, W22 is column stochastic.

Finding the weights of Diseases and Symptoms on Symptoms

Recall that β1 is the weight of the node Diseases on the node Symptoms,

and β2 is the weight of the node Symptoms on the node Symptoms. To

estimate β1 and β2, we ask: Is knowledge of a symptom and its usefulness in making

the diagnosis more a direct result of knowing about the diseases, or of knowing about

the other symptoms, and how much more so?

The original article solves the case study problem with β1 = β2 = 0.5, which

implies that knowledge of the diseases and knowledge of the observed

symptoms both contribute equally to knowledge of a symptom and its

usefulness in making the diagnosis. The article then solves the problem with

β1 = 0.99, and β2 = 0.01, which means that knowledge of the dependent

relationships among symptoms contributes only 1 percent to the final

diagnosis. The results in both cases vary by an insignificant amount. (The

priority for one of the alternative treatment decreases by 0.03 if β2 decreases

from 0.5 to 0.01.) Since our purpose is solely to illustrate an application of the

extensions of the AHP, we choose to pursue only the case when β1 = β2 = 0.5.
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Obtaining the priorities of the possible diseases

The idea of this subsection has been to apply the supermatrix approach to

the network in Figure 6.4. The supermatrix associated with this network is Q

in Equation 6.3. In this step, the entries of W21, W12, W22, β1, and β2 are placed

into Q. Note that each of the entries in W12 and in W22 is multiplied by

β1 = β2 = 0.5. We have the following matrix:
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When Q is raised to powers, the entries in Q reach a stable stage, in which

Q has identical columns. A column w of Q is:

w =
[

0.073 0.068 0.087 0.106 0.169 0.144 0.063 0.067 0.066 0.088 0.070
]T
.

Since w is positive, the stable form of Q is positive, and we know that Q is

primitive. The first four entries in w give the priorities of the diseases, with

respect to the symptoms. The last seven entries in w give the priorities of the

symptoms, with respect to the diseases. In order to obtain the relative

likelihood of the diseases, the first four entries are normalized. The

normalized form of these four entries is given in w0

w0 =
[
0.218 0.203 0.262 0.317

]T
.

The first, second, third, and fourth entry in w0 represents the relative

likelihood of Lupus, TTP, HELLP, and ACA Syn, respectively. This is the target

result for the first step in the three-step solution to the case study. The second

step is explained in the next subsection.

6.2.3 Finding the Priorities of the Alternatives with Respect to

the Diseases

In this subsection, we illustrate the process to find the priorities of the

alternative treatments with respect to the possible diseases. Recall that these
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priorities correspond to the influence of the elements in the node Diseases on

the elements in the node Alternative Treatments in Figure 6.5. The method

used to find these priorities is the same as the method that allowed us to find

the priorities (or scores) of the alternatives on the objectives in Chapter 4.

In general, i.e. regardless of the number of alternatives, for each disease, a

pairwise comparison matrix is constructed. This matrix provides the paired

comparisons of the alternatives. The principal eigenvector of this matrix gives

the priorities of the alternatives, with respect to the disease.

There are two alternative treatments for the patient in this case study: to

terminate the pregnancy (denoted alternative T), and to proceed with the

pregnancy (denoted alternative NT). Observe that the goal in this step is to

find the weights of these two alternatives on each disease. As in the case of

finding β1 and β2, it is quicker to directly compare the importance of the two

alternatives, instead of using the pairwise comparison matrix approach.

Specifically, the physicians assess the priorities of the two alternative

treatments with respect to each of the diseases. Those priorities are given in

Table 6.4.

Table 6.4: Priorities of Alternatives with Respect to Diseases

Lupus TTP HELLP ACA Syn

T 0.200 0.800 0.800 0.833

NT 0.800 0.200 0.200 0.167

The j column of Table 6.4 gives the priorities of the alternatives with

respect to the j disease. These priorities are interpreted as the extent to which

the alternative is appropriate for the given disease. For example, from the first
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column of the table, the appropriate treatment for Lupus is to not terminate

the pregnancy (NT), with priority 0.8.

We note that the entries in Table 6.4 give the entries in W31. Even though

W31 was not entered into the supermatrix Q, it is the priority matrix desired in

step 2 of the solution to the case study. In the next subsection, we illustrate the

final step of the solution.

6.2.4 Finding the Priorities of the Alternatives

This is the last step in the solution to this case study. It uses the results from

the first two steps. The method is to apply the matrix multiplication approach

presented in Chapter 4 to the linear hierarchy in Figure 6.5.

Recall that to obtain the priorities of the elements in the lowest level of a

hierarchy, with respect to the element in the highest level, we successively

weigh the priorities of the elements in each level with respect to the elements

in the level immediately above. In the initial Alice example in Chapter 4, we

weighed the priorities of the alternatives on the objectives, and then the

priorities of the objectives on the goal. This successive weighing process is

represented by right-multiplying the score matrix S by the weight vector w.

The result was the priorities of the alternatives with respect to the goal.

Using the same approach, we weigh the priorities of the alternative

treatments with respect to the diseases, and then the priorities of the diseases

with respect to the goal. The corresponding matrices are W31 (found in step 2),

and w0 (found in step 1). In terms of matrix multiplication, we right-multiply

W31 by w0. This multiplication is shown below:
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W31w0 =

0.200 0.800 0.800 0.833

0.800 0.200 0.200 0.167




0.218

0.203

0.262

0.317


=

0.68

0.32

 .

The priority of T is 0.68, and the priority of NT is 0.32. Thus, the result of

the AHP recommends that the pregnancy be terminated. Saaty noted that this

recommendation was in agreement with the decision made by a doctor of the

patient [13, p. 500]. Even though this fact does not guarantee the infallibility of

the AHP, it gives some insight into its validity as a mathematical model for

solving decision making problems.
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Conclusion

The case study in the last chapter is in fact an illustration of the Analytic

Network Process (ANP). The ANP is a generalization of the AHP to the case

in which there exists dependence and feedback among factors in decision

making problems. In particular, the supermatrix approach is the

generalization of the hierarchy approach. Regardless, both the AHP and the

ANP rely on these three steps: Decomposition, Measurement of preferences,

and Synthesis [p. 492][10].

Decomposition is the process of breaking the problems into elements,

grouping these elements into levels, and representing those levels in such a

way that it reflects various factors in the decision making problems. The result

of this process is either a hierarchy (in which case we have the AHP), or a

network (in which case we have the ANP). We briefly discussed the

construction of a hierarchy in Chapter 4. Saaty’s suggestions for building a

hierarchy more or less stem from the social sciences [10, p. 14–16]. The

construction of a network, however, is based on graph theory, which is

113
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explained in [10, p. 200–204].

In the second step, Measurement of preferences, pairwise comparisons are

made about elements, which allows the derivation of pairwise comparison

matrices. For the AHP, each of the principal eigenvectors of these matrices

gives the priorities of the elements in a lower level with respect to an element

in a higher level. By putting these eigenvectors into a matrix, we have a

priority matrix, which represents the priorities of the elements in a lower level

with respect to the elements in a higher level. For the ANP, each principal

eigenvector gives the priorities of the elements in a node with respect to an

element in a different or the same node. Each of the priority matrices

represents the priorities of the elements in a node with respect to the elements

in a different or the same node.

The last step, Synthesis, occurs after we have obtained the priority

matrices for all of the interactions in the hierarchy (or network). The

supermatrix approach is the synthesizing step for the ANP, while for the AHP,

we successively weigh the priorities of the levels, from the top to the bottom of

the hierarchy.

Recall that the AHP yields meaningful results only when the number of

objectives is less than 10. Thus, the AHP is not particularly advantageous

when the decision making problem involves a very large number of objectives.

Moreover, the priority vector provides a meaningful result only when the

decision maker is not too inconsistent. Specifically, we found in Chapter 5 that

the consistency ratio needs to be 0.10 or less in order for the result of the AHP

to be acceptable.

The strength of the AHP, as well as the ANP, lies precisely in the three
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steps that we outlined above. By decomposing and grouping the elements of

the decision making problems, the decision makers gain a better

understanding of the problems and their preferences. The hierarchy and the

network allow the decision makers to look at the problems at hand in an

analytical manner. Finally, the synthesis of the priority matrices offers a

systematic approach to arrive at the best solution for the decision makers.

Due to time constraints, this thesis has not investigated in depth the

theoretical justification of the ANP. Researchers who wish to pursue further

work on the AHP might find it worthwhile to further explore the theory

behind the ANP. So far, two issues have emerged as worthy of future research.

The first issue is the explanation of the stable stage of the supermatrix. An

interesting fact, which is perhaps also useful for future research, is that the

method of the ANP parallels that of Markov chains, as Saaty himself notes in

[10, p. 206]. Specifically, the nodes in a network correspond to the states in

Markov chains, and the influence of the i node on the j node at time k

corresponds to the transition from state i to state j at time k. Further, the

concepts "priority" in the ANP and "probability" in Markov Chains coincide.

For a more comprehensive list of the correspondence of the terminologies

between the two systems, the reader is referred to the cited source.

Second, recall that the case study was solved by replacing the original

network (Figure 6.3) with a linear hierarchic structure (Figure 6.5), through the

reduction of the original network to a simpler one (Figure 6.4). The author of

this thesis based this approach on the discussion of the AHP in the thesis. This

can be viewed as an alternative explanation to the approach used by Saaty,

which is the same as the three-step solution presented in the last chapter.



116 CHAPTER 7. CONCLUSION

However, Saaty attributes the raising of the reduced supermatrix to powers to

the claim that the components in this supermatrix are the essential

components of the network. These components are called the sources or

impact-priority-diffusing components. By raising the reduced supermatrix Q

to powers, we obtain w, which is the limiting impact priorities of the

network. Further, by right-multiplying W31 by w0, we obtain the limiting

absolute priorities of the network. For discussion of these topics by Saaty, the

reader is referred to [10, p.213] and [13, p. 498–500].

The AHP, as well its generalization, the ANP, is at heart a mathematical

model for solving decision making problems. The mathematics in this thesis,

especially in Chapter 2, Chapter 3, and Chapter 5 provide the theories

underpinning the method of these models. The case study in the last chapter

gives only a glimpse of the application of the ANP. In fact, these models have a

vast array of applications in diverse fields, including national security (e.g., an

analysis of terrorism for the Arms Control and Disarmament Agency [7]),

international peace (e.g., a study of conflict in Northern Ireland [4,

p. 225–241]), business (e.g., applications of the models in a consulting

environment [4, p. 192–212]), and development (selection of research projects

about surface water resources for South Africa [4, p. 122–137]). This list by no

means exhausts the possibilities of applications of the models. It will also be

beneficial for future research projects to devise creative applications of the

models to solve real-world problems.
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