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ABSTRACT 
 

Anthropogenic noise has been shown to alter the behavior of a wide array of 

creatures in the animal kingdom. One of the most significant types of anthropogenic 

noise is traffic noise, and research in this area has only recently begun to emerge. I 

investigated the effect of traffic noise on ten parameters of the call of the Bloody Bay 

Poison Frog (Mannophryne olmonae) by analyzing field recordings from 35 sites in 

eastern Tobago, West Indies. Statistically significant increases in high frequency, change 

in frequency, as well as a significant decrease in the inter-pulse interval were found at 

sites with high levels of traffic noise. There were also non-significant, but noteworthy 

trends in both pulse duration and upper harmonics. There were longer pulses, and greater 

amounts of upper harmonics at low noise sites than high noise sites. This study’s findings 

suggest that M.olmonae’s vocal modifications are likely an attempt to escape from the 

low-frequency masking of traffic noise. As frogs and toads warn us of potential 

consequences of human caused environmental degradation before they manifest in other 

species, they are often considered to be good indicator species. Consequently, this study 

may forewarn us of future effects of traffic noise for other acoustically communicating 

species.  



INTRODUCTION 

Throughout our history, humanity has accomplished countless amazing feats. This 

saga, from our very beginnings, to the Neolithic revolution when we learned to farm, to 

the moon landing and the recent discovery of the Higgs Boson particle, has occurred in 

just 100,000 years. While that may seem like a long time, the Earth has supported life 

forms for at least 3.7 billion years (Stearns and Hoekstra, 2005). In other words, if a 24-

hour clock encapsulated the entire history of the earth, humans would not even appear 

until the last few seconds before midnight. Yet, in those few seconds we have literally 

changed the face of the earth. Some of our alterations are initially imperceptible, such as 

climate change. It wasn’t until 2001 that it was widely agreed that the buildup of CO2 and 

other greenhouse gases emitted by humans are causing climate change and all its effects 

(e.g. melting polar ice caps, extreme seasonal changes in temperature and precipitation, 

altered species distributions and ocean acidification) (Boykoff and Boykoff, 2004; 

Intergovernmental Panel on Climate Change, 2007; Walther et al., 2002). Other human 

changes are easily perceptible, such as habitat loss to make way for construction. 

Whether the construction is for the Great Wall of China or today’s housing, industry, or 

attractions like theme parks and malls, we have paved over the natural environment to 

make way for a new human terrain. This study focuses on an inevitable byproduct of our 

construction: roads.   

Roads directly impact the ecology of approximately 15-20% of the land in the 

United States. The area over which the ecological effects of a road extends into the 

surrounding environment is termed the road effect zone (Forman and Alexander, 1998). 
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The three primary problems that roads create for wildlife are direct mortality, 

habitat fragmentation and habitat loss; all three of which reduce population sizes (Jaeger 

et al., 2005). It has been estimated that one million vertebrates are killed on roads every 

day in America (Forman and Alexander, 1998). Habitat fragmentation- the division of an 

organism’s natural environment into smaller isolated segments - often blocks the natural 

movement of organisms. It can force organisms to face problems such as migration 

blockages, population subdivision, inbreeding, resource depression, and loss of genetic 

variation (Jaeger et al., 2005; Kaiser and Hammers, 2009; Keller and Largiader, 2003; 

Parris et al., 2009). Other effects on the surrounding environment by nearby roads include 

runoff, decreasing biodiversity, alteration of the landscape, disruption of ecological 

routines, and habitat fragmentation. All of these create a plethora of problems. Runoff 

alone causes increased erosion, reduced percolation, lower aquifer regeneration rates, 

increased flood levels, and aquatic degradation (Forman and Alexander, 1998). However, 

some consequences of roads are less studied than others. One in particular is 

anthropogenic noise pollution. Much like the CO2 emanating from our cars, 

anthropogenic noise pollution is invisible and until recently it has been relatively 

overlooked.   

 
 
 

Behavioral Effects of Anthropogenic Noise 
 
 
 

The cars we drive produce a variety of sounds. The friction of each tire as it turns 

on the pavement creates noise, as do the engine and speakers. In general a sound wave is 
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produced by a disturbance that displaces molecules of the air creating a chain reaction of 

vibrations; these vibrations eventually reach a tympanic membrane and are translated by 

electric signals to the brain as a sound (Forrest, 1994; Narins et al., 2006). However, a 

sound cannot travel indefinitely. As a sound propagates from its starting point, the 

vibrations are spread over a wide area and the energy dissipates (Forrest, 1994). Many 

factors can affect how a sound propagates. Different environments allow certain 

frequencies to travel farther than others. Surfaces such as trees or the ground can reflect 

and absorb sonic vibrations, and other noises in the environment may mask certain 

sounds. Different amplitudes and frequencies of the sound also impact its capacity to 

travel through an environment. The amplitude of a sound is the height of the sound wave, 

which represents the maximum displacement of air particles from their mean position. 

The frequency is how often the oscillations of the sound wave vibrations occur (Everest, 

2009; Hartmann, 2013; Parker, 2009). These are commonly known as “loudness” and 

“pitch” respectively, although neither are perfect synonyms (Pijanowski et al., 2011). 

Anthropogenic noise generally has a low frequency and high amplitude. Urban 

environments in particular contain anthropogenic noise that mostly occurs at frequencies 

less than 4 kHz (Pijanowski et al., 2011).   

Anthropogenic noise has been shown to alter the behavior in a wide array of 

creatures within the animal kingdom. A study by R.J Windle et al. demonstrated that 

captive Sprague-Dawley rats previously exposed to high intensity and periodic noise had 

averse reactions such as stress and decreased reproductive output (Windle et al., 1997) 

On the other side of the size spectrum, Beluga whales have shown signs of disturbance 
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such as diving, veering away and other apparent short-term reactions to helicopter noise 

(Patenaude et al., 2002). There is also a correlation between U.S. Navy sonar use and 

mass strandings -live and dead- in many whale species. When examined, the whales’ 

tissues show “bubble-like lesions” believed to be caused by decompression sickness due 

to atypical behavioral reactions to the sonar (Parsons et al., 2008). Both wolves and elk 

have significantly elevated stress hormone levels directly correlating to the proximity of 

off-road vehicles, such as snowmobiles (Creel et al., 2002). A study by Schaub et al. 

demonstrated that greater mouse eared bats, avoid foraging in areas subject to traffic 

noise. Even domestic chickens that have been living on our farms for hundreds of years 

show increased behavioral stress and decreased immune function after being exposed to 

traffic noise (Schaub et al., 2008). Although signs of stress in animals such as rats, 

whales, wolves, elk, bats and birds have all been studied, the research on the effects of 

anthropogenic noise on animal communication has recently become a burgeoning field. 

Birds, because of their ubiquity in developed areas, make especially good study subjects 

and, fittingly, the bulk of research on anthropogenic noise impacts has focused on avian 

communication.  

A common theme among studies of birdcalls and urban noise is masking 

(Dowling et al., 2012; Slabbekoorn and Peet, 2003; Wood et al., 2006).  Masking occurs 

when the background noise reduces the active distance of an organism’s acoustic 

emissions. A vocalization’s active distance is the distance over which it can be detected 

by a conspecific (Parris et al., 2009). Birds have several strategies to reduce the effects of 

masking caused by anthropogenic noise. There is evidence indicating that birds undergo 
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periods of vocal plasticity in which they have the ability to change characteristics of their 

songs (Patricelli and Blickley, 2006). In a study by Dowling et al. (2012) the Gray 

Catbird and Northern Cardinal - both species with a normally low song frequency - 

increased the minimum frequency of their calls in response to anthropogenic noise. 

Greater effects of urban noise have been found in species that normally have a lower 

song frequency, this may be because in contrast to the natural acoustics of an 

environment, anthropogenic noise pollution typically occurs at high amplitudes and low 

frequencies (Dowling et al., 2012; Francis et al., 2009). Other birds, such as the Common 

Nightingale, increase the amplitude of their song, known as the Lombard effect, in areas 

of higher anthropogenic noise (Brumm and Todt, 2002). Some species show plasticity for 

both the frequency and amplitude of their songs. This was seen in the Song Sparrow 

which increased the frequencies of the lower notes, and decreased the amplitude of the 

notes in the lower frequency ranges of their songs (Wood et al., 2006). However, vocal 

plasticity is not the only means by which birds have avoided the masking of 

anthropogenic noise. Many have been shown to change the timing of their songs. They 

select and sing songs that are not masked by their environment (Patricelli and Blickley, 

2006; Warren et al., 2006). Masking is also a concern for other highly vocal species. Frog 

(anuran) species in particular rely heavily on their calls, and thus may be exceptionally 

sensitive to anthropogenic noise.   
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Effects of Anthropogenic Noise on Frog Vocalization 
 
 

One of the most significant types of anthropogenic noise is traffic noise. Scientists 

have only recently begun to detect the possible impacts of traffic related noise on frog 

calls. Recently, a study was conducted using a mathematical model to predict the active 

distance that an advertisement call will travel in urban areas compared to rural areas. The 

overarching result was that all species of frogs are anticipated to face significant acoustic 

interference in urban environments; specifically an 81-94% reduction in the active 

distance of the call for frogs measuring a 15-95 mm snout vent length (Parris, 2013). 

High levels of traffic noise (noise exceeding 60 dB) have been shown to significantly 

lower call rates of green frogs (Rana clamitans), northern leopard frogs (Rana pipiens), 

and gray tree frogs (Hyla versicolor). It has also been shown to affect the call amplitude 

of green frogs and the call frequency of both green and northern leopard frogs 

(Cunnington and Fahrig, 2010). A study performed by Bee & Swanson demonstrated that 

noise from nearby traffic interfered with female grey tree frogs (Hyla chrysoscelis) 

perception of male advertisement calls (Bee and Swanson, 2007). Traffic has also been 

shown to interfere in brown tree frog (Litoria ewingii) vocalizations to the extent that the 

frequency alterations in the calls were clearly detectable by conspecific females (Parris et 

al., 2009). An increase in call rate of Rana taipehensis vocalizations has also been 

correlated with airplane flyovers, motorcycles as well as experimental playbacks of 

anthropogenic noise (Sun and Narins, 2005). 

Much as with songbirds, there is evidence that some species of frogs may shift the 

timing of their calls to avoid coinciding with high levels of noise pollution and other 
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species have exhibited the Lombard effect (Warren et al., 2006). A study on male 

Woodhouse’s toads (Bufo woodhousei) found that attributes of the calls varied 

significantly near highway noise. Males from sites with greater traffic noise exposure had 

a significantly higher frequency, reduced call rate, longer call, greater duration between 

calls, and a lower reaction rate to normal calls (Barrass, 1985). The increased frequency 

and longer call duration are both hypothesized to be noise avoidance mechanisms 

(Barrass, 1985). These mechanisms may have carried over from exposure to more natural 

sources of masking. Although traffic noise is a major concern now, it certainly was not 

the first time frogs had to cope with masking.  

Before traffic noise existed, frogs had to overcome at least one natural form of 

masking: the calls of conspecifics. This is common in breeding choruses, and there are 

times when many different species of frogs may be calling and masking the vocalizations 

of other species if the frequencies are similar (Wollerman, 1999). Frogs apparently use 

similar techniques to overcome both traffic noise and interspecific sources of masking. 

Research has revealed that some species of frogs have changed their calls through shifts 

in frequency, amplitude, call rate and inter-pulse intervals (Given, 1999; Grafe et al., 

2012; Kaiser and Hammers, 2009; Lopez et al., 1988; Penna and Hamilton-West, 2007; 

Schwartz, 1993; Sullivan, 1985). In some species of frogs a phenomenon called upper 

harmonics is seen, and may be used as a method of reducing masking. Upper harmonics 

can be defined as harmonics (notes that mirror the original pulse and occur at the same 

time point as the pulse) with lower amplitudes and higher frequencies than the original 

pulse. With all the mechanisms frogs use to overcome the masking of conspecifics it may 
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seem that anthropogenic noise pollution is not exceptionally detrimental. However, many 

of the aforementioned mechanisms have serious consequences.  

In all species there are tradeoffs between the allocation of resources to 

reproduction and survival. This is because resources and energy available to organisms 

are limited. Calling is very likely to be the most energetically costly action male frogs 

will engage in during their lifetime (Cunnington and Fahrig, 2010). Frogs that alter their 

vocalizations in order to increase their call’s transmittance across an environment will use 

more of their energy stores. To counteract this they will need to either increase their 

foraging time and/or decrease their calling time (Kaiser et al., 2011). An increase in 

foraging may expose them to more predators, and definitely limits their time spent in the 

breeding chorus. It has been shown that chorus tenure (the number of nights a frog calls 

at a particular breeding site) is negatively associated with increases in call amplitude 

(Kaiser et al., 2011). This decrease in chorus tenure decreases male fitness. However, this 

was studied in reaction to increased conspecific calling, not in response to anthropogenic 

noise. It remains to be seen whether frogs will similarly compensate for anthropogenic 

noise (Kaiser et al., 2011).   

 
 
 

Why Should We Care? The Importance of Calling for Frogs 
 
 

Calling is crucial for the majority of frog species’ survival. Calls contain 

information about a frog’s calling site, species identity, and reproductive status (Parris et 

al., 2009). Calls are used predominately by males to attract mates and declare territory, 
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while females prevailingly utilize male calls to assess potential mates (Warren et al., 

2006). There are two major concerns about anthropogenic noise pollution; the first is the 

possibility of restricting the distribution of animals that have a low noise tolerance, the 

second is the possible detrimental impact on the reproductive success of species forced to 

reside in environments highly exposed to anthropogenic noise (Warren et al., 2006). 

A study by Barrass focused on the direct effects of highway traffic noise on both 

anuran vocalizations and reproduction. Barrass found that male location as well as the 

amount of male aggregation varied significantly when in close proximity to traffic noise. 

The spacing of calling males and the extent of their aggregation deviated significantly 

from the normal spacing patterns away from high noise areas (Barrass, 1985). 

Additionally, when highway traffic noise was played back in a secluded environment the 

male frogs dispersed, disbanding from their calling aggregations and individually 

relocating further away from their conspecifics (Barrass, 1985). 

It is now known that females use the spatial distribution of male vocalizations to 

enhance the detection of male calls (Wollerman, 1999). A study by Schwartz and 

Gerhardt found that female American green tree frogs (Hyla cinerea) could only detect 

the presence of conspecific calls when the broadband background noise was spatially 

separated from the source of the call, but were unable to detect conspecific calls when 

they were in direct proximity to the broadband noise (Schwartz and Gerhardt, 1989). 

Barrass also found that traffic noise disrupted mating cues and altered reproduction of 

both the American green tree frog and Woodhouse’s toad (Barrass, 1985). Specifically, it 

was found that the frequency, inter-call-interval and call duration of male calls varied 
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significantly near highway noise. More importantly, female mate selection was 

significantly affected by the presence of traffic noise. For example, B. woodhousei 

females from sites frequently exposed to high traffic noise were fastest to respond to 

higher frequency male calls. On the other hand, females from a site with no previous 

exposure to traffic noise were fastest to respond to normal frequency B. woodhousei calls. 

This pattern was also found in H. cinerea females from low traffic exposure sites. They 

reacted faster to normal frequency calls than females from high exposure and moderate 

exposure sites. However, females from sites with high traffic exposure reacted faster than 

females from low and moderate sites when the call rate and frequency was increased 

(Barrass, 1985).  The exposure to traffic noise may have important evolutionary 

consequences for this species as the results of this study indicate that high levels of traffic 

noise alter female mate choice. The females found in sites seldom exposed to traffic noise 

more easily detected lower frequency frog calls, perhaps indicating a preference for lower 

frequency calls. In contrast females preferred high frequency calls as their exposure to 

traffic noise increased, this is likely because traffic noise is typically found in the lower 

frequency ranges (Barrass, 1985; Parris et al., 2009). Most importantly, Barrass 

demonstrated that the total egg mass for both B. woodhousei and H. cinerea was reduced 

when they were located in close proximity to highway noise; suggesting that traffic noise 

can also have important negative fitness effects on frog populations. 

While it may seem beneficial for males to increase their call transmission over a 

noisy environment by modifying call components (e.g. frequency, amplitude, timing) 

these changes may also negatively affect their mating opportunities if these changes are 
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in opposing directions of female mate preference. Throughout anuran species there is a 

substantial diversity of female mate preference, which is often very complex (Parris et al., 

2009). Female preference can be influenced by the call frequency, rate (number of calls 

per minute), duration, amplitude, call length or pulse rate (Gerhardt and Klump, 1988; 

Howard and Palmer, 1995; Parris et al., 2009). Generally, female frogs prefer calls that 

have a high energetic cost for the males producing them (Parris et al., 2009). Costly calls 

could be an honest indicator of high quality genes in a male. This is explained by the 

“good genes” hypothesis, which states that females will receive indirect benefits if they 

choose males who have genes that allow them to be more successful in their environment 

(Hamilton and Zuk, 1982; Welch et al., 1998). For instance, in some species female frogs 

prefer low frequency calls to higher frequency vocalizations, because the ability to 

produce lower frequency calls is generally correlated with greater body size (Gerhardt, 

1994). However, in environments with high anthropogenic noise pollution male frogs 

often shift to higher frequency vocalizations (Kaiser et al., 2011).  

 
 
 

Color as a Mode of Communication 
 
 

In most species a female’s choice of mate is not solely dependent upon her 

perception of a single male characteristic. Multiple factors are usually taken into account. 

In frogs, vocalizations may make up one  (albeit very large) component out of many that 

females select between when choosing a mate. However, female frogs are also commonly 

attuned to male coloration.  



-12- 

Maan and Cummings found that female strawberry poison frogs (Oophaga 

pumilio) use male dorsal coloration in their selection of mates (Maan and Cummings, 

2008). Although the females paid little attention to spotting patterns, females from orange 

populations were found to discriminate against green males. It was also found that 

females pay more attention to color than other population specific traits like behavior or 

size of the males (Maan and Cummings, 2008). Thus the O.pumilio females do seem to 

exhibit choosiness. Interestingly in a close relative of O.pumilio, the granular poison frog 

(Oophaga granulifera), significant differences in call properties are found between red 

and green color morphs, suggesting that male coloration, along with vocalizations, plays 

a role in female mate choice (Brusa et al., 2013). Nocturnal European tree frogs (Hyla 

arborea) have been shown to prefer males with vocal sacs that are more intensely colored 

when the calls produced by the males are equally attractive. They also chose males with a 

more conspicuous flank stripe over other males with less visible stripes (Gomez et al., 

2009). It has been found that male M.olmonae have visibly lighter arm coloration than the 

rest of their body, possibly suggesting that this coloration may be used for 

communication (Vanko, 2012).  

Color production, however, can have its disadvantages. Coloration, like 

vocalizations and other display traits may be costly for the male to produce. There are 

often indirect costs such as less energy distribution to other traits, or direct costs such as 

increased likelihood of predation associated with display traits (Sullivan and 

Kwiatkowski, 2007). 
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Biology of the Bloody Bay Poison Frog (Mannophryne olmonae): 

 
 

No data currently exists on the effects of anthropogenic noise pollution on the 

vocalizations of the Bloody Bay Poison Frog (Mannophryne olmonae) calls. M. olmonae 

is endemic to the island of Tobago in the southern Caribbean. They are also found on the 

IUCN red list, a list created by the International Union for Conservation of Nature that 

catalogues the conservation status and distribution of plants and animals to determine 

their risk of extinction, where they are currently classified as vulnerable. Although the 

cause of M.olmonae’s 80% population decline in 2001-2004 is still unknown, the 

populations are now believed to be stable (Novick, 2012). However, very little research 

has been done on this species. In this study I examined the effects of traffic noise on ten 

aspects of M. olmonae calls: pulse duration, pulse rate, inter-pulse interval, low 

frequency, high frequency, change in frequency, dominant frequency, high amplitude, 

low amplitude, and upper harmonics. I also provide preliminary data on the function of 

arm color in female mate choice. This study has the potential to shed light on the effect of 

human-driven environmental change on this species, therefore contributing to our 

knowledge about the threats faced by the Bloody Bay Poison Frogs. 
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METHODS 
 
 
 

Study Site 
 
 

All research was conducted on the island of Tobago in the southern Caribbean. 

Thirty-five sites around the eastern end of the island were chosen as recording sites. 

These sites were already part of a long-term M. olmonae monitoring study, and therefore 

were prime survey sites (McQuigg, 2013; Novick, 2012) (Figure 1). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. A map of Eastern Tobago inset with a map of the whole island, showing the 
location of each recording site (obtained from Google earth). Each red pin designates a 
recording site at which no M. olmonae calls were recorded for any survey of that site and 
each yellow pin designates a recording site at which M.olmonae calls were recorded 
during at least one visit to that site. The pale yellow lines represent roads.   
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Call Surveys 
 
 

The call recordings of this diurnal species were collected between some of 

M.olmonae’s peak calling hours of 15:00-18:00 (Alemu et al., 2007; R.M Lehtinen 

personal communication, November 18, 2013). Their peak hours occur between 8:00-

9:30 and 15:00-18:00, which likely correspond to the hours during which the most traffic 

is on the roads (R.M Lehtinen personal communication, November 18, 2013). Each site 

was visited 2-3 times between the dates of June 4- June 8 2013. These dates fall during 

Tobago’s rainy season, during which the height of M. olmonae reproduction occurs (R.M 

Lehtinen personal communication, November 18, 2013). During each site visit, a 2-

minute recording was made and the humidity, temperature, GPS location as well as the 

level of anthropogenic disturbance were all noted. A Tascam DR-40 Linear PCM Digital 

Recorder and a Sennheiser ME66 Short Shotgun microphone with a wind baffle were 

used to record M. olmonae calls. All calls were recorded as 16-bit .wav files with a 

sampling rate of 44.1 kHz. Weather variables were measured using a Kestrel-4000 

(manufactured by Nelsen-Kellerman Co.). The level of anthropogenic disturbance was 

determined using a C-weighted sound level meter from Radio Shack (catalogue number: 

33-2055). The highest sound level reading observed during the 2-minute recording period 

was recorded as the anthropogenic noise disturbance level (dB) for that site visit. This 

reading is simply a snapshot of the sites’ acoustic environment, however I am confident 

this is a representative measurement because the observed traffic levels did not vary a 
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great deal between each visit. Nonetheless, in order to obtain a more representative 

snapshot, the total level of anthropogenic disturbance for each site was established by 

taking the average of all sound level readings during each site visit. Sites with high levels 

of anthropogenic disturbance were determined to be those with sound level readings of 

68dB and above, while low disturbance level sites were those with anthropogenic noise 

not exceeding 67dB. This cutoff was chosen because there was a natural break in the 

average sound level (dB) data range at 67 dB (Figure 2). Also, similar cutoff ranges 

between high and low sites have been used in other studies on the effect of traffic noise 

on frog calls (Barrass, 1985; Cunnington and Fahrig, 2010). In addition to M.olmonae 

call comparisons at high and low traffic sites, I compared all ten aspects of the calls 

between sites containing waterfalls and sites without waterfalls. This was done in order to 

compare the potential masking response of M.olmonae between different low-frequency 

masking sources.  

 

 

 

 

 

 

 

 

Figure 2. A histogram detailing the occurrence of average sound levels for all 34 sites.    
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Sonogram Analysis 
 
 

The clearest recording from each site was analyzed using Raven Pro (version 1.4, 

Cornell Lab of Ornithology). Ten variables for each call and/or pulse were measured: 

Pulse Duration (s), Pulse Rate (s), Inter Pulse Interval (s), Low Frequency (Hz), High 

Frequency (Hz), Change in Frequency (Hz), Dominant Frequency (the frequency at 

which the maximum power (dB) occurred), High Amplitude and Low Amplitude (Figure 

3). I also assessed the presence of Upper Harmonics, which are shown in Figure 4.  

 

 

 

 
 
 
 
 
 
 
 
 
 
  
 
Figure 3. A sonogram of a M. olmonae call. A= inter-pulse interval, B= maximum 
frequency, C= minimum frequency, D= change in frequency, E= pulse duration. The 
amplitude is indicated by the shade of color (green/yellow= high, red/purple= low).  
 
 
 
 
  
 

Time (sec) 
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Figure 4. A sonogram of a M. olmonae call with upper harmonics (A= upper harmonics) 
 
 
 

Statistical Analysis 
 
 

 The occurrence of upper harmonics was analyzed using Fisher’s exact test. 

Pearson Correlations were run to test for the relationship between each variable of the 

male M. olmonae calls (with transformations if needed) and air temperature. Temperature 

correction is often necessary when studying frog vocalizations because it has been shown 

to have significant effects on call frequency (R.M Lehtinen personal communication, 

November 18, 2013). However, in this study no significant relationships were detected 

between temperature and any of the call characteristics, so no temperature correction was 

performed. Independent Samples T-tests were run separately for all ten variables with 

high/low anthropogenic noise disturbance (dB) as the distinguishing variable. This 

high/low method was chosen over other approaches (such as a linear regression) because 

this data contains only one independent variable and multiple dependent variables. Due to 

the exploratory nature of this study I made no corrections for multiple comparisons 

(Whitlock and Schluter, 2009). The goal of this study was to explore possible patterns in 

A 

Time (sec) 
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the data. This will allow future researchers to further examine the findings of my study. 

All statistical analysis was performed in SPSS version 21.0. 

 
 
 

Color Pilot Study 
 
 
 

Female M. olmonae Collection 
 
 

Seven female M. olmonae were collected by hand from a stream running through 

a site west of the village of Castara. Each female was kept in a plastic container with 

leaves and water from their home stream for no more than one night before testing.  

 
 
 

Set Up 
 
 
A T-maze (0.816 m x 0.486 m x 0.349 m) was set up in an indoor laboratory with 

markings along the edges every 3 cm in order to measure the female’s movement within 

the container (Figure 5). Two Cambridge SoundWorks (model #GCS300) speakers were 

placed directly opposite each other just outside either end of the maze (32.13 in apart) in 

front of a fabric covered opening. The call stimulus was broadcast at 78 dB - the 

amplification of a typical M. olmonae male call at a 1m distance in the wild - from a 

computer using Raven Pro (version 1.4, Cornell Lab of Ornithology) (Lehtinen et al., 

2011). One dummy (either treatment or control) was placed in front of each speaker in a 

random pattern (Figure 5A). The dummies were small store bought toys approximately 
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the same size and shape as M.olmonae males. The control dummy was painted only 

black, while the treatment was painted black with orange arms (Figure 5B). The 

treatment and control frogs were randomly placed at the beginning of each trial.  

During the acclimation period, one female was placed under an acoustically 

transparent cone at the end of the T-Maze while a male call was played through both 

speakers for 3 minutes. After acclimation, the cone was lifted and the 3-minute trial 

began. During the trial the male call continued playing from each speaker and the 

female’s movements, location, and direction were tracked. Every time a female moved, 

the direction of her movement (left/right, to back of t-maze, towards/ away from end of t-

maze where control/treatment male is located etc.), as well as the distance of her 

movement were both recorded. A few other behaviors were noted. Whenever a female 

displayed an “alert” position- when the female straightens her two front arms while 

elevating her head and body- the direction she was facing was noted. A “head turn” and 

the direction of the turn was noted whenever a female’s body remained stationary but her 

head rotated. “Escape behavior” was noted whenever a female jumped onto the side of 

the container and climbed toward the top of the container. A positive reaction was 

recorded when a female came within 10 cm of a male dummy and was oriented toward 

the dummy.  
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Figure 5. (A) The experimental set up for the female color preference study. The orange 
male dummy is on the right, while the black male dummy is on the left. (B) A female M. 
olmonae (in hand) and a male M .olmonae dummy.  
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RESULTS 

The data from the color pilot study were not analyzed, as I could not collect 

enough females for a sample of sufficient size. However, statistically significant 

differences were detected in M.olmonae vocalizations between sites with low and high 

anthropogenic noise in three acoustic variables: high frequency, change in frequency and 

inter-pulse interval. Significantly higher frequencies, as well as a significantly larger 

difference between a call’s low and high frequencies were found in areas of high 

anthropogenic noise. There were also significantly longer pauses between the end of one 

pulse and the beginning of the next pulse in areas of high anthropogenic noise. This is 

shown in Table 1 as well as Figures 6,7 and 8, respectively. There was also a significant 

difference found in the mean change in frequency between sites containing a waterfall 

and sites without a waterfall (p= 0.025) as shown in Figure 9. No significant differences 

were found between high and low anthropogenic noise sites in the pulse rate, pulse 

duration, low frequency, dominant frequency, the presence of upper harmonics, high 

amplitude, or low amplitude. However, there were two strong trends found between high 

and low anthropogenic traffic noise sites in both pulse duration, and the presence of 

upper harmonics.  There was a strong pattern towards a longer duration of pulses in areas 

of low traffic noise compared to areas of high traffic noise (p=0.066). The amount of 

upper harmonics increased in sites with low anthropogenic traffic noise (p=0.080). 
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Table 1. Results of nine acoustic variables measured in the male M. olmonae 
advertisement calls at sites with low anthropogenic noise and high anthropogenic noise 
on the island of Tobago.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable p-value t-value Low Mean (SD) High Mean (SD) 
Pulse Rate (pulses 

per sec) 0.116 1.649 3.891 (1.266) 3.04 (1.099) 

Pulse Duration (sec) 0.066 1.952 0.178 (0.062) 0.135 (0.0362) 

Low Frequency (kHz) 0.237 1.222 3.460 (185.102) 3.271 (453.439) 

High Frequency (kHz) 0.014 -2.697 4.632 (199.219) 4.960 (333.955) 

Change in Frequency 
(kHz) 0.027 -2.483 1.172 (245.885) 1.689 (639.584) 

Dominant Frequency 
(kHz) 0.638 -0.479 4.112 (159.758) 4.148 (183.415) 

ln Inter-Pulse Interval 
(sec) 0.025 -2.426 -2.944 (0.827) -2.002 (0.943) 

ln High Amplitude 
(dB) 0.97 0.038 5.432 (0.309) 5.425 (0.519) 

ln Low Amplitude 
Squared (dB) 0.855 -0.185 10.813 (0.682) 10.884 (0.989) 
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Figure 6. The mean highest frequency (Hz) of male M.olmonae calls recorded in sites on 
the island of Tobago with low levels of anthropogenic traffic noise and high levels of 
anthropogenic traffic noise. Significantly higher frequencies were found in areas of high 
traffic noise compared to those areas with low traffic noise (p=0.014). Error Bars: +/- 2 
SE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. The change in frequency (Hz) of male M.olmonae calls recorded in sites on the 
island of Tobago with low and high levels of anthropogenic noise. A significantly greater 
difference between the high and low frequencies in M.olmonae calls was found in areas 
of high anthropogenic noise compared to areas with low levels of traffic noise (p=0.027). 
Error Bars: +/- 2 SE 
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Figure 8. The mean inter-pulse interval (sec) of male M.olmonae calls in sites with high 
and low levels of anthropogenic noise and sites with high levels of anthropogenic traffic 
noise on the island of Tobago. Significantly longer pauses between the end of a pulse and 
the beginning of the next pulse were found in areas of high levels traffic noise compared 
to areas with low levels of traffic noise (p=0.025). Error Bars: +/- 2 SE.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. The mean change in frequency (Hz) of male M.olmonae calls in waterfall and 
non-waterfall sites on the island of Tobago. A significant increase in M.olmonae calling 
frequency was found in sites containing waterfalls compared to sites without waterfalls 
(p= 0.025). Error Bars: +/- 2 SE. 
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Figure 10. Spectrograms of male M.olmonae advertisement calls. The top spectrogram 
shows the dramatic increase in amplitude and broad low-frequency masking due to noise 
from a passing car. The bottom spectrogram shows an M.olmonae call in an undisturbed 
environment. In contrast to the top spectrogram, the upper harmonics and the pulses are 
both easily visible. 

Time (sec) 
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DISCUSSION 
 
 
 

Outcomes for the Bloody Bay Poison Frog 
 
 

This study’s findings suggest that noise created by passing automobile traffic has 

significant effects on M.olmonae vocalizations. Specifically, this noise pollution leads to 

an increase in the upper frequency ranges of calls and an expansion of the total frequency 

range in which the calls occur. It is also important to note that no significant difference 

was found in low frequencies of frog calls between sites with high levels of 

anthropogenic noise (high noise sites) and those with low levels of anthropogenic noise 

(low noise sites). The fact that the frogs in high noise sites were only increasing their 

upper frequencies, and weren’t expanding into the lower frequency ranges, suggests that 

there is a need for higher frequencies in areas of high anthropogenic traffic noise. These 

findings indicate that such vocal modifications are likely an attempt to escape from the 

low-frequency masking of traffic noise.  

Waterfalls and other sources of fast-flowing water have also been proposed to 

mask the calls of other anurans (Grafe et al., 2012; Preininger et al., 2009; Tuttle and 

Ryan, 1982). My comparison between M.olmonae calls at waterfall sites and non-

waterfall sites also supports my masking avoidance hypothesis. M.olmonae living in 

habitats containing waterfalls showed a significant upward increase in their change in 

frequency and a non-significant but noteworthy trend of increasing frequencies. These 

corresponding frequency trends in areas of both high traffic noise and waterfall noise 
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suggest that these frequency alterations are used to reduce low-frequency masking from 

various sources.  

A similar but not identical sensitivity to traffic noise has been found in previous 

studies conducted on other anuran species. In order to escape from low-frequency 

masking, other species have shifted to higher dominant frequencies in the presence of 

anthropogenic noise (Barrass, 1985; Cunnington and Fahrig, 2010; Parris et al., 2009). 

My study found no significant shift in dominant frequency, meaning that they didn’t shift 

the frequency to which they deliver the most energy. This indicates that M. olmonae 

either is not able to or does not need to shift its dominant frequency. Often morphological 

constraints on body size make it impossible to shift vocalizations to higher or lower 

dominant frequencies even if it would be advantageous (Gerhardt, 1994; Grafe et al., 

2012). Alternatively, the increase in high frequencies may be a way to balance species-

specific interactions (that favor low frequency calls) with the increased traffic noise (that 

lowers the range over which the low-frequency calls can carry). In other words, natural 

selection may be in conflict with our inadvertent artificial selection.  

A similar conflict, the conflict between sexual selection and natural selection has 

been widely studied in many species. The most famous example of this is in peacocks. 

Large extravagant peacock tails are highly beneficial for males when it comes to 

attracting female mates. However, they can be cumbersome when foraging for food or 

trying to hide and escape from predators (Smith, 1991). In a similar way, natural 

selection (including sexual selection) may be at odds with the artificial selection imposed 

on frogs by anthropogenic traffic noise. Female frogs of some species show a preference 
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for low-frequency male calls, as they imply higher fitness in males. In these species 

males who are larger in size tend to have lower frequency calls (Murphy and Gerhardt, 

2000; Ryan, 1983). Males who increase the dominant frequency of their calls, may 

reduce their reproductive opportunities and/or may mate with less fit females (Kaiser and 

Hammers, 2009; Parris et al., 2009). However, shifting to higher frequency ranges does 

not simply alter male-female interactions, it can have many consequences for male-male 

encounters as well (Arak, 1983; Cocroft and Ryan, 1995; Davies and Halliday, 1978; 

Kaiser and Hammers, 2009; Wagner, 1989).  

Males compete with each other for territory and mates. Thus, a higher frequency 

shift indicates lower fitness to other males, alters the antagonistic interactions between 

males, and may even lead to reduced territory sizes (Kaiser and Hammers, 2009; Parris et 

al., 2009).  Male frogs have been found to attack smaller males and retreat from conflict 

when confronted by larger males. This decision to fight or flee is made by a frequency 

analysis of the other male’s call (Arak, 1983; Davies and Halliday, 1978; Wagner, 1989). 

It is important to note, however, that this cannot be assumed to be true for M.olmonae. 

The mating system of M.olmonae has not yet been studied and may not be conventional. 

M.olmonae does show reverse sexual dimorphism and a study on a close relative of 

M.olmonae, Mannophryne trinitatis, found that females (not males) of that species were 

territorial (Wells, 1980).    

 One way to increase the frequency of the call without altering the frequency of the 

original waveform is to include upper harmonics. The vocalizations of various anuran 

species, including M.olmonae, contain upper harmonics (Chen et al., 2011; Lardner and 
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Lakim, 2004; Murphy and Gerhardt, 2000; Ryan and Rand, 2003). In the M.olmonae 

calls analyzed in this study, there was a clear (but non-significant) trend of increasing the 

frequency of upper harmonics in low noise sites compared to high noise sites (p= 0.08). 

This trend seems counterintuitive, upper harmonics would appear to be beneficial when 

lower frequencies of the frog’s call are masked by traffic noise. Upper harmonics could 

serve to increase the frequency of the call, allowing it be heard above the noise pollution. 

However, it could be that the upper harmonics of M.olmonae’s call provide only 

negligible benefits. Therefore, this reduction in upper harmonics could be an energy 

saving technique. More studies must be performed in this area in order to determine what 

benefits (if any) M.olmonae’s upper harmonics provide. It would be helpful to perform 

playback studies with both lower and higher frequencies of anthropogenic traffic noise. 

This could determine whether or not the frogs are able to alter the amount of upper 

harmonics in their calls plastically depending on the frequency of the noise pollution.  

 Some frogs have the ability to alter aspects of their calls within their lifetime, this 

plasticity is shown in green frog (Rana clamitans), northern leopard frog (Rana pipiens), 

gray treefrog (Hyla versicolor) and other species of frogs (Bee et al., 2000; Cunnington 

and Fahrig, 2010; Reichert, 2010; Schwartz and Wells, 1983). However, some species of 

frogs do not demonstrate vocal plasticity and may not have the ability to react plastically 

to a changing environment (Cunnington and Fahrig, 2010; Kaiser and Hammers, 2009; 

Lengagne, 2008). These species can only alter their call parameters through evolution by 

natural selection.  
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So, how are M.olmonae changing the frequency and inter-pulse intervals of their 

vocalizations? At the present the answer remains unclear. They may have adapted over 

generations to an increasingly noisy environment. However, the most parsimonious 

explanation is vocal plasticity. Future research needs to be done in order to determine the 

answer. One study that would be helpful in this area is to find out if the populations in 

low traffic sites and high traffic sites are able to interbreed. If populations from two sites 

that differ in their noise components can breed, then the gene flow between the two 

populations would create intermediate offspring, making the evolution of different calls 

due to natural selection unlikely. It would also be beneficial to perform playback studies 

in areas of low traffic. Playback studies would allow us to see if the frogs do adjust their 

calls immediately in response to noise, which would indicate the ability for vocal 

plasticity.  

This study also found significantly different inter-pulse intervals, and a non-

significant but clear trend in pulse duration between low and high noise sites. Longer 

intervals between the end of each pulse and the beginning of the next were found in sites 

with high noise levels. The pulse duration in low noise sites was much longer than in 

high noise sites. When taken together, these two findings make sense: increasing inter-

pulse intervals and decreasing call rate should go hand in hand. These paired results 

suggest that there is a real correlation between high levels of traffic noise and calls with 

both shorter pulses and longer pauses between each pulse that cannot be attributed to 

sampling or measuring error.  
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Similar results have been found in Microhyla butleri, Rana nigrovittata and 

Kaloula pulchra; all three species decreased their call rate in response to motorcycle and 

airplane flyover noise (Sun and Narins, 2005). Decreased call rate (“bout duration”) in 

response to traffic noise was also found in the European tree frog (Hyla arborea) 

(Lengagne, 2008). A study on Emilio's ground frog (Eupsophus emiliopugini) found that 

the length of the call rate was dependent on the amplitude of the interfering noise: the call 

rate was higher at lower amplitudes of synthetic call noise and lower at higher amplitudes 

of synthetic noise (Penna and Hamilton-West, 2007). It is possible that such alterations 

could be an energy saving strategy. Calling is one of the most energetically costly 

behaviors a frog will ever undertake (Grafe, 1997; Wells and Taigen, 1989). In fact, a 

frog’s aerobic metabolism may increase up to 22 times its normal resting rate while it is 

calling (Bucher et al., 1982; Prestwich et al., 1989; Wells and Taigen, 1989). Calls with a 

shorter duration presumably involve less non-aerobic costs than lengthier calls (Welch et 

al., 1998). In a study on male Hyla microcephala, the energetic cost of calling was found 

to increase as the number of notes in the call increased (Wells and Taigen, 1989). Thus it 

seems reasonable to assume a reduction in pulse rate and an increase in inter-pulse 

intervals may be energy saving techniques, as a frog would be using less energy each 

time it calls. However, there have been conflicting results from similar studies. This may 

be partially due to the fact that I could only find a handful of studies that clearly defined 

the meaning of each term they use to describe aspects of the calls. For example: ‘note’, 

‘pulse’, ‘call’ and ‘bout’ are used to refer to the same characteristic of a frog call in some 

studies, while in other studies they are completely different terms. This means that 
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distinguishing inter-pulse intervals from inter-call intervals can be virtually impossible if 

no clear definition is given in the study. As a result of this wide variation of 

unstandardized terminology, cross-species call comparisons are very difficult.  

Be that as it may, I did come upon several studies with clearly defined but 

differing results to mine. A study on B. woodhousei toads found that they escaped the 

masking of anthropogenic traffic noise by increasing their call rate and lengthening the 

duration of their calls. It was also found that the pulse rate (called “pulse repetition rate” 

in the original study) was highly variable between the study sites. In the same study, H. 

cinerea was shown to escape masking through increasing their inter-call intervals and 

dominant frequency (Barrass, 1985). A study on the effects of motorcycle noise and 

music on the call rate of the Amazonian treefrog (Dendropsophus triangulum) found that 

male D.triangulum increased their call rates in response to both stimuli (Kaiser and 

Hammers, 2009). An increase in the call rate of Rana taipehensis was also found in 

response to airplane flyover and motorcycle noise (Sun and Narins, 2005).  

This pattern of increasing call rates has not only been found in studies on the 

effects of anthropogenic noise. A study on Hyla microcephala males that were studied in 

the context of a chorus setting reduced their call rate as the number of other males in the 

chorus decreased, and when the amount of frogs calling in the chorus grew they increased 

their call rate (Wells and Taigen, 1989). Similar results have been elicited from studies on 

the effects of natural water, wind, rain and chorus noise on frog calls (Penna et al., 2005).  

Calling at higher amplitudes is a common strategy that many animals use to 

lessen the masking effects of anthropogenic noise. Many mammalian, avian and some 
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anuran species are able to change the amplitude of their vocalizations in reaction to 

increased background noise (Brumm and Slabbekoorn, 2005; Lengagne, 2008). However, 

the frogs in my study didn’t show any significant change in the amplitude of their calls. 

The most likely explanation for this is the extreme energy cost needed to increase 

amplitude. In order to achieve the same masking release as a 123 Hz increase in 

frequency, a frog would have to use up 37% more energy every night just to increase the 

amplitude of its call by 1.4dB (Parris, 2002; Parris et al., 2009).  

One final strategy for masking reduction is the possible evolution of multimodal 

communication.  Many anuran species near noisy water sources have evolved a behavior 

known as foot-flagging, during which a male frog will extend his hind leg(s) behind him 

and slowly stretch it back in an arc-like movement before returning it to his side (Hodl 

and Amezquita, 2001). For instance, the Bornean rock frog (Staurois parvus), which lives 

in environments with continuous low-frequency broadband noise due to fast running 

water, has been found to display several visual communication techniques (including foot 

flagging) along with it acoustic advertisement call (Grafe et al., 2012). The Brazilian 

Torrent frog (Hylodes asper) has, as its name suggests, evolved near torrents. The males 

of this species, along with concentrating the energy of their calls in the third harmonic, 

use foot-flagging to attract the attention of females (Haddad and Giaretta, 1999). The 

Panamanian golden frog (Atelopus zeteki ), which lives along mountainous streams, relies 

preferentially on visual displays such as forefoot waving (Lindquist and Hetherington, 

1996). In the dart-poison frogs (Epipedobates femoralis), a close relative of M.olmonae, 
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vocal sac vibration and other visual cues were found to be required for aggression to be 

elicited in male-male interactions (Narins et al., 2003).  

 
 
 

Impacts on Evolution, Ecology and Conservation 
 
 

The evolution of multimodal communication has evolved in other species of frogs 

living near noisy water sources. Such an adaptation would likely benefit M.olmonae and 

other species whose calls are masked by traffic noise. However, the development of 

multimodal communication and call alteration may foreshadow more alarming changes 

that could arise if masking due to anthropogenic noise continues. Females of several 

species prefer lower frequency calls that indicate higher levels of male fitness (Kaiser and 

Hammers, 2009). This could lead to a tradeoff between audibility and attractiveness in 

male anurans. In turn, this could result in lower breeding success and even population 

extinction in otherwise suitable habitats (Kaiser and Hammers, 2009). These possible 

impacts should be investigated in M.olmonae. It would be beneficial to study how female 

preference is affected by male call alterations due to the interference of anthropogenic 

noise. This could be done in a similar fashion to my female preference study of male arm 

coloration; two identical dummies could be placed in front of speakers that alternately 

play either an unaltered call (from an area of low traffic noise) or the same call that has 

been manually altered to have increased frequency, longer inter-pulse intervals and 

shorter pulse durations. Fitness consequences should also be examined with long-term 
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studies that investigate the relationship between M.olmonae’s calling levels and 

reproductive success.  

In general road traffic imposes periods of synthetic noise on natural environments, 

restricting those environments previously accustomed to relative quietude, to short 

intervals of silence interrupted by intermittent and unpredictable bouts of high amplitude 

and low frequency noise. The construction of roads, and infrastructure expansion slices 

up land into smaller and smaller slivers of undisturbed areas. Habitat fragmentation is a 

large issue for these species of frogs, and although it is rarely considered, the acoustic 

landscape can be fragmented just like physical habitats (Lynch et al., 2011). 

Frogs and toads are often considered to be indicator species, warning us of the 

consequences of human caused environmental degradation before other species show the 

effects (Andreone and Luiselli, 2000; Barinaga, 1990). Studies like this one, which 

demonstrate the effects of anthropogenic noise on frog behavior, call attention to the 

importance of recognizing the impacts of our modifications to the environmental 

soundscape. These studies bring conservation into a new light; we don’t simply need to 

conserve habitats, we need to conserve the acoustics of the habitats as well. Birds and 

frogs have already shown significant alterations in their call properties in the presence of 

anthropogenic noise (Bee and Swanson, 2007; Brumm, 2006; Dowling et al., 2012; 

Francis et al., 2009; Kaiser and Hammers, 2009; Lengagne, 2008; Parris, 2013; Parris et 

al., 2009; Slabbekoorn and Peet, 2003; Slabbekoorn and Ripmeester, 2008). My study 

focuses solely on the affects of noise on vocal communication, however, many other 

sounds are just as important as direct communication for the survival of many animals. 



 -37-    

For example, the California ground squirrel (Spermophilus beecheyi) compares the rattles 

of the Pacific rattlesnake (Crotalus viriaus oreganos), in order to determine the danger it 

may pose to their pups (Swaisgood et al., 2003). Believe it or not, eavesdropping is as 

common in nature as it is in the human world, and it can mean the difference between life 

and death. Many animals rely on sound to determine the proximity and identity of other 

animals, whether they are predators, prey, competitors or potential mates (Lynch et al., 

2011). Superb fairy-wrens (Malurus cyaneus) have learned to eavesdrop on predator 

alarm calls of noisy miners (Manorina melanocephala) in habitats where the two species 

coexist (Magrath and Bennett, 2012). Termites eavesdrop too. The drywood termite 

(Cryptotermes secundus) uses vibro-acoustic cues to distinguish between its more 

dangerous competitor, the subterranean termite (Coptotermes acinaciformis), and other 

members of its own species (Evans et al., 2009).  

A great deal of information about human impacts on soundscapes remains 

unexplored, as we have only recently become aware of our acoustic impacts. The door is 

wide open for research on the effects of anthropogenic noise on the communication of 

frogs, birds, insects and all other sound-sensitive organisms. This research becomes more 

and more necessary as the exponential growth of the human race continues. The ever-

growing human population demands more resources every generation. With each new 

person, we need more: more houses, oil, gas, meat, vegetables, fruit, water, land...and the 

list goes on. The heart of the issue is that we need more space. However, as we encroach 

on other species’ habitats, it is important to remember that we don’t just alter the 

landscape - we alter the soundscape. Understanding our impacts on the acoustic 
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environment is imperative if we want to retain a diversity of acoustically communicating 

species. In the end, we must find a way to create harmony between our needs and the 

needs of all other species that occupy this earth.  
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