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Abstract

An iteration digraph, G(n), generated by the function f (x) (mod n) is a digraph on

the set of vertices V = {0, 1, . . .n− 1}with the directed edge set E = {(v, f (v)), | v ∈ V}.

Focusing specifically on the function f (x) = 10x(modn), we consider the structure of

these graphs as it relates to the factors of n. The levels, cycle lengths, and number of

cycles are determined for any integer relatively prime to 10. Isomorphic subgraphs

arising from multiples of 3 and 9, and tree structures specific to powers of 2 and 5

are also described.
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CHAPTER 1

Introduction

Tanya Khovanova’s Math Blog [Wilson, 2009] contains a variety of math related

posts, from stories and jokes to puzzles and questions. Some of the puzzles and

questions include solutions, while others are left open for readers to explore for

themselves, and many leave comments having done so. A post contributed by

David Wilson briefly presents a graphically based algorithm for determining if an

integer is divisible by 7. He simply describes the method, without any explanation

for how it was created, how it works, or if a similar method could be applied to

integers other than 7. In fact, the vertices of his graph are not even numbered, as he

does not suggest that it can be used to find remainders of dividing by 7.

Wilson does note that the graph is planar, which seems to be the main focus for

most readers, based on the comments made. There is even some consideration in the

comments (mostly by Wilson himself) of divisibility graphs for integers represented

in a base other than decimal, and which of these may be planar. Clearly those

moving into different bases understand how the graph was produced and why

it works, but do not explain it, and almost nobody discusses it at all. Also, the

discussion of structure for these graphs is limited entirely to the matter of planarity.

This project began with a curiosity to understand how and why the divisibility

graph works. Thus, we will also begin here by presenting the divisibility graph and

algorithm.

1



1. Introduction 2

1.1 The Algorithm

The digraph in Figure 1.1, adapted from Khovanova’s blog [Wilson, 2009], provides

an algorithm for determining the remainder of any positive integer, N, when divided

by 7 without the need to perform actual calculations. As an example of this method,

consider N = 375. Starting at 0, follow 3 black edges, ending on 3. Then follow

one red edge to 2. Next follow 7 black edges, ending back on 2, and 1 red edge to

land on 6. Finally, follow 5 more black edges to end on 4. This means that 375 has

remainder 4 mod 7.

Generalized for any N = d0d1d2 . . . dk, where di is the ith digit of N, we start at 0

and follow d0 black edges. Then follow one red edge and d1 more black edges. We

continue to alternate between one red edge and di black edges. After following the

last dk black edges, the vertex we end on is the remainder of N divided by 7.

A similar graph can be constructed for any integer n, which will determine the

remainder of N mod n by the same process. We will consider why this works and

how to construct such a graph for any integer in Section 1.3, but we first need to

establish some definitions and properties from graph theory, number theory, and

for iteration digraphs.

Figure 1.1: The digraph G(7) for determining remainders mod 7.
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1.2 Background

1.2.1 Graph Theory

A graph, G, is defined by two sets: the set of vertices, V(G), and the set of edges,

E(G). Each edge in E(G) is a pair of vertices, (a, b) where a and b are elements of

V(G). These vertices are the endpoints of the edge when the graph is drawn. For

the graph G1 shown in Figure 1.2(a), V = {a, b, c, d, e, f } and some of the edges in E

are (a, b), (a, c), (a, d), (b, c), (b, d).

(a) Graph G1 (b) Subgraph G2

Figure 1.2: Example graph and subgraph

A directed graph, or digraph, is a graph whose edges have a specified direction.

Edges of a digraph are represented by ordered pairs of vertices, and drawings have

arrows on the edges. If (a, b) is an edge in a digraph, then the arrow on the edge

points from a to b and we say a is adjacent to b. Note that for a digraph, edges are

ordered pairs with (a, b) and (b, a) representing different edges, whereas order is

unimportant for edges in an undirected graphs. Shown in Figure 1.3, the digraph

D1 has the same vertex set as G1, but here the edge set includes (a, b), (b, c), (e, b). If

(b, a) was also an edge in D1, there would be an additional edge with the arrow

pointing from b to a. Since e is both the head and tail of the edge (e, e), the edge is

called a loop and e is called a fixed point.
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Figure 1.3: D1 is a basic digraph

Given a graph G = (V,E), H = (W,F) is a subgraph of G if the vertex and edge

sets of H are subsets of G’s vertex and edge sets. That is, if W ⊂ V and F ⊂ E. If F

contains exactly all of the edges of G that join vertices of W, then H is called the

subgraph generated by W. In Figure 1.2(b), G2 is a subgraph of G1 because all of

the vertices and edges in G2 are also in G1. It is not, however, a generated subgraph,

because several edges are not included, such as (a, d), (a, b), (e, c).

There are many different structural aspects to graphs and digraphs. A graph

is connected if, for every pair of vertices u and v, there is a path between u and

v. In Figure 1.2, G1 is a connected graph, but G2 is not because there are no paths

from e or f to any of the other vertices. A component, C, of a graph is a connected

generated subgraph where there is no larger connected generated subgraph that

includes all of the vertices in C. For example, G2 has two components. They are the

subgraphs generated by the vertex sets {a, b, c, d} and {e, f }. The generated subgraph

for the set {a, b, c}, however, is not a component.

The degree of a vertex v is the number of edges for which v is an endpoint. In a

digraph, the indegree and outdegree of v, indeg(v) and outdeg(v), are the number of

edges with v at the head and tail, respectively. In D1, indeg(e) = 1 and outdeg(e) = 2.

A digraph is regular if all its vertices have the same indegree. Similarly, a digraph

is semiregular if the indegree of every vertex is either 0 or d, where d is a positive

integer.
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A path is a sequence of either vertices or edges that can be followed through the

graph, obeying all directional restrictions. For example, e, e, b, d, f is a path in D1. A

cycle is a path whose first and last vertex are the same and no vertex in between is

visited more than once. More specifically, a t-cycle is a cycle of length t. In D1, one

example of a 4-cycle is b, d, f , a, b. The loop (e, e) is a 1-cycle. We call a vertex or edge

cyclical if it is part of a cycle and noncyclical otherwise.

A tree is a graph which is connected and has no cycles. The level of a vertex,

v, is a distance measurement between v and a vertex designated as the root. The

vertex v is at level i if there is a path between v and the root of i that is edges long.

The root is the only vertex at level 0. The height of a tree with levels 0, 1, 2, . . . k is k.

The trees shown in Figure 1.4 have root a and height 2. In T1, b, c, and, d are all at

level 1, and e, f , and, g are at level 2. For a vertex v, all vertices adjacent to v and at

the level below v are called the children of v. If every vertex in a tree has m or fewer

children, it is called m-ary. If every vertex has exactly m or 0 children, it is called a

complete m-ary tree. Thus, T1 is a 3-ary tree and T2 is a complete 2-ary (or binary)

tree.

(a) Tree T1 (b) Binary tree T2

Figure 1.4

Finally two graphs, G and H, are isomorphic if their exists a one-to-one and onto

function f : V(G) → V(H) such that (a, b) ∈ E(G) if and only if ( f (a), f (b)) ∈ E(H).

The function f is called an isomorphism. In Figure 1.5, digraphs G and H are
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isomorphic with an isomorphism of f (x) = 2x. The edge (1, 4) in G becomes (2, 8) in

H, (2, 1) becomes (4, 2), (3, 2) goes to (6, 4), and (4, 2) to (8, 4). On the other hand, the

graph F in Figure 1.6 is not isomorphic to either G or H because the edge (2, 3) has

the wrong direction and also because F has the extra edge (3, 4).

(a) G (b) H

Figure 1.5: G and H are isomorphic graphs

1.2.2 Number Theory

Two integers a, b are said to be congruent modulo m ∈ Z+ if m|a− b, otherwise, they

are called incongruent. Congruence is written a ≡ b mod m. If 0 ≤ b ≤ m − 1, then

a has a remainder of b when divided by m. For example, 15 ≡ 3 mod 6 because

6|(15 − 3) = 12.

Several properties of traditional arithmetic also hold for modular arithmetic.

Theorem 1.1.

Modular arithmetic is an equivalence relation, so it satisfies the properties

Figure 1.6: F is not isomorphic to either G or H
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(i) a ≡ a mod m

(ii) if a ≡ b mod m, then b ≡ a mod m

(iii) if a ≡ b mod m and b ≡ c mod m, then a ≡ c mod m

Proof. For part (i), a − a = 0 = 0m, so a ≡ a mod m. For (ii), since a ≡ b mod m,

we have a − b = m · n for some integer n. Then, b − a = m · (−n), so b ≡ a mod m.

Finally, for part (iii), we have a− b = m ·n and b− c = m · p where n and p are integers.

Adding these gives a − c = m · n + m · p = m(n + p), so a ≡ c mod m. �

Theorem 1.2.

If a, b, c, d, and m are integers with m > 0, a ≡ b mod m and c ≡ d mod m, then

(i) a + c ≡ b + d mod m

(ii) a − c ≡ b − d mod m

(iii) ac ≡ bd mod m

Proof. From the given congruences, we get a − b = m · n and c − d = m · p. Thus,

a − b + (c − d) = m · n + m · p or a + c − (b + d) = m(n + p), so a + c ≡ b + d mod m.

Also, a− b− (c− d) = m · n−m · p or a− c− (b− d) = m(n− p), so a− c ≡ b− d mod m.

Finally, for part (iii), rewrite the equations as a = m · n + b and c = m · p + d. Then,

a · c = (m · n + b)(m · p + d)

a · c = m2np + mnd + mpb + bd

a · c − b · d = m(mnp + nd + pb)

so ac ≡ bd mod m. �

It is important to note that a/c ≡ a/d mod m is not necessarily true for all

integers. For example, we said 15 ≡ 3 mod 6 above, but 15/3 = 5 . 1 = 3/3

mod 6.
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By definition, a ≡ r mod m means that a = bm + r, where b is an integer. If we

have additionally that 0 ≤ r ≤ m − 1, then r is the least residue of a modulo m. The

set of all 0 ≤ r ≤ m − 1 is the set of least residues modulo m. A set of m integers

which are incongruent modulo m is called a complete system of residues modulo m

and reduces to the set {0, 1, 2, . . .m− 1}. For m = 6, {12, 7,−4, 63, 10,−1} is a complete

system of residues, because the numbers reduce to {0, 1, 2, 3, 4, 5}, the least residues

modulo 6.

Another important piece of notation for Number Theory is greatest common

divisor. For two integers a and b, not both 0, their greatest common divisor is the

largest integer d that divides both a and b. We write gcd(a, b) = d, so gcd(15, 6) = 3.

If gcd(a, b) = 1, then a and b are called relatively prime. One common property

of greatest common divisors, known as Bezout’s identity, says that if gcd(a, b) = d,

then there exist integers m and n such that ma + nb = d. In fact, d is the smallest

positive integer for which there is such a linear combination of a and b.

Two other common functions will also be necessary. The order of an integer

x modulo m is the smallest power k such that xk
≡ 1 mod m. This is written

ordm(x) = k. For example, ord7(10) = 6 because 106
≡ 1 mod 7, but 10k . 1 mod 7

for all k < 6. Finally, the Euler Phi Function, φ(n), is the number of positive integers,

a < n for which gcd(a,n) = 1. For example, φ(12) = 4 because there are 4 integers

less than and relatively prime to 12: 1, 5, 7, 11. Note that for any prime, p, every

integer less than p is relatively prime, so φ(p) = p − 1.

1.2.3 Iteration Digraphs

An iteration digraph is generated by a function f : Zn → Zn. The directed graph

Gn is formed on the vertex set V = Zn = {0, 1, 2, . . . ,n − 1} with exactly one edge

from v to f (v) for all v ∈ V. Thus, the edge set of Gn is E = {(v, f (v))|v ∈ V}. In

Figure 1.7, D11 is the iteration digraph produced by the function f (x) ≡ x2 mod 11.
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Thus, V(D11) = {0, 1, 2, . . . 10} and E(D11) includes (9, 4), (4, 5) and so on, because

92 = 81 ≡ 4 mod 11 and 42 = 16 ≡ 5 mod 11.

Figure 1.7: D11 generated by f (x) = x2 mod 11

Let {x j} be a sequence of vertices in an iteration digraph with initial vertex x0.

Since each vertex, xk, is at the tail of exactly one edge with the head at f (xk), the

sequence is defined recursively by xk+1 = f (xk). Also, since there exists an xk+1 for

every xk, we can create a sequence of any length on a digraph with any number of

vertices. Suppose {x j} is a sequence of n + 1 vertices on a graph with n vertices, then

there must be two elements of the sequence such that xi = xk, so the graph has a

cycle. The above is really a proof for a basic iteration digraph theorem.

Theorem 1.3.

Every iteration digraph contains at least one cycle. Moreover, every component of an

iteration digraph must contain a cycle.

The graph D11 includes one 4-cycle, 4, 5, 3, 9, and two 1-cycles, or fixed points, at

0 and 1. More specifically, 0 is called an isolated fixed point, because there is no

vertex other than itself that is adjacent to 0. On the other hand, 1 is not isolated

because 10 is adjacent to 1.

A level was defined for a tree in Section 1.2.1, but a different definition for the

level of an iteration digraph is given in [Somer and Křížek, 2004] and will be the
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primary definition used in this work. A vertex v in graph D is at level i if the longest

directed path that ends at v and does not contain any cyclical edges has length i.

For instance, graph D11 (Fig. 1.7) has 2 levels with 0, 2, 6, 7, 8, and 10 at level 0 and

the rest of the vertices are at level 1. In Figure 1.8, the levels used for a tree put a at

level 0, e at 1, c, d at 2, and b, f at 3. However, the levels just defined for iteration

digraphs put b, f , and d at level 0, c at 1, e at 2, and a at 3. For the rest of this paper,

the iteration digraph definition for level will be used unless otherwise stated.

Figure 1.8: Different definitions assign vertices to different levels.

1.3 Algorithm Proof

Based on the definitions from Sections 1.2.1-1.2.3, we can see that Figure 1.1 is

actually two iteration digraphs drawn on the same set of vertices. The black edges

are easily seen to be the digraph generated by g(x) = x+ 1 mod 7. Closer inspection

also shows that the red edges are the digraph generated by f (x) = 10x mod 7.

Thus, for any integer n, let D(n) be the union if the iteration digraphs generated

by g(x) = x + 1 mod n and f (x) = 10x mod n. If the g(x) edges are black and the

f (x) edges are red, then we can use the algorithm given in Section 1.1 to find the

remainder when N is divided by n, or N mod n.

Theorem 1.4.

Let D(n) be the iteration digraph generated by both g(x) = x + 1 mod n and f (x) = 10x
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mod n on the same set of vertices, and let N = a0a1a2 . . . ak where ai is the ith digit of N.

Begin at the 0 vertex and follow a0 g(x) (black) edges. Continue to iterate through i first

following 1 f (x) (red) edge and then di g(x) edges for i = 1, 2, . . . k. Let v be the vertex after

the final ak g(x) edges. Then N ≡ v mod n.

Proof. Let N be a positive k-digit integer with decimal expansion

N = 10kak + 10k−1ak−1 + · · · + 10a1 + a0

where 0 ≤ ai ≤ 9. Define r0 ≡ 0 mod n and ri ≡ 10bi (mod n) = f (bi) for i ≥ 1. Thus,

ri is the vertex after following one red edge from bi. Also define bi ≡ ri−1 + ak+1−i for

i ≥ 1. Thus, bi is the vertex after following ak+1−i black edges from ri−1. The values of

bi and ri correspond to the vertices which are landed on throughout the algorithm.

Thus, we have

r0 ≡ 0

b1 ≡ r0 + ak ≡ ak

r1 ≡ 10b1 ≡ 10ak

b2 ≡ r1 + ak−1 ≡ 10ak + ak−1

r2 ≡ 10(10ak + ak−1) ≡ 102ak + 10ak−1

...

bp ≡ 10p−1ak + 10p−2ak−1 + · · · + 10ak+2−p + ak+1−p

rp ≡ 10pak + 10p−1ak−1 + · · · + 102ak+2−p + 10ak+1−p

...

bk ≡ 10k−1ak + 10k−2ak−1 + · · · + 10a2 + a1

rk ≡ 10kak + 10k−1ak−1 + · · · + 102a2 + 10a1

bk+1 ≡ 10kak + 10k−1ak−1 + · · · + 102a2 + 10a1 + a0
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Thus, bk+1 ≡ N mod n. �

In the above iterations, each bi corresponded to following the black edges for

the digit ak+1−i and each ri was the single red edge followed between digits. Thus,

following the edges in the graphical algorithm is really just building N according to

its decimal expansion while reducing mod n at every step.

Returning to the example of N = 375 for n = 7, we have k = 2 and the algebraic

algorithm is as follows:

r0 ≡ 0

b1 ≡ r0 + a2 ≡ 0 + 3 ≡ 3

r1 ≡ 10b1 ≡ 30 ≡ 2

b2 ≡ r1 + a1 ≡ 2 + 7 ≡ 2

r2 ≡ 10b2 ≡ 20 ≡ 6

b3 ≡ r2 + a0 ≡ 6 + 5 ≡ 4

Note that the sequence produced here—0,3,2,2,6,4—is the same as the path of

vertices taken when using the graph.

For another example, let N = 5046, still with n = 7. Then k = 3 and
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r0 ≡ 0

b1 ≡ 5

r1 ≡ 1

b2 ≡ 1

r2 ≡ 3

b3 ≡ 0

r3 ≡ 0

b4 ≡ 6

so 5046 ≡ 6 mod 7.

Notice that the above proof was generalized for any positive integer n, not just

for 7. Thus, we can draw a divisibility graph for any integer n and follow the same

algorithm to determine remainders modulo n.

Understanding how the algorithm works, was clearly a short process. From here

I began to wonder about different patterns which appear visually, and specifically,

how the graph of a number is related to its factors and their graphs. Since the

function g(x) = x + 1 mod n will always produce a simple cycle through the

consecutive vertices, it is uninteresting. Thus, the remainder of this paper focuses

on the structure of the iteration digraph G(n) generated by the function f (x) = 10x

mod n.



CHAPTER 2

Graphs for n

Because the function f (x) = 10x mod n is dependent on 10, integers divisible by

2 or 5 have graphs with a different structure. Their structure will, however, be based

on that of integers relatively prime to 10. Thus, before looking at the graph of any

given integer, we first need to consider the structure of G(n) where n is relatively

prime to 10.

First, a theorem about complete systems of residues adapted from [Rosen, 2011]

will help determine the indegrees and levels in a graph.

Theorem 2.1.

If r1, r2, r3, . . . rm is a complete system of residues modulo m, and if a is a positive integer

where gcd(a,m) = 1, then ar1 + b, ar2 + b, ar3 + b, . . . arm + b is also a complete system of

residues modulo m for any integer b.

Proof. First, pick any ri and r j where i , j. Then ri . r j mod m, so m - (ri − r j).

Since gcd(a,m) = 1, m also does not divide a(ri − r j). Hence, ari . ar j mod m. Now,

because (ari +b)− (ar j +b) = ari−ar j, we have that m does not divide (ari +b)− (ar j +b),

so ari + b . ar j + b mod m. Therefore, we have m incongruent integers, and

ar1 + b, ar2 + b, ar3 + b, . . . arm + b is also a complete system of residues modulo m. �

Now, we use this theorem to consider the degrees of vertices in G(n). Note that

14
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Figure 2.1: Every vertex in G(13) is part of one of 3 cycles.

by definition, every vertex of an iteration digraph has an outdegree of 1, for any

n ∈ Z, so we only need to look at indegree here.

Theorem 2.2.

If n is not divisible by 2 or 5, then indeg(v) = 1 for every v ∈ V(G(n)).

Proof. By definition, V(G(n)) = {0, 1, 2, . . .n − 1} is a complete system of residues

modulo n. From Theorem 2.1, since gcd(10,n) = 1, the set { f (v) | v ∈ V(G(n))} =

{10v | v ∈ V(G(n))} is also a complete system of residues. Hence, {10v | v ∈ V(G(n))} ≡

V(G(n)) mod n and f is a bijection from V(G(n)) to itself. Therefore, exactly one

edge leeads into each element of V(G(n)), so indeg(v) = 1 for all v ∈ V(G(n)). �

In Figure 2.1, we see that G(13) is a regular graph with indeg(v) = 1 for every

vertex. In fact, Theorem 2.2 tells us that G(n) is regular for every n relatively prime

to 10, because each vertex has the same indegree. Furthermore, its also means that

every vertex of G(n) is part of a cycle, which leads to the following theorem about

levels.

Theorem 2.3.

G(n) has 1 level for all n where gcd(10,n) = 1.
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Proof. Let gcd(10,n) = 1 and assume v ∈ V(G(n)) is at level i > 0. Then there must

be a path of i edges leading to v which are not part of a cycle. The first vertex in this

non-cyclic path, must have an indegree of 0. This a contradiction to Theorem 2.2,

which said that indeg(v) = 1. Therefore, v must be at level 0, so G(n) has 1 level. �

The above theorem could be restated to say every vertex in G(n) is at level 0.

From this fact, it is clear that every graph G(n) where gcd(10,n) = 1 is simply a set

of isolated cycles. That is, G(n) is a set of cycles without any adjacent non-cyclic

vertices. We next consider the lengths of these cycles.

Theorem 2.4.

For all integers n where gcd(3,n) = 1, the only fixed point in G(n) is 0. Additionally, fixed

points are isolated if gcd(10,n) = 1.

Proof. First, 10 · 0 ≡ 0 mod n for any integer n, so (0, 0) is a 1-cycle.

From Theorem 2.2, indeg(v) = 1 for n relatively prime to 10, so a fixed point v is

an isolated fixed point whenever gcd(10,n) = 1.

Now, let gcd(10,n) = 1 and let v be a nonzero fixed point, so 10v ≡ v mod n, or

n | (10v − v) = 9v. Since v < n, we know that n - v and gcd(n, 9) > 1. Hence, 3 must

divide n for v to be a fixed point. Thus, if gcd(3,n) = 1, then the only fixed point in

G(n) is 0. �

Looking again at Figure 2.1, we see that the only isolated fixed point is 0, while

in Figure 2.2, G(33) has isolated fixed points at 0, 11, and 22. The length of the rest

of the cycles in G(n) is dependent on the prime factors of n, so we will start with the

cycle lengths of primes not equal to 2 or 5. First, we need a theorem concerning the

cycles on vertices relatively prime to n.
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Figure 2.2: G(33) has 3 isolated fixed points.

Theorem 2.5.

In G(n), if V1 is the subset of vertices relatively prime to n, then there are
φ(n)

ordn(10)
cycles

each with length ordn(10) in the subgraph generated by V1 .

Proof. First, let (a, b) be an edge in G(n). Since, gcd(10,n) = 1, if gcd(a,n) = 1 then

10a ≡ b mod n and b is also relatively prime to n. Thus, if a cycle contains one vertex

that is relatively prime to n, then all vertices in the cycle must also be relatively

prime to n.

Now, let r = ordn(10), so r is the least integer for which 10r
≡ 1 mod n, or

equivalently 10rv ≡ v mod n for every v ∈ V(G(n)). In the sequence {v0, v1, v2, . . . vr}

of vertices from G(n), vt ≡ 10tv0. Thus, vr ≡ 10rv0 ≡ v0 and the sequence is an r-cycle.

Consider s > r. We can write s = mr + t where m, t, and s are integers such that
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0 ≤ t < r. Hence,

10sv0 ≡ 10mr+tv0 mod n

≡ 10t(10mrv0) mod n

≡ 10t(1mv0) mod n

≡ 10tv0 mod n

≡ vt mod n

and 10sv0 ≡ v0 mod n if and only if t = 0, or equivalently r|s. If 10sv0 ≡ v0 mod n,

this suggests a cycle of length s, but the r-cycle has really just been cycled through

m times. Thus, the longest possible cycle in G(n) has length r.

Now, let v ∈ G(n) such that gcd(v,n) = 1 and assume v is part of an s-cycle where

s < r = ordn(10). Then 10sv ≡ v mod n, but 10s . 1 mod n because by definition, r

is the smallest positive integer for which 10r
≡ 1 mod n. This means 10s

−1 = np + r

for some integers p and 0 < r < n. Also, 10sv − v = nm for some integer m, so

v(10s
− 1) = nm

v(np + r) = nm

vr = nm − vnp

vr = n(m − vp).

This means that n|(vr), but n - r because 0 < r < n. Hence, gcd(n, v) > 1, which is a

contradiction since gcd(n, v) = 1. Therefore, all cycles on vertices relatively prime

to n have length r = ordn(10). Also, there are φ(n) vertices relatively prime to n, so

there are
φ(n)

ordn(10)
such cycles. �

We now define Cn to be the number of cycles in G(n) and find the following

for primes. Note that from [Somer and Křížek, 2004] the number of cycles in an
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Figure 2.3: G(11) has six 2-cycles and one 1-cycle

iteration digraph is the same as the number of components. Also, define Ln to be

the set of all cycle lengths in G(n). For primes p , 2, 5, Cp and Lp are now a corollary

to the previous theorem.

Corollary 2.1.

If p is a prime not equal to 2 or 5, G(p) has
p − 1

ordp(10)
+ 1 cycles each with length 1 or ordp(10).

Proof. From Theorem 2.4, we know that (0, 0) is a 1-cycle for every p. All nonzero

vertices in G(p) are relatively prime to p, so φ(p) = p − 1 and by Theorem 2.5, the

nonzero vertices form
p − 1

ordp(10)
cycles with length ordp(10). Therefore, including the

fixed point at 0, G(p) has
p − 1

ordp(10)
+ 1 (2.1)

cycles each with length 1 or ordp(10). �

When n = 3, we have a special case of Corollary 2.1 because ord3(10) = 1, so

every vertex in G(3) is an isolated fixed point,as seen in Figure 3.1.

We now want to determine Cn and Ln for any n relatively prime to 10. However,

we first need the following theorem on an important relation between the edges in

G(n) and the edges of G(nm).
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Theorem 2.6.

For any integers n and m, (a, b) ∈ E(G(n)) if and only if (ma,mb) ∈ E(G(mn)).

Proof. Let (a, b) be an edge in G(n). Then 10a ≡ b mod n, so

10a − b = np

10(ma) −mb = (mn)p.

Thus, 10(ma) ≡ mb mod mn, and (ma,mb) is an edge in G(mn). Therefore, (a, b) ∈

E(G(n)) if and only if (ma,mb) ∈ E(G(n)) �

From the above theorem, we begin to see how the cycles in a graph G(n) will

also be contained in the graph of G(mn).

Corollary 2.2.

If G(n) has t cycles of length r, then G(mn) also has at least t r-cycles.

Proof. Let G(n) have t cycles of length r and let v1, v2, v3, . . . vr, v1 be one r-cycle in

G(n). Then from Theorem 2.6, mv1,mv2,mv3, . . .mvr,mv1 is an r-cycle in G(mn). Thus,

G(mn) has at least t r-cycles. �

We have seen in Figure 2.1 that G(13) has one 1-cycle and two 6-cycles. Now, in

Figure 2.4, G(26) has the same number of cycles of each length as G(13), whereas

G(39) has three 1-cycles and six 6-cycles.

Now, if p and q are prime, we can determine exactly the number and lengths of

cycles of G(pq).

Theorem 2.7.

If p and q are distinct prime integers not equal to 2 or 5, then G(pq) has cycles of lengths 1,

ordp(10), ordq(10), and ordpq(10). Also,

Cpq =
pq − p − q + 1

ordpq(10)
+ Cp + Cq − 1
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(a) G(26) (b) G(39)

Figure 2.4: G(26) and G(39) both have at least one 1-cycle and two 6-cycles.

Proof. The nonzero vertices in both G(p) and G(q) form Cp − 1 and Cq − 1 cycles

respectively. From Corollary 2.2, this means that Cpq ≥ Cp − 1 and Cpq ≥ Cq − 1. Let

P = {(qa, qb) | (a, b) , (0, 0) ∈ E(G(p))} and let Q = {(pc, pd) | (c, d) , (0, 0) ∈ E(G(q))}.

By Theorem 2.6, both P and Q are subsets of E(G(pq)) and contain the cycles from

G(p) and G(q), respectively. If P
⋂

Q = ∅, then we have Cpq ≥ (Cp − 1) + (Cq − 1).

Since a, b ∈ {0, 1, 2 . . . (p − 1)}, every vertex in an edge of P is divisible by q, but not

by p. Similarly, every vertex in an edge of Q is divisible by p. Hence, there are

no common vertices between the edges in P and those in Q, so P
⋂

Q = ∅ and

Cpq ≥ (Cp − 1) + (Cq − 1). Additionally, these cycles will all have length ordp(10) or

ordq(10).

Now the loop (0, 0) is the only remaining cycle in both G(p) and G(q). Since

(p · 0, p · 0) = (0, 0) = (q · 0, q · 0), this loop in both G(p) and G(q) produces only one

loop in G(pq). Thus, Cpq ≥ (Cp − 1) + (Cq − 1) + 1 = Cp + Cq − 1.

These cycles include all of the vertices in G(pq) that are divisible by p or q. Since

0 is divisible by both, (p − 1) + (q − 1) + 1 = p + q − 1 vertices are already in a cycle.
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The remaining pq − (p + q − 1) vertices are relatively prime to pq, so by Theorem 2.5,

these vertices form
pq − (p + q − 1)

ordpq(10)
more cycles with length ordpq(10) Thus,

Cpq =
pq − p − q + 1

ordpq(10)
+ Cp + Cq − 1 (2.2)

and the cycles all have length 1, ordp(10), ordq(10), or ordpq(10). �

Figure 2.4(b) shows in red the two 6-cycles on the vertices that are multiples of

3. Also, (13, 13) and (26, 26) are the two nonzero 1-cycles formed by the multiples

of 13. The remaining nonzero vertices are divided into four cycles with length

ord39(10) = 6. Thus, C39 should be 9, and in fact, has

C39 =
39 − 13 − 3 + 1

ord39(10)
+ C13 + C3 − 1

=
24
6

+ 3 + 3 − 1

= 9.

We now look to generalize this to all G(n) where n is relatively prime to 10.

Theorem 2.8.

Let gcd(10,n) = 1, then

Cn =
∑
d|n

φ(d)
ordd(10)

and the set of cycle lengths is Ln = {ordd(10) | d|n}.

Proof. First, define the set Vd = {v ∈ V(G(n)) | gcd(v,n) = d} for all d|n. Every v in

G(n) will be in exactly one set Vd, so these sets form a partition of V(G(n)). Also,

define Gd(n) to be the subgraph of G(n) generated by the vertex set Vd.

Let a ∈ Vd and (a, b) ∈ E(G(n)). Then d|a, so a = dt where (n
d , t) = 1 and

b ≡ 10a ≡ 10dt. Now, consider gcd(b,n) = gcd(10dt,n). We know that gcd(b,n) ≥ d

since d|10dt. Assume gcd(b,n) = gcd(10dt,n) > d, so gcd(10t, n
d ) > 1. Then since
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gcd(10,n) = 1, we have gcd(n
d , t) > 1. This is a contradiction to the fact that (n

d , t) = 1.

Hence, gcd(b,n) = d and b ∈ Vd. Thus, every cycle in G(n) contains vertices from

exactly one set Vd and we can determine Cn by adding the number of cycles in Gd(n)

for every d|n, or

Cn =
∑
d|n

(number of cycles in Gd(n)) (2.3)

We now need to find the number of cycles in each subgraph Gd(n). Let (a, b) be

an edge in Gd(n). We already have a = dt where gcd(n
d , t) = 1, and similarly, b = ds

where gcd(n
d , s) = 1. Thus, (a, b) = (dt, ds). By Theorem 2.6, if (dt, ds) ∈ E(G(n)), then

(t, s) ∈ E(G(n
d )). Since t and s are relatively prime to n

d , it is now equivalent to find

the number of cycles on the vertices of G(n
d ) relatively prime to n

d . In other words,

the number of cycles in Gd(n) is the same as the number of cycles in G1(n
d ). From

Theorem 2.5, we know that G1(n
d ) contains

φ(n
d )

ord n
d
(10)

cycles with length ord n
d
(10).

Thus, there are also
φ(n

d )
ord n

d
(10)

cycles in Gd(n) with length ord n
d
(10). Therefore,

Cn =
∑
d|n

φ(n
d )

ord n
d
(10)

.

Every divisor d1 can be written as d1 = n
d2

for some other divisor, d2. Hence, as we

sum over every divisor d we are also summing over n
d for every d, so we can rewrite

Cn as

Cn =
∑
d|n

φ(d)
ordd(10)

(2.4)

�

One example of the previous theorem is G(77) (Fig. 2.5). To make it easier to

see the various cycles of G(77), Figures 2.6 and 2.7 show the subgraphs of G(77)

generated by Vd for d = 1, 7, 11, 77. Figure 2.6(a) shows the entire subgraph G1(77),
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Figure 2.5: G(77) is built from subgraphs isomorphic to graphs of its factors

or on all the vertices relatively prime to 77. This subgraph contains ten 6-cycles,

which have been pulled apart further in the rest of Figure 2.6.

Looking at G7(77) in Figure 2.7(a), the vertices all have gcd(v, 77) = 7. If we

compare this subgraph to G(11) in Figure 2.3, we see that G7(77) is isomorphic

to G1(11) by the isomorphism h(v) = 7v. This isomorphism comes directly from

Theorem 2.6 on the relation of edges in G(n) and in G(mn). Similarly, G11(77) in

Figure 2.7(b) is isomorphic to G1(7). Finally, G77(77) in Figure 2.7(c) is simply the

isolated fixed point isomorphic to G(1) that appears in every G(n) where (10,n) = 1.

From both the above theorem and example as well as Theorem 2.6, we can now

see how graphs of divisors of n will appear in the graph G(n). For d|n, the subgraph

Gd(n) is isomorphic to the subgraph G1(n
d ). Thus, much of G(n) is built from the

graphs of G(d). The subgraph G1(n), on the vertices that are relatively prime to n, is

the only portion of the total graph G(n) that can not be built directly from a graph

G(d) for some d|n.

Theorem 2.8 also allows us to reconsider Corollary 2.1 and Theorem 2.7. Since

φ(p) = p − 1 for any prime p, Equation 2.1 becomes Cp =
φ(p)

ordp(10)
+ 1. Then, by their
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(a) Full subgraph

Figure 2.6: The full subgraph of G(77) generated by V1, and then separated into pairs of 6-cycles.
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(a) V7 (b) V11 (c) V77

Figure 2.7: The subgraphs of G(77) generated by V7, V11, and V77.

definitions, φ(1) = ord1(10) = 1. Thus

Cp =
φ(p)

ordp(10)
+

φ(1)
ord1(10)

=
∑
d|p

φ(d)
ordd(10)

.

In the proof of Theorem 2.7, we determined the number of vertices relatively

prime to pq to be pq − p − q + 1, but by definition, this is just φ(pq). Then Equation

2.2 becomes

Cpq =
φ(pq)

ordpq(10)
+ Cp + Cq − 1

Cpq =
φ(pq)

ordpq(10)
+

( φ(p)
ordp(10)

+ 1
)

+
( φ(q)
ordq(10)

+ 1
)
− 1

Cpq =
φ(pq)

ordpq(10)
+

φ(p)
ordp(10)

+
φ(q)

ordq(10)
+ 1

Cpq =
φ(pq)

ordpq(10)
+

φ(p)
ordp(10)

+
φ(q)

ordq(10)
+

φ(1)
ord1(10)

Cpq =
∑
d|pq

φ(d)
ordd(10)

.

Thus, Theorem 2.8 is a generalization of both Corollary 2.1 and Theorem 2.7.

We now have the basic structure of the graph for any n relatively prime to

10 and can consider which integers produce a more specific structure. The next
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section, explores how multiples of 3 affect the structure of a graph to produce a set

of isomorphic subgraphs.



CHAPTER 3

Multiples of 3

In looking at the graphs of integers relatively prime to 10, we saw that 3 was

the exception to some of the previous theorems. This is because of the unique

relationship between 3 and 10. We see that because 10 ≡ 1 mod 3, for every vertex,

v, in G(3), 10v ≡ v mod 3, or (v, v) is an edge. This is shown in Figure 3.1. This

property of G(3) leads to a highly predictable structure for G(3n) where gcd(3,n) = 1.

We first need to establish some notation for the vertices of G(n) and G(3n). Define

V to be the vertex set of G(n), so V = V(G(n)) = {0, 1, 2, . . .n − 1}. Also define

Vt = {3v + tn mod 3n | v ∈ V} for t = 0, 1, 2.

If v ∈ V, then vt = (3v + tn mod 3n) ∈ Vt. For n = 2, we have G(2) with V = {0, 1}

and G(3n) = G(6) with V0 = {0, 3}, V1 = {2, 5}, and V2 = {1, 4} in Figure 3.2.

Figure 3.1: Every vertex in G(3) is an isolated fixed point

28
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The following theorem uses these vertex sets to relate the edge sets of G(n) and

G(3n).

Theorem 3.1.

If 3 - n and E(G(n) = {(a, b) | b = f (a), a ∈ V}, then E(G(3n)) = {(at, bt) | (a, b) ∈

E(G(n)), t = 0, 1, 2}

Proof. Let (a, b) be an edge in G(n). Then 10a ≡ b mod n, so

10a − b = nk

30a − 3b = 3nk.

Thus, 10(3a) ≡ 3b mod 3n, and (3a, 3b) = (a0, b0) is an edge in G(3n). Now, consider

10(3a + n) ≡ 30a + 10n mod 3n

≡ 3b + n + 3(3n) mod 3n

≡ 3b + n mod 3n

and

10(3a + 2n) ≡ 30a + 20n mod 3n

≡ 3b + 2n + 6(3n) mod 3n

≡ 3b + 2n mod 3n.

Therefore, (a1, b1) and (a2, b2) are also edges in G(3n). We now have the set of edges

S = {(at, bt) | (a, b) ∈ E(G(n)), t = 0, 1, 2}which is a subset of E(G(3n)). By definition

of an iteration digraph, we know that G(3n) has 3n distinct edges. The set S has 3n

edges, which we now need to show are distinct.
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From Theorem 2.1, since V is a complete system of residues modulo and

gcd(3,n) = 1, we know that V0, V1, and V2 each contain n incongruent integers.

Then, if a ∈ V, we have a0 ≡ 0 mod 3, a1 ≡ n mod 3, and a2 ≡ 2n mod 3.

Hence, for any b, c, d ∈ V, not necessarily distinct, b0, c1, and d2 are incongruent

modulo 3. Now, assume b0 ≡ c1 mod 3n, so b0 − c1 = 3n(p) for some integer p.

Then b0 − c1 = 3(np) and b0 ≡ c1 mod 3. This is a contradiction since b0 and c1

are incongruent mod 3. Hence, b0 . c1 mod 3n. Similarly, b0 . d2 mod 3n and

c1 . d2 mod 3n. Thus, for any b, c, d ∈ V, b0, c1, and d2 are incongruent modulo 3n.

Furthermore, at . br mod 3n whenever either a . b mod n or r , t. Therefore, the

3n edges in S are distinct, so E(G(3n)) = S = {(at, bt) | (a, b) ∈ E(G(n)), t = 0, 1, 2}. �

The graph for n = 6 in Figure 3.2(b) has three components on the sets of vertices

{0, 3}, {1, 4}, and {2, 5}. Comparing these to G(2), each component is isomorphic to

G(2). Thus, the relation from Theorem 3.1 between any G(n) and G(3n) can also be

expressed in terms of isomorphisms between the graphs.

(a) G(2) (b) G(6)

Figure 3.2: The components of G(6) are all isomorphic to G(2).

Corollary 3.1.

G(3n) is the union of three subgraphs, each of which is isomorphic to G(n).
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Proof. Let Gt(3n) be the subgraph of G(3n) generated by the set Vt. Then, from

Theorem 3.1, we know that E(Gt(3n)) = {(at, bt) | (a, b) ∈ E(G(n))} contains n distinct

edges. These edges are related to those of G(n) by the isomorphism h : V → Vt

where h(v) = 3v + tn, because (a, b) ∈ E(G(n)) if and only if (h(a), h(b)) is an edge in

the subgraph on Vt. Therefore, G(n) is isomorphic to Gt(3n) for t = 0, 1, 2. �

Another example, for n = 7 is given in Figure 3.3. The isomorphic subgraph

G0(21) is shown in red, G1(21) is in blue, and G2(21) is black.

(a) G(7) (b) G(21)

Figure 3.3: G(7) is isomorphic to three subgraphs of G(21).

3.1 Multiples of 9

The structural elements of G(3n) resulting from the fact that 10 ≡ 1 mod 3 are also

seen in the graphs of 9n when 3 - n. This is again because 10 ≡ 1 mod 9, so every

vertex in G(9) is an isolated fixed point.
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Again, we need the same type of sets used before, so V = V(G(n)) and

Vt = {9v + tn mod 9n|v ∈ V} for t = 0, 1, 2 . . . 8.

Also, if v ∈ V, then vt = (9v + tn mod 9n) ∈ Vt. These sets help to describe the sets

of corresponding edges in G(n) and G(9n) in the following theorem.

Theorem 3.2.

If 3 - n and E(G(n) = {(a, b) | b = f (a), a ∈ V}, then

E(G(9n)) = {(at, bt) | (a, b) ∈ E(G(n)), t = 0, 1, 2 . . . 8}.

Proof. Let (a, b) be an edge in G(n). Then 10a ≡ b mod n and by Theorem 2.6, we

know 10(9a) ≡ 9b mod 9n. Now, considering at = 9a + tn, we get

10(9a + tn) ≡ 90a + 10tn mod 9n (3.1)

≡ 9b + tn + 9tn mod 9n

≡ 9b + tn mod 9n.

Therefore, (at, bt) is also an edge in G(9n) for all t = 0, 1, 2 . . . 8. We now have the set

of edges S = {(at, bt) | (a, b) ∈ E(G(n)), t = 0, 1, 2 . . . 8} which is a subset of E(G(9n)).

As in Theorem 3.1, we now need to show that the 9n edges in S are distinct.

Again, since V is a complete system of residues modulo 9 and gcd(3,n) = 1, Vt

has n incongruent integers for all t = 0, 1, 2, . . . 8.

For all a ∈ Vt, we have at ≡ 9a + tn ≡ tn mod 9 since t < 9. Thus, for any b, c ∈ V,

not necessarily distinct, if t , s, then bt . cs mod 9.

Now, suppose bt ≡ cs mod 9n. Then bt − cs = 9n(p) for some integer p and

bt − cs = 9(np), so bt ≡ cs mod 9. This is a contradiction, so bt . cs mod 9n

whenever t , s. We now have bt . cs mod 9n whenever either b . c mod n or
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Figure 3.4: G(18) is comprised of 9 subgraphs isomorphic to G(2)

t , s. Therefore, the 9n edges in S are distinct, so E(G(3n)) = S = {(at, bt) | (a, b) ∈

E(G(n)), t = 0, 1, 2, . . . 8}. �

As with the G(3n) case, the edges produced from Theorem 3.2 indicate subgraphs

of G(9n) that are isomorphic to G(n).

Corollary 3.2.

G(9n) is the union of nine subgraphs, each of which is isomorphic to G(n).

Proof. Let Gt(9n) be the subgraph of G(9n) generated by the set Vt. Since (9a+ tn, 9b+

tn) is a distinct edge in G(9n) for every (a, b) in G(n), the function h(v) = 9v + tn is

an isomorphism from V to Vt for t = 0, 1, 2, . . . 8. Therefore, G(n) is isomorphic to

Gt(9n). �

The 9 subgraphs in G(9n) that are isomorphic to G(n) can also be viewed as 3

subgraphs, each isomorphic to G(3n).

Theorem 3.3.

If 3 does not divide n, then E(G(9n)) = {(3at + sn, 3bt + sn) | (at, bt) ∈ E(G(3n)) and s =

0, 1, 2}.
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Proof. Let gcd(3,n) = 1 and (at, bt) ∈ E(G(3n)). Then consider (3at + sn, 3bt + sn).

From Theorem 3.1, we know that at = 3a + tn and bt = 3b + tn where (a, b) ∈ E(G(n))

and t = 0, 1, 2. Hence,

(3at + sn, 3bt + sn) = (3(3a + tn) + sn, 3(3b + tn) + sn)

= (9a + 3tn + sn, 9b + 3tn + sn)

= (9a + (3t + s)n, 9b + (3t + s)n).

Let q = 3t + s. Since t, s ∈ {0, 1, 2}, we have q = 0, 1, 2, . . . 8. Thus, (3at + sn, 3bt + sn) =

(3a + qn, 3b + qn) and by Theorem 3.2, (3at + sn, 3bt + sn) ∈ E(G(9n)). Therefore,

S = {(3at + sn, 3bt + sn) | (at, bt) ∈ E(G(3n)) and s = 0, 1, 2}.

�

If we reconsider G(18) by the above theorem, the subgraph generated by

V1 = {2, 5, 8, 11, 14, 17} is isomorphic to G(6), as are the subgraphs from V0 and V2.

The three isomorphic graphs are highlighted in Figure 3.4.

From Theorems 3.1 and 3.2 we get a corollary for C3kn and L3kn where k = 1, 2.

Corollary 3.3.

If gcd(3,n) = 1 and k = 1, 2, then C3kn = 3kCn and L3kn = Ln.

Proof. The graph of G(3kn) is comprised of 3k subgraphs that are isomorphic to G(n)

whenever gcd(3,n) = 1. Each subgraph has Cn cycles with the set of lengths Ln.

Thus, C3kn = 3kCn and L3kn = Ln. �

Theorems 3.1 and 3.2 also indicate that perhaps this type of edge relation

will exist for higher powers of 3. If we have 3k with k > 2 and (a, b) ∈ E(G(n))
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Figure 3.5: G(54) is not comprised entirely of subgraphs that are isomorphic to G(2)

where (3,n) = 1, then by Theorem 2.6, (a0, b0) = (3ka, 3kb) ∈ E(G(3n)). However, for

(at, bt) = (3ka + tn, 3kb + tn) where t > 0, we get

10(3ka + tn) ≡ 10 · 3ka + 10tn mod 3kn

10(3ka + tn) ≡ 3kb + tn + 9tn mod 3kn, (3.2)

so 10(3ka + tn) ≡ 3kb + tn mod 3kn is true if and only if 9tn ≡ 0 mod 3kn. This

means that 3k−2 must divide t. Thus, (at, bt) is not a edge of G(3kn) for every

t = 0, 1, 2, . . . 3k
− 1.

For example, in Figure 3.5, G(54) contains some edges of the form (33a + t · 2, 33b +

t ·2), such as (33
·0+21 ·2, 33

·0+21 ·2) = (42, 42) and (3k
·1+21 ·2, 3k0+21 ·2) = (15, 42).

The subgraph of just those two edges is isomorphic to G(2). However, edges such

as (2, 20) and (20, 38) cannot be written in the form (33a + t · 2, 33b + t · 2).

This can also be understood visually. Theorems 3.1 and 3.2 were dependent on

the fact that Equation 3.2 holds for all values of t. More specifically, this is because
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Figure 3.6: 27 is the first power of 3 for which not every vertex in G(3k) is a fixed point.

10 ≡ 1 mod 3 and mod 9, which is seen graphically in the isolated fixed points at

every vertex of G(3) and G(9). Looking at G(27) in Figure 3.6, we see that 27 is the

first power of 3 for with G(3k) has non-fixed points.

While the results in this section do not require that n be relatively prime to 10,

we have mostly ignored integers divisible by 2 or 5 to this point. In the next section,

we consider the how the graph structure is affected when (10,n) > 1.



CHAPTER 4

Powers of 2

One class of integers for which G(n) has a distinctive and relatively predictable

digraph is the powers of 2. When n = 2k for some integer k > 0, G(2k) takes the form

of a binary tree with all edges heading towards the root. In this section, congruences

should all be considered modulo 2k unless otherwise specified.

The unique form of G(2k) is resultant from the fact that 2 is a factor of 10. Suppose

G(2k) contains an r-cycle, so 10ra ≡ a for every vertex in the cycle. Then 10ra− a = 2kb

for some integer b and (10r
− 1)a = 2kb, so 2k

|(10r
− 1)a. Because 2|10, 2 does not

divide (10r
− 1) and neither can 2k. Hence, 2k

|a, but 0 is the only vertex in G(2k)

which is divisible by 2k. Thus, all nonzero vertices in G(2k) are also noncyclic.

Given the tree structure of digraphs for powers of 2, which will be proved in

Theorem 4.1, each vertex will be referenced by its level and its position within that

level. Number the vertices in level i < k left to right from 0 to 2s
−1 where s = k− i−1.

Then vi,t is the the vertex in level 0 ≤ i ≤ k at position 0 ≤ t ≤ 2s
− 1. In Figure 4.1,

for example, v0,0 = 1, v0,1 = 5, and v1,0 = 2. Additionally, for each pair of vertices vi,t

and vi,t+1 where both are adjacent to the same vertex at level i + 1, we will draw the

graph such that vi,t < vi,t+1.

For the first theorem, we need to define notation for exactly divides. We say

that ak exactly divides b if k is the largest power a that divides b. We write a||b. Thus,

23
||24 because 8|24, but 16 - 24.

37
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Figure 4.1: G(8)

We can now develop the basic structure of the 2k iteration digraph.

Theorem 4.1.

If G(n) is the iteration digraph of f (x) ≡ 10x mod 2k where n = 2k for k = 1, 2, 3, . . . , then

1. G(n) has k + 1 levels

2. The non-zero vertices form a complete binary tree with height k and with 2k−1 as the

root

3. 0 and 2k−1 are adjacent to 0

4. exactly 2 vertices at level i < k − 1 are adjacent to each vertex at level i + 1

5. for each vertex, vi,t, at level i < k, 2i
||vi,t

6. the number of vertices in level i < k is 2k−i−1

7. for any vertex v at level 0, the shortest path from v to the 0 vertex has length k

Proof. Part 3 is easily seen since f (2k) = 10 · 2k
≡ 0 and f (2k−1) = 10 · 2k−1 = 5 · 2k

≡ 0.

For part 1, we know that for any vertex, v, 10kv = 2k(5kv) ≡ 0 mod 2k. Thus, the

longest possible path from v to 0 has length k. Now suppose the longest path that



4. Powers of 2 39

exists is only k − 1 edges long. Then 10k−1v = 2k−1(5k−1v) ≡ 0 for all v. This means

that

2k−1(5k−1v) = 2kp

5k−1v = 2p

and v must be divisible by 2. This is a contradiction for all odd vertices, so there

must exist a path from v to 0 with length k. Thus, G(2k) has k + 1 levels.

Considering part 5, at level k − 1, we have 2k−1
||2k−1. Now, assume that 2i

||vi,t for

all vertices at some level i < k − 1 and let vi−1,r be adjacent to vi,t = 2ic where c is an

odd integer. Hence, vi−1,r is at level i − 1 and

10vi−1,r − vi,t = 2kb

10vi−1,r − 2ic = 2kb

10vi−1,r = 2i(2k−ib + c)

Thus, 2i divides 10vi−1,r, so 2i−1 divides vi−1,r.

We now need to show that 2i−1
||vi−1,r. Assume that 2i

|vi−1,r, then 10vi−1,r ≡ vi,t

is divisible by 2i+1. This is a contradiction to the initial assumption that 2i
||vi,t.

Therefore, 2i does not divide vi−1,r, so 2i−1
||vi−1,r, and for every vertex, vi,t, at a level

i < k, 2i
||vi,t

For part 6, we know from part 5 that level i will contain all of the vertices exactly

divisible by 2i. For any i ≤ k, 2i will divide 1/2i of the vertices, or 2k/2i = 2k−i vertices.

Then, the number of vertices that 2i exactly divides will be all of those not divisible

by 2i+1, or 2k−i
− 2k−(i+1) = 2k−i−1. Thus, the number of vertices at level i is 2k−i−1.

For part 4, let a and b be vertices such that f (a) = b and b is at level i where
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0 < i ≤ k − 1. Then consider a + 2k−1.

f (a + 2k−1) = 10a + 10 · 2k−1

≡ b + 5 · 2k

≡ b + 0 mod 2k. (4.1)

Since 2k−1 < 2k, then a . a + 2k−1 mod 2k. Thus, at least two distinct vertices are

adjacent to b. From part 5, there are 2k−i−1 vertices at level i and 2k−i at level i + 1, so

there are exactly twice as many vertices at level i as at level i + 1. Thus, exactly two

vertices are adjacent to each vertex at level 0 < i < k.

Part 2 also follows directly from parts 4 and 5 and the definition of a tree, so the

non-zero vertices form a complete binary tree with height k and with 2k−1 as the

root.

Finally, for part 7, suppose there is a vertex v at level 0 such that the path from v

to 0 has length j < k. Then 10 jv ≡ 0, so

10 jv = 2kp

2 j5 jv = 2kp

5 jv = 2k− jp.

Thus, 2k− j divides v. This contradicts part 5, where 20
|v since v is at level 0. Therefore,

the shortest path from v to 0 has length k. �

Note that part 7 of the above theorem means that there is no branch of the tree

which stops shorter or longer than the others.

Using the results of Theorem 4.1, the basic structure of G(2k) can now be

constructed for any nonnegative k. The next step is to label the vertices with the

correct values modulo 2k. Unfortunately, this turns out to be a much more complex
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task. However, given the label of one vertex, several other vertices can also be

determined.

Corollary 4.1.

If i ≤ k − 2 and t is an even integer, then vi,t+1 = vi,t + 2k−1

Proof. Since t is even, if vi,t is adjacent to vi+1,r, then vi,t+1 is also adjacent to the same

vertex. From Equation (4.1), we see that vi,t+1 = vi,t + 2k−1 will be adjacent to vi+1,r. �

There is clearly a symmetry to the tree structure of G(2k), but there is also a

symmetry to the vertex labels, which is illustrated in the following theorem.

Theorem 4.2.

For the digraph G(2k), vi,2s−1−t = 2k
− vi,t for all i ∈ {0, 1, 2, . . . k} and t ∈ {0, 1, 2, . . . 2s

− 1}

Before proving the above theorem, we need to consider a more basic form of

symmetry for all G(n).

Lemma 4.1.

If (a, b) is an edge in G(n), then (−a,−b) is also an edge in G(n).

Proof. In G(n) pick distinct edges (a1, b1) and (a2, b2) such that a2 ≡ −a1 mod n. Then

a1 + a2 ≡ 0 mod n

10a1 + 10a2 ≡ 0 mod n

b1 + b2 ≡ 0 mod n

Thus, b2 ≡ −b1 mod n, so (a2, b2) = (−a1,−b1). �

Note that Lemma 4.1 applies to the graphs of all integers, not just the powers of

2. The next lemma gives intervals for the label of every vertex.

Lemma 4.2.

If i < k − 1, then t is even if and only if 0 < vi,t < 2k−1
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Proof. Recall that for two vertices, a and b, at level i < k − 1 both adjacent to the

same vertex, if a < b, then we label the left vertex a and the right vertex b. Thus,

vi,m = a and vi,m+1 = b means m must be an even index. From Corollary 4.1 recall

also, that a = b + 2k−1. Then, since a, b < 2k and a < b. we have that 0 < a < 2k−1 and,

hence, 2k−1 < b < 2k. �

We are now ready to prove Theorem 4.2.

Proof. At levels k and k − 1, there is only one vertex, so it is trivial to see that

vk,0 = 0 ≡ −vk,0 and vk,0 = 2k−1
≡ −vk,0. For induction on i, in the base case at

level k − 2, there are two vertices, vk−2,0 and vk−2,1 = vk−2,21−1−0. Both vertices are

exactly divisible by 2k−2 and are less than 2k = 4 · 2k−2, so we have vk−2,0 = 2k−2 and

vk−2,1 = 3 · 2k−2. Thus,

vk−2,1 = 4 · 2k−2
− vk−2,0

= 2k
− vk−2,0

Now, let i < k − 2 and assume

vi+1,2q−1−r ≡ −vi+1,r (4.2)

for all r ∈ {0, 1, 2, . . . 2q
− 1}where q = k− (i + 1)− 1, so 2q is the number of vertices in

level i + 1. Let (vi,t, vi+1,r) be an edge of G(2k). We want to show that vi,2s−1−t ≡ −vi,t.

By Lemma 4.1, (−vi,t,−vi+1,r) is also an edge in G(2k) and by the assumption of

Equation 4.2, (−vi,t,−vi+1,r) = (−vi,t, vi+1,2q−1−r). Thus, we know that −vi,t must be

congruent to one of the two vertices adjacent to vi+1,2q−1−r. From here, there are two

cases if t is odd or if t is even.

Case 1 If t is even, then 2s
− 1 − t is odd, so −vi,t is congruent to either vi,2s−1−t or

vi,2s−2−t. This is illustrated in Figure 4.2. By Lemma 4.2, 0 < vi,t < 2k−1. Then
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Figure 4.2: Relative positions of vertices in G(2k) when t is even.

−vi,t ≡ 2k
− vi,t, so 2k−1 < −vi,t < 2k. Therefore, −vi,t ≡ vi,2s−1−t because 2s

− 1 − t

is odd.

Case 2 If t is odd, then 2s
− 1 − t is even, so −vi,t is congruent to either vi,2s−1−t

or vi,2s−t. Again, by Lemma 4.2, 2k−1 < vi,t < 2k. Then −vi,t ≡ 2k
− vi,t, so

0 < −vi,t < 2k−1. Therefore, −vi,t must be congruent to a vertex in an even

position, so −vi,t ≡ vi,2s−1−t.

Therefore, vi,2s−1−t ≡ −vi,t for all vertices vi,t ∈ V(G(2k)). Additionally, since vi,t < 2k,

we know that (2k
−vi,t) < 2k and we can rewrite the equivalence as vi,2s−1−t = 2k

−vi,t. �

Figure 4.3: G(32) shows the reflective relationship of Theorem 4.2.

For example, consider v1,2 = 2 of G(32) in Figure 4.3. The corresponding vertex

v1,23−3 = v1,5 = 2k
− 2 = 30.
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Similarly, v0,9 = 27 and v0,15−9 = v0,6 = 5.

The next theorem shows the isomorphism between G(2k) and G(2m) where m > k.

Theorem 4.3.

Let vi,t ∈ G(2k) and ui,t ∈ G(2m) where m > k. If um− j,r = 2m−kvk−i,t, then i = j and t = r.

Proof. Pick vk−i,t ∈ V(G(2k)) and u j,r ∈ V(G(2m)) such that 2m−kvk−i,t = um− j,r. Then

2k−i
||vk−i,t and multiplying by 2m−k, we get

2m−k2k−i
||2m−kvk−i,t

2m−i
||um− j,r,

so j = i.

Now, we need to show that r = t. There is only one vertex each at levels k and

k− 1, so we must have r = t. For some level k− i, with i > 1, assume r = t for all vk−i,t

and um−i,r where 2m−kvk−i,t = um−i,r. Then, in level k − i − 1, both vk−i−1,2t and vk−i−1,2t+1

are adjacent to vk−i,t. Let 2m−kvk−i−1,2t = um−i−1,a and 2m−kvk−i−1,2t+1 = um−i−1,b. Then

10um−i−1,a ≡ 10(2m−kvk−i−1,2t)

≡ 2m−k(10vk−i−1,2t)

≡ 2m−k(vk−i,t)

≡ um−i,r

and similarly 10um−i−1,b ≡ um−i,r. Hence, both um−i−1,a and um−i−1,b are adjacent to

um−i,r, so either a = 2r and b = 2r + 1 or vice versa.

Again making use of Lemma 4.2, 0 < vk−i−1,2t < 2k−1, so 0 < um−i−1,a < 2m−1. Thus,

a is even, so a = 2r and b = 2r + 1. Then, 2m−kvk−i−1,2t = um−i−1,2r and 2m−kvk−i−1,2t+1 =
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Figure 4.4: G(25)

um−i−1,2r+1, so r = t for all 2m−kvk−i−1,t = um−i−1,r. Therefore, if um− j,r = 2m−kvm−i,t, then

i − j and r = t. �

For example, consider G(8) (Fig. 4.1) and G(32) (Fig. 4.3), where k = 3 and m = 5.

We see that G(8) is isomorphic to the subgraph of G(32) generated by the vertex set

V = {vi,t | 2 ≤ i ≤ 5}. The isomorphism is h(v) = 25−3v = 4v.

4.1 Powers of 5

Similar to how G(3n) and G(9n) shared similar properties, the fact that both 2 and

5 are factors of 10 means that powers of 5 have much the same structure as was

seen in the 2k graphs. Additionally, the proofs will be very similar to those for

the 2k graphs. The following discussion of G(5k) could have been combined with

Section 4, however they have been kept separate for the sake of the clarity of the

proofs. Generalizing to G(pk) where p = 2, 5 would have made the proofs much

more difficult to follow.

With a tree structure of the digraphs similar to those for powers of 2, we will use

the same notation for referencing the vertices of G(5k). We number the vertices in

level i < k − 1 left to right from 0 to (4 · 5s
− 1) where s = k − i − 1. Then vi,t is the the

vertex in level i at position t.

Additionally, if vi,t < vi,r and both vertices are adjacent to the same vertex at

level i + 1, we will draw the graph such that t < r. As with G(2k), we begin with the
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basic structure of the 5k graph. In this section, congruences should all be considered

modulo 5k unless otherwise specified.

Theorem 4.4.

If G(5k) is the iteration digraph of f (x) ≡ 10x mod 5k for k = 1, 2, 3, . . . , then

1. G(5k) has k + 1 levels

2. The non-cyclic edges form a 5-ary tree with height k and with 5k
≡ 0 as the root

3. 5k−1c for c = 0, 1, 2, 3, 4 are all adjacent to 0

4. exactly 5 vertices at level i < k − 1 are adjacent to each vertex at level i + 1

5. for each vertex, vi,t, at level i < k, 5i
||vi,t

6. at level i < k, there are 4 · 5s vertices where s = k − i − 1.

7. for any vertex v at level 0, the shortest path from v to the 0 vertex has length k

Proof. Part 3 is easily seen since f (5k−1c) = 10 · 5k−1c = 2 · 5kc ≡ 0.

For part 1, we know that 10kv = 5k(2kv) ≡ 0 for all v in G(5k), so the longest

possible, noncyclical path has length k. Assume, that the longest noncyclical

path that exists in G(5k) only has length (k − 1). Then 10k−1v ≡ 0 mod 5k for all

v ∈ V(G(5k)). Thus,

10k−1v = 5kn

2k−15k−1v = 5kn

2k−1v = 5n,

so 5 divides all v. This is clearly a contradiction, so there must exist at least one path

with length k. Therefore, there are k + 1 levels in G(5k).
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For part 5, at level k − 1, we have 5k−1
||5k−1c for c = 1, 2, 3, 4. Now, assume that

5i
||vi,t for all vertices at some level i < k− 1 and let vi−1,r be adjacent to vi,t = 5ia where

5 - a. Hence, vi−1,r is at level i − 1 and

10vi−1,r − vi,t = 5kb

10vi−1,r − 5ia = 5kb

10vi−1,r = 5i(5k−ib + a)

Thus, 5i divides 10vi−1,r, so 5i−1 divides vi−1,r. If we now assume that 5i
|vi−1,r, then

10vi−1,r = vi,t is divisible by 5i+1. This is a contradiction, hence, 5i does not divide

vi−1,r, and 5i−1
||vi−1,r. Therefore, for every vertex, vi,t, at a level i, 5i

||vi,t.

For part 6, we know from part 5 that level i will contain all of the vertices exactly

divisible by 5k. For any i ≤ k, 5i will divide 1/5i of the vertices, or 5k/5i = 5k−i vertices.

Then, the number of vertices that 5i exactly divides will be all of those not divisible

by 5i+1, or 5k−i
− 5k−(i+1) = 4 · 5k−i−1. Thus, the number of vertices at level i is (4 · 5k−i−1).

For part 4, let a and b be vertices such that f (a) = b and b is at level i where

0 < i ≤ k − 1. Then consider a + 5k−1c for c = 0, 1, 2, 3, 4.

f (a + 5k−1c) = 10a + 10 · 5k−1c

f (a + 5k−1c) ≡ b + 2 · 5kc

f (a + 5k−1c) ≡ b + 0. (4.3)

Since 5k−1c < 5k, then a . a + 5k−1c mod 5k. Thus, at least five distinct vertices are

adjacent to b. From part 5, there are 4 · 5k−i−1 vertices at level i and 4 · 5k−i at level

i + 1, so there are five times as many vertices at level i as at level i + 1. Thus, exactly

five vertices are adjacent to each vertex at level 0 < i < k.



4. Powers of 2 48

Part 2 also follows directly from parts 4 and 5 and the definition of a tree, so the

non-zero vertices form a 5-ary tree with height k and with 5k−1 as the root.

Finally, for part 7, suppose there is a vertex v at level 0 such that the path from v

to 0 has length j < k. Then 10 jv ≡ 0, so

10 jv = 5kp

2 j5 jv = 5kp

2 jv = 5k− jp.

Because 5 does not divide 2 j, 5k− j must divide v. Since v is at level 0, this contradicts

part 5 which says that v must be at least at level k − j > 0. Therefore, the shortest

path from v to 0 has length k. �

Just as with G(2k), we now want to label the vertices through their relations to

each other.

Corollary 4.2.

If i ≤ k − 2 and t ≡ 0 mod 5, then vi,t+c = vi,t + 5k−1c mod 5k for c = 0, 1, 2, 3, 4.

Proof. Since t ≡ 0 mod 5, if vi,t is adjacent to vi+1,r, then vi,t+c is adjacent to the same

vertex for c = 0, 1, 2, 3, 4. From Equation (4.3), we see that vi,t+c = vi,t + 5k−1c will be

adjacent to vi+1,r. �

In Figure 4.4, G(25) is an example of this relationship between the 5 vertices

adjacent to a common vertex. In a position equivalent to 0 mod 5, v0,10 = 4. Then,

v0,10+1 = 4 + 52−1
· 1 = 9,

v0,12 = 4 + 5 · 2 = 14,
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v0,13 = 19 and v0,14 = 24. Similarly, starting with v0,15 = 2, we have v0,16 = 7, v0,17 = 12,

v0,18 = 17, and v0,19 = 22.

Next, we consider a relation between vertices that is based on a reflective

symmetry of G(5k).

Theorem 4.5.

For the digraph G(5k), vi,4·5s−1−t = 5k
−vi,t for all i ∈ {0, 1, 2, . . . k} and t ∈ {0, 1, 2, . . . 4·5s

−1}

Because Lemma 4.1 applied to all integers n, we only need to consider a lemma

corresponding to Lemma 4.2 before proving the theorem.

Lemma 4.3.

For i < k − 1, t ≡ c mod 5 if and only if 5k−1c < vi,t < 5k−1(c + 1).

Proof. Recall from both Theorem 4.44 and Corollary 4.2 that the five vertices

vi,t+c = vi,t + 5k−1c where t ≡ 0 mod 5 and c = 0, 1, 2, 3, 4 are all adjacent to the

same vertex at level i + 1. Now, assume that 5k−1c < vi,t+a, vi,t+b < 5k−1(c + 1) where

a, b, c ∈ {0, 1, 2, 3, 4} such that a , b. This means that vi,t+a − vi,t+b = 5k−1(a − b) < 5k−1,

but this is not possible since a , b. Thus, 5k−1c < vi,t+a < 5k−1(c + 1) for exactly one a.

Recall now that for two vertices, vi,t and vi,r, at level i < k−1 both adjacent to the same

vertex, if vi,t < vi,r, then t < r. Thus, vi,t+0 < vi,t+1 < vi,t+2 < vi,t+3 < vi,t+4, so we have

0 < vi,t < 5k−1, 5k−1 < vi,t+1 < 5k−12 and so forth. Therefore, 5k−1c < vi,t < 5k−1(c + 1) for

t ≡ c mod 5. �

We are now ready to prove Theorem 4.5.

Proof. At level k, there is only one vertex, vk,0 = 0, so it is trivial that vk,0 ≡ −vk,0.

For induction on i, in the base case at level k − 1, there are four vertices.

These vertices are paired across the vertical symmetry of the tree: vk−1,0 with

vk−1,4·50−1−0 = vk−1,3 and vk−1,1 with vk−1,4·50−1−1 = vk−1,2. All these vertices are exactly
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divisible by 5k−1 and are not congruent to 5k = 5 · 5k−1, so we have vk−1,0 = 5k−1,

vk−1,1 = 2 · 5k−5, vk−1,2 = 3 · 5k−5, and vk−1,3 = 4 · 5k−5. Thus,

vk−1,3 = 5 · 5k−1
− vk−1,0

= 5k
− vk−1,1

and

vk−1,2 = 5k
− vk−1,1

Now, let i < k − 1 and assume

vi+1,4·5q−1−r ≡ −vi+1,r mod 5k (4.4)

for all r ∈ {0, 1, 2, . . . 4 · 5q
− 1} where q = k − (i + 1) − 1, so 4 · 5q is the number of

vertices in level i + 1. Let (vi,t, vi+1,r) be an edge of G(5k). We want to show that

vi,4·5s−1−t ≡ −vi,t.

By Lemma 4.1 and Equation 4.4, (−vi,t,−vi+1,r) = (−vi,t, vi+1,4·5q−1−r) is also an edge.

Thus, we know that −vi,t must be congruent to one of the five vertices adjacent to

vi+1,4·5q−1−r.

Suppose t ≡ c mod 5. From Lemma 4.3, we know that 5k−1(c) < vi,t < 5k−1(c + 1).

Hence 5k−1(5 − c) > −vi,t > 5k−1(5 − (c + 1)). Thus, if we let −vi,t = vi,a, then

a ≡ 5 − (c + 1) ≡ −c − 1 mod 5.

Since t ≡ c mod 5, we have 4 · 5s
− 1 − t ≡ 0 − 1 − c ≡ −c − 1 mod 5. Since the

five possible vertices all have incongruent positions, we now have a = 4 · 5s
− 1 − t,

so −vi,t ≡ vi,4·5s−1−t for all vi,t ∈ V(G(5k)). Therefore vi,4·5s−1−t = 5k
− vi,t. �
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For example, looking at G(25) in Figure 4.4, we see that v0,6 = 6 and

v0,20−1−6 = v0,13 = 25 − 6 = 19.

The following theorem looks at the isomorphism between G(5k) and a subgraph of

G(5m) when m > k.

Theorem 4.6.

Let vi,t ∈ G(5k) and ui,t ∈ G(5m) where m > k. If um−i,t = 5m−kvk− j,r, then i = j and r = t.

Proof. Choose vk−i,t ∈ V(G(5k)) and u j,r ∈ V(G(5m)) such that 5m−kvk−i,t = u j,r. Then

5k−i
||vk−i,t and multiplying by 5m−k, we get

5m−k5k−i
||5m−kvk−i,t

5m−i
||u j,r

so, j = i.

Now, we need to show that r = t. There is only one vertex at level k, so we must

have r = t. For some level k − i, with i ≥ 1, assume r = t for all vk−i,t and um−i,r where

5m−kvk−i,t = um−i,r. Then, in level k− i−1, let 5m−kvk−i−1,s = um−i−1,q and let (vk−i−1,s, vk−i,s)

be an edge in G(5k). Thus,

10 · vk−i−1,s ≡ vk−i,t

10 · 5m−kvk−i−1,s ≡ 5m−kvk−i,t

10 · um−i−1,q ≡ um−i,r.

We now have um−i−1,q in one of five incongruent positions all adjacent to um−i,r.



4. Powers of 2 52

Assume that s ≡ c mod 5. Then

5k−ic <vk−i−1,s < 5k−i(c + 1)

5k−i5m−kc <5m−kvk−i−1,s < 5k−i5m−k(c + 1)

5m−ic <um−i−1,q < 5m−i(c + 1).

Hence, q ≡ c mod 5. Since the five possible vertices all have incongruent positions,

we have q = s. Therefore, um−i,t = 2m−kvk−i,t for all ui,t ∈ G(2m). �

From Theorem 4.6, we get that for k < m, G(5k) is isomorphic to the subgraph of

G(5m) generated by the vertex set S = {vi,t | i ≥ m − k}. The isomorphism from G(5k)

to the subgraph of G(5m) is h(v) = 5m−kv.

4.2 Multiples of 2k

Now that we have the structure and some labeling of G(2k) and G(5k), we can

consider how these graphs relate to the graphs of 2kn and 5kn where n is relatively

prime to 10.

Recall that a graph, G, is semiregular if indeg(v) = 0 or d for every v in V(G) with

d a positive integer. The first theorem shows the semiregularity of G(2kn).

Theorem 4.7.

If n is not divisible by 2 or 5, then G(2kn) is semiregular with d = 2 and indeg(v) = 2 if and

only if 2 | v.

Proof. Let (a, b) be an edge in G(2kn). Then 10a ≡ a mod 2kn, and also

10(a + 2k−1n) ≡ 10a + 5 · 2kn mod 2kn

10(a + 2k−1n) ≡ b + 0 mod 2kn. (4.5)
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Since 2k−1n < 2kn, a . a + 2k−1n and (a + 2k−1n, b) is also an edge in G(2kn). Thus, if

indeg(v) ≥ 1 for any v ∈ V(G(2kn)), then indeg(v) ≥ 2.

Now, assume there exists a third vertex, c, which is also adjacent to b and is

incongruent to both a and a + 2k−1n. Then

10c − b = 2kns (4.6)

and

10a − b = 2knp (4.7)

where s and p are integers such that s , p.

From Equations 4.6 and 4.7 we get

10(c − a) = 2kn(s − p)

5(c − a) = 2k−1n(s − p).

Since 5 - 2k−1n, we know that 5 divides (s − p), so (s − p) = 5t for some integer t and

5(c − a) = 2k−1n(5t)

(c − a) = 2k−1n(t)

c = a + 2k−1nt. (4.8)

If t is even, then t = 2r and c ≡ a + 2k−1n(2r) ≡ a mod 2kn. If t is odd, then t = 2r + 1

and

c ≡ a + 2k−1n(2r + 1)

≡ a + 2knr + 2k−1n

≡ a + 2k−1n mod 2k.
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Figure 4.5: G(28)

Thus, c is congruent to either a or a + 2k−1n, so the indegree of b is exactly 2 and the

indegree of any vertex of G(2kn) is either 0 or 2. Therefore, G(2kn) is semiregular

with d = 2.

Now, assume (a, b) is an edge where 2 - b. Then 10a ≡ b mod 2kn, so

10a − b = 2knp

10a − 2knp = b

2(5a − 2k−1np) = b.

Thus, 2 | b, which is a contradiction, so when 2 - v, indeg(v) = 0. There are 2k−1n

vertices that are divisible by 2 and, hence, can have an indegree of 2. Since there

are exactly twice as many edges as there are vertices divisible by 2, indeg(v) = 2

whenever 2 | v. Therefore, indeg(v) = 2 if and only if 2 | v. �

The graph G(28) is seen to be semiregular with d = 2 in Figure 4.5. It also includes
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several subgraphs with a binary tree structure. These subgraphs are isomorphic to

G(2k), as seen in the following theorem.

Theorem 4.8.

If n is not divisible by 2 or 5 and k > 0, then G(2kn) contains n generated subgraphs that are

isomorphic to the subgraph of G(2k), excluding the loop (0, 0). The root of each isomorphic

subgraph is a vertex v ∈ V(G(2kn)) where 2k
|v.

Proof. From Theorem 2.6, we know that S = {(2ka, 2kb) | (a, b) ∈ E(G(n))} is a subset

of E(G(2kn)). Also, since G(n) is a set of isolated cycles, we have that the edges in S

form a set of cycles, which are isomorphic to G(n). Hence, for all 2kv ∈ V(G(2kn)),

2kv is part of a cycle, so indeg(2kv) ≥ 1. Then by Theorem 4.7, indeg(2kv) = 2. Since

exactly one vertex adjacent to 2kv is part of the cycle, the other adjacent vertex must

be noncyclical. Thus, there is a tree, with at least one vertex other than the root,

whose root vertex is 2kv where v ∈ V(G(n)).

We now need to show that each of these trees is isomorphic to G(2k) without

the loop (0, 0). Define Tv(2kn) to be the tree whose root is r = 2kv. Adapted from

Theorem 4.1, each tree needs to satisfy these three properties

1. Tv(2kn) has k + 1 levels

2. Tv(2kn) is a binary tree with exactly one vertex adjacent to r and indeg(v) = 0 or 2

for all v , r

3. for any vertex v at level 0, the shortest path from v to r has length k.

First, from Equation 4.5, we know that if a is the cyclical vertex adjacent to the root

r = 2km, then s = a + 2k−1n is also adjacent to r and 2k−1
||s. Thus, we have 2 vertices

adjacent to r, and by Theorem 4.7, s is the only vertex in Tm(2kn) that is adjacent to r.

Thus, exactly one vertex in the tree is adjacent to r. The rest of part 2 follows by

definition from Theorem 4.7, so Tm(2kn) is a binary tree and indeg(v) = 0 or 2 for all

v , r.
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Now, for part 1, for any v ∈ V(Tm(2kn)) such that v , r, there exists an integer

j ≥ 0 such that 10 jv ≡ s = 2k−1q mod 2kn for some integer q such that 2 - q. Suppose

j > k − 1, so

10 jv − 2k−1q = 2knp

2k−1(2 j−k+15 jv − q) = 2knp

2 j−k+15 jv − q = 2np.

This says that 2 divides (2 j−k+15 jv − q). However, q is odd, so (2 j−k+15 jv − q) cannot

be divisible by 2. Thus, j ≤ k − 1.

Now assume j < k − 1 for all v ∈ V(Tm(2kn)). Then,

10 jv − 2k−1q = 2knp

2 j5 jv = 2knp + 2k−1q

2 j5 jv = 2k−1(2np + q)

5 jv = 2k−1− j(2np + q). (4.9)

This means that 2|v for all v ∈ V(Tm(2kn)). From Theorem 4.7, all vertices in the tree

now have an indegree of 2, which makes an infinite tree. Thus, there exist vertices

in Tm(2kn) such that 10k−1v ≡ s, or such that the path from v to s is k − 1 edges long,

and hence the path from v to r is k edges lone. Thus, Tm(2kn) has k + 1 levels.

Finally, from Equation 4.9, we know that if the shortest path from v to s is less

than k− 1, then v must be even. Since all vertices at level 0 are odd, the shortest path

from v at level 0 to s is k − 1, and the shortest path from level 0 to r has length k.

Therefore, Tv(2kn) is isomorphic to the subgraph of G(2k) without the loop (0, 0).

The root of each tree is 2kv, where v ∈ V(G(n)), so there are n of these trees. �

For vertices in the trees of G(2kn), we will use the same notation as with the 2k
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Figure 4.6: Each tree in G(28) is isomorphic to the subgraph of G(4) excluding the loop (0, 0)

graphs. Thus, vi,t ∈ Ta(2kn) indicates the vertex at level i in the tth position. Also as

before, if vi,t < vi,r are adjacent to the same vertex, then r < t. In Figure 4.5, the tree

T3(28) is the subgraph generated by the vertex set {12, 13, 18, 27}. Using the notation,

vk,0 = 12 v1,0 = 18, v0,0 = 13, and v0,1 = 27. Comparing this tree to G(4) in Figure 4.6,

they are isomorphic through the function h, where h(0) = 12, h(1) = 13, h(2) = 18,

and h(3) = 27.

Because of this isomorphism and by Theorem 4.1 part 6, we know that in Ta(2kn),

the number of vertices at level i < k is 2k−i−1. There are several other results for G(2k)

that which also appear in a modified form for G(2kn). First, Corollary 4.1 pertains to

vertices which are adjacent to a common vertex.

Corollary 4.3.

Let v ∈ Ta(2k). If i ≤ k − 2 and t is even, then vi,t+1 = vi,t + 2k−1n.

Proof. Since t is even, vi,t and vi,t+1 are adjacent to the same vertex. By Equation 4.5,

vi,t+1 = vi,t + 2k−1n. �

Also from Theorem 4.8, we get a corollary on the number of cycles in G(2kn).

Corollary 4.4.

If gcd(n, 10) = 1, then C2kn = Cn and L2kn = Ln.

Proof. Since the root of each tree Tv(2kn) is part of a cycle, each cyclical vertex has

the form 2kv for v ∈ V(G(n)). Thus, by Theorem 2.6, G(2kn) has the same cycles as

G(n). Therefore C2kn = Cn and L2kn = Ln. �
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The vertices in G(2kn) are also sorted into levels according to their divisibility by

2 as with the vertices of G(2k).

Theorem 4.9.

For all v ∈ V(G(2kn)), 2i
||v if and only if v is at level i < k.

Proof. By Theorem 2.6, the vertices in G(2kn) that are part of a cycle are all of the form

2kv. From the proof of Theorem 4.8, these vertices are at level k and the noncyclical,

adjacent vertex has the form s = 2k−1q. Since s is not part of a cycle, it is not divisible

by 2k, so 2k−1
||s.

Now, for induction down the levels, assume 2 j exactly divides every vertex at

level j < k − 1. Let (a, b) be an edge in G(2kn) with b at level j, so b = 2 jd where d is

an odd integer. Then 10a ≡ b mod 2kn and

10a − b = 2knp

10a − 2 jd = 2knp

10a = 2knp + 2 jd

10a = 2 j(2k− jnp + 2)

5a = 2 j−1(2k− jnp + d).

Hence, 2 j−1 divides a.

Now, assume 2 j also divides a, or a = 2 jt. Then

10a − b = 2knp

10(2 jt) − b = 2knp

2 j+15t − b = 2knp

b = 2 j+1(5t − 2k−( j+1)np).
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Thus, 2 j+1 divides b, which is a contradiction. Therefore 2 j−1
||a and 2i

||v if and only if

v is at level i < k. �

The above theorem does not hold for level k. All the vertices at level k of G(2kn)

are divisible by 2k, but not all are exactly divisible. For example, in Figure 4.5, the

vertices 8, 16, and 24 are all at level k = 2, but they are each divisible by at least

2k+1 = 8.

A reflective relationship similar to that demonstrated in Theorem 4.2 relates

vertices from different trees in G(2kn).

Theorem 4.10.

If vi,t ∈ Ta(2kn) and wi,2s−1−t ∈ Tn−a(2kn), then wi,2s−1−t = 2kn − vi,t

Proof. Let vi,t ∈ Ta(2kn) and wi,t ∈ Tn−a(2kn). Then r = 2ka is the root of Ta(2kn), so

(vk−1,0, 2ka) is in E(G(2kn)). By Lemma 4.1,

(−vk−1,0,−2ka) = (2kn − vk−1,0, 2kn − 2ka)

is also an edge. Now, 2k−1
||vk−1,0, so 2k−1 also exactly divides 2kn − vk−1,0. Hence, by

Equation 4.5 this vertex must be adjacent to the root of a tree. Since it is adjacent to

2kn − 2ka = 2k(n − a), it is in Tn−a(2kn) and 2kn − vk−1,0 = wk−1,0.

Next, assume wi,2s−1−t = 2kn − vi,t for some level i < k − 1 and all 0 ≤ t ≤ 2s
− 1,

where 2s is the number of vertices in level i. Let vi−1,p be adjacent to vi,t. Using

Lemma 4.1 again, (−vi−1,p,−vi,t) = (−vi−1,p,wi,2s−1−t) is an edge in Tn−a(2kn).

Similar to Lemma 4.2, since vertices adjacent to the same vertex are arranged

increasingly and by Corollary 4.3, t is even if and only if 0 < vi,t < 2k−1n. Thus, we

now have two cases.

Case 1 If p ≡ 0 mod 2, then−vi−1,p is equivalent to either wi−1,2q−1−p or wi−1,2q−2−p. Since

p is even, 0 < vi−1,p < 2k−1n and 2k−1n < −vi−1,p < 2kn. Then −vi−1,p must be in

an odd position. Thus, −vi−1,p ≡ wi−1,2q−1−p.
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Figure 4.7: G(28) with T2(28) and T5(28) highlighted in red.

Case 2 If r ≡ 1 mod 2, then −vi−1,p is equivalent to either wi−1,2q−1−p or wi−1,2q−p. Since

p is odd, 2k−1n < vi−1,p < 2kn and 0 < −vi−1,p < 2k−1n. Then −vi−1,p must be in an

even position. Thus, −vi−1,p ≡ wi−1,2q−1−p.

Therefore, wi,2s−1−t = 2kn − vi,t for all vi,t ∈ Ta(2kn) and wi,2s−1−t ∈ Tn−a(2kn) �

Note that when a = 0, Theorem 4.10 is the same as Theorem 4.2, since vi,t and

wi,2s−1−t will both be in T0(2kn). This is because G(2k) and T0(2kn) are related through

the isomorphism h(v) = nv.

Looking at G(28) in Figure 4.7 for an example, consider T2(28) and T5(28), which

have been highlighted in red. By our selection of trees, 2k
· 2 + 2k

· 5 = 8 + 20 = 28.

Then following the theorem, 26 + 2 = 28, 11 + 17 = 28, and 25 + 3 = 28.

In addition to the above isomorphism, we also get a theorem showing how

vertex labels of Tv(2kn) relate to those of G(2k). First, however, we need a better

understanding of which numbers are in each tree.

Theorem 4.11.
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If {2kc0, 2kc1, 2kc2, . . . 2kcs} is a cycle in G(2kn), then v ∈ Tc j(2
kn) is at level i if and only if

v ≡ 2kc j−(k−i) + nw where w ∈ V(G(2k)) and w is at level i.

Proof. Let v ∈ Tc j(2
kn) such that v = 2kc j−(k−i) + nw for some w ∈ G(2k) at level i. Then

v is at level i if and only if the shortest path from v to r = 2kc j is (k − i) edges long ,

where r is the root of Tc j(2
kn). Thus, consider

10k−iv = 10k−i(2kc j−(k−i) + nw)

10k−iv = 10k−i(2kc j−(k−i)) + 10k−inw.

Since there are (k − i) steps in the cycle from 2kc j−(k−i) to 2kc j, we know that

10k−i2kc j−(k−i) ≡ 2kc j mod 2kn. Hence, 10k−iv ≡ 2kc j + 10k−inw mod 2kn. Then,

since w is at level i in G(2k), 10k−iw ≡ 0 mod 2k or

10k−iw = 2kp

10k−iwn = 2kpn.

Thus, 10k−iwn ≡ 0 mod 2kn and 10k−iv ≡ 2kc j mod 2kn. Also, there is no shorter

path from w to 0 in G(2k). Therefore, the path from v to 2kc j is (k − i) edges long, and

v is in level i. �

Looking again at G(28) in Figure 4.5, let 2kc0 = 4. Then 20 = 2kc5, so vertices at

level 0 of T5(28) have the form 22c5−2 + 7 · w where w = 1, 3, because those are the

two vertices at level 0 of G(4). The level 0 vertices of this tree are then 226 + 7 · 1 ≡ 3

mod 28 and 226 + 7 · 3 ≡ 17 mod 28.

In the case of T0(2kn), the tree whose root is 0, this theorem is a restatement of

Theorem 2.6. This is because when 2kc j = 0, we get 2kc j−(k−i) = 0 for all values of k and

i. Theorem 4.11 then says that vertices at level i take the form nw for w ∈ V(G(2k)) at

level i.
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We can now use this theorem to see how the labels of the trees in G(2kn) relate to

those in G(2k).

Theorem 4.12.

The vertex set V(Tv(2kn)) forms a complete residue set modulo 2k for itegers v, n, and k such

that v = 0, 1, 2, . . .n − 1, gcd(10,n) = 1 and k > 0.

Proof. First, the root of Tv(2kn), r = 2kv, is the only vertex divisible by 2k, so it is

incongruent to the remaining vertices in the tree. Then, by Theorem 4.9, every

vertex at some level i < k is exactly divisible by 2i, so any two vertices in different

levels of Tv(2kn) are incongruent as well.

Finally, we need to compare vertices within the same level. Let both vl and

vm in Tv(2kn) be at level i. By definition of the vertex set of G(2kn), we know that

vl and vm are incongruent modulo 2kn. By Theorem 4.11, we can write these as

vl ≡ 2kc j−(k−i) + nwl and vm ≡ 2kc j−(k−i) + nwm. Then,

2kc j−(k−i) + nwl . 2kc j−(k−i) + nwm mod 2kn

nwl . nwm mod 2kn,

so nwl − nwm , 2knp and wl − wm , 2kp. Thus, wl . wm mod 2k, so if we assume

vl ≡ vm mod 2k, we get

2kc j−(k−i) + nwl ≡ 2kc j−(k−i) + nwm mod 2k

nwl ≡ nwm mod 2k

wl ≡ wm mod 2k,

which is a contradiction. Therefore, vl . vm mod 2k and we have a set of 2k

incongruent vertices, so V(Tv(2kn)) forms a complete residue set modulo 2k. �

In T2(28) (part of Figure 4.7), the vertex set {8, 26, 11, 25} reduces to {0, 2, 3, 1}
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modulo 4. Note that position is not maintained between the two trees. If wi,t ∈

V(G(2k)) and v j,r ∈ V(Tc(2kn)) such that v j,r ≡ wi,t mod 2k, then we know i = j. This

does not mean, however, that t = r. In G(4), w0,0 = 1 and w0,1 = 3, but in T2(2),

v0,0 = 11 ≡ 3 mod 4 and v0,1 = 25 ≡ 1 mod 4.

4.3 Multiples of 5k

Despite containing the same results, the sections on G(2k) and G(5k) were kept

separate so that the proofs might be easier to follow. However, comparing the

proofs of corresponding theorems, we find that the proof for a G(5k) can be created

by substituting a 5 for every 2 in the G(2k) proof. Not surprisingly, we can do the

same for the G(2kn) theorems. Thus, the following results are presented without

proof.

Theorem 4.13.

If n is not divisible by 2 or 5, then G(5kn) is semiregular with d = 5 and indeg(v) = 5 if and

only if 5 | v.

Looking at G(55) (Fig. 4.8), we see that the cyclical vertices are the only vertices

divisible by 5 and, thus, are the only an indgree of 5. The level 0 vertices are not

divisible by 5.

Theorem 4.14.

If n is not divisible by 2 or 5 and k > 0, then G(5kn) contains n generated subgraphs that are

isomorphic to the subgraph of G(5k) excluding the loop (0, 0). The root of each isomorphic

subgraph is a vertex v ∈ V(G(5kn)) where 5k
|v.

The subtrees T4(55) (with root r = 20) and T7(55) (r = 35) are highlighted in

Figure 4.8. Comparing to G(5) in Figure ??, we see that every subtree in G(55) is

isomorphic to G(5), excluding the (0, 0) loop. The isomorphism h : G(5)→ T4(55)

maps is defined such that h(0) = 20, h(1) = 2, h(2) = 13, h(3) = 24, and h(4) = 46.
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Figure 4.8: G(55) with T4(55) and T7(55) highlighted.

Figure 4.9: G(5)
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Corollary 4.5.

Let v ∈ Ta(5k). If i ≤ k − 2 and t ≡ 0 mod 5, then vi,t+c = vi,t + 5k−1nc for c = 0, 1, 2, 3, 4

Corollary 4.6.

If gcd(n, 10) = 1, then C5kn = Cn and L5kn = Ln.

Theorem 4.15.

For all v ∈ V(G(5kn)), 5i
||v if and only if v is at level i < k.

In G(55), all the level 0 vertices are relatively prime to 5. Since k = 1 and this

theorem requires that i < k, it does not apply the vertices at level 1. They are all

divisible by 5, but 25 and 50 are also divisible by 52, so 5 does not exactly divide

every vertex at level 1.

Theorem 4.16.

If vi,t ∈ Ta(5kn) and wi,4·5s−1−t ∈ Tn−a(5kn), then wi,4·5s−1−t = 5kn − vi,t

Looking again at T4(55) and T7(55), we have 7 = 11 − 4, so the above theorem

applies to these trees. For vi,t ∈ T4(55) and wi,t ∈ T7(55), we start with v0,0 = 2 and

get w0,4−0 = 55− v0,0 = 53. Similarly, w0,3 = 42 = 55− 13 = 55− v0,1, 31 = 55− 24, and

9 = 55 − 46.

Theorem 4.17.

If {5kc0, 5kc1, 5kc2, . . . 5kcs} is a cycle in G(5kn), then v ∈ Tc j(5
kn) is at level i if and only if

v ≡ 5kc j−(k−i) + nw where w ∈ V(G(5k)) and w is at level i.

Let c1 = 4, so the vertices at level 0 of T4(55) are v ≡ 5kc1−(1−0) + 11w = 5k
· 7 + 11w

mod 55 where w ∈ {1, 2, 3, 4}, the set of level 0 vertices in G(5). Thus, the level 0

vertices of T4(55) are 35+11(1) ≡ 46, 35+11(2) ≡ 2, 35+11(3) ≡ 13, and 35+11(4) ≡ 24.

Theorem 4.18.

The vertex set V(Tv(5kn)) forms a complete residue set modulo 5k.

The vertex set V(T7(55)) = {35, 9, 31, 42, 53} reduces to {0, 4, 1, 2, 3} modulo 5.

Similarly, V(T4(55)) = {20, 2, 13, 24, 46} is {0, 2, 3, 4, 1}modulo 5.



4. Powers of 2 66

4.4 Graphs for 2k5 j

With the structure of G(2kn) and G(5kn) classified, we now consider graphs for

n = 2k5 j where k, j > 0. As before, we begin with the basic form of the G(2k5 j) tree.

Unless otherwise specified, all numbers in this section are read modulo 2k5 j.

Theorem 4.19.

If G(2k5 j) is the iteration digraph of f (x) ≡ 10x mod n for integers k, j > 0, then

1. G(2k5 j) has L = max(k, j) + 1 levels

2. The non-cyclic edges form a 10-ary tree with height L−1 and with 2k5 j
≡ 0 as the root

3. exactly 10 vertices are adjacent to each vertex at level i > 0

4. v is at level 0 if and only if 2 - v or 5 - v.

Proof. For part 1, we have two cases. In the first case, assume j ≤ k, so 10kv ≡

2k5 j(5k− jv) ≡ 0 for all v in V(G(2k5 j)). Suppose that 10k−1v is also equivalent to 0 for

all v, so 10k−1v ≡ 0, or

10k−1v = 2k5 jp

2k−15k−1v = 2k5 jp

5k−1v = 2 · 5 jp.

Hence, 2 must divide v. This is a contradiction when v is odd, so k is the smallest

power of 10 for which 10kv ≡ 0 for all v. Thus, the longest path from a vertex at level

0 to the 0 vertex is k and G(2k5 j) has k + 1 levels.

For the second case, we assume k < j and find similarly that the longest path to

the 0 vertex is j, so G(2k5 j) has j + 1 levels. Therefore, G(2k5 j) has L = max(k, j) + 1

levels.
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In part 3, let (a, b) ∈ E(G(2k5 j)), so 10a ≡ b mod 2k5 j. Considering a + 2k−15 j−1c,

we get

10(a + 2k−15 j−1c) ≡ 10a + 2k5 jc (4.10)

≡ b.

Thus, a + 2k−15 j−1c is adjacent to b for any value of c.

We now need to find how many values of c yield distinct values for a + 2k−15 j−1c.

Assume a + 2k−15 j−1c . a + 2k−15 j−1d mod 2k5 j. Then

a + 2k−15 j−1c − (a + 2k−15 j−1d) , 2k5 jp

2k−15 j−1(c − d) , 2k5 jp

c − d , 2 · 5p,

so c . d mod 10. There are 10 incongruent values of c modulo 10, so a + 2k−15 j−1c

for c = 0, 1, 2, . . . 9 yields 10 distinct vertices all adjacent to b. Therefore, there are

exactly 10 vertices adjacent to each vertex at level i > 0.

Parts 1 and 3 lead directly to part 2, so the non-cyclic edges G(2k5 j) form a 10-ary

tree with height L − 1 and 0 as the root.

For part 4, assume b is a vertex at level i > 0. Then 10a ≡ b for some a ∈ V(G(2k5 j))

and

10a − b = 2k5 jp

b = 10a − 2k5 jp

b = 2 · 5(a − 2k−15 j−1p),

Hence, 2|b and 5|b.

Now, let b be a vertex such that 10|b, so b = 10t. Assume b is at level 0.
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Figure 4.10: In G(40), not all vertices at level 0 are the same distance from the 0 vertex

Then 10a . b mod 2k5 j for all a ∈ V(G(2k5 j)). However, consider a = t and then

10a ≡ 10t = b. Thus, we have a contradiction and b must not be at level 0 and v is at

level i > 0 if and only if 10|v. Therefore, v is at level 0 if and only if 2 - v or 5 - v. �

Theorem 4.19 modifies several parts from Theorems 4.1 and 4.4, the basic

structure theorems for G(2k) and G(5k). Recall that for powers of 2 and 5, these

theorems included a statement that a vertex is at level i < k if and only if 2i
||v or 5i

||v,

respectively. For G(2k5 j), we get have the following related claim, which we prove

for certain cases.

Claim 1 For each vertex, v, at level i of G(2k5 j), either 2min(i,k)
||v or 5min(i, j)

||v.

Let b ∈ V(G(2k5 j) at level 0 < i < L. Thus, the longest path to b has length i. If a is

the first vertex of the path to b, then a is at level 0. Hence, by Theorem 4.19 part 4,

a = 2r5sm where gcd(10,m) = 1 and either r = 0 or s = 0. Then 10ia ≡ b, so

10ia − b = 2k5 jp

10i2r5sm − b = 2k5 jp

b = 2k5 jp − 2r+i5s+im (4.11)

b = 2min(k,r+i)5min( j,s+i)(2k−min(k,r+i)5 j−min( j,s+i)p − 2r+i−min(k,r+i)5s+i−min( j,s+i)m).

(4.12)

From the above equations, we now have four cases to consider.
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Case 1 If r + i ≥ k and s + i ≥ j, then by Equation 4.11, 2i5 j
|2r+i5s+im, so b is divisible by

2k5 j. The only vertex of G(2k5 j) for which this is true is the 0 vertex at level

L. Thus, our claim does not apply to this case, because b is at level i where

0 < i < L.

Case 2 If r + i < k and s + i < j, then Equation 4.12 becomes

b = 2r+i5s+i(2k−(r+i)5 j−(s+i)p −m).

Because m is relatively prime to 10, we now have that 2r+i
||b and 5s+i

||b. We

also know that either r = 0 or s = 0 since a = 2r5sm is at level 0. Thus, either

2i
||b or 5i

||b.

Case 3 If r + i < k and s + i ≥ j, then from Equation 4.12, we get

b = 2r+i5 j(2k−(r+i)p − 5s+i− jm).

Now again, since gcd(10,m) = 1, we have 2r+i
||b, and if r = 0, then 2i

||b.

However, if r > 0, then we have s = 0 and we need to consider whether 5

divides p.

If 5 - p, then we will have 5i
||b. Unfortunately, we do not know enough about

the composition of p. Thus, in this case, we cannot be certain that b is exactly

divisible by 5i.

Case 4 If r + i ≥ k and s + i < j, we have the same problem as in Case 3. Equation 4.12

becomes

b = 2k5s+i(5 j−(s+i)p − 2r+i−km)

and if s = 0, then 5i
||b. However, if s > 0, then r = 0 and we cannot know if b is

exactly divisible by 2i without knowing if 2 divides p.
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Thus, our claim always holds for Cases 1 and 2. However, in Case 3, we must also

have that r = 0, and in Case 4, we need s = 0. Since gcd(10, p) is potentially larger

than 1, it is not determined what might happen with the divisibility of b in Cases 3

and 4 when r > 0 and s > 0, respectively. We have not found a counterexample to

the claim, though it may be that this would require a 2k5 j to be very large.

Notice that Theorem 4.19 part 3 is also different from part 4 in Theorems 4.1 and

4.4. In G(2k5 j), not all the vertices adjacent to a common vertex are in the same level.

Recall that in G(2k) or G(5k), if v is in level i, not only is every vertex adjacent to v at

the same level, but we know also they are all at level i − 1. In Figure 4.10, we see

that 10 and 30 are at level 1 and adjacent to 20. Meanwhile, the rest of the vertices

adjacent to 20 are at level 0. The level difference between adjacent vertices is not

necessarily 1 as was the case for G(2k) and G(5k). There are vertices in G(40) that are

in level 0, but are adjacent to vertices in level 1 or 2, such as with the edges (2, 20)

and (4, 0).

Another related difference is that part 7 for both G(2k) and G(5k) said that if a

vertex v is at level 0, then the shortest path between v and 0 has length k. In G(40)

(Fig. 4.10), we can see that this is clearly not the case, because there vertices at

level 0 that are adjacent to the 0 vertex, such as 4 and 8. The shortest path between

these has a length of only 1. Other level 0 vertices are 2 or 3 steps away. This less

predictable progression through the tree means that we cannot as easily determine

the number of vertices in any given level like we did for G(2k) and G(5k). It is also

more difficult to determine the divisibility by 2 or 5 of a vertex at level i.

The irregular movement through the levels of G(2k5 j) discussed above also

makes notation for these graphs more difficult. Because vertex at level i of G(2k5 j) is

not necessarily adjacent to a vertex at level i + 1, it is helpful to consider vertices

based on what level they are adjacent to rather than which level they are actually in.

We define vi,t ∈ G(2k5 j) to be the vertex which is adjacent to level j in position t from
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the left. So in Figure 4.10, the vertices of G(40) are arranged by adjacency rather

than by level. We have v2,0 = 2, v2,1 = 6, and v2,3 = 10. These vertices all have the

same first index, 2, even though they are not at the same level; 2 and 6 are at level 0,

while 10 is at level 1. As before, if vi,t < vi,r and both are adjacent to the same vertex

at level i, then t < r. Also, 0 is adjacent to itself, but it does not have a position t

relative to the rest of the vertices, so we will instead assign r = 0, since it is the root

of G(2k5 j).

Thus, we are set up with the notation to talk about the labeling of the vertices.

However, the discussion of any such theorems is left to future work.



CHAPTER 5

FutureWork

The problem of a less predictable progression through the graph of G(2k5 j)

produces challenges in proving theorems about vertex labeling similar to those

proved for both G(2k) and G(5k). Thus, it is left to future work to prove the following.

Proposition 5.1.

In the digraph G(2k5 j), let s be the number of vertices adjacent to level i. Then vi,s−t = 2k5 j
−vi,t

for i ∈ {1, 2, . . .max(k, j)} and t ∈ {0, 1, . . . s − 1}.

Proposition 5.2.

Let vi,t ∈ G(2k5 j) and ui,t ∈ G(2m5n) where m ≥ k and j ≥ n, not both equal. If

umax m,n−l,r = 2m−k5n− jvmax(k, j)−i,t, then i = l and t = r.

We would also expect that graphs for integers of the form 2k5 jn will have a

structure much like those of G(2kn) and G(5kn), with n subtrees isomorphic to G(2k5 j).

There is more to be done with the labeling theorems for the powers of 2 and 5,

as well. We have presented results (Theorems 4.2 and 4.5 and Corollaries 4.1 and

4.2) from which, given a single vertex label, one can easily produce the labels for

3 or 9 other vertices within the level of a 2k or 5k graph, respectively. However, it

remains to be determined if all of the labels in a level could be similarly generated

based on knowledge of just one label.

Since many proofs presented throughout were not strictly dependent on the

function f (x) = 10x mod n, we may also expect that many results would generalize

72
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to iteration digraphs generated by the function g(x) = ax mod n where a is any

integer. More specifically, the structures arising in the graphs for the divisors of

both 10 and 9 may be expected to appear for the divisors of a and (a − 1), as well.

Finally, we have focused on graphs generated by one function with various

moduli. It would also be interesting to consider the graphs for a constant modulus n

generated by g(x) = ax mod n. For example, looking at how the graphs generated

by g(x) = ax mod 7 might compare as we consider various integers a.

There are a number of directions to continue forward with investigations of the

structure of iteration digraphs and the relations between these structures for various

integers.



APPENDIX A

Graph Code

I wrote the following Java code to create the .txt files which were then used to

create the graphs in GVEdit. The first was used to create the circular graphs and the

second was used to create trees. Some adjustments to the graphs were made within

GVEdit itself.

Listing A.1: Circular graph code� �
1 import j ava . u t i l . Scanner ;
2 import j ava . io . FileNotFoundException ;
3 import j ava . io . FileOutputStream ;
4 import j ava . io . PrintStream ;
5 import j ava . u t i l . Vector ;
6 / ∗ im po r t j a v a . l ang ;
7

8 / ∗ ∗
9 ∗ Write a d e s c r i p t i o n o f c l a s s W r i t e r h e r e .

10 ∗

11 ∗ @author ( your name )
12 ∗ @vers i on ( a v e r s i o n number or a d a t e )
13 ∗ /
14 public c l a s s I t e r a t i o n C i r c l e G r a p h
15 {
16 public s t a t i c void main ( S t r i n g filename , i n t n , double

s i z e )
17 {
18 double PI = Math . PI ;
19

20 t r y {
21 PrintStream out = new PrintStream (new

FileOutputStream (
22 f i lename ) ) ;
23

74



A. Graph Code 75

24 out . p r i n t l n ( " digraph�G{ " ) ;
25 out . p r i n t l n ( " s i z e �=� \ " " + 2∗ s i z e + " ! \ " ; " ) ;
26 out . p r i n t l n ( " viewport�=� \ " " + 175∗ s i z e + " , " + 175∗

s i z e + " \ " ; " ) ;
27 out . p r i n t l n ( ) ;
28

29 for ( i n t i = 0 ; i < n ; i ++)
30 out . p r i n t l n ( i + " [ shape=point , �pos =\ " � " + s i z e

∗72 ∗Math . cos ( i ∗ ( 2 ∗ PI / n )−PI / 2 ) + " , " + s i z e ∗72 ∗
Math . s i n ( i ∗ ( 2 ∗ PI / n )−PI / 2 ) + " ! \ " ] ; " ) ;

31

32 out . p r i n t l n ( ) ;
33

34 for ( i n t i = 0 ; i < n ; i ++)
35 out . p r i n t l n ( i + "−>" + ( 1 0 ∗ i )%n + " � [ t a i l l a b e l �=�

" + i + " , � l a b e l a n g l e �=� 180 , � l a b e l d i s t a n c e �=�
1 . 2 5 ] ; " ) ;

36

37 out . p r i n t l n ( " } " ) ;
38

39 out . c l o s e ( ) ;
40

41 } catch ( FileNotFoundException e ) {
42 e . p r i n t S t a c k T r a c e ( ) ;
43 }
44 }
45

46

47 }
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Listing A.2: Tree code� �
1 import j ava . u t i l . Scanner ;
2 import j ava . io . FileNotFoundException ;
3 import j ava . io . FileOutputStream ;
4 import j ava . io . PrintStream ;
5 import j ava . u t i l . Vector ;
6 / ∗ im po r t j a v a . l ang ;
7

8 / ∗ ∗
9 ∗ C r e a t e s graph f o r f ( x )=10x mod n w i t h o u t c o n s t r a i n i n g

p o s i t i o n o f v e r t i c e s
10 ∗

11 ∗ @author ( your name )
12 ∗ @vers i on ( a v e r s i o n number or a d a t e )
13 ∗ /
14 public c l a s s I tera t ionGraph
15 {
16 public s t a t i c void main ( S t r i n g filename , i n t n , double

s i z e )
17 {
18 / ∗ ∗ d o u b l e PI = Math . PI ;
19 ∗ /
20 t r y {
21 PrintStream out = new PrintStream (new

FileOutputStream (
22 f i lename ) ) ;
23

24 out . p r i n t l n ( " digraph�G{ " ) ;
25 out . p r i n t l n ( " s i z e �=� \ " " + 2∗ s i z e + " ! \ " ; " ) ;
26 out . p r i n t l n ( " viewport�=� \ " " + 175∗ s i z e + " , " + 175∗

s i z e + " \ " ; " ) ;
27 out . p r i n t l n ( " node� [ shape=point ] " ) ;
28

29 out . p r i n t l n ( ) ;
30

31 for ( i n t i = 0 ; i < n ; i ++)
32 out . p r i n t l n ( i + " ; " ) ;
33

34 out . p r i n t l n ( " � " ) ;
35

36

37 for ( i n t i = 0 ; i < n ; i ++)
38 out . p r i n t l n ( i + "−>" + ( 1 0 ∗ i )%n + " � [ t a i l l a b e l �=�

" + i + " � l a b e l a n g l e �=� 2 4 0 ] ; " ) ;
39

40 out . p r i n t l n ( " } " ) ;
41



A. Graph Code 77

42 out . c l o s e ( ) ;
43

44 } catch ( FileNotFoundException e ) {
45 e . p r i n t S t a c k T r a c e ( ) ;
46 }
47 }
48

49

50 }
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