
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

5-2019

Using Graph Databases to Address Network
Complexity Problems that can Hinder Security
Incident Response
Andrew Erickson
eran1005@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

This Thesis is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Erickson, Andrew, "Using Graph Databases to Address Network Complexity Problems that can Hinder Security Incident Response"
(2019). Culminating Projects in Information Assurance. 88.
https://repository.stcloudstate.edu/msia_etds/88

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/88?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

 1

Using Graph Databases to Address Network Complexity Problems That can

Hinder Security Incident Response

by

Andrew Erickson

A Thesis

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

in Information Assurance

June, 2019

Thesis Committee:
Dennis Guster, Chairperson

Jim Chen
Changsoo Sohn

 2

Abstract

The network complexity problem within computer security incident response is an
issue pertaining to the complexity of a computer network as it grows in both size and
scale. The larger the computer network grows, the more difficult reconnaissance
becomes, which is necessary to execute correction and prevention measures that
address issues that arise during security incident response. Leveraging graph
databases can help solve problems present in relational databases with large, tree-like
structures, like those present in computer networks, and along with solving those
problems adds flexibility that is needed due to the mutability of computer networks. This
paper focuses on using graph databases to discover the blast radius of day zero
vulnerabilities on the fly by using the properties of graph databases to find intuitive
infection vectors that may be present during a day zero vulnerability. Additionally,
options for visualizing security data in ways that make the data more actionable will be
explored.

 3

Acknowledgments

 I would like to thank everyone who helps make the BCRL possible at St. Cloud

State University. It’s a wonderful teaching tool that has taught me many invaluable

lessons about computers and computer networks.

 4

Table of Contents

 Page

List of Tables…………………………………………………………………………………….6

List of Figures……………………………………………………………………………………7

Chapter

 1. Introduction………………………………………………………………………….. 9

 Introduction..………………9

 Problem Statement……...……………............ 10

 Nature and Significance of the Problem......................…………...............11

 Objective of the Research………………………………..…………………. 11

 Hypotheses……………………….………………………………………..…. 12

 Limitations of the Study…….....................................…………..................12

 Definition of Terms..……………..............13

 Summary…………………………….............................…………...........….14

 2. Background and Literature Review……………….…………………………..…..15

 Introduction...………....15

 Background Related to the Problem..………..….15

 Literature Related to the Problem…………................................…………46

 Summary ……………………………………………………………………….53

 3. Methodology……………………………..…………………………….……...........54

 Introduction...…......................…………........... 54

 Design of the Study…………………………………...…………….…..…… 54

 5

Chapter Page

 Data Collection–Small-scale…………...............55

 Data Collection–Medium-scale……………………………………………….61

 Data Collection–Large-scale………………………………………………….67

 Summary…………………………………………………………….………….70

 4. Data Presentation and Analysis………………………...………………………...71

Introduction…………………………………………………….…….....……...71

 Data Presentation–Small-scale….………………………….…….....………71

 Data Presentation–Medium-scale……………………………………………71

 Data Presentation–Large-scale………………………………………………72

 Data Analysis ………………………...……………………….…….....……...73

 Summary …………………………………………………….…….....………..73

 5. Results, Conclusions, and Recommendations…………………………………..74

 Introduction…………………………………………………...…………….….74

 Results………………………………………………………………………….74

 Conclusions ……………………………………………….….………...……..76

 Future work ……………………………………………….………….………..76

References...……................…..........………...............78

Appendix………………………………………………………………………………………..82

 6

List of Tables

Table Page

1. Comparison of Graph Database Features............…………………………....…...16

2. Comparison of Relational and Graph Database Execution Times...……............18

3. Small-scale Expected vs Generated Results................................……………….74

4. Medium-scale Expected vs Generated Results……………………………...…….75

5. Large-scale Expected vs Generated Results......………….………………...…….76

 7

List of Figures

Figure Page

1. Simple example of nodes, edges, & relationships.............……..…………..…….20

2. Example application diagram and supporting architecture..………………….......21

3. Post transformation to graph database application diagram………….................22

4. Cross domain exploit chains leveraging existing vulnerabilities…………….……23

5. Post transformation to graph database format ………………......……………….24

6. Subgraph generated via query of example cross domain exploit chain…….......25

7. Example visualization method based on game of thrones relationships………..29

8. Example visual query builder for graph data..........…..……………………………30

9. Example packed circle graph for graph data visualization………….....………….32

10. Example radial tidy tree for graph data visualization...……...……………….........33

11. Example collapsible force layout for graph data visualization..…..………………34

12. Simple Vis.js graph relationship visualization option.......………………...……….35

13. Complex Vis.js graph relationship visualization option.....……………………......36

14. Full Sigma.js library example....……………………………………………………...37

15. Drilldown enhancement for Sigma.js library example.……………………….……38

16. No layout applied Vivagraph example...…………………………....….……………39

17. Layout applied Vivagraph example......……………………………...….…………..39

18. Example GraphXR implementation.....……………………………….….….………41

 8

Figure Page

19. yFiles Visalization options aggregation.……………………...……………………..42

20. Small-scale Linkurio graph model for detecting credit card fraud………………..43

21. Medium-scale Linkurio graph model for detecting credit card fraud....…………..43

22. Visual investigation map using graphistry....….……………….……………………44

23. Tom Sawyer perspectives network visualization option.......…....………...….…..45

24. Keylines network and business organization visualzation examples………........45

25. Visual representation of Königsberg bridge problem..............………………..…..50

26. Graph representation of Königsberg bridge problem.............…………………….50

27. GraphGist small data center diagram......…....…...………………………………...56

28. Diagram represented within graphing database Neo4J.............……….…………57

28.1. Graph after adding vulnerability node to affected machines......………….………60

28.2. Subgraph showing only machines vulnerable to Apache struts..………...……....61

29. Medium-scale datacenter represented within Neo4J..……………….……...……62

29.1. Subgraph showing medium-scale machines vulnerable to Apache struts………65

30. Large-scale datacenter with split domains.....………………………………………66

30.1. Subgraph showing large-scale machines vulnerable to Apache struts..…...……67

30.2. Subgraph Showing Machines on Network Switch 3 Vulnerable to Apache

Struts …………………………………………………………………………...68

30.3. Subgraph showing machines on network Switch 2 & 1 vulnerable to

Apache struts…………………………………………………………………..69

 9

Chapter 1: Introduction

Introduction

 Computer security incident response (SIR or CSIR) is a must for any large

organization that touches modern technology; in today’s day and age, that is almost all

of them. The larger an organization grows, the bigger its networking and computing

overhead becomes, and the harder it gets to perform security incident response tasks.

The main idea behind this is that, in general, more complicated the computer network

results in more difficulty in performing security incident response tasks due to the highly

unique relationship between different computer networks within a business.

 Solving the complexity issue with this problem begins to be apparent when

looking at how a security incident response is handled in a general sense. If a CSIR

event occurs, the first step is often tracking down the computer, server, or system

affected by the event before determining how the device was infected. The resulting

question of who within the network is also potentially vulnerable to this CSIR event and

might be a potential risk for the event spreading to another computer or internal network

is a much larger and more complicated question to answer than the first. Much like the

facial or object recognition problem in computer science, the problem of predicting the

impact and reach of a CSIR event is a particularly challenging problem.

 One of the best real-world examples of the problems faced by large networks

and CSIR events is in the case of ransomware. The initial threat vector may be

identified easily, but where the ransomware may be able to spread once within the

network is much harder to work out. Examples of this threat can be seen in the

 10

WannaCry (2017) and Petya (S., 2017) attacks, where large numbers of computers

both inside and outside of large organizations were compromised. Remedying this

challenge relies on having a solution in place that can make determining the blast radius

of these events quick and painless. This way, the organization’s defenses can be

modified to protect against the threat and prevent proliferation to other segments of the

network.

 Solving this problem can be broken into two main parts: constructing and

maintaining a data pool and visualizing the data so that it is actionable. Constructing

and maintaining the data pool consists of gathering and maintaining security data

relevant to that organization’s network (e.g. IP addresses, domain information, DNS

information, and other relevant data). Accessing and using that data is a large part of

addressing CSIR events, even though it often does not paint a readable, easy-to-

understand picture of the affected devices and the problem itself. Visualizing that data is

another problem, as there is a multitude of methods for visualizing the data so that it is

understandable as well as actionable.

Problem Statement

Complex computer networks lead to large amounts of reconnaissance when a

CSIR event occurs. This often requires the use of multiple skilled personnel ranging

from server teams, Windows and Linux specialized teams, networking, firewall, and

more depending on the type of CSIR event. Each of these teams will spend time

working on different aspects of the problem presented by the CSIR event requiring their

expertise. The time spent doing reconnaissance results in slower response times, which

 11

are critical during times when zero-day vulnerabilities are found exposed within the

network.

Nature and Significance of the Problem

 Addressing the computer networking problem is a large task requiring the

integration of cross-discipline data into an easy-to-access structure that can be

leveraged by CSIR teams during CSIR events. This structure must also be actionable

and understood by other teams that may be recruited to help solve CSIR events.

Leveraging the properties of graph databases allows for quick analysis of potentially

vulnerable network segments and can be used to reduce the reconnaissance time

needed during a zero-day vulnerability disclosure. Along with helping to reduce

reconnaissance times, graph databases have a plethora of visualization integrations

available to help produce easily interpreted visuals that condense security data into an

understandable format.

Objective of the Study

 The objective of this study is to create a method that leverages an existing

framework for mapping network topology, relationships, and security vulnerability data,

as well as extending the method to help reduce reconnaissance times during zero-day

vulnerability response. Additionally, an exploration of visualization options available for

graph data and available frameworks to create those visualizations will also be

explored.

 12

Hypotheses

 Given a graph database’s ability to select nodes and edges based on a specific

set of criterion, it should be possible to select and modify specific nodes that would be

affected by a zero-day vulnerability, modify their relevant information within the graph

database, and run queries that elucidate the potential infection vectors possible from the

given zero-day.

Limitations of the Study

 One major limitation of this study is that sufficient real-world network data is

difficult to programmatically plug into a graph database and access. As a result, a mock

architecture was used and some of the nuances present in real-world networks may be

abstracted. One such example can be seen in the bloat from legacy software and other

compounding decisions that build on themselves. In the test set up used in this study,

there is no legacy software or architecture choices that affect the network and

subsequently the graph.

 Another limitation is the scope of zero-day vulnerabilities to choose from and test

against in the test network. Each vulnerability needs its corresponding vulnerable node

to be tagged with the relevant vulnerability information. This is not the case when

reading into a graph database from existing sources, as the information is already

stored within the existing data source and is simply copied over. In this study, one zero-

day is simulated due to the overhead required for adding node data and other relevant

information unique to each zero-day.

 13

 The visualization options available will be analyzed from a potential use

standpoint with the goal being to outline the available options and their use cases, the

methods for populating those visualization options, their particular dependencies, and

their available integrations with the graph database chosen in this paper, Neo4j.

Definition of Terms

 CSIR–computer security incident response–Generally, the response team

reacts to security issues relating most often to malware, viruses, trojans, ransomware,

or other methods that could lead to the compromise of a company’s data, systems, or

personnel. The CSIR team is responsible for addressing, mitigating, reporting, and

repairing the damage caused by the aforementioned security incidents.

 CVE–common vulnerabilities and exposures–Refers to a known weakness in

existing software, hardware, or computer device that could potentially be used to

circumvent intended operating methods. CVE utilizes a scale ranging from innocuous to

extremely dangerous.

 Blast Radius–Used to describe how far reaching an infection or attack is on the

computer network.

 The Network Problem–The larger a computer network gets, the more difficult it

is to narrow down the problems and connections present within that network. An easy to

understand example is looking at virtualization. Many web servers hosted on virtual

machines may be tied back to and hosted on one physical server. If one of those virtual

machines is compromised, it may be necessary to include the physical server itself as a

potential victim when considering the blast radius of a CSIR incident.

 14

Summary

 In this section, the network problem that is faced by CSIR teams is introduced

and the hurdles met by CSIR teams in addressing that problem are made apparent. In

the next chapter, we review literature pertaining to some of the key components

involved in solving the network problem, mainly focusing on graph databases and other

works addressing parts of the network problem and using graph databases to solve it.

 15

Chapter 2: Background and Literature Review

Introduction

 In this section, we look to provide a brief overview of graph databases followed

by an analysis of the overhead present in attacking the networking problem using

relational databases compared with their graph counterparts. From there, we will look at

how the network problem in a CSIR lens is addressed in a paper presented by Noel,

Harley, Tam, and Gyor (2014) before introducing data visualization and the various

methods of doing aforementioned data visualization. From there, it is possible to move

forward to creating a method for addressing zero-day vulnerabilities using the

framework provided by the aforementioned authors.

Background Related to the Problem

 In-depth coverage of the specific kinds of graph databases available for use and

their differences has been covered at length by Angles (2012). Similarly, the differences

between those available graph databases from a design perspective and outlines for

specific use cases are defined by Buerli (2012). In their paper Buerli (2012) does an

excellent job explaining the structural differences present in the various graph

databases in the following paragraph:

Rather, each graph database is optimized for a specific set of task or queries.

The problem resides in the multiple divisions of graph databases. Graph

databases can focus on graph algorithms like shortest path queries and

subgraph matching which require the whole graph to reside in memory and make

distributed systems very difficult. On the other side of the spectrum, a graph

 16

database can focus on handling large graphs by scaling horizontally. This

however makes many graph algorithms extremely inefficient or even impossible.

Graphs can also focus on either online querying where low latency is required, or

offline querying where larger data is handled. (p. 3)

The above paragraph shows that the choice of graph database should match the

use case required of that graph database. The framework relating to addressing the

network problem designed and outlined by Noel et al. (2014) uses Neo4j. This choice is

a good fit for their framework as Neo4j is “very efficient in graph traversals” (Buerli,

2012). Along with efficient traversals, Neo4j has a few other important features needed

for their framework, which can be seen in Angles’ Table 1 (2012) below:

Table 1

Comparison of Graph Database Features

Note: Reprinted from A comparison of current graph database models, by
Angles. Retrieved from 2012 IEEE 28th International Conference on Data

Engineering Workshops (pp. 171-177) Copyright 2012 by IEEE.

 17

In this table, we can see Neo4j is an attributed graph and most importantly is

capable of labeling nodes, attributes, edges, and edge attributes. All of these can be

used to better outline the network being defined within the database. The key

advantage Neo4j has over similarly attributed graphs like DEX, InfinitGraph, and Sones

is that Neo4j is transactional and thus lends itself well to larger applications and

organizations where multiple users may be utilizing it simultaneously.

 The network problem as briefly described above will be analyzed further in the

following paragraphs. To again briefly summarize the problem, the initial infection vector

or cause of the CSIR event needs to be investigated when a CSIR event occurs.

Investigating this problem can prove to be problematic when a network is of sufficient

size and complexity. Following off the example of the network problem within the

definition of terms, we can extend this example to help elucidate further hidden

problems presented by the network problem. In the above example, a web server

hosted on a virtual machine was compromised and the physical hardware hosting that

virtual machine was found. Most organizations will have a relational database or a

drawn network diagram that keeps track of the hierarchy of ownership so that tracking

down what infrastructure is used by a specific application is fairly easy to find.

The problem, however, becomes apparent when asking “What other applications

similar to the compromised host live in a space that could potentially lead to their

compromise?” is necessary. The structure of the relational database is effective for

cases where there is a need to find one instance of a hardware server owning a virtual

machine, or the virtual machine owning a web server. When we add in more complex

 18

questions like needing to know what hardware owns web servers or virtual machines

and has a valid network connection to the compromised system that was first identified

there is a massive failure due to the complexity of the question. Even more so the

problems become more apparent when the levels of the ownership tree above vary in

depth. In the above example of hardware → virtual machine → web server, we only

have a depth two search required, but many situations call for much more depth in the

search such as in a case where: network hardware → physical host hardware → virtual

machine host → virtual machine → docker container. Going past a parent-child depth

relationship of four leads to nearly unresolvable search times in relational databases as

can be seen in Table 2 from Robinson, Webber, and Emil (2015) below.

 Table 2

 Comparison of Relational and Graph Database Execution Times

Note: Reprinted from Graph Databases by Robinson, Webber, & Emil,
Retrieved from the book Graph Databases Copyright 2015 O’Reilly &
Associates.

This failure is the first issue that crops up in the network problem and is a difficult

problem for relational databases to solve. This problem is difficult due to the number of

table joins that are needed to be performed along with the number of tree traversals

required to answer the aforementioned question. It can be seen above that just due to

 19

the nature of the tree traversals required relational databases have a difficult time

addressing just the parent-child relationships present in the hardware finding portion of

the question above. To then take that information and cross-reference it with a network

diagram or network devices table constructed within a relational database is another

slow task that may require tree traversal down a hierarchy of networking devices. Again,

here we hit a depth problem and need to be careful about asking questions that require

tree traversals that exceed a depth of four. As we can see the questions asked by CSIR

teams can possibly be answered by a relational database, but there are glaring

problems present when the depth exceeds four. This happens to be the case in most

large organizations and as such makes leveraging a relational database for CSIR

events difficult.

 A potential solution to the problems presented above is the graph database.

Graphs are defined as: “Formally, a graph is just a collection of vertices and edges—or,

in less intimidating language, a set of nodes and the relationships that connect them.”

(Robinson et al., 2015) An example of a simple graph structure present in a social

media situation can be seen below in Figure 1:

 20

Figure 1. Simple example of nodes, edges, & relationships (Robinson et al., 2015).

This simple example above can be a useful tool for understanding one of the

most important features of a method used by many graph databases to perform faster

searches. The tool those particular graph databases use is something called index-free

adjacency. The basic idea is that each node has a pointer stored within it that points to

nodes it is related to. From the above graph, we can understand there would be

pointers from Harry to Ruth and from Ruth to Billy, but there would be no pointer in the

reverse case from Billy to Ruth. In order to resolve that relationship, we would need to

resolve the pointer from Billy to Harry and then from Harry to Ruth. Since the

information of who is connected to who is tied directly to the node, no index is required

to gather that information and instead it is based solely off of information that is

gathered based on adjacency. Since indexing is not used traversing depths becomes

much easier and faster when compared with a relational database. As such, it can be

seen how a graph database addresses one of the key concerns for solving the network

problem as depths over four do not take infeasible amounts of time since graph

databases use index-free adjacency.

 21

 Another problem potentially addressed by graph databases is converting a

network or application diagram into a format useable by a graph database. When using

a relational database this can be a complicated process involving table creation and

normalization. We can avoid this entirely with a graph database and take our

whiteboard drawing of the network or application and import it into the graph database

directly. A sample of an application diagram from Robinson et al. (2015) can be seen

below:

Figure 2. Example application diagram and supporting architecture (Robinson et al.,
2015).

 22

Taking this whiteboard sketch for the application and transforming it into a graph

database would simply result in a nearly identical layout but populated with metadata

pertaining to the application. This idea from Robinson et al. (2015) can be seen below.

Figure 3. Post transformation to graph database application diagram (Robinson et al.,
2015).

The beauty of the graph database is that the application owner knows where

things are, but it can easily be queried and manipulated by someone seeking

information who isn’t the app owner. Similar data centers can be added to the graph

 23

and connected to each other nodes and edges based on their relationships to the

others. In this way, it is possible to see the relations between different deployments and

makes their corresponding dependencies clearer.

 The full evolution of solving this problem in a CSIR context can be seen in the

framework presented by Noel et al. (2014). In figures 4, 5, and 6 from their paper shown

below:

Figure 4. Cross domain exploit chains leveraging existing vulnerabilities (Noel et al.,
2014).

We can see a simple domain layout, the computers on that domain and their

respective vulnerabilities. Figure 4 is then inserted into Neo4j and is shown in Noel et al.

(2014) Figure 5 below:

 24

Figure 5. Post transformation to graph database format (Noel et al., 2014)

From this database, it is possible to run queries based on relationships within the

graph. The following query is used by Noel et al. (2014) to find “all paths of exploitable

vulnerabilities between a particular pair of machines: “

 MATCH path=

 (start:Machine{name:'Machine 1.1'})

 -[r:LAUNCHES|VICTIM|IN*]→

 (end:Machine{name:'Machine 3.1'})

 RETURN path

Resulting in the following Figure 6 depicting any existing paths between machine 1.1

and machine 3.1:

 25

Figure 6. Subgraph generated via query of example cross domain exploit chain (Noel et
al., 2014).

From this generated graph we can see how it is possible for machine 1.1 to

reach machine 3.1 through use of various exploits. Below is a walk-through of the

various exploits used to eventually reach machine 3.1:

1.1 → 1.2 (same domain can exploit without issue)

1.2 → 2.2 (exploit nodes are holes in the firewall allowing cross-domain

exploitation)

2.2 → 2.1 (same domain exploit)

2.1 → 3.1 (exploit to domain 3 across a hole in firewall).

With the basics of the framework provided by Noel et al. (2014) outlined it can be

used as the basis for a methodology to discover the blast radius of a zero-day

vulnerability given enough information about the infection vector.

 Data visualization can be seen above in various forms in Figures four, five, and

six. These visualizations are excellent options for their particular data sets small size but

will soon fail when scaled up in size due to the lack of data condensation. In domains

with hundreds or thousands of machines, it’s possible for many of those machines to be

 26

infected during a zero-day disclosure and as such the visualizations in Figure four, five,

and six quickly begin to fail as large sets of data appear and overwhelm the

visualization capabilities of those visualizations. This necessitates different kinds of

graph visualizations for these scenarios as well as provides a good place for introducing

different concepts and categories that pertain to data visualization. Some of the main

benefits of data visualization are covered in Data Visualizations (2011) written by Noah

Iliinsky and Julie Steele. In this book they introduce some of the core benefits of data

visualization below in the following bulleted list:

• Visualization leverages the incredible capabilities and bandwidth of the visual

system to move a huge amount of information into the brain very quickly.

• Visualization takes advantage of our brains’ built-in “software” to identify

patterns and communicate relationships and meaning.

• Visualization can inspire new questions and further exploration.

• Visualization helps to identify sub-problems.

• Visualization is excellent for identifying trends and outliers, discovering or

searching for interesting or specific data points in a larger field, etc.

 (Iliinsky & Steele, 2011).

Each point within the above list highlights and applies to the CSIR problem in a

fairly straight forward and intuitive way. The first bullet shows how the size problem that

can occur in larger organizations can be addressed quite well by a proper visualization

of CSIR data to help quickly arm CSIR first responders with data pertaining to a newly

disclosed zero-day vulnerability. The second bullet highlights how the brain can often

 27

digest and interpret a visualization better and more quickly than it can raw data that

would be provided by an SQL query. The third bullet hints to uses for visualizations that

might lead to questions assisting in the prevention and remediation of a potentially

similar zero-day. The fourth bullet is quite relevant to CSIR as many problems have

sub-problems that are hard to identify and using visualizations to potentially identify

those sub-problems is quite the boon. The final bullet point is perfect for CSIR incidents

as often the key requirements are identifying trends and searching for specific data

points in a larger field.

 With the basics of data visualization introduced as well as the benefits of various

options available for integration with Neo4j can then be shown. The list of options from

the Neo4j website in their graph visualization tools section is as follows:

 Directly embeddable libraries.

• Neovis.js

• Popoto.js

 Embeddable libraries without direct connection.

• D3.js

• Vis.js

• Sigma.js

• Vivagraph.js

• Cytoscape.js

 Standalone tools.

• GraphXR

 28

• yFiles

• Linkurious

• Graphistry

• Perspectives

• Keylines

 (Neo4j, 2018)

Each of these tools has advantages and disadvantages that will be briefly

introduced and covered.

 Directly embeddable libraries.

 Neovis.js. The brief description from Neo4j is as follows,

“Customizing and coloring styles based on labels, properties, nodes, and

relationships is defined in a single configuration object. Neovis.js can be used

without writing Cypher and with minimal JavaScript for integrating into your

project.” (Neo4j, 2018)

Neovis integrates with Neo4j and creates a customized and colored graph using

a configuration object that takes data defined on those nodes and their relationships to

create the corresponding visualization. The example visualization on the Neo4j site

using Neovis.js can be seen below:

 29

Figure 7. Example visualization method based on game of thrones relationships (Lyon,
2016; Neo4J, 2018).

The above figure helps provide a better understanding between the various

related nodes, the size of their relationships, and the domains they belong to as

identified by the walktrap method. In this case, the example is game of thrones

characters and their relationships. The following quote explicitly defines the various

properties and their meaning within the visualization:

“The graph of thrones. Node size is proportional to betweenness centrality, colors

indicate the cluster of the node as determined by the walktrap method, and the

edge thickness is proportional to the number of interactions between two

characters.” (Lyon, 2016)

 30

Applying the above graph representation to a network and computer domain

would result in a similar data visualization to the game of thrones visualization above,

though it may suffer from the vast number of devices present on a large network if not

condensed before representation using Neovis.js.

 Popoto.js. This library is based on the D3.js library and serves as a tool for

assisting in query generation within Neo4j. As far as visualizations are concerned it

does not provide anything revolutionary but does serve as a great tool for introducing

users to the Cypher query language. Acting as a simple visual query builder an example

can be seen below from the Popoto.js website:

Figure 8. Example visual query builder for graph data (Popoto.js, 2018)

D3.js. The brief introduction from Neo4j introduces D3.js as the following:

“As the first line on D3’s website states ‘D3.js is a JavaScript library for

manipulating documents based on data.’ You can bind different kinds of data to a

DOM and then execute different kinds of functions on it. One of those functions

 31

includes generating an SVG, canvas, or HTML visualization from the data in the

DOM.” (Neo4j, 2018)

Some of the examples on the Neo4j site leverage D3.js as a tool for producing

their visualizations. Since D3.js is not Neo4j integrated it requires the data set to be

exported in a format compatible with the D3.js visualization being used. Most often this

is done by exporting the nodes and their relationships into either JSON objects or the

object format required of the visualization being used. D3.js has a huge plethora of

options when it comes to potential visualizations and sifting through them for

visualizations that match a particular use case is required. A few different visualizations

will be introduced along with their use cases. The first example from the D3.js website is

a packed circle graph which can be seen below:

 32

Figure 9. Example packed circle graph for graph data visualization (Bostock, 2019).

The above visualization is an excellent way to condense data into smaller

subsections that can be traversed interactively in a web browser. It addresses one of

the main problems with the other presented visualizations by containing the data set to

an easy to digest set of subsections. The downside is each of these subsections needs

to be designed and created to match specific use cases that users of the visualization

may desire. As such if a packed circle graph was to be designed to contain a list of

 33

CVE’s and their subsequent operating systems and domains it would need to be

outlined and designed to meet the requirements of the users.

 The next visualization is the radial tidy tree and can be seen below:

Figure 10. Example radial tidy tree for graph data visualization (Sontrop, 2018).

The radial tree is a bit more explicit in its labeling and helps paint a better picture

of what object parents have what object children. As such it is a great way to visualize a

 34

simple understandable network hierarchy to show what is owned under a specific

domain. Again, it would need to be configured to meet the user’s requirements.

 Up next is a collapsible force layout, this is a layout similar to the one built into

Neo4j but has the benefit of being more modifiable than the one present within Neo4j. It

can be seen in Figure 11 below:

Figure 11. Example collapsible force layout for graph data visualization (Bostock, 2019).

The advantages of the D3.js graphs is their being modifiable by a developer to

better fit an end users’ needs along with the ease of putting them into a web browser for

ease of access.

 35

 Vis.js. This visualization framework offers customization options for a multitude

of different visualization style sets. These stylizations are fairly straightforward and do

well for showing simple data sets visually. The following are examples from the

framework:

Figure 12. Simple Vis.js graph relationship visualization option (Visjs, 2019).

 36

Figure 13. Complex Vis.js graph relationship visualization option (Visjs, 2019).

The above figures from the Vis.js website offer some simple as well as in-depth

solutions for visualization that differ slightly from the other options mentioned previously.

The first example in Figure 12 introduces an easy to understand framework that uses

pictures instead of simple circles for nodes. For computers and network graphs, this

provides a simple picture of the network that is easy to understand and interpret. A large

amount of complexity is lost due to the nature of the graph but the benefits gained are

the ease of digesting the graph at a glance for experts as well as lay persons. Figure 13

works similarly to the one presented in Figure 7 but has more options for nodes and

edge customization. Such as the curvature present on the edges in the visualization as

 37

well as the node color and size. Vis.js has a multitude of other visualization options

available that can be perused to find one that fits well for a particular use case.

 Sigma.js. The basic description from Neo4j is as follows: “Sigma is a highly-

extensible library meant for modification to meet the requirements necessary of it. It

takes JSON and GEXF formats as inputs and is highly modifiable to meet varying

requirements.“ (Neo4j, 2018) The example from the Sigma website does an excellent

job showcasing its ability to be modified as it shows a walk through with more and more

extensibility added at each step. Starting with the basic graph import, a hover text

feature is added to show the node name on hovering the node. Next an on click function

that trims the node to highlight only its relevant relations is added. The two can be seen

in the screenshots from the Sigma site below:

Figure 14. Full Sigma.js library example (Jacomy, 2019).

 38

Figure 15. Drill down enhancement for Sigma.js library example (Jacomy, 2019).

In Figure 14 the on hover functionality can be seen and in Figure 15 the on click

functionality to limit nodes to only directly related ones can be seen. Both of these

functionalities can be useful from a data exploration perspective to increase the

effectiveness of the visualization and assist in helping specialists asks the right

questions during a zero-day vulnerability announcement and remediation.

 Vivagraph.js. Offers a few interesting customizations options built into it that are

similar to the other offerings but has something new to offer as well. Similar to Vis.js,

Vivagraph can use alternate images to represent nodes instead of just simple circles; in

the case of Vivagraph, it can use custom images with little configuration which is a great

feature to have. Along with that feature, Vivagraph has one more feature that sets it

apart from the others and that is its layout customization options. For example, in the

below screenshots from their GitHub that feature can be seen in action:

 39

Figure 16. No layout applied Vivagraph example (Anvaka, 2019).

Figure 17. Layout applied Vivagraph example (Anvaka, 2019).

The two node sets in Figure 16 and 17 above are the same set of nodes just

without a layout applied to them. Vivagraph gives the ability to apply and customize a

layout to the set of nodes and create a cleaned up layout like the one in Figure fifteen.

This is particularly helpful in CSIR due to the nature of computers generally being in

groups and clusters. Sets of servers, sets of user computers, sets of mobile devices and

so forth. Being able to customize the organization of those node sets allows for the

resulting visualization to be more understandable at a glance.

 Cytoscape.js. This visualization framework offers another differentiating feature

that separates it from the others in having touch screen compatibility. Outside of

 40

touchscreen capability, it has similar offerings to the previous frameworks. As such its

main usage niche is if particular requirements pertaining to touch screen compatibility

are required.

 Standalone product tools. Along with the frameworks presented above, there

are standalone products that can be purchased that provide visualization options and

custom implementations. The brief introduction for these tools is as follows:

“Certain tools and products are designed as standalone applications that can

connect to Neo4j and interact with the stored data without involving any code.

These applications are built with non-developers in mind–for business analysts,

data scientists, managers, and other users to interact with Neo4j in a node-graph

format.“ (Neo4J, 2018)

 GraphXR. Touted as a “start-to-finish web-based visualization platform for

interactive analytics” (Neo4J, 2018). GraphXR offers data collection and presentation

through built-in Neo4J Desktop connections. Their range of applications includes law

enforcement, medical research, and knowledge management. An example of one

implementation of the GraphXR suite can be seen below:

 41

Figure 18. Example GraphXR implementation (Neo4J, 2018).

yFiles. This suite offers a wide range of potential visualization options and

integration with Neo4J Desktop. The yFiles website site introduces yFiles with the

following:

“Turn your data into clear diagrams with the help of unequaled automatic

diagram layouts, use rich visualizations for your diagram elements, and give your

users an intuitive interface for smooth interaction. With yFiles diagramming

components you will get this out-of-the-box for your applications. On nearly any

platform or technology.“ (yFiles, 2019)

 42

Their suite of visualizations is amalgamated in the below screenshot:

Figure 19. yFiles Visalization options aggregation (Neo4J, 2018).

 Linkurious Enterprise. Designed for use in assisting analysts with detecting and

analyzing threats in large pools of connected data. Linkurious is used to fight “financial

crime, terror networks or cyber threats.” (Neo4J, 2018) In an example from their site on

detecting credit card fraud with Neo4J some sample visualization can be seen below:

 43

Figure 20. Small-scale Linkurio graph model for detecting credit card fraud (Linkurio,
2018).

Figure 21. Medium-scale Linkurio graph model for detecting credit card fraud

(Linkurio, 2018).

 44

 Graphistry. This suite abstracts queries and wrangling with data away from the

user and automatically handles transforming the data into visual investigation maps built

for the needs of analysts. An example of visualization can be seen below:

Figure 22. Visual investigation map using graphistry (Neo4J, 2018)

Perspectives. This solution offers a wide range of options for data visualization

with a graph database browser option, a network topology option, and more. Below the

network topology visualization is shown:

 45

Figure 23. Tom Sawyer perspectives network visualization option (Tom Sawyer, 2019).

 Keylines. This suite offers a variety of options for visualization much like the

other frameworks, the key difference is Keylines touts the ability to work on any device

and on any common browser. A Keylines visualization sample can be seen below:

Figure 24. Keylines network and business organization visualzation examples (Keylines,
2019).

 46

With the various options for visualization of Neo4J data covered it is possible to

move forward into the literature review.

Literature Related to the Problem

There is a plethora of information relating to graph databases as can be seen in

the studies by Angles (2012) and Buerli (2012). These two studies looked at different

aspects of graph databases and their differences. Buerli did a more generalized

overview of different graph databases and their technical differences. Angles focused

more on documenting the feature set, operations, and data structures that were

leveraged by each graph database solution. Along with these general overviews, there

are also many optimization problems that need to be solved with graph databases, such

as querying subgraphs of large sets of data (Hong, Zou, Lian, & Yu, 2015) for the

varying design architectures shown in the write-up by Buerli. The subgraph querying

process is highlighted well in a paper by Venkatesh (2014). These aforementioned

papers help define most of the necessary background as far as graph databases are

concerned. Covering the relevant problems as well as introducing concepts that differ

from relational databases.

The history of graph databases naturally starts with the history of databases. This

history is reviewed in a paper by Berg, Seymour, and Goel where they detail databases

throughout the decades starting with 1960s up through the early 21st century. The

1960s mark a period in time where it became more cost effective for companies to

increase the sizes of their data stores. The two models used were the network model

CODASYL (Conference on Data System Language) and the hierarchical model IMS

 47

(Information Management System). A summary of that first generation from the Berg et

al. paper is as follows:

“The first generation of database systems was navigational. Applications typically

accessed data by following pointers from one record to another. Storage details

depended on the type of data to be stored. Thus, adding an extra field to

database required rewriting the underlying access/modification scheme.

Emphasis was on records to be processed, not overall structure of the system. A

user would need to know the physical structure of the database in order to query

for information. One database that proved to be a commercial success was the

SABRE system that was used by IBM to help American Airlines manage its

reservations data (Bercich, 2002). This system is still utilized by the major travel

services for their reservation systems.” (Berg et al., 2012)

The 1970s brought further improvements, changes, and new designs to the

database environment. The biggest of those being the creation of the relational

database model. The relational model suggested that applications search for content

rather than by using links. The key of this model was having the local organization

disconnected from the physical information storage leading up to this becoming the

standard for database systems. Two major relational databases were created at this

time INGRES and System R. Each lead to a multitude of offshoots that are well known

today such as MS SQL, POSTGRES, Oracle, DB2, and more. Around this time the

Entity-Relationship model was proposed and allowed for designers to focus on

applications of data rather than the logical table structure.

 48

 During the 1980s commercialization of these systems from the 1970s began to

rapidly proliferate and some from the 1960s began to fall out of use. Some such

systems that began to fall out of use were network and hierarchical models which are

used in some legacy systems but sparsely used outside that. During this period the

creation of the object-oriented database system occurred. These databases are

designed for integration with various programming languages with the main feature

being the support of modeling and creation of data as objects. The main benefits and

drawbacks being highlighted in the following from Berg et al.,

“OODBMS could efficiently manage a large number of different data types.

Objects with complex behaviors were easy to handle using inheritance and

polymorphism. This also helped in reducing the large number of relations by

creating objects. The biggest problem with OODBMS was switching an existing

database to OODBMS, as the transition requires an entire change from scratch

and it is typically tied to a specific programming language and an API

(Application Programming Interface) which reduces the flexibility of the database.

To overcome the problems of OODBMS and take full advantage of the relational

model and object-oriented model, the Object Relational Database Model was

developed in the early 1990s.” (Berg et al., 2012)

 The 1990s resulted in the death of a fair amount of database providers and

resulted in the remaining companies to offer more complex products at higher prices.

Most developments focused on client tools for building applications. Toward the end of

the 1990s, Extensible Markup Language (XML) was introduced which helped solve

 49

long-standing database problems. During this time period, NoSQL was also introduced

by Carlo Strozzi. These NoSQL datastores are described and introduced in the

following quote from Berg et al:

“Often, NoSQL databases are categorized according to the way they store the

data and they fall under categories such as key-value stores, BigTable

implementations, document store databases, and graph databases. NoSQL

database systems rose alongside major internet companies, such as Google,

Amazon, Twitter, and Facebook, which had significantly different challenges in

dealing with data that the traditional RDBMS solutions could not cope. NoSQL

databases are often highly optimized for retrieve and append operations and

often offer little functionality beyond record storage. The reduced run time

flexibility, compared to full SQL systems, is compensated by significant gains in

scalability and performance for certain data models.” (Berg et al., 2012)

The above section from Berg et al. introduces NoSQL and as such the basic

infrastructure needed for graph databases. NoSQL has many applications outside of

graphs, though for the purpose of this literature review the graph database applications

of NoSQL and its history will be the focus of the next section.

 Graph databases originated from graph theory, graph theory and the basic idea

of graphs were introduced by the Swiss mathematician Leonhard Euler in the 18th

century to solve the Königsberg bridge problem. The problem is outlined and briefly

detailed in a paper by Victor Adamchik (2005) below:

 50

Figure 25. Visual representation of Königsberg bridge problem (Adamchik, 2005).

“German city of Königsberg (now it is Russian Kaliningrad) was situated on the

river Pre-gel. It had a park situated on the banks of the river and two islands.

Mainland and islands were joined by seven bridges. A problem was whether it

was possible to take a walk through the town in such a way as to cross over

every bridge once, and only once.” (Adamchik, 2005)

The graph of the problem is below:

Figure 26. Graph representation of Königsberg bridge problem (Adamchik, 2005).

 51

The subsequent graph makes solving the Königsberg bridge problem much

easier to manage. There are a few other problems addressed by graph theory such as

the traveling salesman problem and the four coloring problem that can be addressed

with graphs. Graph theory is the basis for graph databases and using them to solve

problems that occur within graphs. Graph databases themselves are based on Graph

theory and NoSQL to solve problems present in classical database schema which often

fail to scale horizontally and instead can only scale vertically. Silvan Weber expands on

some of the various NoSQL databases defined in Berg et al. giving examples for each.

The brief description of graphing databases is as follows:

“Nowadays, for example, graph databases can be used in location-based

services (LBS), to find common friends on social networks or to establish the

shortest paths through the daily traffic (with standard algorithms like Dijkstra) or,

in a more general manner, for the efficient querying of data in a network.“

(Weber)

With graph theory and graph databases introduced and the background given in

the previous section, a road map can be seen for how the current marketplace of graph

databases has come to be.

 Zero-day vulnerabilities are covered in a few pieces of literature with the best

coverage by Bilge and Dumitras (2012). Their paper gives a great summary of the zero-

day problem with the following quote:

“A zero-day attack is a cyber attack exploiting a vulnerability that has not been

disclosed publicly. There is almost no defense against a zero-day attack: while

 52

the vulnerability remains unknown, the software affected cannot be patched and

anti-virus products cannot detect the attack through signature-based scanning.”

When a zero-day is discovered and publicly disclosed there is often a huge spike

in malware and other attacks that leverage that zero-day vulnerability as can be seen

from Bilge’s et al. (2012) work and the following results in respect to malware and other

exploits leveraging publicly disclosed zero-day vulnerabilities: “183–85,000 more

variants are detected each day” after public disclosure. The massive uptick in the usage

of the exploit creates a situation where rapid infection of unpatched systems can occur

as can be seen in the Petya (S. 2017), WannaCry (2017), Meltdown (Lipp, Schwarz,

Gross, Prescher, Haas, Fogh, & Hamburg, 2019) and Spectre (Lipp et al., 2019)

vulnerabilities. In many cases, due to the nature of zero-day vulnerabilities, it is also

necessary to patch existing systems that were already infected with a zero-day

vulnerability that had not yet been exposed. Once a now disclosed zero-day is

discovered within the network, determining the blast radius is of the utmost importance

to the removal of the exploit and re-securing the system.

 Literature related directly to the problem specifically is rather sparse due to

expertise in both security incident response being needed along with an understanding

of graph databases. The one paper that directly addresses parts of those problems in

depth is the paper by Noel et al. (2014). In this paper, they create a framework for using

graph databases to discover obvious and less obvious security vulnerabilities that might

be possible within a system for the purposes of threat and vulnerability management

and remediation. In the case of the paper, Noel et al. (2014) use their framework as a

 53

detection and prevention platform for finding and remediating potentially missed exploit

chains.

Summary

 This section introduced graph databases, why Neo4j was a good choice and

used in Noel et al. (2014), introduced the framework set up by Noel et al. (2014), and

set up the groundwork for the methodology to be used to address finding the blast

radius of newly disclosed zero-days leveraging the framework presented in Noel et al.

(2014). Background information was given on a specific sub-problem relating to data

visualization in larger data sets as well as potential frameworks that can be used to

address visualization problems that may present themselves within those data sets.

 54

Chapter 3: Methodology

Introduction

 In this chapter, there will be an exposition into the design of an environment to

test finding the blast radius of a newly released zero-day vulnerability using the

framework presented by Noel et al. (2014). Three tests with various numbers of

vulnerable servers will be performed. As the network grows so will the network

requirements and structures needed to support it. Though the architecture grows and

exceeds a depth of four in certain situations it will not come close to the size of a

massive enterprise network. As such there are considerations that must be made with

visualization and the data set in general moving forward.

Design of the Study

 A qualitative approach will be used during this study as the goal is to unearth a

methodology that can be used to dynamically enumerate the blast radius of a zero-day

attack. The difficulty becomes apparent due to the nature of zero-day attacks leveraging

potentially unknown attack vectors. If the graph database used for detecting the attack

has no way to create a subgraph of the potentially affected machines due to a lack of

data it will be impossible to create a depiction of the blast radius for that particular zero-

day vulnerability. The larger the pool of ancillary data the easier it is to create an

accurate subgraph and subsequent map of the blast radius for a given zero-day. The

key here being that enough ancillary data must be included to detect the majority of

zero-day attacks so that it is possible to create subgraphs and subsequently a blast

radius of the zero-day event.

 55

 The nature of zero-day vulnerabilities, however, do not lend themselves to a

situation where they are completely detectable as there will be cases where a database

will be missing information necessary to create a subgraph that can be fitted to find the

blast radius of a zero-day. Due to this taking stock of data that is needed to detect a

specific zero-day can help in the discovery of new zero-days that leverage different but

similar vulnerabilities. As such looking at the infection vectors of specific zero-days is a

good start for creating a methodology for detecting newly discovered zero-day

vulnerabilities.

 The set of tests is designed to be done over an iterative scale for a general proof

of concept. On a small-scale up through a large-scale where more complex networking

architecture and hosts are added as the tests progress. The first set of tests leverages a

small-scale data center and works as a proof of concept on a small-scale. The second

set of tests adds a few more variables to better simulate a real-world network and zero-

day scenario. The third test adds more clones of the data center to act as a

representation of multiple data centers that a larger organization would have and tests

detection across multiple differing disconnected domains.

Data Collection–Small-scale

 The first test requires working with small data set to create subgraphs for a

specific zero-day. In this case, a sample small data center graph is built in Neo4j using

one of the GraphGist modules created by Bastani (2019). In that article the following

hand created architecture diagram can be seen:

 56

Figure 27. GraphGist small data center diagram (Bastani, 2019).

After being imported into Neo4j using the queries provided in the GraphGist the

following graph which mirrors the above diagram becomes apparent:

 57

Figure 28. Diagram represented within graphing database Neo4J

Using this small-scale data center, it is possible to see the various hardware and

software and its individual dependencies. The next step in this small-scale test is to

introduce a zero-day vulnerability node and exploit node similar to the framework

provided by Noel et al. (2014). In this initial test, the goal is to show it is possible to

detect a released or discovered zero-day given the data to do so exists within our

graph. The test zero-day for this case is the Apache Struts vulnerability present in

Apache Struts versions 2.2.0 and lower. The two web servers present in the small-scale

data center have been modified to have the following attribute to represent having their

versioning properly documented within the Neo4j database.

 58

 // Create Webserver VM 1

 CREATE (webservervm1:VirtualMachine {

 ip:'10.10.35.5',

 host:'WEBSERVER-1',

 type: "WEB SERVER",

 system: "VIRTUAL MACHINE",

 version: "Apache Struts 2.2.0” })

In bold above the node is tagged with a version documenting it leveraging

Apache Struts 2.2.0 and subsequently being vulnerable to the Apache Struts

vulnerability being tested for. Next, the vulnerability test case is added:

 CREATE (vuln1:Vulnerability {

 name: "Vuln 1.1",

 CVE_number: "CVE-2010-1870",

 description: "Apache Struts Remote Command Execution",

 port_requirements: "80",

 software_requirements:"Apache Struts <2.2.0"

 })

The above code snippet documents a basic vulnerability node identical in

concept to the ones presented in Noel et al. With that node created and added to the

graph it is possible to move onto the next section. Next, it is necessary to make a

subgraph of the entire graph leveraging the struts vulnerability defined above to the

nodes vulnerable to them:

 59

 MATCH (n), (m) WHERE n.CVE_number="CVE-2010-1870" AND

 m.version="Apache Struts 2.2.0" CREATE (n)-[:ON]→(m)

Using the statement above variables n and m are gathered into a list of nodes

that correspond to their particular information set within the query. Ergo in the case of n,

nodes that correspond to the tag CVE_number and match the value “CVE-2010-1870”

will be gathered and stored within n. The same will occur for m with version and

“Apache Struts 2.2.0”. From that point, a relationship is added between the gather n and

m nodes in this case defined as “ON”. Thus, the written-out query tells us to add a

relationship to show the vulnerability node exists on web server nodes matching the

requirements defined in the query. From there an exploit node is added based on the

newly created zero-day:

CREATE (exploit1:Exploit {

 name: "Exploit 1",

 description: "Apache Struts Remote Command Execution",

 software_requirements:"Apache Struts <2.2.0" })

With this now created the public facing websites that can be used to exploit the

Apache Struts vulnerability can be connected to the exploit node, and subsequently the

exploit node can be connected to the vulnerable web server.

MATCH (n), (m) WHERE n.system="INTERNET" AND m.name="Exploit 1"

 CREATE (n)-[:EXPLOITS]->(m)

MATCH (n), (m) WHERE n.name="Exploit 1" AND m.version="Apache

 Struts 2.2.0" CREATE (n)-[:VICTIM]→(m)

 60

Below is the current graph with its new exploit connections:

Figure 28.1. Graph after adding vulnerability node to affected machines.

Doing a selection from this graph for the relevant sections results in the following

where the public facing internet websites can exploit the struts vulnerability on the web

server hosting it.

 61

Figure 28.2. Subgraph showing only machines vulnerable to Apache struts.

The small-scale test shows that the graph database was able to dynamically add

hosted websites and connect it to the potentially vulnerable web server. This section

showed how to implement the framework presented by Noel et al. to identify the

potentially exploitable nodes. A few more nodes and network devices will be added

when moving up to a larger system, causing the relations to become more complicated.

Each subsequent test increases the number of node traversals required to find the

affected nodes.

Data Collection–Medium Scale

 Taking the previous data center and modifying it to contain multiple data centers

with various connections requires the addition of a few networking structures such as

firewalls and the connections between those various firewalls and data centers. In the

 62

following figure two switches have been added as well as an internal firewall between

the switches acting as a routing device:

Figure 29. Medium-scale datacenter represented within Neo4J.

The newly added data center is a mirror of the previous nodes with the switch

and firewall nodes added with the code snippet below:

CREATE (switch1:Switch {

 name: "Switch 1",

 63

 type: "PHYSICAL SWITCH",

 system: "PHYSICAL INFRASTRUCTURE"

 })

CREATE (switch2_1:Switch {

 name: "Switch 2",

 type: "PHYSICAL SWITCH",

 system: "PHYSICAL INFRASTRUCTURE"

 })

CREATE (firewall1:Firewall {

 name: "Internal Firewall 1",

 type: "FIREWALL",

 system: "PHYSICAL FIREWALL"

 })

The above snippets are fairly straight forward and create nodes with a name,

type, and system value. The following section creates relationships between those

various nodes:

MATCH (n), (m) WHERE n.name = "Switch 1" AND m.host = "HARDWARE-

SERVER-1" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Switch 1" AND m.host = "HARDWARE-

SERVER-2" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Switch 1" AND m.host = "HARDWARE-

SERVER-3" CREATE (n)-[:ROUTES]->(m)

 64

The above block of code assigns relationships between hardware servers and

their corresponding switch, the same is done for the second switch. The below snippet

creates the relationship between the internal firewall and the newly added switches.

MATCH (n), (m) WHERE n.name = "Internal Firewall 1" AND m.name = "Switch

1" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Internal Firewall 1" AND m.name = "Switch

2" CREATE (n)-[:ROUTES]→(m)

Both newly added topologies are the same as the first structurally just using

different node names. The exploit node and its relationships are re-added using the

same query from the small-scale example. The vulnerability node is omitted since each

node is tagged with vulnerability data directly so it is unneeded for this data set.

Running the query from earlier shows a similar output from before but with the new web

servers and the respective exploits ↔ victim relationship:

 65

Figure 29.1. Subgraph showing medium-scale machines vulnerable to Apache struts.

Data Collection–Large-scale

In the large-scale test, an additional data center was added connected to another

switch and internal firewall. In this way, the separate graphs can be seen to be on a

separate domain, though they can also be linked through a DMZ or internet node and

queried separately from there as well depending on the architecture being mapped

within the graph database. The new graph can be seen below:

 66

Figure 30. Large-scale datacenter with split domains.

Again the exploit node and its subsequent connections are created resulting in

the following graph:

 67

Figure 30.1. Subgraph showing large-scale machines vulnerable to Apache struts.

In a situation like above, the search is not domain agnostic and in some cases

that could prove problematic. If only one domain is suspected of being infected there

would be a large number of false positives created by querying the entire dataset. The

query can be modified to the following to query a subgraph of a subgraph to return

domain-specific results:

MATCH (switchvar:Switch { name: "Switch 3" })←[:DEPENDS_ON| ROUTES]-

>(vulnmachine:Hardware)

WITH vulnmachine

 68

MATCH (vulnmachine)←[:DEPENDS_ON]-(webserver)←[VICTIM|EXPLOITS]-

>(exploiter)

WHERE webserver.version = "Apache Struts 2.2.0"

RETURN *

Figure 30.2. Subgraph showing machines on network Switch 3 vulnerable to Apache
struts.

The above results show the vulnerable web servers and hardware on the new

domain under the newly added “Switch 3”. The same can be done for the other switches

and results in similar graphs displaying the correct vulnerable web servers on their

respective domains.

 69

Figure 30.3. Subgraphs showing machines on network Switch 2 & 1 vulnerable to
Apache struts.

First is “Switch 2” and its vulnerable hardware, second is “Switch 1” and its

vulnerable hardware. All of these queries completed in less than one second even

though the needed number of traversals to find the nodes exceeds four.

Summary

In this section, small, medium, and large-scale tests were performed to test on

the fly additions of exploit nodes and the ability to create an accurate blast radius

 70

summary from that data. Along with that diving into a specific section of a subgraph of a

subgraph was done in order to show graph databases ability to address the network

problem and still return a blast radius for a specific network segment.

 71

Chapter 4: Data Presentation and Analysis

Introduction

 In this chapter, there will be an analysis of the small, medium, and large-scale

tests and their results. With each set of results, the expected outputs versus the actual

outputs will be compared.

Data Presentation–Small-scale

 In this first experiment, the basic framework format by Noel et al. (2014) was

implemented into a test data center architecture. The data center was modified to

contain information about machines that could be used to find the Apache Struts

vulnerability within the graph. This first set of tests was designed to show a basic proof

of concept for how a potential zero-day vulnerability could be correlated and found by

taking a subgraph of the existing graph. In this test set, there were only two vulnerable

web servers and a total of five external websites capable of exploiting those web

servers.

Table 3

Small-scale Expected vs Generated Results

 Expected Results

Web servers 2 2

Exploit sites 5 5

Data Presentation–Medium-scale

 In this set of tests, more data centers were added to the existing one from the

small-scale test and some networking equipment was added between them. This set of

 72

tests shows that with more nodes and complexity added the graph is able to return the

affected nodes and the potential tangentially related attack nodes. The affected nodes

are returned and are related to their vulnerable web server directly in the resulting

subgraph. Returning the potentially vulnerable web sites tied to their requisite web

server allows for fast remediation and prioritization based on web portal size or

importance to the organization.

Table 4

Medium-scale Expected vs Generated Results

 Expected Results

Web servers 6 6

Exploit sites 15 15

Data Presentation–Large-scale

 This set of tests again added more potentially vulnerable web servers and a

different domain that is disconnected from the main graph. In running this set of tests,

the same test query was used to generate the following results:

Table 5

Large-scale Expected vs Generated Results

 Expected Results

Web servers 10 10

Exploit sites 25 25

 73

As can be seen in the subgraph having a disconnected graph had no bearing on

the results due to the nature of implementing the exploit nodes relationships based on

data tagged to the existing nodes. This section’s data collection also showcased the

ability to take a subgraph of a subgraph in order to gather the affected web server

nodes from the new domain added for the large-scale tests.

Data Analysis

 The data collected works as a proof of concept to show that on various scales

with differing levels of network complexity it is possible to add and detect zero-day

attacks given the attack vector and version of software or hardware being exploited

exists within the graph database. This is shown with the results given in the small,

medium, and large-scale tests leveraging the framework provided in Noel et al. (2014).

Along with being able to add exploit nodes on the fly using the framework presented by

Noel et al. (2014) it points towards a possible method to explore zero-day exploits that

may proliferate across domains should a zero-day leverage multiple different attack

vectors.

Summary

 In this chapter, the expected results were compared with the results gathered

from querying the graph database. Manually doing an analysis of the graph nodes

showed that it correlated correctly with the results procedurally generated based on

node data. Along with that analysis showing the potential usage of querying a subgraph

of a subgraph as a possibility for narrowing the search scope assists in performing

reconnaissance on specific sections of the network.

 74

Chapter 5: Results, Conclusions, and Recommendations

Introduction

 In this section, the importance and implications of the gathered data are explored

and analyzed. The tests are first analyzed for their success as a proof of concept; next,

the potential exceptions are outlined and detailed. Moreover, the potential for use of the

framework presented by Noel et al. (2014) being leveraged for more than just threat and

vulnerability management. Second, problems potentially present when visualizing data

with Neo4j’s built-in tools is elucidated and outlined for potential use in future works.

Results

 The key question posed in the methodology is if it is possible to use a graph

database to detect and address zero-day vulnerabilities given data exists to identify

potentially at-risk systems within the graph database. The results show that in the case

of the Apache Struts vulnerability which was used as the test case it is possible to

detect vulnerable websites and web servers given the criterion mentioned earlier is met.

This may not hold true in all cases however as certain zero-day vulnerabilities may

leverage unknown attack vectors that cannot easily be stored within a graph database

ahead of time. One example of this would be something such as Van Eck Phreaking

that involves measuring side-band electromagnetic emissions. Vulnerability to such an

attack vector would generally not be logged anywhere and would be difficult if not

impossible to quickly create a query for so that an exploit node and relationships could

be created. In other cases, however, such as Petya or Spectre, where a hardware

vulnerability or a particular version of the software is exploited, the vulnerable machines

 75

can be identified fairly easily based on existing versioning or hardware information. As

such exploit nodes can be created dynamically and the resulting blast radius can be

determined. This holds true even in the face of the network problem due to the nature of

graph databases and their usage of index-free adjacency. In the case of Petya, it is

possible to go a step further as its infection vector is known along with its intended

victim. If the nodes within the graph contain information on the infection vector, in the

case of Petya it’s the allowance of the SMB protocol between machines, as well as the

operating system of the machine that’s vulnerable in this case windows. Then it is

possible to use the cross-domain vulnerability chains presented by Noel et al. (2014) to

find potential cross domain exploits using the method for dynamically generating exploit

nodes presented in this paper.

 Moving forward to visualizations, Neo4j has a built-in visualization tool that

makes understanding basic graphs or subsections of a graph easy. A problem arises

when the need to visualize large pools of nodes arises. Neo4j can customize the

number of displayed nodes in each section or subsection of the graph to accommodate

this problem; however, it does not always result in being the best fit for visualizing that

particular data set. The best visualization framework for a particular situation is

requirements dependent and as such relies on stakeholder or situations needs. As such

the basic visualization provided by Neo4J was sufficient for the visualization needs of

this paper and as such was used to display the various results.

 The focus of this paper was on the creation of exploit nodes on the fly to detect

zero-day vulnerabilities and not analyzing best-fit visualizations for that data set. As

 76

such the groundwork has been laid for future work relating to visualization methods for

security data and finding the pros and cons of the various methods of visualizing that

data.

Conclusion

 The goal of this study was to provide a proof of concept for determining the blast

radius of a newly published zero-day vulnerability given the data to determine what

software or hardware is potentially at risk is known and contained within the graph

database. In the test cases presented the tested zero-day vulnerability was properly

detected and displayed the correct relationships when queried. In these test cases, it

was a simple relation that website --exploits→ web server, in other cases this

relationship may extend farther due to other vulnerabilities existing on the system. This

can also be detected using the framework presented by Noel et al. (2014) after the new

zero-day vulnerability exploit nodes are added. Along with the proof of concept querying

subgraphs of subgraphs was also covered to show the power of graph databases in

addressing the network problem to generate a more specific blast radius for specific

sections of the network.

Future Work

 Studying different zero-day vulnerabilities and the infection vectors leveraged by

those vulnerabilities can assist in building upon the framework presented by Noel et al.

(2014) as well as show potential holes present in the overall graph’s construction that

could show where there might be missing information needed to detect outlier zero-day

vulnerabilities. As an example, information pertaining to SMB access across domains

 77

would need to be documented to detect the Petya vulnerability. Furthermore, study into

zero-day vulnerabilities that leverage multiple vectors of attack such as the first example

in Figure 4 of Noel et al. (2014) and how to exploit nodes for them can be added and

correctly linked would help protect against more advanced persistent threats more likely

to leverage something beyond simple malware.

 Future work pertaining to various visualization methods and the benefits as well

as weaknesses of those methods is an open area of research. Using the resources

provided by Neo4j in their developer section various integrations with graphing solutions

are outlined and explored. Taking these solutions and performing an analysis on their

uses when integrated with security data as presented in this paper to find the strengths

and weaknesses of a multitude of different visualization methods is an open area that

requires more research.

 78

References

Angles, R. (2012). A comparison of current graph database models. 2012 IEEE 28th

International Conference on Data Engineering Workshops, pp. 171-177.

doi:10.1109/icdew.2012.31

Anvaka. (2019, March 03). Anvaka/VivaGraphJS. Retrieved April 24, 2019, from

https://github.com/anvaka/VivaGraphJS

Bastani, K. (n.d.). Network dependency graph. Retrieved January 15, 2019, from

https://neo4j.com/graphgist/network-dependency-graph

Berg, K. L., Seymour, T., & Goel, R. (2012). History of databases. International Journal

of Management & Information Systems (IJMIS), 17(1), 29-36.

doi:10.19030/ijmis.v17i1.7587

Bilge, L., & Dumitras, T. (2012). Before we knew it: An empirical study of zero-day

attacks in the real world. Proceedings of the 2012 ACM Conference on Computer

and Communications Security - CCS 12, 833-844.

doi:10.1145/2382196.2382284

Bostock, M. (2019, April 12). Collapsible force layout. Retrieved April 22, 2019, from

https://bl.ocks.org/mbostock/1062288

Bostock, M. (2019, March 01). Zoomable circle packing. Retrieved April 22, 2019, from

https://observablehq.com/@d3/zoomable-circle-packing

Buerli, M. (2012, December). The current state of graph databases. Cal Poly, San Luis

Obispo.

https://bl.ocks.org/mbostock/1062288
https://observablehq.com/@d3/zoomable-circle-packing

 79

Hong, L., Zou, L., Lian, X., & Yu, P. S. (2015). Subgraph matching with set similarity in a

large graph database. IEEE Transactions on Knowledge and Data Engineering,

27(9), 2507-2521. doi:10.1109/tkde.2015.2391125

Iliinsky, N., & Steele, J. (2011). Designing data visualizations. Sebastopol: OReilly.

doi:http://courses.ischool.utexas.edu/unmil/files/Designing_Data_Visualizations.p

df

J. (2018, December 18). Stolen credit cards and fraud detection with Neo4j. Retrieved

April 29, 2019, from https://linkurio.us/blog/stolen-credit-cards-and-fraud-

detection-with-neo4j/

Jacomy, A., & Plique, G. (n.d.). Sigmajs. Retrieved April 24, 2019, from

http://sigmajs.org/

KeyLines Network Visualization Software. (2019). Retrieved April 29, 2019, from

https://cambridge-intelligence.com/keylines/

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J., Mangard,

S., Kocher, P., Genkin, D., Yarom, Y., & Hamburg, M. (2018). Meltdown:

Reading kernel memory from user space. USENIX Security Symposium.

Lyon, W. (2016, June 26). Analyzing the graph of thrones - network analysis with Neo4j.

Retrieved April 22, 2019, from https://www.lyonwj.com/2016/06/26/graph-of-

thrones-neo4j-social- network-analysis/

Neo4j Graph Platform–The Leader in Graph Databases. (n.d.). Retrieved November 7,

2019, from https://neo4j.com/

https://linkurio.us/blog/stolen-credit-cards-and-fraud-detection-with-neo4j/
https://linkurio.us/blog/stolen-credit-cards-and-fraud-detection-with-neo4j/
http://sigmajs.org/
https://cambridge-intelligence.com/keylines/
https://www.lyonwj.com/2016/06/26/graph-of-thrones-neo4j-social-%20network-analysis/
https://www.lyonwj.com/2016/06/26/graph-of-thrones-neo4j-social-%20network-analysis/
https://neo4j.com/

 80

Noel, S., Harley, E., Tam, K.H., & Gyor, G. (2014). Big-data architecture for cyber attack

graphs representing security relationships in NoSQL graph databases.

Popoto.js. (2018). Retrieved from http://www.popotojs.com/

Ransom.Wannacry. (2017, May 12). Retrieved January 30, 2019, from

https://www.symantec.com/security-center/writeup/2017-051310-3522-99

Robinson, I., Webber, J., & Eifrem, E. (2015). Graph databases: New opportunities for

connected data (2nd ed.). Sebastopol, CA: OReilly & Associates.

doi:https://pdfs.semanticscholar.org/f511/7084ca43e888fb3e17ab0f0e684cced0f

8fd.pdf

S. (2017). R/Malware—all Petya Ransomware write-up. Retrieved February 28, 2019,

from https://www.reddit.com/r/Malware/comments/

Sontrop, H. (2018, October 4). Radial tidy tree. Retrieved from

https://bl.ocks.org/FrissAnalytics/974dc299c5bc79cc5fd7ee9fa1b0b366

Tom Sawyer Perspectives. (2019). Retrieved April 29, 2019, from

https://www.tomsawyer.com/perspectives/

Venkatesh, S. (2014). Subgraph pattern matching for graph databases (Doctoral

dissertation), University of Georgia. doi:https://getd.libs.uga.edu/pdfs/

venkatesh_sumana_201412_ms.pdf

Visjs. Retrieved April 22, 2019, from http://visjs.org/examples/network/

edgeStyles/smoothWorldCup.html

http://www.popotojs.com/
https://www.symantec.com/security-center/writeup/2017-051310-3522-99
https://www.reddit.com/r/Malware/comments/
https://www.tomsawyer.com/perspectives/
http://visjs.org/examples/network/%20edgeStyles/smoothWorldCup.html
http://visjs.org/examples/network/%20edgeStyles/smoothWorldCup.html

 81

Weber, S. (n.d.). NoSQL databases. Retrieved April 29, 2019, from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.468.7089&rep=rep1&ty

pe=pdf

YFiles Product Family. (2019). Retrieved April 29, 2019, from

https://www.yworks.com/products/yfiles

 82

Appendix

// Create CRM

CREATE (crm1:Application {

 ip:'10.10.32.1',

 host:'CRM-APPLICATION',

 type: 'APPLICATION',

 system: 'CRM'

 })

// Create ERP

CREATE (erp1:Application {

 ip:'10.10.33.1',

 host:'ERP-APPLICATION',

 type: 'APPLICATION',

 system: 'ERP'

 })

// Create Data Warehouse

CREATE (datawarehouse1:Application {

 ip:'10.10.34.1',

 host:'DATA-WAREHOUSE',

 type: 'DATABASE',

 83

 system: 'DW'

 })

// Create Public Website 1

CREATE (Internet1:Internet {

 ip:'10.10.35.1',

 host:'global.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 2

CREATE (Internet2:Internet {

 ip:'10.10.35.2',

 host:'support.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 3

CREATE (Internet3:Internet {

 ip:'10.10.35.3',

 84

 host:'shop.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 4

CREATE (Internet4:Internet {

 ip:'10.10.35.4',

 host:'training.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 5

CREATE (Internet5:Internet {

 ip:'10.10.35.1',

 host:'partners.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Internal Website 1

 85

CREATE (Intranet1:Intranet {

 ip:'10.10.35.2',

 host:'events.acme.net',

 type: "APPLICATION",

 system: "INTRANET"

 })

// Create Internal Website 2

CREATE (Intranet2:Intranet {

 ip:'10.10.35.3',

 host:'intranet.acme.net',

 type: "APPLICATION",

 system: "INTRANET"

 })

// Create Internal Website 3

CREATE (Intranet3:Intranet {

 ip:'10.10.35.4',

 host:'humanresources.acme.net',

 type: "APPLICATION",

 system: "INTRANET"

 })

 86

// Create Webserver VM 1

CREATE (webservervm1:VirtualMachine {

 ip:'10.10.35.5',

 host:'WEBSERVER-1',

 type: "WEB SERVER",

 system: "VIRTUAL MACHINE",

 version: "Apache Struts 2.2.0"

 })

// Create Webserver VM 2

CREATE (webservervm2:VirtualMachine {

 ip:'10.10.35.6',

 host:'WEBSERVER-2',

 type: "WEB SERVER",

 system: "VIRTUAL MACHINE",

 version: "Apache Struts 2.2.0"

 })

// Create Database VM 1

CREATE (customerdatabase1:VirtualMachine {

 ip:'10.10.35.7',

 87

 host:'CUSTOMER-DB-1',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Database VM 2

CREATE (customerdatabase2:VirtualMachine {

 ip:'10.10.35.8',

 host:'CUSTOMER-DB-2',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Database VM 3

CREATE (databasevm3:VirtualMachine {

 ip:'10.10.35.9',

 host:'ERP-DB',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Database VM 4

 88

CREATE (dwdatabase:VirtualMachine {

 ip:'10.10.35.10',

 host:'DW-DATABASE',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Hardware 1

CREATE (hardware1:Hardware {

 ip:'10.10.35.11',

 host:'HARDWARE-SERVER-1',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create Hardware 2

CREATE (hardware2:Hardware {

 ip:'10.10.35.12',

 host:'HARDWARE-SERVER-2',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

 89

// Create Hardware 3

CREATE (hardware3:Hardware {

 ip:'10.10.35.13',

 host:'HARDWARE-SERVER-3',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create SAN 1

CREATE (san1:Hardware {

 ip:'10.10.35.14',

 host:'SAN',

 type: "STORAGE AREA NETWORK",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Connect CRM to Database VM 1

CREATE (crm1)-[:DEPENDS_ON]->(customerdatabase1)

// Connect Public Websites 1-3 to Database VM 1

CREATE (Internet1)-[:DEPENDS_ON]->(customerdatabase1),

 90

 (Internet2)-[:DEPENDS_ON]->(customerdatabase1),

 (Internet3)-[:DEPENDS_ON]->(customerdatabase1)

// Connect Database VM 1 to Hardware 1

CREATE (customerdatabase1)-[:DEPENDS_ON]->(hardware1)

// Connect Hardware 1 to SAN 1

CREATE (hardware1)-[:DEPENDS_ON]->(san1)

// Connect Public Websites 1-3 to Webserver VM 1

CREATE (webservervm1)<-[:DEPENDS_ON]-(Internet1),

 (webservervm1)<-[:DEPENDS_ON]-(Internet2),

 (webservervm1)<-[:DEPENDS_ON]-(Internet3)

// Connect Internal Websites 1-3 to Webserver VM 1

CREATE (webservervm1)<-[:DEPENDS_ON]-(Intranet1),

 (webservervm1)<-[:DEPENDS_ON]-(Intranet2),

 (webservervm1)<-[:DEPENDS_ON]-(Intranet3)

// Connect Webserver VM 1 to Hardware 2

CREATE (webservervm1)-[:DEPENDS_ON]->(hardware2)

 91

// Connect Hardware 2 to SAN 1

CREATE (hardware2)-[:DEPENDS_ON]->(san1)

// Connect Webserver VM 2 to Hardware 2

CREATE (webservervm2)-[:DEPENDS_ON]->(hardware2)

// Connect Public Websites 4-6 to Webserver VM 2

CREATE (webservervm2)<-[:DEPENDS_ON]-(Internet4),

 (webservervm2)<-[:DEPENDS_ON]-(Internet5)

// Connect Database VM 2 to Hardware 2

CREATE (hardware2)<-[:DEPENDS_ON]-(customerdatabase2)

// Connect Public Websites 4-5 to Database VM 2

CREATE (Internet4)-[:DEPENDS_ON]->(customerdatabase2),

 (Internet5)-[:DEPENDS_ON]->(customerdatabase2)

// Connect Hardware 3 to SAN 1

CREATE (hardware3)-[:DEPENDS_ON]->(san1)

// Connect Database VM 3 to Hardware 3

CREATE (hardware3)<-[:DEPENDS_ON]-(databasevm3)

 92

// Connect ERP 1 to Database VM 3

CREATE (erp1)-[:DEPENDS_ON]->(databasevm3)

// Connect Database VM 4 to Hardware 3

CREATE (hardware3)<-[:DEPENDS_ON]-(dwdatabase)

// Connect Data Warehouse 1 to Database VM 4

CREATE (datawarehouse1)-[:DEPENDS_ON]->(dwdatabase)

RETURN *

CREATE (vuln1:Vulnerability {

 name: "Vuln 1.1",

 CVE_number: "CVE-2010-1870",

 description: "Apache Struts Remote Command Execution",

 port_requirements: "80",

 software_requirements:"Apache Struts <2.2.0"

 })

//MATCH (n), (m) WHERE n.version="Apache Struts 2.2.0" AND

m.CVE_number="CVE-2010-1870" CREATE (n)-[:ON]->(m)

 93

MATCH (n), (m) WHERE n.CVE_number="CVE-2010-1870" AND

m.version="Apache Struts 2.2.0" CREATE (n)-[:ON]->(m)

CREATE (exploit1:Exploit {

 name: "Exploit 1",

 description: "Apache Struts Remote Command Execution",

 software_requirements:"Apache Struts <2.2.0"

 })

MATCH (n), (m) WHERE n.system="INTERNET" AND m.name="Exploit 1" CREATE

(n)-[:EXPLOITS]->(m)

MATCH (n), (m) WHERE n.name="Exploit 1" AND m.version="Apache Struts 2.2.0"

CREATE (n)-[:VICTIM]->(m)

MATCH (n) WHERE n.version="Apache Struts 2.2.0" AND n.name="Exploit 1" AND

n.system="INTERNET" RETURN n

MATCH (exploit1:Exploit { name: "Exploit 1" })<-[:VICTIM|EXPLOITS]-

>(vulnmachine) RETURN *

//--

 94

CREATE (switch1:Switch {

 name: "Switch 1",

 type: "PHYSICAL SWITCH",

 system: "PHYSICAL INFRASTRUCTURE"

 })

CREATE (switch2_1:Switch {

 name: "Switch 2",

 type: "PHYSICAL SWITCH",

 system: "PHYSICAL INFRASTRUCTURE"

 })

CREATE (firewall1:Firewall {

 name: "Internal Firewall 1",

 type: "FIREWALL",

 system: "PHYSICAL FIREWALL"

 })

 95

MATCH (n), (m) WHERE n.name = "Switch 1" AND m.host = "HARDWARE-

SERVER-1" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Switch 1" AND m.host = "HARDWARE-

SERVER-2" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Switch 1" AND m.host = "HARDWARE-

SERVER-3" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.type = "PHYSICAL SWITCH" AND m.host =

"HARDWARE-SERVER-2" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.type = "PHYSICAL SWITCH" AND m.host =

"HARDWARE-SERVER-3" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Internal Firewall 1" AND m.name = "Switch 1"

CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Internal Firewall 1" AND m.name = "Switch 2"

CREATE (n)-[:ROUTES]->(m)

CREATE (vuln1:Vulnerability {

 name: "Vuln 1.1",

 CVE_number: "CVE-2010-1870",

 description: "Apache Struts Remote Command Execution",

 96

 port_requirements: "80",

 software_requirements:"Apache Struts <2.2.0"

 })

MATCH (n) where id(n) = 44 DETACH DELETE n

-----------------------------MEDIUM

// Create CRM

CREATE (crm1:Application {

 ip:'10.10.32.1',

 host:'CRM-APPLICATION',

 type: 'APPLICATION',

 system: 'CRM'

 })

// Create ERP

CREATE (erp1:Application {

 ip:'10.10.33.1',

 97

 host:'ERP-APPLICATION',

 type: 'APPLICATION',

 system: 'ERP'

 })

// Create Data Warehouse

CREATE (datawarehouse1:Application {

 ip:'10.10.34.1',

 host:'DATA-WAREHOUSE',

 type: 'DATABASE',

 system: 'DW'

 })

// Create Public Website 1

CREATE (Internet1:Internet {

 ip:'10.10.35.1',

 host:'global.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 2

 98

CREATE (Internet2:Internet {

 ip:'10.10.35.2',

 host:'support.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 3

CREATE (Internet3:Internet {

 ip:'10.10.35.3',

 host:'shop.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 4

CREATE (Internet4:Internet {

 ip:'10.10.35.4',

 host:'training.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

 99

// Create Public Website 5

CREATE (Internet5:Internet {

 ip:'10.10.35.1',

 host:'partners.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Internal Website 1

CREATE (Intranet1:Intranet {

 ip:'10.10.35.2',

 host:'events.acme.net',

 type: "APPLICATION",

 system: "INTRANET"

 })

// Create Internal Website 2

CREATE (Intranet2:Intranet {

 ip:'10.10.35.3',

 host:'intranet.acme.net',

 type: "APPLICATION",

 100

 system: "INTRANET"

 })

// Create Internal Website 3

CREATE (Intranet3:Intranet {

 ip:'10.10.35.4',

 host:'humanresources.acme.net',

 type: "APPLICATION",

 system: "INTRANET"

 })

// Create Webserver VM 1

CREATE (webservervm1:VirtualMachine {

 ip:'10.10.35.5',

 host:'WEBSERVER-1',

 type: "WEB SERVER",

 system: "VIRTUAL MACHINE",

 version: "Apache Struts 2.2.0"

 })

// Create Webserver VM 2

CREATE (webservervm2:VirtualMachine {

 101

 ip:'10.10.35.6',

 host:'WEBSERVER-2',

 type: "WEB SERVER",

 system: "VIRTUAL MACHINE",

 version: "Apache Struts 2.2.0"

 })

// Create Database VM 1

CREATE (customerdatabase1:VirtualMachine {

 ip:'10.10.35.7',

 host:'CUSTOMER-DB-1',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Database VM 2

CREATE (customerdatabase2:VirtualMachine {

 ip:'10.10.35.8',

 host:'CUSTOMER-DB-2',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

 102

// Create Database VM 3

CREATE (databasevm3:VirtualMachine {

 ip:'10.10.35.9',

 host:'ERP-DB',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Database VM 4

CREATE (dwdatabase:VirtualMachine {

 ip:'10.10.35.10',

 host:'DW-DATABASE',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Hardware 1

CREATE (hardware1:Hardware {

 ip:'10.10.35.11',

 host:'HARDWARE-SERVER-1',

 type: "HARDWARE SERVER",

 103

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create Hardware 2

CREATE (hardware2:Hardware {

 ip:'10.10.35.12',

 host:'HARDWARE-SERVER-2',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create Hardware 3

CREATE (hardware3:Hardware {

 ip:'10.10.35.13',

 host:'HARDWARE-SERVER-3',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create SAN 1

CREATE (san1:Hardware {

 ip:'10.10.35.14',

 104

 host:'SAN',

 type: "STORAGE AREA NETWORK",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Connect CRM to Database VM 1

CREATE (crm1)-[:DEPENDS_ON]->(customerdatabase1)

// Connect Public Websites 1-3 to Database VM 1

CREATE (Internet1)-[:DEPENDS_ON]->(customerdatabase1),

 (Internet2)-[:DEPENDS_ON]->(customerdatabase1),

 (Internet3)-[:DEPENDS_ON]->(customerdatabase1)

// Connect Database VM 1 to Hardware 1

CREATE (customerdatabase1)-[:DEPENDS_ON]->(hardware1)

// Connect Hardware 1 to SAN 1

CREATE (hardware1)-[:DEPENDS_ON]->(san1)

// Connect Public Websites 1-3 to Webserver VM 1

CREATE (webservervm1)<-[:DEPENDS_ON]-(Internet1),

 (webservervm1)<-[:DEPENDS_ON]-(Internet2),

 105

 (webservervm1)<-[:DEPENDS_ON]-(Internet3)

// Connect Internal Websites 1-3 to Webserver VM 1

CREATE (webservervm1)<-[:DEPENDS_ON]-(Intranet1),

 (webservervm1)<-[:DEPENDS_ON]-(Intranet2),

 (webservervm1)<-[:DEPENDS_ON]-(Intranet3)

// Connect Webserver VM 1 to Hardware 2

CREATE (webservervm1)-[:DEPENDS_ON]->(hardware2)

// Connect Hardware 2 to SAN 1

CREATE (hardware2)-[:DEPENDS_ON]->(san1)

// Connect Webserver VM 2 to Hardware 2

CREATE (webservervm2)-[:DEPENDS_ON]->(hardware2)

// Connect Public Websites 4-6 to Webserver VM 2

CREATE (webservervm2)<-[:DEPENDS_ON]-(Internet4),

 (webservervm2)<-[:DEPENDS_ON]-(Internet5)

// Connect Database VM 2 to Hardware 2

CREATE (hardware2)<-[:DEPENDS_ON]-(customerdatabase2)

 106

// Connect Public Websites 4-5 to Database VM 2

CREATE (Internet4)-[:DEPENDS_ON]->(customerdatabase2),

 (Internet5)-[:DEPENDS_ON]->(customerdatabase2)

// Connect Hardware 3 to SAN 1

CREATE (hardware3)-[:DEPENDS_ON]->(san1)

// Connect Database VM 3 to Hardware 3

CREATE (hardware3)<-[:DEPENDS_ON]-(databasevm3)

// Connect ERP 1 to Database VM 3

CREATE (erp1)-[:DEPENDS_ON]->(databasevm3)

// Connect Database VM 4 to Hardware 3

CREATE (hardware3)<-[:DEPENDS_ON]-(dwdatabase)

// Connect Data Warehouse 1 to Database VM 4

CREATE (datawarehouse1)-[:DEPENDS_ON]->(dwdatabase)

// Create CRM

CREATE (crm2_1:Application {

 107

 ip:'10.10.32.1',

 host:'CRM-APPLICATION',

 type: 'APPLICATION',

 system: 'CRM'

 })

// Create ERP

CREATE (erp2_1:Application {

 ip:'10.10.33.1',

 host:'ERP-APPLICATION',

 type: 'APPLICATION',

 system: 'ERP'

 })

// Create Data Warehouse

CREATE (datawarehouse2_1:Application {

 ip:'10.10.34.1',

 host:'DATA-WAREHOUSE',

 type: 'DATABASE',

 system: 'DW'

 })

 108

// Create Public Website 1

CREATE (Internet2_1:Internet {

 ip:'10.10.35.1',

 host:'global.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 2

CREATE (Internet2_2:Internet {

 ip:'10.10.35.2',

 host:'support.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 3

CREATE (Internet2_3:Internet {

 ip:'10.10.35.3',

 host:'shop.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 109

 })

// Create Public Website 4

CREATE (Internet2_4:Internet {

 ip:'10.10.35.4',

 host:'training.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 5

CREATE (Internet2_5:Internet {

 ip:'10.10.35.1',

 host:'partners.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Internal Website 1

CREATE (Intranet2_1:Intranet {

 ip:'10.10.35.2',

 host:'events.acme.net',

 110

 type: "APPLICATION",

 system: "INTRANET"

 })

// Create Internal Website 2

CREATE (Intranet2_2:Intranet {

 ip:'10.10.35.3',

 host:'intranet.acme.net',

 type: "APPLICATION",

 system: "INTRANET"

 })

// Create Internal Website 3

CREATE (Intranet2_3:Intranet {

 ip:'10.10.35.4',

 host:'humanresources.acme.net',

 type: "APPLICATION",

 system: "INTRANET"

 })

// Create Webserver VM 1

CREATE (webservervm2_1:VirtualMachine {

 111

 ip:'10.10.35.5',

 host:'WEBSERVER-1',

 type: "WEB SERVER",

 system: "VIRTUAL MACHINE",

 version: "Apache Struts 2.2.0"

 })

// Create Webserver VM 2

CREATE (webservervm2_2:VirtualMachine {

 ip:'10.10.35.6',

 host:'WEBSERVER-2',

 type: "WEB SERVER",

 system: "VIRTUAL MACHINE",

 version: "Apache Struts 2.2.0"

 })

// Create Database VM 1

CREATE (customerdatabase2_1:VirtualMachine {

 ip:'10.10.35.7',

 host:'CUSTOMER-DB-1',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 112

 })

// Create Database VM 2

CREATE (customerdatabase2_2:VirtualMachine {

 ip:'10.10.35.8',

 host:'CUSTOMER-DB-2',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Database VM 3

CREATE (databasevm2_3:VirtualMachine {

 ip:'10.10.35.9',

 host:'ERP-DB',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Database VM 4

CREATE (dwdatabase2:VirtualMachine {

 ip:'10.10.35.10',

 host:'DW-DATABASE',

 113

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Hardware 1

CREATE (hardware2_1:Hardware {

 ip:'10.10.35.11',

 host:'HARDWARE-SERVER-1',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create Hardware 2

CREATE (hardware2_2:Hardware {

 ip:'10.10.35.12',

 host:'HARDWARE-SERVER-2',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create Hardware 3

CREATE (hardware2_3:Hardware {

 114

 ip:'10.10.35.13',

 host:'HARDWARE-SERVER-3',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create SAN 1

CREATE (san2_1:Hardware {

 ip:'10.10.35.14',

 host:'SAN',

 type: "STORAGE AREA NETWORK",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Connect CRM to Database VM 1

CREATE (crm2_1)-[:DEPENDS_ON]->(customerdatabase2_1)

// Connect Public Websites 1-3 to Database VM 1

CREATE (Internet2_1)-[:DEPENDS_ON]->(customerdatabase2_1),

 (Internet2_2)-[:DEPENDS_ON]->(customerdatabase2_1),

 (Internet2_3)-[:DEPENDS_ON]->(customerdatabase2_1)

 115

// Connect Database VM 1 to Hardware 1

CREATE (customerdatabase2_1)-[:DEPENDS_ON]->(hardware2_1)

// Connect Hardware 1 to SAN 1

CREATE (hardware2_1)-[:DEPENDS_ON]->(san2_1)

// Connect Public Websites 1-3 to Webserver VM 1

CREATE (webservervm2_1)<-[:DEPENDS_ON]-(Internet2_1),

 (webservervm2_1)<-[:DEPENDS_ON]-(Internet2_2),

 (webservervm2_1)<-[:DEPENDS_ON]-(Internet2_3)

// Connect Internal Websites 1-3 to Webserver VM 1

CREATE (webservervm2_1)<-[:DEPENDS_ON]-(Intranet2_1),

 (webservervm2_1)<-[:DEPENDS_ON]-(Intranet2_2),

 (webservervm2_1)<-[:DEPENDS_ON]-(Intranet2_3)

// Connect Webserver VM 1 to Hardware 2

CREATE (webservervm2_1)-[:DEPENDS_ON]->(hardware2_2)

// Connect Hardware 2 to SAN 1

CREATE (hardware2_2)-[:DEPENDS_ON]->(san2_1)

 116

// Connect Webserver VM 2 to Hardware 2

CREATE (webservervm2_2)-[:DEPENDS_ON]->(hardware2_2)

// Connect Public Websites 4-6 to Webserver VM 2

CREATE (webservervm2_2)<-[:DEPENDS_ON]-(Internet2_4),

 (webservervm2_2)<-[:DEPENDS_ON]-(Internet2_5)

// Connect Database VM 2 to Hardware 2

CREATE (hardware2_2)<-[:DEPENDS_ON]-(customerdatabase2_2)

// Connect Public Websites 4-5 to Database VM 2

CREATE (Internet2_4)-[:DEPENDS_ON]->(customerdatabase2_2),

 (Internet2_5)-[:DEPENDS_ON]->(customerdatabase2_2)

// Connect Hardware 3 to SAN 1

CREATE (hardware2_3)-[:DEPENDS_ON]->(san2_1)

// Connect Database VM 3 to Hardware 3

CREATE (hardware2_3)<-[:DEPENDS_ON]-(databasevm2_3)

// Connect ERP 1 to Database VM 3

CREATE (erp2_1)-[:DEPENDS_ON]->(databasevm2_3)

 117

// Connect Database VM 4 to Hardware 3

CREATE (hardware2_3)<-[:DEPENDS_ON]-(dwdatabase2)

// Connect Data Warehouse 1 to Database VM 4

CREATE (datawarehouse2_1)-[:DEPENDS_ON]->(dwdatabase2)

RETURN *

//RETURN *

--

// Create CRM

CREATE (crm3_1:Application {

 ip:'10.10.32.1',

 host:'CRM-APPLICATION',

 type: 'APPLICATION',

 system: 'CRM'

 })

// Create ERP

 118

CREATE (erp3_1:Application {

 ip:'10.10.33.1',

 host:'ERP-APPLICATION',

 type: 'APPLICATION',

 system: 'ERP'

 })

// Create Data Warehouse

CREATE (datawarehouse3_1:Application {

 ip:'10.10.34.1',

 host:'DATA-WAREHOUSE',

 type: 'DATABASE',

 system: 'DW'

 })

// Create Public Website 1

CREATE (Internet3_1:Internet {

 ip:'10.10.35.1',

 host:'global.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

 119

// Create Public Website 2

CREATE (Internet3_2:Internet {

 ip:'10.10.35.2',

 host:'support.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 3

CREATE (Internet3_3:Internet {

 ip:'10.10.35.3',

 host:'shop.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 4

CREATE (Internet3_4:Internet {

 ip:'10.10.35.4',

 host:'training.acme.com',

 type: "APPLICATION",

 120

 system: "INTERNET"

 })

// Create Public Website 5

CREATE (Internet3_5:Internet {

 ip:'10.10.35.1',

 host:'partners.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Internal Website 1

CREATE (Intranet3_1:Intranet {

 ip:'10.10.35.2',

 host:'events.acme.net',

 type: "APPLICATION",

 system: "INTRANET"

 })

// Create Internal Website 2

CREATE (Intranet3_2:Intranet {

 ip:'10.10.35.3',

 121

 host:'intranet.acme.net',

 type: "APPLICATION",

 system: "INTRANET"

 })

// Create Internal Website 3

CREATE (Intranet3_3:Intranet {

 ip:'10.10.35.4',

 host:'humanresources.acme.net',

 type: "APPLICATION",

 system: "INTRANET"

 })

// Create Webserver VM 1

CREATE (webservervm3_1:VirtualMachine {

 ip:'10.10.35.5',

 host:'WEBSERVER-1',

 type: "WEB SERVER",

 system: "VIRTUAL MACHINE",

 version: "Apache Struts 2.2.0"

 })

 122

// Create Webserver VM 2

CREATE (webservervm3_2:VirtualMachine {

 ip:'10.10.35.6',

 host:'WEBSERVER-2',

 type: "WEB SERVER",

 system: "VIRTUAL MACHINE",

 version: "Apache Struts 2.2.0"

 })

// Create Database VM 1

CREATE (customerdatabase3_1:VirtualMachine {

 ip:'10.10.35.7',

 host:'CUSTOMER-DB-1',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Database VM 2

CREATE (customerdatabase3_2:VirtualMachine {

 ip:'10.10.35.8',

 host:'CUSTOMER-DB-2',

 type: "DATABASE SERVER",

 123

 system: "VIRTUAL MACHINE"

 })

// Create Database VM 3

CREATE (databasevm3_3:VirtualMachine {

 ip:'10.10.35.9',

 host:'ERP-DB',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Database VM 4

CREATE (dwdatabase3:VirtualMachine {

 ip:'10.10.35.10',

 host:'DW-DATABASE',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Hardware 1

CREATE (hardware3_1:Hardware {

 ip:'10.10.35.11',

 124

 host:'HARDWARE-SERVER-3_1',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create Hardware 2

CREATE (hardware3_2:Hardware {

 ip:'10.10.35.12',

 host:'HARDWARE-SERVER-3_2',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create Hardware 3

CREATE (hardware3_3:Hardware {

 ip:'10.10.35.13',

 host:'HARDWARE-SERVER-3_3',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create SAN 1

 125

CREATE (san3_1:Hardware {

 ip:'10.10.35.14',

 host:'SAN',

 type: "STORAGE AREA NETWORK",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Connect CRM to Database VM 1

CREATE (crm3_1)-[:DEPENDS_ON]->(customerdatabase3_1)

// Connect Public Websites 1-3 to Database VM 1

CREATE (Internet3_1)-[:DEPENDS_ON]->(customerdatabase3_1),

 (Internet3_2)-[:DEPENDS_ON]->(customerdatabase3_1),

 (Internet3_3)-[:DEPENDS_ON]->(customerdatabase3_1)

// Connect Database VM 1 to Hardware 1

CREATE (customerdatabase3_1)-[:DEPENDS_ON]->(hardware3_1)

// Connect Hardware 1 to SAN 1

CREATE (hardware3_1)-[:DEPENDS_ON]->(san3_1)

// Connect Public Websites 1-3 to Webserver VM 1

 126

CREATE (webservervm3_1)<-[:DEPENDS_ON]-(Internet3_1),

 (webservervm3_1)<-[:DEPENDS_ON]-(Internet3_2),

 (webservervm3_1)<-[:DEPENDS_ON]-(Internet3_3)

// Connect Internal Websites 1-3 to Webserver VM 1

CREATE (webservervm3_1)<-[:DEPENDS_ON]-(Intranet3_1),

 (webservervm3_1)<-[:DEPENDS_ON]-(Intranet3_2),

 (webservervm3_1)<-[:DEPENDS_ON]-(Intranet3_3)

// Connect Webserver VM 1 to Hardware 2

CREATE (webservervm3_1)-[:DEPENDS_ON]->(hardware3_2)

// Connect Hardware 2 to SAN 1

CREATE (hardware3_2)-[:DEPENDS_ON]->(san3_1)

// Connect Webserver VM 2 to Hardware 2

CREATE (webservervm3_2)-[:DEPENDS_ON]->(hardware3_2)

// Connect Public Websites 4-6 to Webserver VM 2

CREATE (webservervm3_2)<-[:DEPENDS_ON]-(Internet3_4),

 (webservervm3_2)<-[:DEPENDS_ON]-(Internet3_5)

 127

// Connect Database VM 2 to Hardware 2

CREATE (hardware3_2)<-[:DEPENDS_ON]-(customerdatabase3_2)

// Connect Public Websites 4-5 to Database VM 2

CREATE (Internet3_4)-[:DEPENDS_ON]->(customerdatabase3_2),

 (Internet3_5)-[:DEPENDS_ON]->(customerdatabase3_2)

// Connect Hardware 3 to SAN 1

CREATE (hardware3_3)-[:DEPENDS_ON]->(san3_1)

// Connect Database VM 3 to Hardware 3

CREATE (hardware3_3)<-[:DEPENDS_ON]-(databasevm3_3)

// Connect ERP 1 to Database VM 3

CREATE (erp3_1)-[:DEPENDS_ON]->(databasevm3_3)

// Connect Database VM 4 to Hardware 3

CREATE (hardware3_3)<-[:DEPENDS_ON]-(dwdatabase3)

// Connect Data Warehouse 1 to Database VM 4

CREATE (datawarehouse3_1)-[:DEPENDS_ON]->(dwdatabase3)

 128

RETURN *

MATCH (n), (m) WHERE n.name = "Switch 2" AND m.host = "HARDWARE-

SERVER-3_1" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Switch 2" AND m.host = "HARDWARE-

SERVER-3_2" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Switch 2" AND m.host = "HARDWARE-

SERVER-3_3" CREATE (n)-[:ROUTES]->(m)

CREATE (vuln1:Vulnerability {

 name: "Vuln 1.1",

 CVE_number: "CVE-2010-1870",

 description: "Apache Struts Remote Command Execution",

 port_requirements: "80",

 software_requirements:"Apache Struts <2.2.0"

 })

 129

//MATCH (n), (m) WHERE n.version="Apache Struts 2.2.0" AND

m.CVE_number="CVE-2010-1870" CREATE (n)-[:ON]->(m)

MATCH (n), (m) WHERE n.CVE_number="CVE-2010-1870" AND

m.version="Apache Struts 2.2.0" CREATE (n)-[:ON]->(m)

CREATE (exploit1:Exploit {

 name: "Exploit 1",

 description: "Apache Struts Remote Command Execution",

 software_requirements:"Apache Struts <2.2.0"

 })

MATCH (n), (m) WHERE n.system="INTERNET" AND m.name="Exploit 1" CREATE

(n)-[:EXPLOITS]->(m)

MATCH (n), (m) WHERE n.name="Exploit 1" AND m.version="Apache Struts 2.2.0"

CREATE (n)-[:VICTIM]->(m)

MATCH (n) WHERE n.version="Apache Struts 2.2.0" AND n.name="Exploit 1" AND

n.system="INTERNET" RETURN n

MATCH (exploit1:Exploit { name: "Exploit 1" })<-[:VICTIM|EXPLOITS]-

>(vulnmachine) RETURN *

 130

--

--

--

// Create CRM

CREATE (crm4_1:Application {

 ip:'10.10.32.1',

 host:'CRM-APPLICATION',

 type: 'APPLICATION',

 system: 'CRM'

 })

// Create ERP

CREATE (erp4_1:Application {

 ip:'10.10.33.1',

 host:'ERP-APPLICATION',

 type: 'APPLICATION',

 system: 'ERP'

 })

 131

// Create Data Warehouse

CREATE (datawarehouse4_1:Application {

 ip:'10.10.34.1',

 host:'DATA-WAREHOUSE',

 type: 'DATABASE',

 system: 'DW'

 })

// Create Public Website 1

CREATE (Internet4_1:Internet {

 ip:'10.10.35.1',

 host:'global.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 2

CREATE (Internet4_2:Internet {

 ip:'10.10.35.2',

 host:'support.acme.com',

 type: "APPLICATION",

 132

 system: "INTERNET"

 })

// Create Public Website 3

CREATE (Internet4_3:Internet {

 ip:'10.10.35.3',

 host:'shop.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 4

CREATE (Internet4_4:Internet {

 ip:'10.10.35.4',

 host:'training.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 5

CREATE (Internet4_5:Internet {

 ip:'10.10.35.1',

 133

 host:'partners.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Internal Website 1

CREATE (Intranet4_1:Intranet {

 ip:'10.10.35.2',

 host:'events.acme.net',

 type: "APPLICATION",

 system: "INTRANET"

 })

// Create Internal Website 2

CREATE (Intranet4_2:Intranet {

 ip:'10.10.35.3',

 host:'intranet.acme.net',

 type: "APPLICATION",

 system: "INTRANET"

 })

// Create Internal Website 3

 134

CREATE (Intranet4_3:Intranet {

 ip:'10.10.35.4',

 host:'humanresources.acme.net',

 type: "APPLICATION",

 system: "INTRANET"

 })

// Create Webserver VM 1

CREATE (webservervm4_1:VirtualMachine {

 ip:'10.10.35.5',

 host:'WEBSERVER-1',

 type: "WEB SERVER",

 system: "VIRTUAL MACHINE",

 version: "Apache Struts 2.2.0"

 })

// Create Webserver VM 2

CREATE (webservervm4_2:VirtualMachine {

 ip:'10.10.35.6',

 host:'WEBSERVER-2',

 type: "WEB SERVER",

 system: "VIRTUAL MACHINE",

 135

 version: "Apache Struts 2.2.0"

 })

// Create Database VM 1

CREATE (customerdatabase4_1:VirtualMachine {

 ip:'10.10.35.7',

 host:'CUSTOMER-DB-1',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Database VM 2

CREATE (customerdatabase4_2:VirtualMachine {

 ip:'10.10.35.8',

 host:'CUSTOMER-DB-2',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Database VM 3

CREATE (databasevm4_3:VirtualMachine {

 ip:'10.10.35.9',

 136

 host:'ERP-DB',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Database VM 4

CREATE (dwdatabase4:VirtualMachine {

 ip:'10.10.35.10',

 host:'DW-DATABASE',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Hardware 1

CREATE (hardware4_1:Hardware {

 ip:'10.10.35.11',

 host:'HARDWARE-SERVER-4_1',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create Hardware 2

 137

CREATE (hardware4_2:Hardware {

 ip:'10.10.35.12',

 host:'HARDWARE-SERVER-4_2',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create Hardware 3

CREATE (hardware4_3:Hardware {

 ip:'10.10.35.13',

 host:'HARDWARE-SERVER-4_3',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create SAN 1

CREATE (san4_1:Hardware {

 ip:'10.10.35.14',

 host:'SAN',

 type: "STORAGE AREA NETWORK",

 system: "PHYSICAL INFRASTRUCTURE"

 })

 138

// Connect CRM to Database VM 1

CREATE (crm4_1)-[:DEPENDS_ON]->(customerdatabase4_1)

// Connect Public Websites 1-3 to Database VM 1

CREATE (Internet4_1)-[:DEPENDS_ON]->(customerdatabase4_1),

 (Internet4_2)-[:DEPENDS_ON]->(customerdatabase4_1),

 (Internet4_3)-[:DEPENDS_ON]->(customerdatabase4_1)

// Connect Database VM 1 to Hardware 1

CREATE (customerdatabase4_1)-[:DEPENDS_ON]->(hardware4_1)

// Connect Hardware 1 to SAN 1

CREATE (hardware4_1)-[:DEPENDS_ON]->(san4_1)

// Connect Public Websites 1-3 to Webserver VM 1

CREATE (webservervm4_1)<-[:DEPENDS_ON]-(Internet4_1),

 (webservervm4_1)<-[:DEPENDS_ON]-(Internet4_2),

 (webservervm4_1)<-[:DEPENDS_ON]-(Internet4_3)

// Connect Internal Websites 1-3 to Webserver VM 1

CREATE (webservervm4_1)<-[:DEPENDS_ON]-(Intranet4_1),

 139

 (webservervm4_1)<-[:DEPENDS_ON]-(Intranet4_2),

 (webservervm4_1)<-[:DEPENDS_ON]-(Intranet4_3)

// Connect Webserver VM 1 to Hardware 2

CREATE (webservervm4_1)-[:DEPENDS_ON]->(hardware4_2)

// Connect Hardware 2 to SAN 1

CREATE (hardware4_2)-[:DEPENDS_ON]->(san4_1)

// Connect Webserver VM 2 to Hardware 2

CREATE (webservervm4_2)-[:DEPENDS_ON]->(hardware4_2)

// Connect Public Websites 4-6 to Webserver VM 2

CREATE (webservervm4_2)<-[:DEPENDS_ON]-(Internet4_4),

 (webservervm4_2)<-[:DEPENDS_ON]-(Internet4_5)

// Connect Database VM 2 to Hardware 2

CREATE (hardware4_2)<-[:DEPENDS_ON]-(customerdatabase4_2)

// Connect Public Websites 4-5 to Database VM 2

CREATE (Internet4_4)-[:DEPENDS_ON]->(customerdatabase4_2),

 (Internet4_5)-[:DEPENDS_ON]->(customerdatabase4_2)

 140

// Connect Hardware 3 to SAN 1

CREATE (hardware4_3)-[:DEPENDS_ON]->(san4_1)

// Connect Database VM 3 to Hardware 3

CREATE (hardware4_3)<-[:DEPENDS_ON]-(databasevm4_3)

// Connect ERP 1 to Database VM 3

CREATE (erp4_1)-[:DEPENDS_ON]->(databasevm4_3)

// Connect Database VM 4 to Hardware 3

CREATE (hardware4_3)<-[:DEPENDS_ON]-(dwdatabase4)

// Connect Data Warehouse 1 to Database VM 4

CREATE (datawarehouse4_1)-[:DEPENDS_ON]->(dwdatabase4)

RETURN *

// Create CRM

CREATE (crm5_1:Application {

 ip:'10.10.32.1',

 141

 host:'CRM-APPLICATION',

 type: 'APPLICATION',

 system: 'CRM'

 })

// Create ERP

CREATE (erp5_1:Application {

 ip:'10.10.33.1',

 host:'ERP-APPLICATION',

 type: 'APPLICATION',

 system: 'ERP'

 })

// Create Data Warehouse

CREATE (datawarehouse5_1:Application {

 ip:'10.10.34.1',

 host:'DATA-WAREHOUSE',

 type: 'DATABASE',

 system: 'DW'

 })

// Create Public Website 1

 142

CREATE (Internet5_1:Internet {

 ip:'10.10.35.1',

 host:'global.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 2

CREATE (Internet5_2:Internet {

 ip:'10.10.35.2',

 host:'support.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 3

CREATE (Internet5_3:Internet {

 ip:'10.10.35.3',

 host:'shop.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

 143

// Create Public Website 4

CREATE (Internet5_4:Internet {

 ip:'10.10.35.4',

 host:'training.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Public Website 5

CREATE (Internet5_5:Internet {

 ip:'10.10.35.1',

 host:'partners.acme.com',

 type: "APPLICATION",

 system: "INTERNET"

 })

// Create Internal Website 1

CREATE (Intranet5_1:Intranet {

 ip:'10.10.35.2',

 host:'events.acme.net',

 type: "APPLICATION",

 144

 system: "INTRANET"

 })

// Create Internal Website 2

CREATE (Intranet5_2:Intranet {

 ip:'10.10.35.3',

 host:'intranet.acme.net',

 type: "APPLICATION",

 system: "INTRANET"

 })

// Create Internal Website 3

CREATE (Intranet5_3:Intranet {

 ip:'10.10.35.4',

 host:'humanresources.acme.net',

 type: "APPLICATION",

 system: "INTRANET"

 })

// Create Webserver VM 1

CREATE (webservervm5_1:VirtualMachine {

 ip:'10.10.35.5',

 145

 host:'WEBSERVER-1',

 type: "WEB SERVER",

 system: "VIRTUAL MACHINE",

 version: "Apache Struts 2.2.0"

 })

// Create Webserver VM 2

CREATE (webservervm5_2:VirtualMachine {

 ip:'10.10.35.6',

 host:'WEBSERVER-2',

 type: "WEB SERVER",

 system: "VIRTUAL MACHINE",

 version: "Apache Struts 2.2.0"

 })

// Create Database VM 1

CREATE (customerdatabase5_1:VirtualMachine {

 ip:'10.10.35.7',

 host:'CUSTOMER-DB-1',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

 146

// Create Database VM 2

CREATE (customerdatabase5_2:VirtualMachine {

 ip:'10.10.35.8',

 host:'CUSTOMER-DB-2',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Database VM 3

CREATE (databasevm5_3:VirtualMachine {

 ip:'10.10.35.9',

 host:'ERP-DB',

 type: "DATABASE SERVER",

 system: "VIRTUAL MACHINE"

 })

// Create Database VM 4

CREATE (dwdatabase5:VirtualMachine {

 ip:'10.10.35.10',

 host:'DW-DATABASE',

 type: "DATABASE SERVER",

 147

 system: "VIRTUAL MACHINE"

 })

// Create Hardware 1

CREATE (hardware5_1:Hardware {

 ip:'10.10.35.11',

 host:'HARDWARE-SERVER-5_1',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create Hardware 2

CREATE (hardware5_2:Hardware {

 ip:'10.10.35.12',

 host:'HARDWARE-SERVER-5_2',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create Hardware 3

CREATE (hardware5_3:Hardware {

 ip:'10.10.35.13',

 148

 host:'HARDWARE-SERVER-5_3',

 type: "HARDWARE SERVER",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Create SAN 1

CREATE (san5_1:Hardware {

 ip:'10.10.35.14',

 host:'SAN',

 type: "STORAGE AREA NETWORK",

 system: "PHYSICAL INFRASTRUCTURE"

 })

// Connect CRM to Database VM 1

CREATE (crm5_1)-[:DEPENDS_ON]->(customerdatabase5_1)

// Connect Public Websites 1-3 to Database VM 1

CREATE (Internet5_1)-[:DEPENDS_ON]->(customerdatabase5_1),

 (Internet5_2)-[:DEPENDS_ON]->(customerdatabase5_1),

 (Internet5_3)-[:DEPENDS_ON]->(customerdatabase5_1)

// Connect Database VM 1 to Hardware 1

 149

CREATE (customerdatabase5_1)-[:DEPENDS_ON]->(hardware5_1)

// Connect Hardware 1 to SAN 1

CREATE (hardware5_1)-[:DEPENDS_ON]->(san5_1)

// Connect Public Websites 1-3 to Webserver VM 1

CREATE (webservervm5_1)<-[:DEPENDS_ON]-(Internet5_1),

 (webservervm5_1)<-[:DEPENDS_ON]-(Internet5_2),

 (webservervm5_1)<-[:DEPENDS_ON]-(Internet5_3)

// Connect Internal Websites 1-3 to Webserver VM 1

CREATE (webservervm5_1)<-[:DEPENDS_ON]-(Intranet5_1),

 (webservervm5_1)<-[:DEPENDS_ON]-(Intranet5_2),

 (webservervm5_1)<-[:DEPENDS_ON]-(Intranet5_3)

// Connect Webserver VM 1 to Hardware 2

CREATE (webservervm5_1)-[:DEPENDS_ON]->(hardware5_2)

// Connect Hardware 2 to SAN 1

CREATE (hardware5_2)-[:DEPENDS_ON]->(san5_1)

// Connect Webserver VM 2 to Hardware 2

 150

CREATE (webservervm5_2)-[:DEPENDS_ON]->(hardware5_2)

// Connect Public Websites 4-6 to Webserver VM 2

CREATE (webservervm5_2)<-[:DEPENDS_ON]-(Internet5_4),

 (webservervm5_2)<-[:DEPENDS_ON]-(Internet5_5)

// Connect Database VM 2 to Hardware 2

CREATE (hardware5_2)<-[:DEPENDS_ON]-(customerdatabase5_2)

// Connect Public Websites 4-5 to Database VM 2

CREATE (Internet5_4)-[:DEPENDS_ON]->(customerdatabase5_2),

 (Internet5_5)-[:DEPENDS_ON]->(customerdatabase5_2)

// Connect Hardware 3 to SAN 1

CREATE (hardware5_3)-[:DEPENDS_ON]->(san5_1)

// Connect Database VM 3 to Hardware 3

CREATE (hardware5_3)<-[:DEPENDS_ON]-(databasevm5_3)

// Connect ERP 1 to Database VM 3

CREATE (erp5_1)-[:DEPENDS_ON]->(databasevm5_3)

 151

// Connect Database VM 4 to Hardware 3

CREATE (hardware5_3)<-[:DEPENDS_ON]-(dwdatabase5)

// Connect Data Warehouse 1 to Database VM 4

CREATE (datawarehouse5_1)-[:DEPENDS_ON]->(dwdatabase5)

RETURN *

CREATE (switch1:Switch {

 name: "Switch 1",

 type: "PHYSICAL SWITCH",

 system: "PHYSICAL INFRASTRUCTURE"

 })

CREATE (switch2_1:Switch {

 name: "Switch 2",

 type: "PHYSICAL SWITCH",

 system: "PHYSICAL INFRASTRUCTURE"

 })

 152

CREATE (firewall1:Firewall {

 name: "Internal Firewall 1",

 type: "FIREWALL",

 system: "PHYSICAL FIREWALL"

 })

MATCH (n), (m) WHERE n.name = "Switch 1" AND m.host = "HARDWARE-

SERVER-1" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Switch 1" AND m.host = "HARDWARE-

SERVER-2" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Switch 1" AND m.host = "HARDWARE-

SERVER-3" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.type = "PHYSICAL SWITCH" AND m.host =

"HARDWARE-SERVER-2" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.type = "PHYSICAL SWITCH" AND m.host =

"HARDWARE-SERVER-3" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Internal Firewall 1" AND m.name = "Switch 1"

CREATE (n)-[:ROUTES]->(m)

 153

MATCH (n), (m) WHERE n.name = "Internal Firewall 1" AND m.name = "Switch 2"

CREATE (n)-[:ROUTES]->(m)

CREATE (vuln1:Vulnerability {

 name: "Vuln 1.1",

 CVE_number: "CVE-2010-1870",

 description: "Apache Struts Remote Command Execution",

 port_requirements: "80",

 software_requirements:"Apache Struts <2.2.0"

 })

//MATCH (n), (m) WHERE n.version="Apache Struts 2.2.0" AND

m.CVE_number="CVE-2010-1870" CREATE (n)-[:ON]->(m)

MATCH (n), (m) WHERE n.CVE_number="CVE-2010-1870" AND

m.version="Apache Struts 2.2.0" CREATE (n)-[:ON]->(m)

CREATE (exploit1:Exploit {

 name: "Exploit 1",

 description: "Apache Struts Remote Command Execution",

 software_requirements:"Apache Struts <2.2.0"

 })

 154

MATCH (n), (m) WHERE n.system="INTERNET" AND m.name="Exploit 1" CREATE

(n)-[:EXPLOITS]->(m)

MATCH (n), (m) WHERE n.name="Exploit 1" AND m.version="Apache Struts 2.2.0"

CREATE (n)-[:VICTIM]->(m)

MATCH (n) WHERE n.version="Apache Struts 2.2.0" AND n.name="Exploit 1" AND

n.system="INTERNET" RETURN n

MATCH (exploit1:Exploit { name: "Exploit 1" })<-[:VICTIM|EXPLOITS]-

>(vulnmachine) RETURN *

MATCH (switchvar:Switch { name: "Switch 3" })<-[:DEPENDS_ON]->(vulnmachine)

WITH vulnmachine

MATCH p=(vulnmachine) WHERE n.type = "HARDWARE SERVER" RETURN (p)

MATCH (switchvar:Switch { name: "Switch 3" })<-[:DEPENDS_ON|ROUTES]-

>(vulnmachine:Hardware)

WITH vulnmachine

MATCH (vulnmachine)<-[:DEPENDS_ON]-(webserver)<-[VICTIM|EXPLOITS]-

>(exploiter)

 155

WHERE webserver.version = "Apache Struts 2.2.0"

RETURN *

//--

CREATE (switch1:Switch {

 name: "Switch 1",

 type: "PHYSICAL SWITCH",

 system: "PHYSICAL INFRASTRUCTURE"

 })

CREATE (switch2_1:Switch {

 name: "Switch 2",

 type: "PHYSICAL SWITCH",

 system: "PHYSICAL INFRASTRUCTURE"

 })

CREATE (switch3_1:Switch {

 name: "Switch 3",

 type: "PHYSICAL SWITCH",

 system: "PHYSICAL INFRASTRUCTURE"

 156

 })

CREATE (firewall2:Firewall {

 name: "Internal Firewall 2",

 type: "FIREWALL",

 system: "PHYSICAL FIREWALL"

 })

MATCH (n), (m) WHERE n.name = "Switch 3" AND m.host = "HARDWARE-

SERVER-4_1" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Switch 3" AND m.host = "HARDWARE-

SERVER-4_2" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Switch 3" AND m.host = "HARDWARE-

SERVER-4_3" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Switch 3" AND m.host = "HARDWARE-

SERVER-5_1" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Switch 3" AND m.host = "HARDWARE-

SERVER-5_2" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Switch 3" AND m.host = "HARDWARE-

SERVER-5_3" CREATE (n)-[:ROUTES]->(m)

 157

MATCH (n), (m) WHERE n.type = "PHYSICAL SWITCH" AND m.host =

"HARDWARE-SERVER-2" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.type = "PHYSICAL SWITCH" AND m.host =

"HARDWARE-SERVER-3" CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Internal Firewall " AND m.name = "Switch 3"

CREATE (n)-[:ROUTES]->(m)

MATCH (n), (m) WHERE n.name = "Internal Firewall 1" AND m.name = "Switch 2"

CREATE (n)-[:ROUTES]->(m)

MATCH (n) where id(n) = 44 DETACH DELETE n

	St. Cloud State University
	theRepository at St. Cloud State
	5-2019

	Using Graph Databases to Address Network Complexity Problems that can Hinder Security Incident Response
	Andrew Erickson
	Recommended Citation

	Chapter_1
	Ch1_Introduction
	Ch1_Problem_Statement
	Ch1_Nature_of_problem
	Ch1_Limitations
	Ch1_Definition_of_Terms
	Ch1_Summary
	Ch2_Lit_Review
	Ch2_Introduction
	Ch2_Background
	Ch2_Visjs
	Ch2_Vivagraphjs
	Ch2_Cytoscapejs
	Ch2_Standalone_tools
	Ch2_GraphXR
	Ch2_yFiles
	Ch2_Graphistry
	Ch2_Keylines
	Ch2_Lit_Related_to_Problem
	Ch2_Summary
	Ch3_Methodology
	Ch3_Introduction
	Ch3_Design_of_the_Study
	Ch3_DataColl_Small
	Ch3_DataColl_Medium
	Ch3_DataColl_Large
	Ch3_Summary
	Ch4_Data_pres_Analysis
	Ch4_Introduction
	Ch4_DataPres_Small
	Ch4_DataPres_Medium
	Ch4_DataPres_Large
	Ch4_Data_Analysis
	Ch4_Summary
	ch5_results_conc_rec
	Ch5_Introduction
	Ch5_Results
	Ch5_Conclusion
	Ch5_Future_Work

