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Abstract 

The exponential development of data initially exhibited difficulties for prominent 

organizations, for example, Google, Yahoo, Amazon, Microsoft, Facebook, Twitter and so forth. 

The size of the information that needs to be handled by cloud applications is developing 

significantly quicker than storage capacity. This development requires new systems for 

managing and breaking down data. The term “Big Data” is used to address large volumes of 

unstructured (or semi-structured) and structured data that gets created from different 

applications, messages, weblogs, and online networking. 

 

Big Data is data whose size, variety and uncertainty require new supplementary models, 

procedures, algorithms, and research to manage and extract value and concealed learning from it. 

To process more information efficiently and skillfully, for analysis parallelism is utilized. To 

deal with the unstructured and semi-structured information NoSQL database has been presented. 

Hadoop better serves the Big Data analysis requirements. It is intended to scale up starting from 

a single server to a large cluster of machines, which has a high level of adaptation to internal 

failure. 

 

Many business and research institutes such as Facebook, Yahoo, Google, and so on had 

an expanding need to import, store, and analyze dynamic semi-structured data and its metadata. 

Also, significant development of semi-structured data inside expansive web-based organizations 

has prompted the formation of NoSQL data collections for flexible sorting and MapReduce for 

adaptable parallel analysis. They assessed, used and altered Hadoop, the most popular open 

source execution of MapReduce, for tending to the necessities of various valid analytics 

problems. These institutes are also utilizing MongoDB, and a report situated NoSQL store. In 

any case, there is a limited comprehension of the execution trade-offs of using these two 

innovations. This paper assesses the execution, versatility, and adaptation to an internal failure of 

utilizing MongoDB and Hadoop, towards the objective of recognizing the correct programming 

condition for logical data analytics and research. Lately, an expanding number of organizations 

have developed diverse, distinctive kinds of non-relational databases (such as MongoDB, 

Cassandra, Hypertable, HBase/ Hadoop, CouchDB and so on), generally referred to as NoSQL 

databases. The enormous amount of information generated requires an effective system to 

analyze the data in various scenarios, under various breaking points. In this paper, the objective 

is to find the break-even point of both Hadoop/Pig and MongoDB and develop a robust 

environment for data analytics. 

 

Keywords: MapReduce, Fault Tolerance, MongoDB, Pig, NoSQL Database.  
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Chapter I: Introduction 

Introduction 

This Chapter is an introduction to Pig and MongoDB which explains the nature and 

significance of the problem statement, which helps in understanding the experiments, comparing 

the performance of Pig with MongoDB. 

Databases are an accumulation of information. In spite of this fact, when utilizing the 

term database, it refers to the entire database framework and the term refers not to the gathering 

of information alone. The framework refers to handling data, its transfer, transformation or other 

aspects of the database and is called the Database Management System (DBMS). The next step is 

to define how different frameworks write the data into their database. Early models and usage 

depended on the utilization of connected records to make relations amongst data and to identify 

patterns. For example, in a typical Relational Database Management System (RDBMS), the data 

from different tables are inter-related through the primary-key and foreign-key connections. 

These models were not standardized as they required broad preparing with a concrete end goal to 

make effective utilization of their architecture. Databases were created keeping in mind the end 

goal to fulfill this need of storing and accurately analyzing information. Since the inception of 

the conventional databases in the 1960s, diverse kinds have been developed, each utilizing its 

own and specific methods of deriving information and distinctive innovations for taking care of 

data transfer and transformation. Developers started with navigational databases which depended 

on connected records, proceeded onward to relational databases with joins, and, a short time, 

later developed systems without joins in the late 2000s, such as NoSQL (MongoDB, Cassandra, 
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Hypertable, HBase/ Hadoop, CouchDB and so on). NoSQL was developed and has turned into 

an excellent platform for storing and managing unstructured data. 

The data stored in a typical RDBMS can be created, altered, updated and extracted using 

SQL queries. DBMS stores backup files on the Hard Disk. If DBMS fails, one can retrieve data 

from backup. Figure 1 shows this relationship. 

 

Figure 1. Conventional RDBMS architecture. 

Later, a need for storing, retrieving and processing of large data lead to the development 

of Big-Data Technologies. Thus, began the quest to design and adopt Distributed File Systems 

for storing petabytes of data, while minimizing data-latency.  Thus, Google released its Google 

designed distributed storage system called Big-Table to store, retrieve and process peta bytes of 

structured data, at a faster rate.  
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Introduction to Hadoop 

Hadoop was an open-source project from the beginning; made by Doug Cutting of Yahoo 

(also known for his work on Apache Lucene, a common search and sort platform). Hadoop 

initially originated from an undertaking called Nutch, an open-source web crawler made in 2002. 

Throughout the following couple of years, Nutch overtook and developed superior improvised 

versions of various Google Projects. In 2003, when Google released their Distributed File 

System (GFS) to store, retrieve and process peta bytes of structured data, Nutch released their 

own, which was called NDFS (Ghemawat, Gobioff, & Leung, 2003). In 2004, Google presented 

the idea of MapReduce, with Nutch declaring the release of their MapReduce engineering soon 

after in 2005. It was not until 2007 that Hadoop was formally released. Utilizing concepts 

extended from Nutch, Hadoop turned into a platform for parallel handling of huge amounts of 

data scaling over clusters of production servers. Hadoop is designed to address data analytics of 

large datasets, and it is not an alternative for relational database frameworks.  

History of Hadoop  

In the 1990s, Google needed to gather more information and to get the correct layout; it 

has taken 13 years to accomplish this. In 2003, they presented GFS (Google File System) which 

is a distributed file system to store extensive information designed to interact with applications 

using distributed data (Ghemawat et al., 2003). In 2004, they introduced MapReduce which 

performs simplified data processing on large clusters through functional programming. They 

published a “white paper” which had a depiction of GFS and MapReduce. Yahoo took the white 

paper which was written by Google and began implementing and published HDFS (Hadoop 

Distributed File System) and MapReduce. These are the two main segments of Hadoop. Doug 
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Cutting then presented Hadoop in 2005. Meanwhile, Google presented Bigtable enabling its 

application a dynamic control over the format and structure of data, thus providing data to its 

projects (Chang et al., 2006). Yahoo, which is known as the next best web browser company 

after Google, presented their HDFS in the year 2006-2007 and their MapReduce in 2007-2008. 

In 2008, Yahoo introduced a distributed Data Serving System called as PNUTS. “PNUTS 

provides data storage organized as hashed or ordered tables, low latency for large numbers of 

concurrent requests including updates and queries, and novel per-record consistency guarantees” 

(Cooper et al., 2008, p. ii).  

These cloud services providing data using distributed systems with low latency, are not 

comparable with each other due to the difference in the size, speed of data requests made by 

various applications. Yahoo published a paper “Benchmarking Cloud Serving Systems with 

YCSB” in 2010 Cooper, Silberstein, Tam, Ramakrishnan, and Sears (2010) creating a benchmark 

between multiple Cloud Serving systems such as Cassandra, Yahoo’s PNUTS, HBase and a 

sharded system of MySql. 

Components of Hadoop 

Hadoop is an open source system provided by Apache programming establishment for 

storing and preparing enormous data sets with the cluster of commodity machines which is 

finished by these segments.  

HDFS (Hadoop Distributed File System) 

HDFS is an exceptionally designed File System for storing large information collections 

with clusters of commodity equipment with gushing access design which supports “Write Once 

Read Many Times.” The block size by default is 64MB or 128MB. Shvachko, Kuang, Radia, and 
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Chansler (2010) expressed the way HDFS is economical and scalable as, “In a large cluster, 

thousands of servers both host directly attached storage and execute user application tasks. By 

distributing storage and computation across many servers, the resource can grow with demand 

while remaining economical at every size” (p. 1).  

Pig 

Apache Pig is a data flow handling (scripting) language. It consists of a high-level 

language called Pig Latin for articulating complex data-analytics programs and is used as a 

platform for analyzing massive datasets. The principal feature of Pig programs is that their 

architecture is compliant to significant parallelization, empowering them to deal with massive 

datasets and a straightforward language structure. Its ability of parallelization of jobs gives a 

reflection that makes Hadoop jobs faster and less demanding to compose than usual Java 

MapReduce employments. 

Brief History of Pig 

The pig was initially created by Yahoo in 2006, for analysts to have an impromptu 

method for making and executing MapReduce jobs on extensive data sets. It was built to 

diminish the overhead time through its multi-query approach. Pig is likewise made for experts 

(primarily programmers) from a non-Java background, to make their activity less demanding. 

Introduction to MongoDB 

Initially, MongoDB was created by the organization 10gen in 2007 as a cloud-based 

application motor, which was planned to run grouped programming and services. They built two 

primary segments, Babble (the application motor) and MongoDB (the database). The project did 

not take off, driving 10gen to scrap the application. Later, they released MongoDB as an open-
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source project. In the wake of turning into open-source programming, MongoDB thrived, 

attracting support from a development group with different upgrades created to enhance and 

incorporate in the new release. While MongoDB consists of a Big Data design, it is vital that it 

has to be universally useful, intended to supplant or upgrade existing RDBMS frameworks, 

giving it a sound assortment of utilization cases. 

Overview of MongDB database. MongoDB (the term derived from the word 

humongous) is an open source, and report arranged NoSQL database that has of late achieved 

some recognition in the data science and analytics community (Chodorow & Dirolf, 2010). Then, 

it is a standout amongst the most well-known NoSQL databases, because it favors master-slave 

replication. The responsibility of a master is to perform peruses and composes through the slave 

limits to duplicate the information obtained from the Master, to carry out the real task, and 

reinforce the jobs on the data. The slaves do not partake in compose assignments yet may choose 

a substitute master if there should be an occurrence of the current master failure. MongoDB 

utilizes parallel configuration of JSON-like archives underneath and has an advantage of 

building a robust framework, not at all like the standard relational databases. In case of the 

arrangement in MongoDB, it can return specific fields, and query sets the range to seek by fields, 

run sub-queries, customize the articulation view, and so on and may incorporate the client 

characterized complex JavaScript capacities. As implied as of now, MongoDB hones adaptable 

construction and the report structure in a gathering, called Collection. Thus, collections may help 

in change of primary fields of different records in accumulation that can store different kinds of 

data. 
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There are sufficient tools available in MongoDB, required for interacting with many 

programming languages, which are utilized to create a customized framework that uses 

MongoDB as their backend technology. There is an excellent requirement of using MongoDB as 

a sophisticated in-memory database; in such cases, the application dataset is dependably small. 

However, it is simple for support and can make a database designer’s work easier; this can be an 

advantage for sophisticated applications that require massive database administration capacities. 

A portion of the prominent clients of MongoDB is MetLife, Craigslist, Forbes, The New York 

Times, Sourceforge, eBay, and so on. For instance, The New York Times has its frame building 

application that permits photograph storage. MongoDB database is used to design these 

applications. Then, Sourceforge has shown more interest in MongoDB and used it to store back-

end pages.  

History of MongoDB. MongoDB was released in 2009 and is composed using C++, and 

it is one the most famous NoSQL database framework. MongoDB stores information in JSON-

like reports that can shift in structure. Related data can be stored together for quick query access 

through the MongoDB query language. MongoDB utilizes dynamic patterns, which makes 

records without first characterizing the structure, for example, the properties or the information 

writes. It is conceivable to change the structure of documents by just including new qualities or 

erasing existing fields. This model speaks to serial connections, to store clusters, and other more 

perplexing structures effortlessly. Archives in a record are not required to have the same 

arrangement of fields. MongoDB is outlined with high accessibility and adaptability and 

incorporates replication and auto-sharding.  



15 

 

For instance, consider a General Store Management System which deals with the 

business activities in a grocery store. These include keeping up the records of stock points of 

interest, keeping track of the deals that increased sales for a specific month/year and so forth. 

Therefore, clients need less time for computation and the business action can be finished within 

less time through a standard framework. Thus, the time saved by quickly maintaining records is 

used to focus more on implementing better business decisions. The database stores the 

information, which reduces paperwork, and the client can invest additional energy in examining 

the store.  

MongoDB design.The replication of collections provides superior replication including 

automated failure handling, while sharded groups make it conceivable to separate large data sets 

over multiple machines, directly connected to the Client machines.  

 

Figure 2. MongoDB architecture. 
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MongoDB clients consolidate the replicated collections and sharded groups to give 

elevated amounts of the additional data sets, which are directly accessible for applications. 

MongoDB supports sharding through the configuration of sharded clusters. 

 

Figure 3. Sharding in MongoDB. 

Following is a explanation of the essential components of MongoDB:  

• Shards. Utilized to store information. They give high accessibility and data 

consistency. Internally, every shard is a different replicated collection.  

• Config Servers. Config servers store the collection’s metadata, which contains a 

mapping of the collection’s data index to the shards. The query router utilizes this 

metadata to target activities to specific shards. Inherently, sharded collections have 

precisely three config servers. 
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• Query Routers. Query routers are essential in MongoDB; they interface with client 

applications and direct activities to the appropriate shard. The query routers processes 

and focuses on the events to shards and later returns results to Client Machine. A 

shared group can contain more than one query router to split the client machine’s 

request load. A Client machine sends a request to one of the query routers. Usually, a 

sharded collection has numerous query routers, and the Mongos assigns the requests. 

Some features of MongoDB. 

• Adaptability: MongoDB stores information in reports organized by utilizing JSON. 

It uses less archive blueprint and maps to local programming language write. 

• Rich query language: It gives the components required by RDBMS. Dynamic 

queries, sorting, backup files, frequent updates, simple collection, up sort (refresh if 

the record exists and embed on the off chance that it does not) are a few RDBMS 

highlights. Adaptability and versatility are the additional features. 

• Auto-sharding: Auto-sharding enables to scale the cluster linearly by including more 

machines. It is conceivable to expand the effectiveness which is critical on the web 

when the load can increase abruptly and bring down the site. 

• Ease of usage: Feature of being easy to utilize, keep up and arrange. 

• High performance: It gives the best data determination and, decreases I/O 

movement on the database framework by supporting implanted archives, and the use 

of fast and robust queries.   
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• High accessibility: MongoDB uses a replica set. The replica set is a cluster of servers 

that keep up the same dataset. It gives automatic failover, excess and expanded data 

accessibility.  

• Support for multiple storage engines: It supports different storage engines, for 

example, Wired Tiger stockpiling motor, MMAPv1 stockpiling motor. It likewise 

supports a pluggable capacity motor API that enables an outsider to create a capacity 

motor for MongoDB.  

Table 1 

Terms and Concepts of Different Databases 

Relational Database MongoDB Database 

Fixed Schema Schema Less 

Table Collection 

Rows, Columns Documents 

Joins Embedded Documents 

Vertical Scaling Vertical Scaling, Horizontal Scaling 
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Table 2 

Basic Queries Used in Two Different Databases 

Query Relational Database MongoDB Database 

 

Create Command CREAT TABLE 

table_name 

(    column_name1 datatype, 

Column_name2 datatype) 

 

Noneed for defining schema 

Insert Command INSERT INTO 

table_name 

(column_name 1, 

column_name 2) 

values         ( 

value 1,value 2) 

 

Dlb.collection_name. 

Insert (     {name1:   alu 1, 

Name2: value 2}) 

Delete Command DELETE      FROM 

table_name 

WHERE (condition) 

 

db.collection_name.remove 

({condition}) 

Import Command BULK     INSERT 

Table_name    FROM  

File_name WITH { 

FIELDTERMINATOR = ; ; 

ROWTERMINATOR = +/N+ 

} 

GO 

 

Mongoimport      --db 

Database_name       -- 

collection 

colletion_name       --type 

csv –file “file_name” 

Select Command SELECT 

column_name FROM 

table_name 

 

db.collection_name ({}, 

{condition}) 

 

 

Problem Definition 

This section gives a short definition of Hadoop and MongoDB. After the definition, now 

the execution of both the frameworks in term of usage in the data science market is assessed. The 

MongoDB database comprises a group of databases in which every database contains various 

collections. Since MongoDB works with dynamic diagrams, each collection may hold a distinct 

variety of data. Each query gets sent as a record. These records are created in form the of JSON 

format: a list of key-value pairs. The value can be off for the most part three writes: a set of 

unprocessed values, a non-homogeneous tuple or a list of key-value pairs. To query these key-
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value pairs, the user can convert the collections joined as a list of key-value sets. It is 

additionally possible to query related fields. The queries are likewise JSON-organized; 

subsequently, a random query can consume significantly more memory than a similar query for 

the other databases. If the implicit queries are excessively constrained, which is possible, making 

it impossible to send JavaScript logic to the server for more complicated queries.  

MongoDB provides principally two kinds of replication: master-slave and replica sets. In 

the master-slave replication, the master has control of the complete access to the data, and it 

composes each change made to its slaves. The slaves can be conceivable to analyze the 

information. A replica set works same as master-slave replications. However, it is possible to 

choose another master if the first master is down. Another critical element that is supported by 

MongoDB is programmed sharding. Utilizing this feature data can be allocated and distributed to 

various nodes. The master needs to confirm a sharding key for every collection which 

characterizes how to store the documents. In such a domain, the Client interacts with a 

Secondary master node called mongo process which investigates and side-tracks the query to the 

proper node or nodes. For preventing the loss of data, each logical node contains physical servers 

which replicate the data present in the node. By utilizing this framework, it is equally 

conceivable to use MapReduce having a decent execution. 

Numerous organizations are utilizing incorporated systems instead of using them 

independently to consolidate the strengths of every one of these frameworks (Apache Pig and 

MongoDB). Both Apache Pig and MongoDB can store in distributed data frameworks and can 

perform data analytics. The information investigation process includes a few phases, for 

example, importing semi-organized information, storing in conveyed document frameworks, at 
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that point execute the required tasks utilizing MapReduce. The vast majority of the above 

activities have a scope to be implemented on both the structures Apache Pig and MongoDB. To 

decide the structure required for every one of these stages, an examination of the execution 

amongst MongoDB and Pig is fundamental. 

Nature and Significance of Problem 

This study includes investigation of the performance of Pig/Hadoop with MongoDB to 

decide the engineering and functionalities of these two structures in a coordinated framework. 

Subsequently, this examination requires performing data transformations on specific large 

chunks of data. After that, the study illustrates the execution of both the frameworks for different 

functionalities, for example, bringing in the required information, investigating the information 

and storing the results of the analysis. A set of detailed experiments are performed to quantify 

the performance of two different frameworks under the influence of various parameters. 
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Chapter II: Background and Review of Literature 

Introduction 

The literature review covers all the research papers, books, online articles and online 

recordings related to Pig/Hadoop, MongoDB systems, and other Big Data Analytics tools. 

Additionally, review and experimental data from past research papers and articles which should 

empower the comprehension and improvement of an Integrated Big This report also uses Data 

Analytics tools such as Hadoop and MongoDB.   

Background 

As of late, in the wake of understanding the significance of NoSQL databases, critical 

work is being done.  Arora and Aggarwal (2013) proposed an algorithm to transform SQL 

databases (MySQL) to NoSQL databases (MongoDB). This work can get extended to other 

NoSQL databases in the future. 

The proposed algorithm gets implemented in NetBeans Java IDE. Rao and Govardhan 

(2013) proposed the algorithm to enhance the execution of online aggregation which is, “Sharded 

Parallel MapReduce in MongoDB for Online Aggregation.” It was estimated to produce results 

in less time when contrasted with the customary MapReduce framework. A technique was 

proposed to incorporate two kinds of databases, to be specific MySQL and MongoDB, by 

including a middleware between the application layer and the database layer. The middleware 

consists of metadata which contains various kinds of bundles. Three mainstream NoSQL 

databases were considered, to be specific Cassandra, MongoDB, and CouchDB. Also, the paper 

infers that every arrangement was produced for various applications and had their upsides and 

downsides. 
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Mapanga and Kadebu (2013) made proposals for addressing the security issues of 

NoSQL databases: influencing utilization of outsider to open source devices for review and 

logging, worked in verification, input approval and to get control. Obligations for segregation 

and encryption of data are the goals of Firesmith’s security prerequisites. 

Hadoop is a structure which is utilized for the capacity and handling of vast volumes of 

information in distributed record framework or condition, across a group of nodes through 

programming models as a solution for the conventional RDBMS frameworks. 

The development of this Integrated Big Data Analytic instrument requires the best 

possible comprehension of the functionalities of every one of the components in the Hadoop and 

MongoDB systems. This paper clarifies these essential elements and the features of these 

systems, in the accompanying pages. 

Literature Review 

The Shvachko et al. (2010) HDFS (Hadoop Distributed File System) is the File System 

created in light of the guideline of a distributed file system with parallel processing. HDFS is 

profoundly a fault tolerant and uses minimal effort equipment hardware, as large memory is not 

required. 

Data Localization is one of the features of Hadoop, enabling it to handle data at their res 

of pective DataNodes. Thus, Hadoop system controls the data part instead of the coding part. The 

Hadoop framework contains the accompanying segments which perform the Data Localization: 

Client, Name Node, and Data Nodes. Every one of these segments has various functions in 

managing the framework. 
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• Name Node: The name node works as a master. It can keep up the namespace of the 

entire data in the Hadoop framework. The name node contains a document 

framework tree and the metadata for every one of the records and registries put away 

in the tree. The name node consistently stores the above data as two locations: fs-

image and the edit-log. The Namenode also stores the metadata containing the 

physical location of the actual data in the DataNodes.   

• Client Node: The Client Node is the mechanism through which the user connects 

with a Hadoop Cluster (Name node and Data Node). It resembles the interface 

between the client and the name node. At whatever point, a client needs to compose 

information into a Hadoop Cluster, and the correspondence must be set up by the 

customer. The Client sends a request to the name node, asking to name a gathering of 

information nodes to which the client composes the information in a pipeline 

technique. 

• Data Node: The Data Nodes are an integral component of the whole HDFS. They are 

the nodes on which extensive records are separated into blocks and distributed as 

suggested by the name node. 

The components of a conventional Hadoop Cluster connect in an organized manner, and 

they lose coordination amongst them if any disconnection in the cluster occurs. Mainly, if any 

data node loses connection with its Name node, at that point the whole information is 

inaccessible until the connection between the name-node and data-node is re-established back. 

Organizations like Facebook and YouTube, which rely on storing and maintaining the Big Data 

of their clients, cannot afford to cause any inconvenience to their users in accessing their data. 
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The Hadoop Cluster guarantees data integrity and adaptation to non-critical failure by providing 

replication. Each document imported is separated into blocks and after that replicated into 

various Data-nodes in the Hadoop Cluster. 

MapReduce 

Dean and Ghemawat (2008) explained about MapReduce concept. MapReduce is a 

programming model for handling the information stored in the distributed data framework. 

MapReduce programs support diverse programming languages, for example, Java, Python Ruby, 

C++. The MapReduce, as the name proposes, is the mix of two functions: Mapping and 

Reducing.  

The Mapping procedure includes the isolation of the key-value information from the 

large and voluminous details. At this stage, the data is transformed and segregated based on 

certain conditions which ease the aggregations performed in the reducing stage. Hence, only the 

analyzed data elements are separated, and they receive a key-value combination to simplify the 

process of identifying each record. The key enables in identifying subgroup, and the value is the 

data to be analyzed. Together, they are the required key-value pair. 

Subsequently, the key-value pair generated as the output in the Mapper Stage works as 

the input in the Reduce stage. The Reduction procedure, as the name proposes, works to draw 

out a pattern or trend of the data being analyzed through aggregations, while the basic 

aggregation operations being, the calculation of max values, the summation, average, count, 

etcetera. 

YARN (Yet Another Resource Negotiator) is the redesigned version of the MapReduce, 

correcting the issue of bottlenecking when more than one task gets executed on the MapReduce. 
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In YARN, the Application-Master and Resource-Manager share the responsibilities of a job 

tracker between theManagerm. The basic idea of YARN is that the Application-Master consults 

with the Resource-Manager and allocates new memory resources, along with the processors 

required for performing that specific task (Vavilapalli & Murthy, 2013). 

MongoDB 

MongoDB is a flexible, versatile and capable document-oriented NoSQL database. 

MongoDB has numerous unique features which influence it to stand out among the other NoSQL 

databases, which include but not limited to auxiliary lists, Ad hoc queries, indexing, replication, 

load balancing, capped collections and sharding.  

• Indexing: Indexing is one of the various components controlled by MongoDB, to 

query and extract data at a quicker rate. Queries which do not use the element of 

order perform a collection-scan (this term has its origin in connection with the 

RDBMS. It means searching the whole collection to get hold of the required record, 

and consequently, indexing decreases the preparing time of the Data Base). 

• Shards: A shard stores a small portion of the entire data stored in a sharded cluster. 

Many such shards together contain the entire data stored by the Sharded cluster. 

• Sharding: Sharding is a way of dividing a large amount of information into small 

subsets of data to, improve the preparation of the data distributed across many 

machines. This group of nodes, which contain subsets of the whole MongoDB 

collections, is called Shards. Shards are similar to the distributed filesystem in 

Hadoop. One of the essential objectives of Sharding is preparing to visualize these 

groups as a single machine to the client while saving time in gathering every one of 
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these bits of information from different shards to generate the required report. Hence, 

the MongoDB Sharding architecture includes a unique machine called MongoS 

(Mongo Server) whose essential function is to retrieve the information without 

noticeable time delay by directing the expected information to the client machine 

from the various Shards. To empower this component, the Mongos maintains a table 

containing the lists of every datum set or piece of information coordinated to that 

Shard.  

After Yahoo published its paper on establishing benchmark for creating a comparibility between 

the various Distributed Cloud services, a new study by , provided an insight into the influence of 

technical choices over the elasticity of cloud databases in the paper by Dory, Mejas, Roy, and 

Tran (2011). Since, then the focus has shifted on developing models which can store much larger 

data with ease and provide data on request with less latency and fault tolerance. Meanwhile, 

Fadika and Govindaraju (2010) published a MapReduce model flexible to process large and 

small data-sets, i.e, for both on-disk and in-memory applications called LEMO-MR. Later, FCM 

algorithms are applied on large data sets for clustering and performing efficient analytics 

(Havens, Bezdek, Leckie, Hall, & Palaniswami, 2012). The Materials Genome project insisted 

on developing robust open-source computing platforms for identify all possible properties of in-

organic materials and has also influenced the data analytics field of computer science (Jain et al., 

2013).While they were surveys conducted aiming at reviewing the process of generation, 

acquisition, storage and analysis of data (Chen, Mao, & Liu, 2014), simultaneous efforts were 

made to optimize the Hive queries performing transaction on large datasets through Indexing and 

Join ordering algorithms (Jain & Kakhani, 2015). 
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 Meanwhile, facebook created its NoSql distributed database, Cassandra in 2009, which is 

designed to meet the data requirements of Facebook’s through using low-cost hardware 

infrastucture and providing high end read and write efficiency (Lakshman & Malik, 2009).  Soon 

after the inception of NoSQL databases, studies were performed to evaluate their impact on 

traditional RDBMS by comparing the cloud scalability of NoSQL database and its performance 

(Pokorny, 2011).  Later in 2014, an architecture was developed to integrate the NoSql and Sql 

platforms (in this case MongoDB and MySQL), through a virtual layer built on top of the 

NoSQL System (Lawrence, 2014).  Further studies were made to evaluate the performance of 

Hadoop integrated with NoSQL databases such as MongoDB and Cassandra (Seema & Ayush, 

2014).    

 The Big Data Distributed Models and NoSQL Database models, both were believed to 

threaten the existence of RDBMS. But, later studies revealed that Sql stays alive with SQL 

NoSQL models have different benchmark standards thus, both have their own standards in 

developing data models (Floratou, Teletia, Dewitt, Patel, & Zhang, 2012). 

 “Therefore, research is needed to delineate the advantages of distributed databases and 

this study addresses this with data obtained from a basic configuration of a Cassandra database. 

Data collected from the Cassandra test bed revealed that in general, a distributed database using 

additional nodes could reduce latency. However, diminishing returns were observed as additional 

nodes were added into the experiment” (Guster, O’Brien, & Lebentritt, 2013, p. i). Guster et al. 

has already researched the inactivity of distributed document frameworks on a NoSQL Database 

framework called Cassandra, and how the execution changes as the quantity of slave nodes 

increments. Presently, this paper draws motivation from the Guster et al. (2013) work, and 
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reports on a comparative execution examination conducted between the distributed frameworks 

of Pig/Hadoop and MongoDB. 
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Chapter III:  Methodology 

Introduction 

Traditional Relational Database Management Systems (RDBMS) are designed around 

relations and tables to arrange and structure data in a combination of rows and columns. Current 

conventional database frameworks such as RDBMS is likely to remain as such for a long time to 

come. For some organizations, RDBMS arrangements are sufficient in maintaining, managing 

and analyzing their data; however, they are not feasible for every use case. These frameworks 

regularly keep running into bottlenecks with versatile data sets and data replication when dealing 

with a large amount of data/data sets.  

Study of Hadoop 

Hadoop, as already mentioned, is a framework which supports a distributed environment. 

The essential parts of Hadoop are the Hadoop Distributed File System (HDFS) and MapReduce 

programs, programmed in Java. Supplementary tools are a collection of other Apache items, 

including:  

1. Hive (for querying data) 

2. Pig (for analyzing large data sets) 

3. HBase (column-oriented database) 

4. Oozie (for planning Hadoop jobs) 

5. Sqoop (for interfacing with different frameworks, for example, BI, investigation, or 

RBDMS) and  

6. Flume (for conglomerating and pre-processing information).  

Like MongoDB, Hadoop’s HBase database achieves flat file adaptability through 

database sharding. Hadoop is intended to keep running on multiple nodes, with the capacity to 
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process information in various configurations, including collecting data from numerous sources. 

Transfer of information gathered is taken care of by the HDFS, with a discretionary information 

structure actualized with HBase, which distributes information into segments (unlike the two-

dimensional designation of an RDBMS into columns and rows). Data would then be able to be 

sorted (through utilization of programming like Solr), queried with Hive, or have different 

analytics or cluster jobs keep running on it with decisions accessible from the Hadoop 

environment. 

Study of MongoDB 

MongoDB is an exciting technology, as it is a NoSQL database adopted by a large 

number of organizations, although it does not have much endorsement. A noteworthy objection 

about MongoDB is its adaptation to non-critical failure issues, which can cause resources to be 

scattered. However numerous occurrences of these issues can be discovered on the internet. 

Additional complaints against MongoDB are composing bolt imperatives, information collection 

issues, poor reconciliation with RBDMS, and that’s only the tip of the iceberg. MongoDB 

likewise can import information in CSV or JSON formats only, which may require additional 

data transformation.   

Hadoop’s critical issue used to be the Namenode, which is a single point of failure of the 

HDFS clusters; if the Namenode fails, then the framework no longer works. Although this issue 

was addressed with the arrival of HDFS High Availability (HA), which gives the capacity to 

arrange two excess Name nodes, so the framework will failover to the Secondary NameNode 

should an issue emerge. Additional concerns with Hadoop are the measure of the time it takes to 

finish data handling job and its inefficiency with regulating resources. 
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As the products Hadoop and MongoDB develop with newer versions, a large number of 

these issues tend to develop later on, with the arrival of new updates or new programming 

brought through their innovation communities. RBDMS arrangements are additionally 

progressing, and so are other NoSQL platforms. As versions of these tools’ functionalities keep 

improving, it is exciting to see how all these distinctive platforms advance and change by 

addressing the issues of the developing innovation and user requests. 

Hive. Hive is a data repository framework based over Hadoop. Hive gives instruments to 

empower simple information outline, specially appointed querying and investigation of 

comprehensive datasets stored in Hadoop records. It provides a device to put a structure on this 

data, and it likewise provides a primary query language called Hive-QL, similar to SQL, 

empowering clients comfortable with SQL to search the data through these queries.   

HCatalog. It is a storage administration layer for Hadoop that empowers clients with 

various data handling instruments. HCatalog’s table abstraction presents clients with a relational 

perspective of information in the Hadoop distributed file system (HDFS) and guarantees that 

clients do not need to worry about where or in what kind of format their information got stored.  

MapReduce. Hadoop MapReduce is a programming model and programming structure 

for composing programs that quickly processes large measures of data in parallel on the cluster 

of PC nodes. MapReduce utilizes the HDFS to get to record sections and to lessen inappropriate 

outcomes. 

HBase. HBase is a distributed, column-based database. HBase utilizes HDFS to take 

leverage of its fault tolerance. It maps HDFS information into a database-like structure and gives 

Java API access to this DB. It reinforces cluster style computations utilizing MapReduce and 
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instant queries (random scan of that database). HBase is as a part of Hadoop Development 

plugins used for random real-time reading/writ irequiredng. Its objective is the facilitating of 

large tables running over clusters of custom nodes.  

Hadoop distributed file system. Hadoop Distributed File System (HDFS) is the 

essential storage system utilized by Hadoop applications. HDFS is, as its name suggests, a 

distributed file system that gives high throughput access to application information making 

numerous replicas of data blocks and dispersing them on register nodes all through a group to 

empower dependable and quick algorithms.  

Core. The Hadoop core comprises an arrangement of segments and interfaces which 

gives access to the distributed file system and general I/O (Serialization, Java RPC, Persistent 

information structures). The core segments additionally give “Rack Awareness,” an enhancement 

which considers the topographic grouping of servers, limiting data movement between servers 

from different geographic clusters.  

High-Level Architecture of Hadoop 

The architecture of Hadoop is a MapReduce system that works on HDFS or HBase. 

Fundamentally, Hadoop breaks down a task into a few similar but smaller tasks that can get 

executed adjacent to the data (on the Data Node). In this way, each job gets executed parallelly: 

the Map stage. Later on, all the different outcomes boil down to one outcome: the Reduce stage. 

In Hadoop, the Job Tracker (Java process) is in charge of observing the activity, dealing with the 

MapReduce stage, and dealing with the repeats if there should be an occurrence of errors. The 

Job Tracker (Java process) is running on the various Data Nodes. Each Job Tracker executes the 

activity on the data nodes through Task Trackers. The center of the Hadoop Cluster Architecture 
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is beneath HDFS (Hadoop Distributed File System): HDFS is the essential record storage, fit for 

capturing a substantial number of large documents.  

MapReduce 

MapReduce is the programming model by which information is dissected utilizing the 

processing resources inside the cluster. Every node in the Hadoop cluster is either a master or a 

slave. The slave nodes are always both a Data Node and a Task Tracker. 

 

Figure 4. High-level architecture of Hadoop ecosystem. 

Figure 4 shows the high-level architecture of Pig and Hive and that these two components 

interact with one another using MapReduce for getting access to various data.  

• Name Node: Stores and manages metadata of the data stored in DataNodes and its 

access control. There is precisely one Name Node in each cluster.  

• Secondary Name Node: Transfers checkpoints at configured time intervals from the 

name Node for adaptation to internal failure. There is precisely one Secondary Name 

Node in each cluster.  
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• Job Tracker: Hands out a task to the slave nodes. There is just one Job Tracker in 

each cluster. 

• Data Node: It is used to store data in the form of blocks, and the meta-data gets stored 

in the Name Node. Every data node deals with its own privately connected storage 

and stores a replica of a few or all blocks in the record framework. There is at least 

two Data Node in each cluster.  

• Task Tracker: It is one of the services in the Hadoop framework; it performs tasks 

assigned by the Job Tracker, at the DataNodes which are in the same cluster. There is 

at least one Task Tracker in each node.  

Hadoop Distributed File System (HDFS) 

HDFS group has two kinds of nodes working in a master-slave design: a Name node (the 

master) and various DataNodes (slaves). The name node deals with the file system namespace. It 

keeps up the file system tree and the metadata for every one of the records and registries in the 

tree. The name node likewise knows the data nodes on which every one of the blocks for a given 

file got recorded. Data nodes are the essential components of the Hadoop Distributed file system. 

They store and recover parts when they are requested to (by the client or the name node), and 

they send feedback to the name node intermittently with whereabouts of data that they are 

capturing. The Name Node implements replication factor of data blocks which is the number of 

replicas of each block across the cluster. In a run of the mill HDFS, block-size is 64MB, and 

replication factor is 3 (second duplicate on the adjacent rack and third on the remote rack). 

Figure 5 depicts a Hadoop Distributed File System HDFS. Hadoop MapReduce 

applications utilize capacity in a way that is unique concerning broadly useful processing. To 
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examine an HDFS record, for analysis the client applications use a standard Java document input 

stream, as though the document was in the local file system. In the background, however, this 

stream is controlled to recover information from HDFS. To begin with the process of analysis, 

the NameNode is approached to ask for authorization. Internally, the Name Node interprets the 

HDFS filename into a rundown of the HDFS block IDs containing that document and a summary 

of Data Nodes that store each block and restore the summaries to the Client. Next, the client 

opens a connection with the “nearest” Data Node (because of Hadoop rack-awareness, yet 

ideally a similar node) and requests a particular block ID. The requested block returns through 

the same connection, and the data gets conveyed to the application.   

In the process of writing data into HDFS, customer applications see the HDFS record as a 

standard YARN stream. Inside, be that as it may, streamed data first gets divided into HDFS-

sized blocks (64MB) and after that little packet (64kB) by the client thread. Every packet gets 

enqueued into a FIFO that can hold up to 5MB of information accordingly decoupling the 

application thread from Storage system inactivity amid ordinary activity. An instant thread is in 

charge of dequeuing packets from the FIFO, coordinating with the Name Node to allocate HDFS 

Block IDs and targets, and transmitting bits to the Data Nodes (either neighborhood or remote) 

for storage. A third thread oversees affirmations from the Data Nodes that information has been 

resolved to plate.  
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Figure 5. Hadoop distributed file system cluster architecture. 

The Hadoop Distributed File System (HDFS) is an approach to store and investigate 

substantial static data files over different machines instead of a single machine holding the whole 

circle limit of the collected records. HDFS utilizes information replication and dispersion of the 

information and is made to be fault tolerant. A record is stacked into HDFS and is duplicated, 

and divided into units called blocks, which are commonly 64 MB of information and handled 

and put away with a bunch of hubs or machines called Data Nodes. HDFS utilizes the Master 

and Slave design where the Master (Name node) is in charge of the administration of metadata 

and execution of jobs to the Data Node. 

Hadoop daemons.  As indicated by the Apache Hadoop, A simple Hadoop cluster 

incorporates a single master and different slave nodes. The master node includes a Namenode, 

Job Tracker, Task Tracker, and Data Node. 
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Hadoop comprises five daemons. They are separate from the master node and slave 

nodes. Master daemons include three Hadoop daemons, for example, the Namenode, Secondary-

name node and a Job Tracker. The remaining daemons are the two slave daemons, the Data 

Nodes, and the Task Tracker. A daemon is a foundation procedure. The master daemons can 

converse with each other, and all slave daemons coordinate amongst each other. On the off 

chance that a Namenode is a Master node, its associated slave node is a Data Node. Job Trackers 

converse with Task Trackers. If the Name node is a Job Tracker, its associated slave node is a 

Task Tracker as shown in Figure 6 below. 

 

Figure 6. HDFS daemons and Hadoop core components. 

• Namenode: The Namenode is used to hold the Metadata (information about the 

location, size of files/blocks) for HDFS. The Metadata gets stored on RAM or Hard-

Disk. There is only one Namenode in a cluster. Failure of the Namenode causes 

complete failure of the Hadoop cluster.  
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• Secondary Namenode: It acts as a backup for the metadata stored in Namenode. It 

holds the fs-image and edit-log file information. When the Namenode fails, the 

Secondary-Namenode shares the latest fs-image and edit-log stored by it so that the 

data stored in the data nodes are not orphaned.  

• Data Node: While the Namenode stores Metadata, the actual data gets stored on Data 

Nodes. The number of Data Nodes required depends on the data size. Users can 

additionally add them if required. The Data Node communicates to the Namenode on 

a frequent basis (every 3 seconds). However, this frequency gets modified by altering 

the settings.  

• Job Tracker: The Namenode and Data Nodes store details and actual data on HDFS. 

It is also essential to process this data as per the client’s requirements. The developer 

writes a MapReduce code to process the data, and the MapReduce engine sends the 

code across Data Nodes, creating jobs. The Job tracker monitors and manages these 

jobs continuously. 

• Task Tracker: Task trackers perform the jobs given by Job trackers. Each Data Node 

has at least one task tracker. Task trackers communicate with Job trackers to send 

statuses of the jobs. 

MapReduce Architecture and Implementation  

MapReduce is a data grooming or parallel programming model developed by Google. In 

this model, a user determines the algorithm by two functions, Map and Reduce. In the mapping 

stage, the mapper takes the information and stores every record to the mapper. In the reducer 

stage, the reducer receives each one of the records from the mapper and arrives at final output. In 
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basic terms, the mapper is intended to channel and change the results to something that the 

reducer can aggregate over. The original MapReduce library consequently parallelizes the 

algorithm and handles complicated problems like data transmission, load balancing, and 

adaptation to internal failure. As enormous information get spread across numerous machines, 

there is a need to parallelize events such as transferring the data and giving booking, adjusting to 

non-critical failure. The first MapReduce execution by Google, and also its open source partner, 

Hadoop, attempted parallel processing in expanding clusters of machines. MapReduce has 

picked up a remarkable prominence as it effortlessly accomplishes adaptation to non-critical 

failure. It naturally handles the social affair of results over the various nodes and returns a single 

outcome or set. MapReduce demonstrates an advantage in the simple scaling of information 

handling over various processing nodes. 

MapReduce is a system for handling extensive data sets simultaneously over a cluster of 

machines. Data Analysis utilizes a two-stage Map-Reduce process. The Resource Manager 

supplies MapReduce Analytics capacities, and the Hadoop system gives the scheduling, 

distribution, and parallelization services. 

• Fault tolerance: MapReduce is intended to be fault tolerant because failures are an 

inevitable event in a large cluster which distributes data across various machines. The 

Hadoop Framework achieves fault tolerance through Data Replication. The 

NameNode splits a file into smaller chunks of data called Blocks. Each of these 

blocks gets stored in a different DataNode. Now if one of these data node fails, the 

block in that node is lost, and thus the file cannot be completely retrieved. At this 
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juncture, Hadoop Fault tolerance comes into play. The Data Replication feature 

enables Hadoop to store replicas of a block in a different Data Node. 

• DataNode failure: The  NameNode receives the heartbeat from each DataNode every 

three seconds or at specific intervals of time, which gets configured by the user. This 

heartbeat indicates the physical availability of each DataNode, and when the 

NameNode stops receiving the heartbeat for 10 minutes or a specific duration as 

configured by the client, the NameNode assumes the DataNode failure. The current 

task and any tasks unfinished by this DataNode are re-allotted to another DataNode 

and executed from the earliest starting point. Finished tasks do not need to be re-

executed because their results get stored in the Hadoop Distributed File System. 

• Master failure: As the master is a single machine, the likelihood of master failure is 

high. MapReduce re-executes the whole job if the master comes up short. There are 

as of now three prevalent executions of the MapReduce programming model 

specifically Google MapReduce, Apache Hadoop, Stanford Phoenix. 

 

Figure 7. The architecture of MapReduce. 
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In the MapReduce programming model, MapReduce job comprises Map tasks and 

Reduce tasks. When a Job calls the Mappers: MapReduce first divides the data into N blocks 

with size ranging from 16MB to 64MB. Then it initiates numerous daemons on a group of 

various machines. One of the daemons is the Job-Tracker on the NameNode program; the others 

are Task-Trackers on the DataNodes, which can execute their work assigned by the Client 

machine. Master can provide an appropriate  Map task or a Reduce task to a DataNode without 

having to move the Data because of the Data Localization feature of Hadoop Framework. 

Whenever a slave gets a Map task, it parses the Data Block and yield the key/value sets, at that 

point and passes the pair to a client characterized for Map work. The Map function keeps the 

transitory key/value matches in memory. The sets occasionally are composed of a closed set and 

divided into P pieces. From that point forward, the next machine advises the master of the area of 

these sets. If a DataNode is given a Reduce assignment and informed about the location of these 

data sets, the Reducer reads the whole buffer by utilizing remote technique calls. From that point 

onward, it sorts the brief information in light of the key. At that point, the reducer manages the 

more significant part of the records. For each key and agree(NOUN)on the set of qualities, the 

reducer passes key/value sets to a client characterized for Reduce work. This yield is the last 

yield of this segment. After the more significant part of the mapper and reducers has finished 

their work, the master restores the outcome to clients’ project. The yield is put away in singular 

documents. 

Pig Architecture and Components 

In the Map-Reduce framework, jobs (programs) must be converted into the continuous 

format of Map and Reduce stages. Furthermore, as this is not user-friendly for someone like data 
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analysts who are not familiar with the programming language. So, to cover up this difference, an 

abstraction known as Pig was created over Hadoop. Pig is a high-level programming language 

used for analyzing large data sets. The Yahoo! Team developed the pig.   

Pig’s main agenda was to allow people to focus more on managing and analyzing 

massive data sets, and along with that to spend little time coding Map-Reduce programs. Similar 

to a pig, which eats anything, the Pig programming language is designed to work with any data. 

That’s why the name, Pig. 

Pig consists of two components:  Pig Latin which is a scripting language, and the 

runtime environment, for running Pig Latin programs. 

A Pig Latin program consists of a sequence of transformations which are used as input 

data to give specific output. These transformations are known as a data flow which is used to 

convert into an executable format, by Pig’s execution environment. As a result of these 

transformations, Pig creates sequences of MapReduce tasks automatically without the 

interference of a programmer. So, in a way, Pig allows the programmer to focus on data rather 

than the nature of execution. PigLatin is a relatively simple language which uses common 

keywords from data processing, e.g., Join, Group, and Filter. 
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Figure 8. Pig components and execution mode. 

Pig has two distinct modes of execution: 

1. Local mode: Here Pig executes in a single JVM where it makes use of the local file 

system. The Local mode is suited explicitly for analyzing small data sets by Pig.  

2. MapReduce mode: In this mode, queries written in Pig Latin are translated into 

MapReduce jobs and get executed on a Hadoop cluster (cluster may be pseudo or 

fully distributed). MapReduce mode with the fully distributed cluster is useful for 

running Pig on large datasets. 

For processing of massive datasets in substantial parallelization, Apache Pig is used as a 

platform. The structure of Pig gets described in two layers: an infrastructure layer with an inbuilt 

compiler that can produce MapReduce programs and a language layer with a text-processing 

language called “Pig Latin.”  

Pig makes data analysis and programming more manageable and understandable for 

beginners in the Hadoop framework by utilizing Pig Latin which can be known as a parallel data 

https://cdn.guru99.com/images/Big_Data/061114_1128_INTRODUCTIO2.jpg


45 

 

flow language. The pig setup also has provisions for further optimizations and user-defined 

properties. 

Pig Latin queries are merged and compiled into MapReduce tasks. Then, they get 

executed in distributed Hadoop cluster environments. 

Pig Latin looks like SQL [Structured Query Language], but yet it got designed for 

Hadoop’s data processing environment, just like SQL for RDBMS environment. Next, another 

member of the Hadoop family is Hive, which is a query language (similar to SQL). Before using 

Hive, the data should get loaded into tables. It works on schema-less or inconsistent nature and 

can be operated on the available data as soon as it gets loaded into HDFS environment. Pig is 

similar to scripting languages like Perl and Python in certain aspects as it is flexible in syntax 

and dynamic. So, Pig Latin is efficient as a native parallel processing language for distributed 

systems such as Hadoop. 

MongoDB Architecture 

MongoDB does not organize data in tables with columns and rows. Instead, data gets 

stored in “documents,” every one of which is an affiliated cluster of scalar values, lists, or nested 

associative arrays. MongoDB records are typically serialized as JavaScript Object Notation 

(JSON) objects and are in reality stores utilizing a binary encoding of JSON called BSON. To 

scale its execution on a cluster of machines, MongoDB utilizes a procedure called Sharding, 

which is the process of splitting data uniformly over a group of machines to parallelize data. 

The parallelization gets executed by classifying the MongoDB server into two groups; a 

group of front-end routing servers (MongoS) that redirect activities to another group of back-end 

data servers (MongoD). MongoDB queries inspect one record at any given moment, which 
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implies that queries over different documents must be executed on the clients or utilized in 

different MongoDB’s integrated MapReduce (MR). Even though MongoDB’s MR can get 

executed in parallel at every shard, there are two noteworthy downsides. One is the language for 

MR code is JavaScript, and which is sluggish and has insufficient analytics libraries, and the 

second one is the SpiderMonkey JavaScript usage utilized by MongoDB is not thread safe, so 

multiple MapReduce programs cannot get executed simultaneously.  

HDFS vs. MongoDB Design 

While HDFS is ideal for sequential analysis from substantially large chunks of data, 

MongoDB is enhanced for random and parallel processing, i.e., through queries to the data. The 

outcomes of this paper also demonstrate that MongoDB displays inefficiency for parallel storage 

of data because of the global write lock. Through data replication, both Hadoop and MongoDB 

offer data reliability. With MongoDB, the client can pick the number of replicas stages 

completed a writing data before the activity gets completed; this provides scalability of data, but 

on the other hand, this could lead to data loss if the client connection gets misconfigured. HDFS 

replicates the data present in the data-nodes by the replication factor which is either pre-defined 

by default in the HDFS or re-configured by the user. 
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Chapter IV: Experiment Setup 

Installing and Configuring Apache Hadoop 

The Hadoop Installation process involves the following steps: 

Checking for any updates 

user@ubuntu:~$  sudo apt-get update 

Installing JDK 6 

user@ubuntu:~$ sudo apt-get install sun-java6-jdk 

Creating a dedicated Hadoop User account to run Hadoop 

user@ubuntu:~$ sudoaddgrouphadoop_group 

user@ubuntu:~$ sudoadduser --ingroup hadoop_group hduser1 

Adding hduser1 to the sudo group 

user@ubuntu:~$ sudoadduser hduser1 sudo 

Now, configuring SSH 

user@ubuntu:~$ su – hduser1 

hduser1@ubuntu:~$ ssh-keygen -t rsa -P ““ 

Providing access to the new machine using the key created 

hduser1@ubuntu:~$   cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys 

Finally set up SSH connection 

hduser@ubuntu:~$ ssh localhost 

Installing Hadoop and its related extensions 

Switching to hduser1 

hduser@ubuntu:~$ su - hduser1 



48 

 

Now, download and extract Hadoop latest version Hadoop 3.0.0-alpha1 

Setup environment variable for Hadoop 

export HADOOP_HOME=/usr/local/Hadoop 

Adding Hadoop bin/ directory to PATH 

export PATH= $PATH:$HADOOP_HOME/bin 

Change the file: conf/hadoop-env.sh 

#export JAVA_HOME=/usr/lib/j2sdk1.5-sun 

# export JAVA_HOME=/usr/lib/jvm/java-6-openjdk-amd64  (for 64 bit) 

# export JAVA_HOME=/usr/lib/jvm/java-6-openjdk-amd32  (for 32 bit) 

Setting up required ownerships and permission 

hduser@ubuntu:~$ sudomkdir -p /app/Hadoop/tmp 

hduser@ubuntu:~$ sudochownhduser:hadoop /app/Hadoop/tmp 

hduser@ubuntu:~$ sudochmod 750 /app/Hadoop/tmp 

Paste the following configuration in conf/core-site.xml 

<property> 

<name>hadoop.tmp.dir</name> 

<value>/app/Hadoop/tmp</value> 

<description>The location for other temporary directories.</description> 

</property> 

Eg: fileName- default(hadoop_uri) 

<property> 

<name>fs.default.name</name> 
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<value>hdfs://localhost:54310</value> 

<description> 

The name of file system is default. To determine the File System, authority, and scheme a URI is 

required. The config property got defined by  Uri’s scheme and (fs.SCHEME.impl). Then, 

identify the “FileSystem Implementation Class.”  

Using, the uri’s authority the host, port, etc. for a file system is known. 

</description> 

</property> 

Paste the following configuration in conf/mapred-site.xml 

<property> 

<name>mapred.job.tracker</name> 

<value>localhost:54311</value> 

<description>The port number that the MapReduce job tracker is hosted 

  at.  For local machines, then jobs are run in-process as a single map and reduce task.  

</description> 

</property> 

Pasting the following code in file conf/hdfs-site.xml 

<property> 

<name>dfs.replication</name> 

<value>1</value> 

<description>Default block duplication. 

The exact number of duplication can be known when the file gets generated. 
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The default gets used if duplication is missing during the creation time. 

</description> 

</property> 

Format the HDFS Filesystem via name node 

 hduser@ubuntu:~$ /usr/local/Hadoop/bin/Hadoop name node –format  

Installing and Configuring Pig 

Downloading the latest version of Pig from http://hadoop.apache.org/releases.html 

cd Downloads/ 

Unzip the tar file. 

$ tar -xvf pig-0.11.1.tar.gz 

Create a directory 

$ sudomkdir /usr/lib/pig 

move pig-0.11.1 to pig 

$ mv pig-0.11.1 /usr/lib/pig/ 

Set the pig_HOME path in the bashrc file 

To open bashrc file use this command 

$ gedit ~/.bashrc 

 In bashrc file append the below two statements  

export pig_HOME=/usr/lib/pig/pig-0.11.1 

export PATH=$PATH:$pig_HOME/bin 

Restart the computer or use [. .bashrc] 

Now let’s test the installation 
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On the command prompt type 

$ pig -h 

It shows the help related to Pig, and its various commands. 

Starting pig in local mode 

 $ pig -x local grunt> 

Starting pig in MapReduce mode 

 $ pig -x MapReduce 

4.3 Installation and configuring MongoDB: 

Importing the Public Key 

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10 

Creating a List File 

echo “deb http://repo.mongodb.org/apt/ubuntu “$(lsb_release -sc)”/mongodb-org/3.0 

multiverse” | sudo tee /etc/apt/sources.list.d/mongodb-org-3.0.list 

Installing and Configuring MongoDB 

sudo apt-get install -y mongodb-org 

Verifying if the MongoDB is up and running service MongoDB status. 

Now, executing the various phases of Data Analytics such as Storing, processing and 

retrieving with the unstructured data on both PIig/Hadoop and MongoDB. After careful 

comparison of the processing time taken by both Pig/Hadoop and MongoDB, then, the 

functionalities that are to be performed by the frameworks are determined. 
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Chapter V:  Evaluation 

In this paper, my data analysis gets performed over unstructured data. Hence, the HTTP 

web-log data belonging to a client-server environment is extracted from open source GitHub. 

This dataset contains rows with eight columns, each column delimited by commas. The eight 

columns and the kind of data contained are as follows: 

1. Time: The timestamp when the log got recorded.  

2. Remote_ip: The source IP address. 

3. Remote user: The name of the user. 

4. Request: The request made by the user or the client machine. 

5. Response: The response given from the server to request made by the client. 

6. Bytes: How many bytes of data got sent in response.  

7. Referrer: Header information. 

8. Agent: The machine and the application that made the request. 

The entire data sums up to 80 GB, and only subsets of this data get utilized for the 

analysis. The analysis process involves two basic operations, a find with a filter (or called Select 

in SQL) and an aggregation (Sum). By using the filter operation, the records are segregated 

based on successful and unsuccessful responses made by the server. By using the sum function, a 

summation of the bytes sent for all records that have a successful response gets executed.  

These operations help in understanding a security breach, to find a pattern in the 

unsuccessful attempts. A further analysis gets performed by filtering which IP-address are 

causing more unsuccessful attempts and if they represent a Brute-Force attack or a DOS attack. 

Thus, the operations performed here are especially useful, when analyzing a large amount of log 

data, and thus they help streamline the focus on the potential cause for the security breach. 
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Any data analytics problem, in general, would involve searching for a subset of the data, 

based on a particular condition and an aggregation over the obtained data. Hence, the most basic 

operations which are as simple as find() and sum() got chosen. 

Table 3 

HDFS and MongoDB 

 

Pig Experimental Results 

Login into the Pig environment. 

 

Loading Data.
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Grouping Data. 

 

 

Performing count on the Grouped Data. 

 

Displaying the count on the Group data. 
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The count job ran successfully. 

 

The Job Statistics of the above count job. 

 

Performing a Sum of the bytes received. 
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The Job performing the sum of received bytes ran successfully.

 

The Job Statistics of the sum job. 

 

MongoDB Experimental Results 

Loading file from the local path to MongoDB.
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Open MongoDB. 

 

Simple find function. 

 

Find function with execution stats.
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Sum function with Time stats. 

 

Task Running in MongoDB 

 

Figure 9. Overhead processing time caused by the frequency of checkpointing. 

Evaluation of MongoDB  

While performing various experiments throughout this paper, the first experiment’s 

objective is to compare the performance of MongoDB with that of Hadoop in a large setup. 
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Hence, through this experiment, an effort is made to quantify the capability of MongoDB to 

handle multiple jobs on distinct worker nodes. To monitor the reliability and fault tolerance 

capability, MongoDB needs to adopt the method of checkpointing, in which the data nodes or the 

Mongo-worker nodes regularly report their status to the central node or the MongoDB central 

server node. Thus, this feature tests the ability of MongoDB in multi-tasking several jobs in 

parallel. In Figure 10, the graph illustrates the time taken to complete 520 tasks with checkpoints 

at various regular intervals. The 520 tasks take approximately 8 minutes when all of them run 

across 130 cores (i.e., four tasks per core). The total time for executing all the 520 tasks without 

any checkpointing is approximately 8 minutes, so this time is subtracted, and the difference is 

Overhead processing time. This Overhead processing time is the additional time consumed by 

the worker nodes to continually report their status to the MongoDB central server or any other 

additional time taken apart from the actual execution of the Pig script. The rate of the 

checkpointing is configured to occur at different time intervals in different instances for the same 

data-set, to observe the impact of the checkpointing on the performance of MongoDB. With the 

checkpoint interval configured to 5 seconds, the overhead processing time is less than 1 minute. 

As the checkpoint interval is gradually decreased from 5 seconds to 1 second, the frequency of 

checkpointing increases which leads to a rise in overhead to approximately 20 minutes. Thus, it 

is evident that the performance drops as the checkpoint interval gets decreased, because of the 

rise in the checkpointing connections per second from 130 to 520, and the rate of writing data to 

520MB/sec. 
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Figure 10.  Overhead processing time generated due to a rise in the number of tasks. 

In the previous experiment, the checkpointing influenced the performance when the 

number of nodes and tasks are kept constant. However, Figure 11 illustrates that the checkpoint 

size with the varying number of tasks per nodes also causes overhead processing time and 

influences the performance1. As the number of nodes and tasks increases, the overhead also 

increases differently for different checkpoint sizes. The time taken for each task is 8 minutes, and 

all the tasks run in parallel. Instead of varying the checkpoint interval, in the current experiment 

it is fixed at 10 seconds. However, the checkpoints do not influence the overhead processing 

time significantly, until the number of tasks is increased to 900 tasks approximately. When the 

checkpoints get configured to a size of 1MB, the performance dropped by four times between 

1132 to 1300 tasks. On the contrary, if the checkpoint size gets configured as 64KB, the 

performance decreased almost three times from 1230 to 1300 tasks.  
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Both the size of data and the number of connections has an unfavorable effect on the 

performance, but from the outcomes of the above experiment, it is evident that the number of 

connections has a far more significant influence on performance when compared to the size of 

the dataset. Despite the datasets of the 1MB checkpoints being approximately 15 times that of 

the 64KB checkpoints, at the maximum tasks performed, i.e., 1300, the overhead of 1MB tasks 

are hardly 25% greater than the 64KB checkpoints. Thus, this data illustrates how multiple 

threads caused due to the overhead of multiple connections decrease the performance of 

MongoDB. MongoDB causes this lag in performance because it allocates a new thread for every 

new connection.   

MongoDB vs. Pig/HDFS Performance 

In the following experiment, the performance of MongoDB and Hadoop is measured, by 

comparing the read and write performance. For the analysis to be unbiased a java program and 

an equivalent python script got written which can read 30 million records and write 15 million 

records. The objective(aim) of the current experiment is to compare the performance of HDFS 

and MongoDB based on the reads and writes capabilities.  

The setup for the current experiment consists of a MongoDB setup with two sharding 

servers and two HDFS data nodes. For the reading tests, each node is expected to import 30 

million records. The data set consists of 100 columns, and it has the structure similar to Medicare 

Claims and Enrollment data sent to CMS by any Health Plan, but the data is fictitious and 

extracted from Github. The data includes member enrollment dates, service dates, diagnosis 

codes, premium amounts, benefit package codes, Member-Provider-Practice demographic data. 

Pig reads the current dataset read at a rate of 7.8 million records per minute from the HDFS and 
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on the other hand, reads the same data at a rate of 1.7 million records per minute from 

MongoDB. The write tests got performed with only two columns as the benchmark for both 

Pig/HDFS and MongoDB.  

Thus, both Pig/HDFS and MongoDB read records that are 100 times larger than the 

records they wrote. For these records, the Pig/HDFS composes 13 million records in 13 seconds 

(60 million records per minute), while MongoDB takes 5 minutes (2.6 million records per 

minute). Therefore, this experiment, shows a 1:5 reading efficiency ratio between MongoDB and 

Pig/HDFS while writing huge records and for writing small records, the ratio is an enormous 

1:23, which shows that reading performance of MongoDB and Pig/HDFS is closer when 

compared to the when compared to the writing performance. 

MongoDB MapReduce  

In spite of the inbuilt MongoDB MapReduce, the MongoDB-Hadoop connector enables 

the usage of Hadoop’s MapReduce with MongoDB storage. MongoDB’s MapReduce is scalable 

with its resources for executing MapReduce programs, i.e., for every MongoDB server, a mapper 

or reducer task is initiated. Figure 11 compares MongoDB’s local MapReduce (MR) with 

Mongo-Hadoop’s MapReduce. For this experiment, a single node MongoDB server and 2-node 

Hadoop cluster got installed. The results of this experiment show that the Mongo-Hadoop 

connector takes six times lesser time than that of MongoDB’s MapReduce. The graph further 

demonstrates how the processing time of MongoDB MapReduce steeply rises with the increase 

in the number of records to be processed when compared to that of Hadoop-MongoDB 

MapReduce. 
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Figure 11. Performance of MongoDB vs. Hadoop based on the number of records. 

Evaluating MongoDB Configurations  

In both Hadoop and MongoDB, the pre-MapReduce process involves converting the 

large datasets into smaller subsets called Splits. Every mapper or reducer task deals either with 

Splits or aggregation of the split. The splitsize determines, the number of mappers that get 

initiated as each Split gets analyzed as a separate mapper. The smaller the Splitsize, higher is the 

number of mappers initiated. The number of mappers means more overhead resource 

management. Hence, optimizing the Splitsize plays a vital role in enhancing the performance of 

the cluster. The current experiment uses a 3.6GB dataset containing 8.4 million records for 

understanding the influence of Splitsize on Overhead processing time. If the split size is 8MB by 

default, then Hadoop initiates over 450 mappers. As mentioned earlier, too many mappers lead to 

a significant overhead on Resource Manager. Hence, increasing the Splitsize as shown in the 
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Figure12 below, reduces the number of mappers initiated and releases the stress on Resource 

Manager; thus, decreasing the processing time. However, the graph also illustrates that beyond 

128MB (with 29 mappers initiated) the split-size does not seem to improve the processing time 

significantly. Therefore, for all the remaining experiments, the 128MB split-size is considered 

ideal. 

 

Figure 12. Effect of splitsize on the processing time of MongoDB’s MapReduce. 



65 

 

 

Figure 13. Effect of increasing records on processing time. 

Figure 13 demonstrates the next experiment, which is comparing the read, write and 

processing time of Hadoop-HDFS on a 2-node cluster to MongoDB with two sharding servers 

setup, when dealing with large data sets. The graph illustrates that the performance of Hadoop is 

consistently higher than that of MongoDB. The gap between the processing time gradually 

increases with the size of the dataset. For a dataset of 3.7 Million records, Hadoop’s processing 

time is half of MongoDB processing time, and at 30 Million records, the MongoDB is seven 

times slower than Hadoop. 

Scalability Tests 

The next experiment is to understand and compare the effects of horizontal scaling over 

Pig/Hadoop and MongoDB. As illustrated in Figure 13, increasing the cluster sizes and thereby 

increasing the number of cores from 8 to 64, decreases the reading time of MongoDB 

significantly, because the rise in the number cores improves the capability of handling multiple 

connections. However, there is no significant change in the writing time of both Hadoop and 
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MongoDB with increased scaling. Also, the previous experiments explain that the write times are 

influenced by reduce step of the MapReduce program. In these cases, MongoDB can handle 

multiple connections through a sharding setup. However, in this case, the growth in performance 

is constrained by the overhead time caused due to data-routing among the shards.  

 

Figure 14. Effect of processor cores on processing time. 

The next experiment compares the performance between Pig/Hadoop and MongoDB 

based on the reads and writes when the number of records is increasing.  Figure 15 illustrates that 

the read and write times of Hadoop with HDFS are more efficient when compared to MongoDB 

read and write times. In spite of the Sharding servers in a MongoDB setup, the HDFS of Hadoop 

seems to be more efficient in reading and writing which helps in decreasing the overall run-time 

and thereby increasing the performance of Hadoop. 
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Figure 15. Comparing read, write, and processing individually with an increasing  

number of records. 

 

The next graph in Figure 16 illustrates the comparison between the effects of scalability 

on MongoDB with that of Hadoop. As the cluster size gradually increases, thereby increasing the 

number of cores, the performance of Mapper programs increases because of the increasing 

mappers per Data Node. However, the reduce times do not change, significantly as the cluster 

does not require many reducers and therefore, the increase in the size of the cluster does not have 

an impact on Reduce part of MapReduce. Further, there is not a significant rise in performance 

beyond 32 nodes as the overhead processing time for managing multiple parallel connections for 

a relatively smaller data set, compensates any drop in the processing time. 
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Fault Tolerance in MongoDB 

 

Figure 16. Fault tolerance of HDFS vs. MongoDB. 

The next experiment is performed to compare the Fault Tolerance between Pig/Hadoop 

and MongoDB. For this experiment, a 32 node Hadoop cluster is used to read to write and 

process a data sample containing 40 million records. For consistency in the comparison, the same 

dataset is also used to calculate the read, write and processing duration with MongoDB. As the 

graph indicates, in spite of Hadoop having relatively lower processing durations, the Hadoop 

cluster encounters too much loss of data when it loses more than eight eight nodes, i.e., 25% of 

the total nodes installed. This loss of data nodes leads to incomplete MapReduce programs. On 

the other hand, the MongoDB is also started to lose to data after losing four shards, each present 

in different nodes. 
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Chapter VI: Conclusion and Future Works 

Conclusion 

 The checkpoint intervals had a significant influence on the overhead performance 

duration of MongoDB. As the interval is decreased the number of connections increased and 

caused a rise in the overhead processing time.  the rise in overhead processing duration is caused 

due to both larger data sets and the rise in a number of connections, tThe experiments illustrated 

in this paper indicate that rise in the number of connections has a more significant impact on 

overhead processing time, increasing it by approximately five times which is more than the 

overhead caused by large data sets.  

The performance of the MapReduce program can be improved significantly by increasing 

the split size, which leads to a rise in number Mappers. However, the rise in the number of 

mappers also increases the number of connections which drops the performance. Thus, as 

illustrated in this paper, the split size must be chosen based on the cluster configuration and the 

number of nodes the cluster contains. 

The comparison of performance between Hadoop and MongoDB involves several criteria 

out of which, only a handful got analyzed in this paper. This paper does not conclude that one of 

these two tools is the best. However, the findings of this paper can be used to choose a better tool 

between Pig/Hadoop and MongoDB, also considering the size of the data, the organization or an 

individual is trying to store and analyze and the kind of infrastructure and architecture that they 

can adopt. 
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Future Works 

In the future, further studies in this direction can lead to the development of a better tool 

which might adopt the concepts of data locality from Hadoop and the indexing capability of 

MongoDB.  
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