
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

3-2019

Performance Evaluation of Structured and
Unstructured Data in PIG/HADOOP and
MONGO-DB Environments
Sri Rama Chandra Charan Tej Dasari
scdasari@stcloudstate.edu

Sri Ram
dasarisriramchandra@gmail.com

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Dasari, Sri Rama Chandra Charan Tej and Ram, Sri, "Performance Evaluation of Structured and Unstructured Data in PIG/HADOOP
and MONGO-DB Environments" (2019). Culminating Projects in Information Assurance. 79.
https://repository.stcloudstate.edu/msia_etds/79

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/79?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Performance Evaluation of Structured and Unstructured Data in Pig/Hadoop

and Mongo-Db Environments

by

Sri Rama Chandra Charan Tej Dasari

A Starred Paper

Submitted to the Gradaute Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in Information Assurance

March, 2019

Starred Paper Committee:

Dennis Guster, Chairperson

Susantha Herath

Balasubramanian Kasi

2

Abstract

The exponential development of data initially exhibited difficulties for prominent

organizations, for example, Google, Yahoo, Amazon, Microsoft, Facebook, Twitter and so forth.

The size of the information that needs to be handled by cloud applications is developing

significantly quicker than storage capacity. This development requires new systems for

managing and breaking down data. The term “Big Data” is used to address large volumes of

unstructured (or semi-structured) and structured data that gets created from different

applications, messages, weblogs, and online networking.

Big Data is data whose size, variety and uncertainty require new supplementary models,

procedures, algorithms, and research to manage and extract value and concealed learning from it.

To process more information efficiently and skillfully, for analysis parallelism is utilized. To

deal with the unstructured and semi-structured information NoSQL database has been presented.

Hadoop better serves the Big Data analysis requirements. It is intended to scale up starting from

a single server to a large cluster of machines, which has a high level of adaptation to internal

failure.

Many business and research institutes such as Facebook, Yahoo, Google, and so on had

an expanding need to import, store, and analyze dynamic semi-structured data and its metadata.

Also, significant development of semi-structured data inside expansive web-based organizations

has prompted the formation of NoSQL data collections for flexible sorting and MapReduce for

adaptable parallel analysis. They assessed, used and altered Hadoop, the most popular open

source execution of MapReduce, for tending to the necessities of various valid analytics

problems. These institutes are also utilizing MongoDB, and a report situated NoSQL store. In

any case, there is a limited comprehension of the execution trade-offs of using these two

innovations. This paper assesses the execution, versatility, and adaptation to an internal failure of

utilizing MongoDB and Hadoop, towards the objective of recognizing the correct programming

condition for logical data analytics and research. Lately, an expanding number of organizations

have developed diverse, distinctive kinds of non-relational databases (such as MongoDB,

Cassandra, Hypertable, HBase/ Hadoop, CouchDB and so on), generally referred to as NoSQL

databases. The enormous amount of information generated requires an effective system to

analyze the data in various scenarios, under various breaking points. In this paper, the objective

is to find the break-even point of both Hadoop/Pig and MongoDB and develop a robust

environment for data analytics.

Keywords: MapReduce, Fault Tolerance, MongoDB, Pig, NoSQL Database.

3

Table of Contents

 Page

List of Tables ...6

List of Figures ..7

Chapter

I. Introduction ..8

Introduction ..8

Introduction to Hadoop ..10

History of Hadoop..10

Components of Hadoop ...11

HDFS (Hadoop Distributed File System) ..11

Pig ..12

Brief History of Pig ..12

Introduction to MongoDB..12

Problem Definition...19

Nature and Significance of Problem ..21

II. Background and Review of Literature ...22

Introduction ..22

Background ..22

Literature Review...23

MapReduce ..25

MongoDB ..26

4

Chapter Page

III. Methodology ..30

Introduction ..30

Study of Hadoop ..30

Study of MongoDB ..31

High-Level Architecture of Hadoop ..33

MapReduce ..34

Hadoop Disributed File System (HDFS) ...35

MapReduce Architecture and Implementation ..39

Pig Architecture and Components ...42

MongoDB Architecture ...45

HDFS vs. MongoDB Design ...46

IV. Experiment Setup ...47

Installing and Configuring Apache Hadoop ..47

Installing and Configuring Pig ...50

Installing and Configureing MondoDB ...51

V. Evaluation ..52

Pig Experimental Results ...53

MongoDB Experimental Results ...56

Task Running in MongoDB ...58

Evaluation of MongoDB ..58

MongoDB vs. Pig/HDFS Performance ..61

5

Chapter Page

MongoDB MapReduce ..62

Evaluating MongoDB Configurations ...63

Scalability Tests ...65

Fault Tolerance in MongoDB ..68

VI. Conclution and Future Works ..69

Conclusion ...69

Future Works ...70

References ..71

Bibliography ..75

6

List of Tables

Table Page

1. Terms and Concepts of Different Databases ...18

2. Basic Queries Used in Two Different Databases ..19

3. HDFS and MongoDB ..53

7

List of Figures

Figure Page

1. Conventional RDBMS architecture ...9

2. MongoDB architecture ..15

3. Sharding in MongoDB ..16

4. High-level architecture of Hadoop ecosystem ..34

5. Hadoop distributed file system cluster architecture ..37

6. HDFS daemons and Hadoop core components ...38

7. The architecture of MapReduce ..41

8. Pig components nad execution mode ..44

9. Overhead processing time caused by the frequency of checkpointing58

10. Overhead processing time generated due to a rise in the number of tasks60

11. Performance of MongoDB vs. Hadoop based on the number of records63

12. Effect of splitsize on the processing time of MongoDB’s MapReduce64

13. Effect of increasing records on processing time ...65

14. Effect of processor cores on processing time ..66

15. Comparing read, write, and processing individually with an increasing

 number of records ...67

16. Fault tolernace of HDFS vs. MongoDB ..68

8

Chapter I: Introduction

Introduction

This Chapter is an introduction to Pig and MongoDB which explains the nature and

significance of the problem statement, which helps in understanding the experiments, comparing

the performance of Pig with MongoDB.

Databases are an accumulation of information. In spite of this fact, when utilizing the

term database, it refers to the entire database framework and the term refers not to the gathering

of information alone. The framework refers to handling data, its transfer, transformation or other

aspects of the database and is called the Database Management System (DBMS). The next step is

to define how different frameworks write the data into their database. Early models and usage

depended on the utilization of connected records to make relations amongst data and to identify

patterns. For example, in a typical Relational Database Management System (RDBMS), the data

from different tables are inter-related through the primary-key and foreign-key connections.

These models were not standardized as they required broad preparing with a concrete end goal to

make effective utilization of their architecture. Databases were created keeping in mind the end

goal to fulfill this need of storing and accurately analyzing information. Since the inception of

the conventional databases in the 1960s, diverse kinds have been developed, each utilizing its

own and specific methods of deriving information and distinctive innovations for taking care of

data transfer and transformation. Developers started with navigational databases which depended

on connected records, proceeded onward to relational databases with joins, and, a short time,

later developed systems without joins in the late 2000s, such as NoSQL (MongoDB, Cassandra,

9

Hypertable, HBase/ Hadoop, CouchDB and so on). NoSQL was developed and has turned into

an excellent platform for storing and managing unstructured data.

The data stored in a typical RDBMS can be created, altered, updated and extracted using

SQL queries. DBMS stores backup files on the Hard Disk. If DBMS fails, one can retrieve data

from backup. Figure 1 shows this relationship.

Figure 1. Conventional RDBMS architecture.

Later, a need for storing, retrieving and processing of large data lead to the development

of Big-Data Technologies. Thus, began the quest to design and adopt Distributed File Systems

for storing petabytes of data, while minimizing data-latency. Thus, Google released its Google

designed distributed storage system called Big-Table to store, retrieve and process peta bytes of

structured data, at a faster rate.

10

Introduction to Hadoop

Hadoop was an open-source project from the beginning; made by Doug Cutting of Yahoo

(also known for his work on Apache Lucene, a common search and sort platform). Hadoop

initially originated from an undertaking called Nutch, an open-source web crawler made in 2002.

Throughout the following couple of years, Nutch overtook and developed superior improvised

versions of various Google Projects. In 2003, when Google released their Distributed File

System (GFS) to store, retrieve and process peta bytes of structured data, Nutch released their

own, which was called NDFS (Ghemawat, Gobioff, & Leung, 2003). In 2004, Google presented

the idea of MapReduce, with Nutch declaring the release of their MapReduce engineering soon

after in 2005. It was not until 2007 that Hadoop was formally released. Utilizing concepts

extended from Nutch, Hadoop turned into a platform for parallel handling of huge amounts of

data scaling over clusters of production servers. Hadoop is designed to address data analytics of

large datasets, and it is not an alternative for relational database frameworks.

History of Hadoop

In the 1990s, Google needed to gather more information and to get the correct layout; it

has taken 13 years to accomplish this. In 2003, they presented GFS (Google File System) which

is a distributed file system to store extensive information designed to interact with applications

using distributed data (Ghemawat et al., 2003). In 2004, they introduced MapReduce which

performs simplified data processing on large clusters through functional programming. They

published a “white paper” which had a depiction of GFS and MapReduce. Yahoo took the white

paper which was written by Google and began implementing and published HDFS (Hadoop

Distributed File System) and MapReduce. These are the two main segments of Hadoop. Doug

11

Cutting then presented Hadoop in 2005. Meanwhile, Google presented Bigtable enabling its

application a dynamic control over the format and structure of data, thus providing data to its

projects (Chang et al., 2006). Yahoo, which is known as the next best web browser company

after Google, presented their HDFS in the year 2006-2007 and their MapReduce in 2007-2008.

In 2008, Yahoo introduced a distributed Data Serving System called as PNUTS. “PNUTS

provides data storage organized as hashed or ordered tables, low latency for large numbers of

concurrent requests including updates and queries, and novel per-record consistency guarantees”

(Cooper et al., 2008, p. ii).

These cloud services providing data using distributed systems with low latency, are not

comparable with each other due to the difference in the size, speed of data requests made by

various applications. Yahoo published a paper “Benchmarking Cloud Serving Systems with

YCSB” in 2010 Cooper, Silberstein, Tam, Ramakrishnan, and Sears (2010) creating a benchmark

between multiple Cloud Serving systems such as Cassandra, Yahoo’s PNUTS, HBase and a

sharded system of MySql.

Components of Hadoop

Hadoop is an open source system provided by Apache programming establishment for

storing and preparing enormous data sets with the cluster of commodity machines which is

finished by these segments.

HDFS (Hadoop Distributed File System)

HDFS is an exceptionally designed File System for storing large information collections

with clusters of commodity equipment with gushing access design which supports “Write Once

Read Many Times.” The block size by default is 64MB or 128MB. Shvachko, Kuang, Radia, and

12

Chansler (2010) expressed the way HDFS is economical and scalable as, “In a large cluster,

thousands of servers both host directly attached storage and execute user application tasks. By

distributing storage and computation across many servers, the resource can grow with demand

while remaining economical at every size” (p. 1).

Pig

Apache Pig is a data flow handling (scripting) language. It consists of a high-level

language called Pig Latin for articulating complex data-analytics programs and is used as a

platform for analyzing massive datasets. The principal feature of Pig programs is that their

architecture is compliant to significant parallelization, empowering them to deal with massive

datasets and a straightforward language structure. Its ability of parallelization of jobs gives a

reflection that makes Hadoop jobs faster and less demanding to compose than usual Java

MapReduce employments.

Brief History of Pig

The pig was initially created by Yahoo in 2006, for analysts to have an impromptu

method for making and executing MapReduce jobs on extensive data sets. It was built to

diminish the overhead time through its multi-query approach. Pig is likewise made for experts

(primarily programmers) from a non-Java background, to make their activity less demanding.

Introduction to MongoDB

Initially, MongoDB was created by the organization 10gen in 2007 as a cloud-based

application motor, which was planned to run grouped programming and services. They built two

primary segments, Babble (the application motor) and MongoDB (the database). The project did

not take off, driving 10gen to scrap the application. Later, they released MongoDB as an open-

13

source project. In the wake of turning into open-source programming, MongoDB thrived,

attracting support from a development group with different upgrades created to enhance and

incorporate in the new release. While MongoDB consists of a Big Data design, it is vital that it

has to be universally useful, intended to supplant or upgrade existing RDBMS frameworks,

giving it a sound assortment of utilization cases.

Overview of MongDB database. MongoDB (the term derived from the word

humongous) is an open source, and report arranged NoSQL database that has of late achieved

some recognition in the data science and analytics community (Chodorow & Dirolf, 2010). Then,

it is a standout amongst the most well-known NoSQL databases, because it favors master-slave

replication. The responsibility of a master is to perform peruses and composes through the slave

limits to duplicate the information obtained from the Master, to carry out the real task, and

reinforce the jobs on the data. The slaves do not partake in compose assignments yet may choose

a substitute master if there should be an occurrence of the current master failure. MongoDB

utilizes parallel configuration of JSON-like archives underneath and has an advantage of

building a robust framework, not at all like the standard relational databases. In case of the

arrangement in MongoDB, it can return specific fields, and query sets the range to seek by fields,

run sub-queries, customize the articulation view, and so on and may incorporate the client

characterized complex JavaScript capacities. As implied as of now, MongoDB hones adaptable

construction and the report structure in a gathering, called Collection. Thus, collections may help

in change of primary fields of different records in accumulation that can store different kinds of

data.

14

There are sufficient tools available in MongoDB, required for interacting with many

programming languages, which are utilized to create a customized framework that uses

MongoDB as their backend technology. There is an excellent requirement of using MongoDB as

a sophisticated in-memory database; in such cases, the application dataset is dependably small.

However, it is simple for support and can make a database designer’s work easier; this can be an

advantage for sophisticated applications that require massive database administration capacities.

A portion of the prominent clients of MongoDB is MetLife, Craigslist, Forbes, The New York

Times, Sourceforge, eBay, and so on. For instance, The New York Times has its frame building

application that permits photograph storage. MongoDB database is used to design these

applications. Then, Sourceforge has shown more interest in MongoDB and used it to store back-

end pages.

History of MongoDB. MongoDB was released in 2009 and is composed using C++, and

it is one the most famous NoSQL database framework. MongoDB stores information in JSON-

like reports that can shift in structure. Related data can be stored together for quick query access

through the MongoDB query language. MongoDB utilizes dynamic patterns, which makes

records without first characterizing the structure, for example, the properties or the information

writes. It is conceivable to change the structure of documents by just including new qualities or

erasing existing fields. This model speaks to serial connections, to store clusters, and other more

perplexing structures effortlessly. Archives in a record are not required to have the same

arrangement of fields. MongoDB is outlined with high accessibility and adaptability and

incorporates replication and auto-sharding.

15

For instance, consider a General Store Management System which deals with the

business activities in a grocery store. These include keeping up the records of stock points of

interest, keeping track of the deals that increased sales for a specific month/year and so forth.

Therefore, clients need less time for computation and the business action can be finished within

less time through a standard framework. Thus, the time saved by quickly maintaining records is

used to focus more on implementing better business decisions. The database stores the

information, which reduces paperwork, and the client can invest additional energy in examining

the store.

MongoDB design.The replication of collections provides superior replication including

automated failure handling, while sharded groups make it conceivable to separate large data sets

over multiple machines, directly connected to the Client machines.

Figure 2. MongoDB architecture.

16

MongoDB clients consolidate the replicated collections and sharded groups to give

elevated amounts of the additional data sets, which are directly accessible for applications.

MongoDB supports sharding through the configuration of sharded clusters.

Figure 3. Sharding in MongoDB.

Following is a explanation of the essential components of MongoDB:

• Shards. Utilized to store information. They give high accessibility and data

consistency. Internally, every shard is a different replicated collection.

• Config Servers. Config servers store the collection’s metadata, which contains a

mapping of the collection’s data index to the shards. The query router utilizes this

metadata to target activities to specific shards. Inherently, sharded collections have

precisely three config servers.

17

• Query Routers. Query routers are essential in MongoDB; they interface with client

applications and direct activities to the appropriate shard. The query routers processes

and focuses on the events to shards and later returns results to Client Machine. A

shared group can contain more than one query router to split the client machine’s

request load. A Client machine sends a request to one of the query routers. Usually, a

sharded collection has numerous query routers, and the Mongos assigns the requests.

Some features of MongoDB.

• Adaptability: MongoDB stores information in reports organized by utilizing JSON.

It uses less archive blueprint and maps to local programming language write.

• Rich query language: It gives the components required by RDBMS. Dynamic

queries, sorting, backup files, frequent updates, simple collection, up sort (refresh if

the record exists and embed on the off chance that it does not) are a few RDBMS

highlights. Adaptability and versatility are the additional features.

• Auto-sharding: Auto-sharding enables to scale the cluster linearly by including more

machines. It is conceivable to expand the effectiveness which is critical on the web

when the load can increase abruptly and bring down the site.

• Ease of usage: Feature of being easy to utilize, keep up and arrange.

• High performance: It gives the best data determination and, decreases I/O

movement on the database framework by supporting implanted archives, and the use

of fast and robust queries.

18

• High accessibility: MongoDB uses a replica set. The replica set is a cluster of servers

that keep up the same dataset. It gives automatic failover, excess and expanded data

accessibility.

• Support for multiple storage engines: It supports different storage engines, for

example, Wired Tiger stockpiling motor, MMAPv1 stockpiling motor. It likewise

supports a pluggable capacity motor API that enables an outsider to create a capacity

motor for MongoDB.

Table 1

Terms and Concepts of Different Databases

Relational Database MongoDB Database

Fixed Schema Schema Less

Table Collection

Rows, Columns Documents

Joins Embedded Documents

Vertical Scaling Vertical Scaling, Horizontal Scaling

19

Table 2

Basic Queries Used in Two Different Databases

Query Relational Database MongoDB Database

Create Command CREAT TABLE

table_name

(column_name1 datatype,

Column_name2 datatype)

Noneed for defining schema

Insert Command INSERT INTO

table_name

(column_name 1,

column_name 2)

values (

value 1,value 2)

Dlb.collection_name.

Insert ({name1: alu 1,

Name2: value 2})

Delete Command DELETE FROM

table_name

WHERE (condition)

db.collection_name.remove

({condition})

Import Command BULK INSERT

Table_name FROM

File_name WITH {

FIELDTERMINATOR = ; ;

ROWTERMINATOR = +/N+

}

GO

Mongoimport --db

Database_name --

collection

colletion_name --type

csv –file “file_name”

Select Command SELECT

column_name FROM

table_name

db.collection_name ({},

{condition})

Problem Definition

This section gives a short definition of Hadoop and MongoDB. After the definition, now

the execution of both the frameworks in term of usage in the data science market is assessed. The

MongoDB database comprises a group of databases in which every database contains various

collections. Since MongoDB works with dynamic diagrams, each collection may hold a distinct

variety of data. Each query gets sent as a record. These records are created in form the of JSON

format: a list of key-value pairs. The value can be off for the most part three writes: a set of

unprocessed values, a non-homogeneous tuple or a list of key-value pairs. To query these key-

20

value pairs, the user can convert the collections joined as a list of key-value sets. It is

additionally possible to query related fields. The queries are likewise JSON-organized;

subsequently, a random query can consume significantly more memory than a similar query for

the other databases. If the implicit queries are excessively constrained, which is possible, making

it impossible to send JavaScript logic to the server for more complicated queries.

MongoDB provides principally two kinds of replication: master-slave and replica sets. In

the master-slave replication, the master has control of the complete access to the data, and it

composes each change made to its slaves. The slaves can be conceivable to analyze the

information. A replica set works same as master-slave replications. However, it is possible to

choose another master if the first master is down. Another critical element that is supported by

MongoDB is programmed sharding. Utilizing this feature data can be allocated and distributed to

various nodes. The master needs to confirm a sharding key for every collection which

characterizes how to store the documents. In such a domain, the Client interacts with a

Secondary master node called mongo process which investigates and side-tracks the query to the

proper node or nodes. For preventing the loss of data, each logical node contains physical servers

which replicate the data present in the node. By utilizing this framework, it is equally

conceivable to use MapReduce having a decent execution.

Numerous organizations are utilizing incorporated systems instead of using them

independently to consolidate the strengths of every one of these frameworks (Apache Pig and

MongoDB). Both Apache Pig and MongoDB can store in distributed data frameworks and can

perform data analytics. The information investigation process includes a few phases, for

example, importing semi-organized information, storing in conveyed document frameworks, at

21

that point execute the required tasks utilizing MapReduce. The vast majority of the above

activities have a scope to be implemented on both the structures Apache Pig and MongoDB. To

decide the structure required for every one of these stages, an examination of the execution

amongst MongoDB and Pig is fundamental.

Nature and Significance of Problem

This study includes investigation of the performance of Pig/Hadoop with MongoDB to

decide the engineering and functionalities of these two structures in a coordinated framework.

Subsequently, this examination requires performing data transformations on specific large

chunks of data. After that, the study illustrates the execution of both the frameworks for different

functionalities, for example, bringing in the required information, investigating the information

and storing the results of the analysis. A set of detailed experiments are performed to quantify

the performance of two different frameworks under the influence of various parameters.

22

Chapter II: Background and Review of Literature

Introduction

The literature review covers all the research papers, books, online articles and online

recordings related to Pig/Hadoop, MongoDB systems, and other Big Data Analytics tools.

Additionally, review and experimental data from past research papers and articles which should

empower the comprehension and improvement of an Integrated Big This report also uses Data

Analytics tools such as Hadoop and MongoDB.

Background

As of late, in the wake of understanding the significance of NoSQL databases, critical

work is being done. Arora and Aggarwal (2013) proposed an algorithm to transform SQL

databases (MySQL) to NoSQL databases (MongoDB). This work can get extended to other

NoSQL databases in the future.

The proposed algorithm gets implemented in NetBeans Java IDE. Rao and Govardhan

(2013) proposed the algorithm to enhance the execution of online aggregation which is, “Sharded

Parallel MapReduce in MongoDB for Online Aggregation.” It was estimated to produce results

in less time when contrasted with the customary MapReduce framework. A technique was

proposed to incorporate two kinds of databases, to be specific MySQL and MongoDB, by

including a middleware between the application layer and the database layer. The middleware

consists of metadata which contains various kinds of bundles. Three mainstream NoSQL

databases were considered, to be specific Cassandra, MongoDB, and CouchDB. Also, the paper

infers that every arrangement was produced for various applications and had their upsides and

downsides.

23

Mapanga and Kadebu (2013) made proposals for addressing the security issues of

NoSQL databases: influencing utilization of outsider to open source devices for review and

logging, worked in verification, input approval and to get control. Obligations for segregation

and encryption of data are the goals of Firesmith’s security prerequisites.

Hadoop is a structure which is utilized for the capacity and handling of vast volumes of

information in distributed record framework or condition, across a group of nodes through

programming models as a solution for the conventional RDBMS frameworks.

The development of this Integrated Big Data Analytic instrument requires the best

possible comprehension of the functionalities of every one of the components in the Hadoop and

MongoDB systems. This paper clarifies these essential elements and the features of these

systems, in the accompanying pages.

Literature Review

The Shvachko et al. (2010) HDFS (Hadoop Distributed File System) is the File System

created in light of the guideline of a distributed file system with parallel processing. HDFS is

profoundly a fault tolerant and uses minimal effort equipment hardware, as large memory is not

required.

Data Localization is one of the features of Hadoop, enabling it to handle data at their res

of pective DataNodes. Thus, Hadoop system controls the data part instead of the coding part. The

Hadoop framework contains the accompanying segments which perform the Data Localization:

Client, Name Node, and Data Nodes. Every one of these segments has various functions in

managing the framework.

24

• Name Node: The name node works as a master. It can keep up the namespace of the

entire data in the Hadoop framework. The name node contains a document

framework tree and the metadata for every one of the records and registries put away

in the tree. The name node consistently stores the above data as two locations: fs-

image and the edit-log. The Namenode also stores the metadata containing the

physical location of the actual data in the DataNodes.

• Client Node: The Client Node is the mechanism through which the user connects

with a Hadoop Cluster (Name node and Data Node). It resembles the interface

between the client and the name node. At whatever point, a client needs to compose

information into a Hadoop Cluster, and the correspondence must be set up by the

customer. The Client sends a request to the name node, asking to name a gathering of

information nodes to which the client composes the information in a pipeline

technique.

• Data Node: The Data Nodes are an integral component of the whole HDFS. They are

the nodes on which extensive records are separated into blocks and distributed as

suggested by the name node.

The components of a conventional Hadoop Cluster connect in an organized manner, and

they lose coordination amongst them if any disconnection in the cluster occurs. Mainly, if any

data node loses connection with its Name node, at that point the whole information is

inaccessible until the connection between the name-node and data-node is re-established back.

Organizations like Facebook and YouTube, which rely on storing and maintaining the Big Data

of their clients, cannot afford to cause any inconvenience to their users in accessing their data.

25

The Hadoop Cluster guarantees data integrity and adaptation to non-critical failure by providing

replication. Each document imported is separated into blocks and after that replicated into

various Data-nodes in the Hadoop Cluster.

MapReduce

Dean and Ghemawat (2008) explained about MapReduce concept. MapReduce is a

programming model for handling the information stored in the distributed data framework.

MapReduce programs support diverse programming languages, for example, Java, Python Ruby,

C++. The MapReduce, as the name proposes, is the mix of two functions: Mapping and

Reducing.

The Mapping procedure includes the isolation of the key-value information from the

large and voluminous details. At this stage, the data is transformed and segregated based on

certain conditions which ease the aggregations performed in the reducing stage. Hence, only the

analyzed data elements are separated, and they receive a key-value combination to simplify the

process of identifying each record. The key enables in identifying subgroup, and the value is the

data to be analyzed. Together, they are the required key-value pair.

Subsequently, the key-value pair generated as the output in the Mapper Stage works as

the input in the Reduce stage. The Reduction procedure, as the name proposes, works to draw

out a pattern or trend of the data being analyzed through aggregations, while the basic

aggregation operations being, the calculation of max values, the summation, average, count,

etcetera.

YARN (Yet Another Resource Negotiator) is the redesigned version of the MapReduce,

correcting the issue of bottlenecking when more than one task gets executed on the MapReduce.

26

In YARN, the Application-Master and Resource-Manager share the responsibilities of a job

tracker between theManagerm. The basic idea of YARN is that the Application-Master consults

with the Resource-Manager and allocates new memory resources, along with the processors

required for performing that specific task (Vavilapalli & Murthy, 2013).

MongoDB

MongoDB is a flexible, versatile and capable document-oriented NoSQL database.

MongoDB has numerous unique features which influence it to stand out among the other NoSQL

databases, which include but not limited to auxiliary lists, Ad hoc queries, indexing, replication,

load balancing, capped collections and sharding.

• Indexing: Indexing is one of the various components controlled by MongoDB, to

query and extract data at a quicker rate. Queries which do not use the element of

order perform a collection-scan (this term has its origin in connection with the

RDBMS. It means searching the whole collection to get hold of the required record,

and consequently, indexing decreases the preparing time of the Data Base).

• Shards: A shard stores a small portion of the entire data stored in a sharded cluster.

Many such shards together contain the entire data stored by the Sharded cluster.

• Sharding: Sharding is a way of dividing a large amount of information into small

subsets of data to, improve the preparation of the data distributed across many

machines. This group of nodes, which contain subsets of the whole MongoDB

collections, is called Shards. Shards are similar to the distributed filesystem in

Hadoop. One of the essential objectives of Sharding is preparing to visualize these

groups as a single machine to the client while saving time in gathering every one of

27

these bits of information from different shards to generate the required report. Hence,

the MongoDB Sharding architecture includes a unique machine called MongoS

(Mongo Server) whose essential function is to retrieve the information without

noticeable time delay by directing the expected information to the client machine

from the various Shards. To empower this component, the Mongos maintains a table

containing the lists of every datum set or piece of information coordinated to that

Shard.

After Yahoo published its paper on establishing benchmark for creating a comparibility between

the various Distributed Cloud services, a new study by , provided an insight into the influence of

technical choices over the elasticity of cloud databases in the paper by Dory, Mejas, Roy, and

Tran (2011). Since, then the focus has shifted on developing models which can store much larger

data with ease and provide data on request with less latency and fault tolerance. Meanwhile,

Fadika and Govindaraju (2010) published a MapReduce model flexible to process large and

small data-sets, i.e, for both on-disk and in-memory applications called LEMO-MR. Later, FCM

algorithms are applied on large data sets for clustering and performing efficient analytics

(Havens, Bezdek, Leckie, Hall, & Palaniswami, 2012). The Materials Genome project insisted

on developing robust open-source computing platforms for identify all possible properties of in-

organic materials and has also influenced the data analytics field of computer science (Jain et al.,

2013).While they were surveys conducted aiming at reviewing the process of generation,

acquisition, storage and analysis of data (Chen, Mao, & Liu, 2014), simultaneous efforts were

made to optimize the Hive queries performing transaction on large datasets through Indexing and

Join ordering algorithms (Jain & Kakhani, 2015).

28

 Meanwhile, facebook created its NoSql distributed database, Cassandra in 2009, which is

designed to meet the data requirements of Facebook’s through using low-cost hardware

infrastucture and providing high end read and write efficiency (Lakshman & Malik, 2009). Soon

after the inception of NoSQL databases, studies were performed to evaluate their impact on

traditional RDBMS by comparing the cloud scalability of NoSQL database and its performance

(Pokorny, 2011). Later in 2014, an architecture was developed to integrate the NoSql and Sql

platforms (in this case MongoDB and MySQL), through a virtual layer built on top of the

NoSQL System (Lawrence, 2014). Further studies were made to evaluate the performance of

Hadoop integrated with NoSQL databases such as MongoDB and Cassandra (Seema & Ayush,

2014).

 The Big Data Distributed Models and NoSQL Database models, both were believed to

threaten the existence of RDBMS. But, later studies revealed that Sql stays alive with SQL

NoSQL models have different benchmark standards thus, both have their own standards in

developing data models (Floratou, Teletia, Dewitt, Patel, & Zhang, 2012).

 “Therefore, research is needed to delineate the advantages of distributed databases and

this study addresses this with data obtained from a basic configuration of a Cassandra database.

Data collected from the Cassandra test bed revealed that in general, a distributed database using

additional nodes could reduce latency. However, diminishing returns were observed as additional

nodes were added into the experiment” (Guster, O’Brien, & Lebentritt, 2013, p. i). Guster et al.

has already researched the inactivity of distributed document frameworks on a NoSQL Database

framework called Cassandra, and how the execution changes as the quantity of slave nodes

increments. Presently, this paper draws motivation from the Guster et al. (2013) work, and

29

reports on a comparative execution examination conducted between the distributed frameworks

of Pig/Hadoop and MongoDB.

30

Chapter III: Methodology

Introduction

Traditional Relational Database Management Systems (RDBMS) are designed around

relations and tables to arrange and structure data in a combination of rows and columns. Current

conventional database frameworks such as RDBMS is likely to remain as such for a long time to

come. For some organizations, RDBMS arrangements are sufficient in maintaining, managing

and analyzing their data; however, they are not feasible for every use case. These frameworks

regularly keep running into bottlenecks with versatile data sets and data replication when dealing

with a large amount of data/data sets.

Study of Hadoop

Hadoop, as already mentioned, is a framework which supports a distributed environment.

The essential parts of Hadoop are the Hadoop Distributed File System (HDFS) and MapReduce

programs, programmed in Java. Supplementary tools are a collection of other Apache items,

including:

1. Hive (for querying data)

2. Pig (for analyzing large data sets)

3. HBase (column-oriented database)

4. Oozie (for planning Hadoop jobs)

5. Sqoop (for interfacing with different frameworks, for example, BI, investigation, or

RBDMS) and

6. Flume (for conglomerating and pre-processing information).

Like MongoDB, Hadoop’s HBase database achieves flat file adaptability through

database sharding. Hadoop is intended to keep running on multiple nodes, with the capacity to

31

process information in various configurations, including collecting data from numerous sources.

Transfer of information gathered is taken care of by the HDFS, with a discretionary information

structure actualized with HBase, which distributes information into segments (unlike the two-

dimensional designation of an RDBMS into columns and rows). Data would then be able to be

sorted (through utilization of programming like Solr), queried with Hive, or have different

analytics or cluster jobs keep running on it with decisions accessible from the Hadoop

environment.

Study of MongoDB

MongoDB is an exciting technology, as it is a NoSQL database adopted by a large

number of organizations, although it does not have much endorsement. A noteworthy objection

about MongoDB is its adaptation to non-critical failure issues, which can cause resources to be

scattered. However numerous occurrences of these issues can be discovered on the internet.

Additional complaints against MongoDB are composing bolt imperatives, information collection

issues, poor reconciliation with RBDMS, and that’s only the tip of the iceberg. MongoDB

likewise can import information in CSV or JSON formats only, which may require additional

data transformation.

Hadoop’s critical issue used to be the Namenode, which is a single point of failure of the

HDFS clusters; if the Namenode fails, then the framework no longer works. Although this issue

was addressed with the arrival of HDFS High Availability (HA), which gives the capacity to

arrange two excess Name nodes, so the framework will failover to the Secondary NameNode

should an issue emerge. Additional concerns with Hadoop are the measure of the time it takes to

finish data handling job and its inefficiency with regulating resources.

32

As the products Hadoop and MongoDB develop with newer versions, a large number of

these issues tend to develop later on, with the arrival of new updates or new programming

brought through their innovation communities. RBDMS arrangements are additionally

progressing, and so are other NoSQL platforms. As versions of these tools’ functionalities keep

improving, it is exciting to see how all these distinctive platforms advance and change by

addressing the issues of the developing innovation and user requests.

Hive. Hive is a data repository framework based over Hadoop. Hive gives instruments to

empower simple information outline, specially appointed querying and investigation of

comprehensive datasets stored in Hadoop records. It provides a device to put a structure on this

data, and it likewise provides a primary query language called Hive-QL, similar to SQL,

empowering clients comfortable with SQL to search the data through these queries.

HCatalog. It is a storage administration layer for Hadoop that empowers clients with

various data handling instruments. HCatalog’s table abstraction presents clients with a relational

perspective of information in the Hadoop distributed file system (HDFS) and guarantees that

clients do not need to worry about where or in what kind of format their information got stored.

MapReduce. Hadoop MapReduce is a programming model and programming structure

for composing programs that quickly processes large measures of data in parallel on the cluster

of PC nodes. MapReduce utilizes the HDFS to get to record sections and to lessen inappropriate

outcomes.

HBase. HBase is a distributed, column-based database. HBase utilizes HDFS to take

leverage of its fault tolerance. It maps HDFS information into a database-like structure and gives

Java API access to this DB. It reinforces cluster style computations utilizing MapReduce and

33

instant queries (random scan of that database). HBase is as a part of Hadoop Development

plugins used for random real-time reading/writ irequiredng. Its objective is the facilitating of

large tables running over clusters of custom nodes.

Hadoop distributed file system. Hadoop Distributed File System (HDFS) is the

essential storage system utilized by Hadoop applications. HDFS is, as its name suggests, a

distributed file system that gives high throughput access to application information making

numerous replicas of data blocks and dispersing them on register nodes all through a group to

empower dependable and quick algorithms.

Core. The Hadoop core comprises an arrangement of segments and interfaces which

gives access to the distributed file system and general I/O (Serialization, Java RPC, Persistent

information structures). The core segments additionally give “Rack Awareness,” an enhancement

which considers the topographic grouping of servers, limiting data movement between servers

from different geographic clusters.

High-Level Architecture of Hadoop

The architecture of Hadoop is a MapReduce system that works on HDFS or HBase.

Fundamentally, Hadoop breaks down a task into a few similar but smaller tasks that can get

executed adjacent to the data (on the Data Node). In this way, each job gets executed parallelly:

the Map stage. Later on, all the different outcomes boil down to one outcome: the Reduce stage.

In Hadoop, the Job Tracker (Java process) is in charge of observing the activity, dealing with the

MapReduce stage, and dealing with the repeats if there should be an occurrence of errors. The

Job Tracker (Java process) is running on the various Data Nodes. Each Job Tracker executes the

activity on the data nodes through Task Trackers. The center of the Hadoop Cluster Architecture

34

is beneath HDFS (Hadoop Distributed File System): HDFS is the essential record storage, fit for

capturing a substantial number of large documents.

MapReduce

MapReduce is the programming model by which information is dissected utilizing the

processing resources inside the cluster. Every node in the Hadoop cluster is either a master or a

slave. The slave nodes are always both a Data Node and a Task Tracker.

Figure 4. High-level architecture of Hadoop ecosystem.

Figure 4 shows the high-level architecture of Pig and Hive and that these two components

interact with one another using MapReduce for getting access to various data.

• Name Node: Stores and manages metadata of the data stored in DataNodes and its

access control. There is precisely one Name Node in each cluster.

• Secondary Name Node: Transfers checkpoints at configured time intervals from the

name Node for adaptation to internal failure. There is precisely one Secondary Name

Node in each cluster.

35

• Job Tracker: Hands out a task to the slave nodes. There is just one Job Tracker in

each cluster.

• Data Node: It is used to store data in the form of blocks, and the meta-data gets stored

in the Name Node. Every data node deals with its own privately connected storage

and stores a replica of a few or all blocks in the record framework. There is at least

two Data Node in each cluster.

• Task Tracker: It is one of the services in the Hadoop framework; it performs tasks

assigned by the Job Tracker, at the DataNodes which are in the same cluster. There is

at least one Task Tracker in each node.

Hadoop Distributed File System (HDFS)

HDFS group has two kinds of nodes working in a master-slave design: a Name node (the

master) and various DataNodes (slaves). The name node deals with the file system namespace. It

keeps up the file system tree and the metadata for every one of the records and registries in the

tree. The name node likewise knows the data nodes on which every one of the blocks for a given

file got recorded. Data nodes are the essential components of the Hadoop Distributed file system.

They store and recover parts when they are requested to (by the client or the name node), and

they send feedback to the name node intermittently with whereabouts of data that they are

capturing. The Name Node implements replication factor of data blocks which is the number of

replicas of each block across the cluster. In a run of the mill HDFS, block-size is 64MB, and

replication factor is 3 (second duplicate on the adjacent rack and third on the remote rack).

Figure 5 depicts a Hadoop Distributed File System HDFS. Hadoop MapReduce

applications utilize capacity in a way that is unique concerning broadly useful processing. To

36

examine an HDFS record, for analysis the client applications use a standard Java document input

stream, as though the document was in the local file system. In the background, however, this

stream is controlled to recover information from HDFS. To begin with the process of analysis,

the NameNode is approached to ask for authorization. Internally, the Name Node interprets the

HDFS filename into a rundown of the HDFS block IDs containing that document and a summary

of Data Nodes that store each block and restore the summaries to the Client. Next, the client

opens a connection with the “nearest” Data Node (because of Hadoop rack-awareness, yet

ideally a similar node) and requests a particular block ID. The requested block returns through

the same connection, and the data gets conveyed to the application.

In the process of writing data into HDFS, customer applications see the HDFS record as a

standard YARN stream. Inside, be that as it may, streamed data first gets divided into HDFS-

sized blocks (64MB) and after that little packet (64kB) by the client thread. Every packet gets

enqueued into a FIFO that can hold up to 5MB of information accordingly decoupling the

application thread from Storage system inactivity amid ordinary activity. An instant thread is in

charge of dequeuing packets from the FIFO, coordinating with the Name Node to allocate HDFS

Block IDs and targets, and transmitting bits to the Data Nodes (either neighborhood or remote)

for storage. A third thread oversees affirmations from the Data Nodes that information has been

resolved to plate.

37

Figure 5. Hadoop distributed file system cluster architecture.

The Hadoop Distributed File System (HDFS) is an approach to store and investigate

substantial static data files over different machines instead of a single machine holding the whole

circle limit of the collected records. HDFS utilizes information replication and dispersion of the

information and is made to be fault tolerant. A record is stacked into HDFS and is duplicated,

and divided into units called blocks, which are commonly 64 MB of information and handled

and put away with a bunch of hubs or machines called Data Nodes. HDFS utilizes the Master

and Slave design where the Master (Name node) is in charge of the administration of metadata

and execution of jobs to the Data Node.

Hadoop daemons. As indicated by the Apache Hadoop, A simple Hadoop cluster

incorporates a single master and different slave nodes. The master node includes a Namenode,

Job Tracker, Task Tracker, and Data Node.

38

Hadoop comprises five daemons. They are separate from the master node and slave

nodes. Master daemons include three Hadoop daemons, for example, the Namenode, Secondary-

name node and a Job Tracker. The remaining daemons are the two slave daemons, the Data

Nodes, and the Task Tracker. A daemon is a foundation procedure. The master daemons can

converse with each other, and all slave daemons coordinate amongst each other. On the off

chance that a Namenode is a Master node, its associated slave node is a Data Node. Job Trackers

converse with Task Trackers. If the Name node is a Job Tracker, its associated slave node is a

Task Tracker as shown in Figure 6 below.

Figure 6. HDFS daemons and Hadoop core components.

• Namenode: The Namenode is used to hold the Metadata (information about the

location, size of files/blocks) for HDFS. The Metadata gets stored on RAM or Hard-

Disk. There is only one Namenode in a cluster. Failure of the Namenode causes

complete failure of the Hadoop cluster.

39

• Secondary Namenode: It acts as a backup for the metadata stored in Namenode. It

holds the fs-image and edit-log file information. When the Namenode fails, the

Secondary-Namenode shares the latest fs-image and edit-log stored by it so that the

data stored in the data nodes are not orphaned.

• Data Node: While the Namenode stores Metadata, the actual data gets stored on Data

Nodes. The number of Data Nodes required depends on the data size. Users can

additionally add them if required. The Data Node communicates to the Namenode on

a frequent basis (every 3 seconds). However, this frequency gets modified by altering

the settings.

• Job Tracker: The Namenode and Data Nodes store details and actual data on HDFS.

It is also essential to process this data as per the client’s requirements. The developer

writes a MapReduce code to process the data, and the MapReduce engine sends the

code across Data Nodes, creating jobs. The Job tracker monitors and manages these

jobs continuously.

• Task Tracker: Task trackers perform the jobs given by Job trackers. Each Data Node

has at least one task tracker. Task trackers communicate with Job trackers to send

statuses of the jobs.

MapReduce Architecture and Implementation

MapReduce is a data grooming or parallel programming model developed by Google. In

this model, a user determines the algorithm by two functions, Map and Reduce. In the mapping

stage, the mapper takes the information and stores every record to the mapper. In the reducer

stage, the reducer receives each one of the records from the mapper and arrives at final output. In

40

basic terms, the mapper is intended to channel and change the results to something that the

reducer can aggregate over. The original MapReduce library consequently parallelizes the

algorithm and handles complicated problems like data transmission, load balancing, and

adaptation to internal failure. As enormous information get spread across numerous machines,

there is a need to parallelize events such as transferring the data and giving booking, adjusting to

non-critical failure. The first MapReduce execution by Google, and also its open source partner,

Hadoop, attempted parallel processing in expanding clusters of machines. MapReduce has

picked up a remarkable prominence as it effortlessly accomplishes adaptation to non-critical

failure. It naturally handles the social affair of results over the various nodes and returns a single

outcome or set. MapReduce demonstrates an advantage in the simple scaling of information

handling over various processing nodes.

MapReduce is a system for handling extensive data sets simultaneously over a cluster of

machines. Data Analysis utilizes a two-stage Map-Reduce process. The Resource Manager

supplies MapReduce Analytics capacities, and the Hadoop system gives the scheduling,

distribution, and parallelization services.

• Fault tolerance: MapReduce is intended to be fault tolerant because failures are an

inevitable event in a large cluster which distributes data across various machines. The

Hadoop Framework achieves fault tolerance through Data Replication. The

NameNode splits a file into smaller chunks of data called Blocks. Each of these

blocks gets stored in a different DataNode. Now if one of these data node fails, the

block in that node is lost, and thus the file cannot be completely retrieved. At this

41

juncture, Hadoop Fault tolerance comes into play. The Data Replication feature

enables Hadoop to store replicas of a block in a different Data Node.

• DataNode failure: The NameNode receives the heartbeat from each DataNode every

three seconds or at specific intervals of time, which gets configured by the user. This

heartbeat indicates the physical availability of each DataNode, and when the

NameNode stops receiving the heartbeat for 10 minutes or a specific duration as

configured by the client, the NameNode assumes the DataNode failure. The current

task and any tasks unfinished by this DataNode are re-allotted to another DataNode

and executed from the earliest starting point. Finished tasks do not need to be re-

executed because their results get stored in the Hadoop Distributed File System.

• Master failure: As the master is a single machine, the likelihood of master failure is

high. MapReduce re-executes the whole job if the master comes up short. There are

as of now three prevalent executions of the MapReduce programming model

specifically Google MapReduce, Apache Hadoop, Stanford Phoenix.

Figure 7. The architecture of MapReduce.

42

In the MapReduce programming model, MapReduce job comprises Map tasks and

Reduce tasks. When a Job calls the Mappers: MapReduce first divides the data into N blocks

with size ranging from 16MB to 64MB. Then it initiates numerous daemons on a group of

various machines. One of the daemons is the Job-Tracker on the NameNode program; the others

are Task-Trackers on the DataNodes, which can execute their work assigned by the Client

machine. Master can provide an appropriate Map task or a Reduce task to a DataNode without

having to move the Data because of the Data Localization feature of Hadoop Framework.

Whenever a slave gets a Map task, it parses the Data Block and yield the key/value sets, at that

point and passes the pair to a client characterized for Map work. The Map function keeps the

transitory key/value matches in memory. The sets occasionally are composed of a closed set and

divided into P pieces. From that point forward, the next machine advises the master of the area of

these sets. If a DataNode is given a Reduce assignment and informed about the location of these

data sets, the Reducer reads the whole buffer by utilizing remote technique calls. From that point

onward, it sorts the brief information in light of the key. At that point, the reducer manages the

more significant part of the records. For each key and agree(NOUN)on the set of qualities, the

reducer passes key/value sets to a client characterized for Reduce work. This yield is the last

yield of this segment. After the more significant part of the mapper and reducers has finished

their work, the master restores the outcome to clients’ project. The yield is put away in singular

documents.

Pig Architecture and Components

In the Map-Reduce framework, jobs (programs) must be converted into the continuous

format of Map and Reduce stages. Furthermore, as this is not user-friendly for someone like data

43

analysts who are not familiar with the programming language. So, to cover up this difference, an

abstraction known as Pig was created over Hadoop. Pig is a high-level programming language

used for analyzing large data sets. The Yahoo! Team developed the pig.

Pig’s main agenda was to allow people to focus more on managing and analyzing

massive data sets, and along with that to spend little time coding Map-Reduce programs. Similar

to a pig, which eats anything, the Pig programming language is designed to work with any data.

That’s why the name, Pig.

Pig consists of two components: Pig Latin which is a scripting language, and the

runtime environment, for running Pig Latin programs.

A Pig Latin program consists of a sequence of transformations which are used as input

data to give specific output. These transformations are known as a data flow which is used to

convert into an executable format, by Pig’s execution environment. As a result of these

transformations, Pig creates sequences of MapReduce tasks automatically without the

interference of a programmer. So, in a way, Pig allows the programmer to focus on data rather

than the nature of execution. PigLatin is a relatively simple language which uses common

keywords from data processing, e.g., Join, Group, and Filter.

44

Figure 8. Pig components and execution mode.

Pig has two distinct modes of execution:

1. Local mode: Here Pig executes in a single JVM where it makes use of the local file

system. The Local mode is suited explicitly for analyzing small data sets by Pig.

2. MapReduce mode: In this mode, queries written in Pig Latin are translated into

MapReduce jobs and get executed on a Hadoop cluster (cluster may be pseudo or

fully distributed). MapReduce mode with the fully distributed cluster is useful for

running Pig on large datasets.

For processing of massive datasets in substantial parallelization, Apache Pig is used as a

platform. The structure of Pig gets described in two layers: an infrastructure layer with an inbuilt

compiler that can produce MapReduce programs and a language layer with a text-processing

language called “Pig Latin.”

Pig makes data analysis and programming more manageable and understandable for

beginners in the Hadoop framework by utilizing Pig Latin which can be known as a parallel data

https://cdn.guru99.com/images/Big_Data/061114_1128_INTRODUCTIO2.jpg

45

flow language. The pig setup also has provisions for further optimizations and user-defined

properties.

Pig Latin queries are merged and compiled into MapReduce tasks. Then, they get

executed in distributed Hadoop cluster environments.

Pig Latin looks like SQL [Structured Query Language], but yet it got designed for

Hadoop’s data processing environment, just like SQL for RDBMS environment. Next, another

member of the Hadoop family is Hive, which is a query language (similar to SQL). Before using

Hive, the data should get loaded into tables. It works on schema-less or inconsistent nature and

can be operated on the available data as soon as it gets loaded into HDFS environment. Pig is

similar to scripting languages like Perl and Python in certain aspects as it is flexible in syntax

and dynamic. So, Pig Latin is efficient as a native parallel processing language for distributed

systems such as Hadoop.

MongoDB Architecture

MongoDB does not organize data in tables with columns and rows. Instead, data gets

stored in “documents,” every one of which is an affiliated cluster of scalar values, lists, or nested

associative arrays. MongoDB records are typically serialized as JavaScript Object Notation

(JSON) objects and are in reality stores utilizing a binary encoding of JSON called BSON. To

scale its execution on a cluster of machines, MongoDB utilizes a procedure called Sharding,

which is the process of splitting data uniformly over a group of machines to parallelize data.

The parallelization gets executed by classifying the MongoDB server into two groups; a

group of front-end routing servers (MongoS) that redirect activities to another group of back-end

data servers (MongoD). MongoDB queries inspect one record at any given moment, which

46

implies that queries over different documents must be executed on the clients or utilized in

different MongoDB’s integrated MapReduce (MR). Even though MongoDB’s MR can get

executed in parallel at every shard, there are two noteworthy downsides. One is the language for

MR code is JavaScript, and which is sluggish and has insufficient analytics libraries, and the

second one is the SpiderMonkey JavaScript usage utilized by MongoDB is not thread safe, so

multiple MapReduce programs cannot get executed simultaneously.

HDFS vs. MongoDB Design

While HDFS is ideal for sequential analysis from substantially large chunks of data,

MongoDB is enhanced for random and parallel processing, i.e., through queries to the data. The

outcomes of this paper also demonstrate that MongoDB displays inefficiency for parallel storage

of data because of the global write lock. Through data replication, both Hadoop and MongoDB

offer data reliability. With MongoDB, the client can pick the number of replicas stages

completed a writing data before the activity gets completed; this provides scalability of data, but

on the other hand, this could lead to data loss if the client connection gets misconfigured. HDFS

replicates the data present in the data-nodes by the replication factor which is either pre-defined

by default in the HDFS or re-configured by the user.

47

Chapter IV: Experiment Setup

Installing and Configuring Apache Hadoop

The Hadoop Installation process involves the following steps:

Checking for any updates

user@ubuntu:~$ sudo apt-get update

Installing JDK 6

user@ubuntu:~$ sudo apt-get install sun-java6-jdk

Creating a dedicated Hadoop User account to run Hadoop

user@ubuntu:~$ sudoaddgrouphadoop_group

user@ubuntu:~$ sudoadduser --ingroup hadoop_group hduser1

Adding hduser1 to the sudo group

user@ubuntu:~$ sudoadduser hduser1 sudo

Now, configuring SSH

user@ubuntu:~$ su – hduser1

hduser1@ubuntu:~$ ssh-keygen -t rsa -P ““

Providing access to the new machine using the key created

hduser1@ubuntu:~$ cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

Finally set up SSH connection

hduser@ubuntu:~$ ssh localhost

Installing Hadoop and its related extensions

Switching to hduser1

hduser@ubuntu:~$ su - hduser1

48

Now, download and extract Hadoop latest version Hadoop 3.0.0-alpha1

Setup environment variable for Hadoop

export HADOOP_HOME=/usr/local/Hadoop

Adding Hadoop bin/ directory to PATH

export PATH= $PATH:$HADOOP_HOME/bin

Change the file: conf/hadoop-env.sh

#export JAVA_HOME=/usr/lib/j2sdk1.5-sun

export JAVA_HOME=/usr/lib/jvm/java-6-openjdk-amd64 (for 64 bit)

export JAVA_HOME=/usr/lib/jvm/java-6-openjdk-amd32 (for 32 bit)

Setting up required ownerships and permission

hduser@ubuntu:~$ sudomkdir -p /app/Hadoop/tmp

hduser@ubuntu:~$ sudochownhduser:hadoop /app/Hadoop/tmp

hduser@ubuntu:~$ sudochmod 750 /app/Hadoop/tmp

Paste the following configuration in conf/core-site.xml

<property>

<name>hadoop.tmp.dir</name>

<value>/app/Hadoop/tmp</value>

<description>The location for other temporary directories.</description>

</property>

Eg: fileName- default(hadoop_uri)

<property>

<name>fs.default.name</name>

49

<value>hdfs://localhost:54310</value>

<description>

The name of file system is default. To determine the File System, authority, and scheme a URI is

required. The config property got defined by Uri’s scheme and (fs.SCHEME.impl). Then,

identify the “FileSystem Implementation Class.”

Using, the uri’s authority the host, port, etc. for a file system is known.

</description>

</property>

Paste the following configuration in conf/mapred-site.xml

<property>

<name>mapred.job.tracker</name>

<value>localhost:54311</value>

<description>The port number that the MapReduce job tracker is hosted

 at. For local machines, then jobs are run in-process as a single map and reduce task.

</description>

</property>

Pasting the following code in file conf/hdfs-site.xml

<property>

<name>dfs.replication</name>

<value>1</value>

<description>Default block duplication.

The exact number of duplication can be known when the file gets generated.

50

The default gets used if duplication is missing during the creation time.

</description>

</property>

Format the HDFS Filesystem via name node

 hduser@ubuntu:~$ /usr/local/Hadoop/bin/Hadoop name node –format

Installing and Configuring Pig

Downloading the latest version of Pig from http://hadoop.apache.org/releases.html

cd Downloads/

Unzip the tar file.

$ tar -xvf pig-0.11.1.tar.gz

Create a directory

$ sudomkdir /usr/lib/pig

move pig-0.11.1 to pig

$ mv pig-0.11.1 /usr/lib/pig/

Set the pig_HOME path in the bashrc file

To open bashrc file use this command

$ gedit ~/.bashrc

 In bashrc file append the below two statements

export pig_HOME=/usr/lib/pig/pig-0.11.1

export PATH=$PATH:$pig_HOME/bin

Restart the computer or use [. .bashrc]

Now let’s test the installation

51

On the command prompt type

$ pig -h

It shows the help related to Pig, and its various commands.

Starting pig in local mode

 $ pig -x local grunt>

Starting pig in MapReduce mode

 $ pig -x MapReduce

4.3 Installation and configuring MongoDB:

Importing the Public Key

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10

Creating a List File

echo “deb http://repo.mongodb.org/apt/ubuntu “$(lsb_release -sc)”/mongodb-org/3.0

multiverse” | sudo tee /etc/apt/sources.list.d/mongodb-org-3.0.list

Installing and Configuring MongoDB

sudo apt-get install -y mongodb-org

Verifying if the MongoDB is up and running service MongoDB status.

Now, executing the various phases of Data Analytics such as Storing, processing and

retrieving with the unstructured data on both PIig/Hadoop and MongoDB. After careful

comparison of the processing time taken by both Pig/Hadoop and MongoDB, then, the

functionalities that are to be performed by the frameworks are determined.

52

Chapter V: Evaluation

In this paper, my data analysis gets performed over unstructured data. Hence, the HTTP

web-log data belonging to a client-server environment is extracted from open source GitHub.

This dataset contains rows with eight columns, each column delimited by commas. The eight

columns and the kind of data contained are as follows:

1. Time: The timestamp when the log got recorded.

2. Remote_ip: The source IP address.

3. Remote user: The name of the user.

4. Request: The request made by the user or the client machine.

5. Response: The response given from the server to request made by the client.

6. Bytes: How many bytes of data got sent in response.

7. Referrer: Header information.

8. Agent: The machine and the application that made the request.

The entire data sums up to 80 GB, and only subsets of this data get utilized for the

analysis. The analysis process involves two basic operations, a find with a filter (or called Select

in SQL) and an aggregation (Sum). By using the filter operation, the records are segregated

based on successful and unsuccessful responses made by the server. By using the sum function, a

summation of the bytes sent for all records that have a successful response gets executed.

These operations help in understanding a security breach, to find a pattern in the

unsuccessful attempts. A further analysis gets performed by filtering which IP-address are

causing more unsuccessful attempts and if they represent a Brute-Force attack or a DOS attack.

Thus, the operations performed here are especially useful, when analyzing a large amount of log

data, and thus they help streamline the focus on the potential cause for the security breach.

53

Any data analytics problem, in general, would involve searching for a subset of the data,

based on a particular condition and an aggregation over the obtained data. Hence, the most basic

operations which are as simple as find() and sum() got chosen.

Table 3

HDFS and MongoDB

Pig Experimental Results

Login into the Pig environment.

Loading Data.

54

Grouping Data.

Performing count on the Grouped Data.

Displaying the count on the Group data.

55

The count job ran successfully.

The Job Statistics of the above count job.

Performing a Sum of the bytes received.

56

The Job performing the sum of received bytes ran successfully.

The Job Statistics of the sum job.

MongoDB Experimental Results

Loading file from the local path to MongoDB.

57

Open MongoDB.

Simple find function.

Find function with execution stats.

58

Sum function with Time stats.

Task Running in MongoDB

Figure 9. Overhead processing time caused by the frequency of checkpointing.

Evaluation of MongoDB

While performing various experiments throughout this paper, the first experiment’s

objective is to compare the performance of MongoDB with that of Hadoop in a large setup.

59

Hence, through this experiment, an effort is made to quantify the capability of MongoDB to

handle multiple jobs on distinct worker nodes. To monitor the reliability and fault tolerance

capability, MongoDB needs to adopt the method of checkpointing, in which the data nodes or the

Mongo-worker nodes regularly report their status to the central node or the MongoDB central

server node. Thus, this feature tests the ability of MongoDB in multi-tasking several jobs in

parallel. In Figure 10, the graph illustrates the time taken to complete 520 tasks with checkpoints

at various regular intervals. The 520 tasks take approximately 8 minutes when all of them run

across 130 cores (i.e., four tasks per core). The total time for executing all the 520 tasks without

any checkpointing is approximately 8 minutes, so this time is subtracted, and the difference is

Overhead processing time. This Overhead processing time is the additional time consumed by

the worker nodes to continually report their status to the MongoDB central server or any other

additional time taken apart from the actual execution of the Pig script. The rate of the

checkpointing is configured to occur at different time intervals in different instances for the same

data-set, to observe the impact of the checkpointing on the performance of MongoDB. With the

checkpoint interval configured to 5 seconds, the overhead processing time is less than 1 minute.

As the checkpoint interval is gradually decreased from 5 seconds to 1 second, the frequency of

checkpointing increases which leads to a rise in overhead to approximately 20 minutes. Thus, it

is evident that the performance drops as the checkpoint interval gets decreased, because of the

rise in the checkpointing connections per second from 130 to 520, and the rate of writing data to

520MB/sec.

60

Figure 10. Overhead processing time generated due to a rise in the number of tasks.

In the previous experiment, the checkpointing influenced the performance when the

number of nodes and tasks are kept constant. However, Figure 11 illustrates that the checkpoint

size with the varying number of tasks per nodes also causes overhead processing time and

influences the performance1. As the number of nodes and tasks increases, the overhead also

increases differently for different checkpoint sizes. The time taken for each task is 8 minutes, and

all the tasks run in parallel. Instead of varying the checkpoint interval, in the current experiment

it is fixed at 10 seconds. However, the checkpoints do not influence the overhead processing

time significantly, until the number of tasks is increased to 900 tasks approximately. When the

checkpoints get configured to a size of 1MB, the performance dropped by four times between

1132 to 1300 tasks. On the contrary, if the checkpoint size gets configured as 64KB, the

performance decreased almost three times from 1230 to 1300 tasks.

61

Both the size of data and the number of connections has an unfavorable effect on the

performance, but from the outcomes of the above experiment, it is evident that the number of

connections has a far more significant influence on performance when compared to the size of

the dataset. Despite the datasets of the 1MB checkpoints being approximately 15 times that of

the 64KB checkpoints, at the maximum tasks performed, i.e., 1300, the overhead of 1MB tasks

are hardly 25% greater than the 64KB checkpoints. Thus, this data illustrates how multiple

threads caused due to the overhead of multiple connections decrease the performance of

MongoDB. MongoDB causes this lag in performance because it allocates a new thread for every

new connection.

MongoDB vs. Pig/HDFS Performance

In the following experiment, the performance of MongoDB and Hadoop is measured, by

comparing the read and write performance. For the analysis to be unbiased a java program and

an equivalent python script got written which can read 30 million records and write 15 million

records. The objective(aim) of the current experiment is to compare the performance of HDFS

and MongoDB based on the reads and writes capabilities.

The setup for the current experiment consists of a MongoDB setup with two sharding

servers and two HDFS data nodes. For the reading tests, each node is expected to import 30

million records. The data set consists of 100 columns, and it has the structure similar to Medicare

Claims and Enrollment data sent to CMS by any Health Plan, but the data is fictitious and

extracted from Github. The data includes member enrollment dates, service dates, diagnosis

codes, premium amounts, benefit package codes, Member-Provider-Practice demographic data.

Pig reads the current dataset read at a rate of 7.8 million records per minute from the HDFS and

62

on the other hand, reads the same data at a rate of 1.7 million records per minute from

MongoDB. The write tests got performed with only two columns as the benchmark for both

Pig/HDFS and MongoDB.

Thus, both Pig/HDFS and MongoDB read records that are 100 times larger than the

records they wrote. For these records, the Pig/HDFS composes 13 million records in 13 seconds

(60 million records per minute), while MongoDB takes 5 minutes (2.6 million records per

minute). Therefore, this experiment, shows a 1:5 reading efficiency ratio between MongoDB and

Pig/HDFS while writing huge records and for writing small records, the ratio is an enormous

1:23, which shows that reading performance of MongoDB and Pig/HDFS is closer when

compared to the when compared to the writing performance.

MongoDB MapReduce

In spite of the inbuilt MongoDB MapReduce, the MongoDB-Hadoop connector enables

the usage of Hadoop’s MapReduce with MongoDB storage. MongoDB’s MapReduce is scalable

with its resources for executing MapReduce programs, i.e., for every MongoDB server, a mapper

or reducer task is initiated. Figure 11 compares MongoDB’s local MapReduce (MR) with

Mongo-Hadoop’s MapReduce. For this experiment, a single node MongoDB server and 2-node

Hadoop cluster got installed. The results of this experiment show that the Mongo-Hadoop

connector takes six times lesser time than that of MongoDB’s MapReduce. The graph further

demonstrates how the processing time of MongoDB MapReduce steeply rises with the increase

in the number of records to be processed when compared to that of Hadoop-MongoDB

MapReduce.

63

Figure 11. Performance of MongoDB vs. Hadoop based on the number of records.

Evaluating MongoDB Configurations

In both Hadoop and MongoDB, the pre-MapReduce process involves converting the

large datasets into smaller subsets called Splits. Every mapper or reducer task deals either with

Splits or aggregation of the split. The splitsize determines, the number of mappers that get

initiated as each Split gets analyzed as a separate mapper. The smaller the Splitsize, higher is the

number of mappers initiated. The number of mappers means more overhead resource

management. Hence, optimizing the Splitsize plays a vital role in enhancing the performance of

the cluster. The current experiment uses a 3.6GB dataset containing 8.4 million records for

understanding the influence of Splitsize on Overhead processing time. If the split size is 8MB by

default, then Hadoop initiates over 450 mappers. As mentioned earlier, too many mappers lead to

a significant overhead on Resource Manager. Hence, increasing the Splitsize as shown in the

64

Figure12 below, reduces the number of mappers initiated and releases the stress on Resource

Manager; thus, decreasing the processing time. However, the graph also illustrates that beyond

128MB (with 29 mappers initiated) the split-size does not seem to improve the processing time

significantly. Therefore, for all the remaining experiments, the 128MB split-size is considered

ideal.

Figure 12. Effect of splitsize on the processing time of MongoDB’s MapReduce.

65

Figure 13. Effect of increasing records on processing time.

Figure 13 demonstrates the next experiment, which is comparing the read, write and

processing time of Hadoop-HDFS on a 2-node cluster to MongoDB with two sharding servers

setup, when dealing with large data sets. The graph illustrates that the performance of Hadoop is

consistently higher than that of MongoDB. The gap between the processing time gradually

increases with the size of the dataset. For a dataset of 3.7 Million records, Hadoop’s processing

time is half of MongoDB processing time, and at 30 Million records, the MongoDB is seven

times slower than Hadoop.

Scalability Tests

The next experiment is to understand and compare the effects of horizontal scaling over

Pig/Hadoop and MongoDB. As illustrated in Figure 13, increasing the cluster sizes and thereby

increasing the number of cores from 8 to 64, decreases the reading time of MongoDB

significantly, because the rise in the number cores improves the capability of handling multiple

connections. However, there is no significant change in the writing time of both Hadoop and

66

MongoDB with increased scaling. Also, the previous experiments explain that the write times are

influenced by reduce step of the MapReduce program. In these cases, MongoDB can handle

multiple connections through a sharding setup. However, in this case, the growth in performance

is constrained by the overhead time caused due to data-routing among the shards.

Figure 14. Effect of processor cores on processing time.

The next experiment compares the performance between Pig/Hadoop and MongoDB

based on the reads and writes when the number of records is increasing. Figure 15 illustrates that

the read and write times of Hadoop with HDFS are more efficient when compared to MongoDB

read and write times. In spite of the Sharding servers in a MongoDB setup, the HDFS of Hadoop

seems to be more efficient in reading and writing which helps in decreasing the overall run-time

and thereby increasing the performance of Hadoop.

67

Figure 15. Comparing read, write, and processing individually with an increasing

number of records.

The next graph in Figure 16 illustrates the comparison between the effects of scalability

on MongoDB with that of Hadoop. As the cluster size gradually increases, thereby increasing the

number of cores, the performance of Mapper programs increases because of the increasing

mappers per Data Node. However, the reduce times do not change, significantly as the cluster

does not require many reducers and therefore, the increase in the size of the cluster does not have

an impact on Reduce part of MapReduce. Further, there is not a significant rise in performance

beyond 32 nodes as the overhead processing time for managing multiple parallel connections for

a relatively smaller data set, compensates any drop in the processing time.

68

Fault Tolerance in MongoDB

Figure 16. Fault tolerance of HDFS vs. MongoDB.

The next experiment is performed to compare the Fault Tolerance between Pig/Hadoop

and MongoDB. For this experiment, a 32 node Hadoop cluster is used to read to write and

process a data sample containing 40 million records. For consistency in the comparison, the same

dataset is also used to calculate the read, write and processing duration with MongoDB. As the

graph indicates, in spite of Hadoop having relatively lower processing durations, the Hadoop

cluster encounters too much loss of data when it loses more than eight eight nodes, i.e., 25% of

the total nodes installed. This loss of data nodes leads to incomplete MapReduce programs. On

the other hand, the MongoDB is also started to lose to data after losing four shards, each present

in different nodes.

69

Chapter VI: Conclusion and Future Works

Conclusion

 The checkpoint intervals had a significant influence on the overhead performance

duration of MongoDB. As the interval is decreased the number of connections increased and

caused a rise in the overhead processing time. the rise in overhead processing duration is caused

due to both larger data sets and the rise in a number of connections, tThe experiments illustrated

in this paper indicate that rise in the number of connections has a more significant impact on

overhead processing time, increasing it by approximately five times which is more than the

overhead caused by large data sets.

The performance of the MapReduce program can be improved significantly by increasing

the split size, which leads to a rise in number Mappers. However, the rise in the number of

mappers also increases the number of connections which drops the performance. Thus, as

illustrated in this paper, the split size must be chosen based on the cluster configuration and the

number of nodes the cluster contains.

The comparison of performance between Hadoop and MongoDB involves several criteria

out of which, only a handful got analyzed in this paper. This paper does not conclude that one of

these two tools is the best. However, the findings of this paper can be used to choose a better tool

between Pig/Hadoop and MongoDB, also considering the size of the data, the organization or an

individual is trying to store and analyze and the kind of infrastructure and architecture that they

can adopt.

70

Future Works

In the future, further studies in this direction can lead to the development of a better tool

which might adopt the concepts of data locality from Hadoop and the indexing capability of

MongoDB.

71

References

Arora, A., & Aggarwal, A. (2013). An algorithm for transformation of data from MySQL to

NoSQL (MongoDB). Retrieved from http://ijascse.org/volume-2-special-issue-

1/An_algorithm.pdf.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., …Gruber, R. E. (2006).

Bigtable: A distributed storage system for structured data. In Proceedings of the 7th

USENIX Symposium on Operating Systems Design and Implementation, Vol. 7, OSDI

‘06, pp. 5-15, Berkeley, CA, USA, USENIX Association.

Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Wuhan 430074 China: Springer,

School of Computer Science and Technology, Huazhong University of Science and

Technology.

Chodorow, K., & Dirolf, M. (2010). MongoDB: The definitive guide. Boston, MA: O’Reilly

Media Inc.

Cooper, B. F., Ramakrishnan, R., Srivastava, U., Bohannon, P., . . . Yerneni, R. (2008). Pnuts:

Yahoo!’s hosted data serving platform. Proceedings VLDB Endowment, 1(2), 1277-1288.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R. (2010). Benchmarking

cloud serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud

Computing, SoCC ‘10, (pp.143-154). New York, NY, USA, ACM.

Dean, J., & Ghemawat, S. J. (2008). MapReduce: Simplified data processing on large clusters.

Communications of the ACM, 51(1), 107-113.

72

Dory, T., Mejas, B., Roy, P. V., & Tran, N-L. (2011). Measuring elasticity for cloud databases.

In Proceedings of the Second International Conference on Cloud Computing, GRIDs,

and Virtualization.

Fadika, Z., & Govindaraju, M. (2010). Lemo-MR: Low overhead and elastic MapReduce

implementation optimized for memory and CPU-intensive applications. In Proceedings

of the 2010 IEEE Second International Conference on Cloud Computing Technology and

Science, CLOUDCOM ‘10 (pp. 1-8). Washington, DC, USA, 2010. IEEE Computer

Society.

Floratou, A., Teletia, N., Dewitt, D., Patel, J., & Zhang, D. Z. (2012). Can the elephants handle

the NoSql onslaught? In International Conference on Very Large Data Bases, VLDB,

5(12), 1712-1723.

Ghemawat, S., Gobioff, H., & Leung, S-T. (2003). The Google file system. In Proceedings of

the 19th ACM Symposium on Operating Systems Principles, SOSP ‘03 (pp. 29-43). New

York, NY, USA, 2003. ACM.

Guster , D., O’Brien, A. Q., & Lebentritt, L. (2013). Can a decentralized structured storage

system such as cassandra provide an effective means of speeding up web access times.

Retrieved from http://micsymposium.org/mics_2013_Proceedings/submissions

/mics20130_submission_2.pdf.

Havens, T. C., Bezdek, J. C., Leckie, B., Hall, L. O., & Palaniswami, M. (2012). Fuzzy c-Means

algorithms for very large data. IEEE Trans. on Fuzzy Systems, 20(6), 1130-1146.

73

Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., . . . Persson, K. A.

(2013). The materials project: A materials genome approach to accelerating materials

innovation. APL Materials, 1(1), 011002. doi:10.1063/1.4812323.

Jain, B., & Kakhani, M. K. (2015). Query optimization in hive for large datasets. Advances in

Computer Science and Information Technology (ACSIT), 2(4).

Lakshman, A., & Malik, P. (2009). Cassandra: A decentralized structured storage system. In

Proceedings of the 28th ACM Symposium on Principles of Distributed Computing,

PODC ‘09 (pp. 5-15). New York, NY, USA, ACM.

Lawrence, R. (2014). Integration and virtualization of relational SQL and NoSQL systems

including MySQL and MongoDB. International Conference on Computational Science

and Computational Intelligence (CSCI), IEEE.

Mapanga, I., & Kadebu, P. (2013). Database management systems: A NoSQL analysis.

International Journal of Modern Communication Technologies and Research, 1(7), 12-

18.

Pokorny, J. (2011). NoSQL databases: A step to database scalability in the web environment. In

Proceedings of the 13th International Conference on Information Integration and Web-

based Applications and Services, iiWAS ‘11, (pp. 278-283). New York, NY, USA, ACM.

Rao, B. R., & Govardhan, A. (2013). Sharded parallel mapreduce in Mongodb for online

aggregation. International Journal of Engineering and Innovative Technology, 3(4), 119-

127.

http://dx.doi.org/10.1063/1.4812323

74

Seema, B., & Ayush, T. (2014). Performance analysis of NoSQL databases having Hadoop

Integration. In Proceedings of International Conference on Emerging Research in

Computing, Information, Communication and Applications (ERCICA-14)

Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The Hadoop districuted file system.

Retrieved from

https://cs.uwaterloo.ca/~tozsu/courses/CS742/W13/presentations/QimingHsu.pdf.

Vavilapalli, V. K., & Murthy, A. (2013). Apache Hadoop YARN: Moving beyond MapReduce

and batch processing with Apache Hadoop 2. Boston, MA: Addison-Wesley.

75

Bibliography

Adomavicius, G., & Zhang, J. (2012). Stability of recommendation algorithms. ACM Trans. on

Information Systems, 30(4), 1-31.

Bansal, K., & Chawla, P. (2017). A study of Big Data analysis using Apache Pig. International

Journal for IJCTA, 8665-8672.

Biliris A. (1992). An efficient database storage structure for large dynamic objects. IEEE Data

Engineering Conference, (pp. 301-308). Phoenix, Arizona.

Cattell, R. (2011). Scalable SQL and NoSQL data stores. Retrieved from

http://www.cattell.net/datastores/Datastores.pdf.

Condie, T., Conway, N., Alvaro, P., & Hellerstein, J. M. (2010). Online aggregation and

continuous query support in mapreduce. SIGMOD’10, Indianapolis, Indiana, USA.

Copyright 2010 ACM 978-1-4503-0032- 2/10/06. Retrieved from

http://www.neilconway.org/docs/sigmod2010_hop_demo.pdf.

Dhawan, S., & Rathee, S. (2013). Big data analytics using Hadoop components like Pig and

Hive. Americal International Journal of Research in Science, Technology, Engineering &

Mathematics, 88-93.

Eldawy, A., & Mokbel, M. F. (2013). A demonstration of spatialhadoop: An efficient

mapreduce framework for spatial data. Proceedings of the VLDB Endowment, 6(12).

VLDB Endowment 21508097/13/10.

76

Ghemawat, S., Hsieh, W. C., Wallach, D. A. Burrows, M., Tushar, c., Fikes, A., . . . Dean, J.

(2006). Bigtable: a distributed storage system for structured data. Retrieved from

https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-

osdi06.pdf.

Gupta, V., & Lehal, G. S. (2013). A survey of common stemming techniques and existing

stemmers for Indian languages. Journal of Emerging Technologies in Web Intelligence,

5(2), 157-161.

Kedar Dixit. (2017). Workshop on big data using hadoop technology. Jawaharlal Engineering

College, Aurangabad, Maharashtra.

Lee, K-H., & Choi, H. (2011). Parallel data processing with MapReduce: A survey. SIGMOD

Record, 40(4).

Li, M. J., Ng, M. K., Cheung, Y. M., & Huang, J. Z., (2008). Agglomerative fuzzy k-means

clustering algorithm with a selection of the number of clusters. IEEE Trans. on

Knowledge and Data Engineering, 20(11), 1519-1534.

Lu, C. H. Y., & Swanson, D. (2010). Matchmaking: A new mapreduce scheduling. In 10th IEEE

International Conference on Computer and Information Technology (CIT’10), pp. 2736-

2743.

Madden, S. (2012). From databases to big data. IEE Internet Computing, 16(3), 4-6.

Mridul, M., Khajuria, A., Dutta, S., & Kumar, N. (2014). Analysis of Bigdata using Apache

Hadoop and MapReduce, 4(5), 27.

77

Niknam, T., Taherian Fard, E., Pourjafarian, N., & Rousta, A. (2011). An efficient algorithm

based on modified imperialist competitive algorithm and K-means for data clustering.

Engineering Applications of Artificial Intelligence, 24(2), 306-317.

Olmsted, J. P. (2014). Scaling at scale: Ideal point estimation with big-data. Princeton, NJ:

Princeton Institute for Computational Science and Engineering.

Oracle. (2011). Hadoop and NoSQL technologies and the Oracle database. Retrieved from

https://www.oracle.com/technetwork/database/hadoop-nosql-oracle-twp-398488.pdf.

Palanisamy, B., Singh, A., & Liu, L. (2010). Cost-effective resource provisioning for

MapReduce in a cloud. Stanford, CT: Gartner.

Pansare, N., Borkar, V., Jermaine, C., & Condie, T. (2011). Online aggregation for large

mapreduce jobs. Seattle, WA: VLDB Endowment.

Platzer, C, Rosenberg, F., & Dustdar. S. (2009). Web service clustering using multidimensional

angles as proximity measures. ACM Trans. on Internet Technology, 9(3), 11-26.

Rodriguez, A., Chaovalitwongset, W. A., Zhe L., Singhal, H., & Pham, H. (2010). Master defect

record retrieval using network-based feature association. IEEE Trans. on Systems, Man,

and Cybernetics, Part C: Applications and Reviews, 40(3), 319-329.

Russum, P. (2011). Big data analytics: TDWI best practices report. India: The Data

Warehousing Institute.

Sandeep, R. S., Vinay, C., & Hemant, S. M. (2013). Strength and accuracy analysis of affix

removal stemming algorithms. International Journal of Computer Science and

Information Technologies, 4(2), 265-269.

78

StratApps. (n.d.). Big data: An introduction to Pig. Retrieved from https://stratapps.net/intro-

pig.php.

Thilagavathi, G., Srivaishnavi, D., & Aparna, N. (2013). A survey on efficient hierarchical

algorithm used in clustering. International Journal of Engineering, 2(9), 2553-2556.

Ward, J. S., & Barker, A. (2012). Undefined by data: A survey of big data definitions. Stanford,

CT: Gartner.

Yang, Z., Tu, Q., Fan, K. Zhu, L., Chen, R., & Peng, B. (2008). Performance gain with variable

chunk size in GFS-like file systems. Journal of Computational Information Systems, 4(3),

1077-1084.

Zielinnski, T., Szydlo, T., Szymacha, R., Kosinski, J., & Kosinska, J. (2012). Adaptive soa

solution stack. IEEE Trans. on Services Computing, 5(2), 149-163.

	St. Cloud State University
	theRepository at St. Cloud State
	3-2019

	Performance Evaluation of Structured and Unstructured Data in PIG/HADOOP and MONGO-DB Environments
	Sri Rama Chandra Charan Tej Dasari
	Sri Ram
	Recommended Citation

	OLE_LINK5
	OLE_LINK6
	OLE_LINK5
	OLE_LINK6
	OLE_LINK3
	OLE_LINK4
	OLE_LINK3
	OLE_LINK4
	OLE_LINK7
	OLE_LINK7
	OLE_LINK8
	OLE_LINK8
	OLE_LINK9
	OLE_LINK10
	OLE_LINK9
	OLE_LINK10
	OLE_LINK11
	OLE_LINK12
	OLE_LINK11
	OLE_LINK12
	OLE_LINK14
	OLE_LINK15
	OLE_LINK14
	OLE_LINK15
	OLE_LINK16
	OLE_LINK17
	OLE_LINK16
	OLE_LINK17
	OLE_LINK18
	OLE_LINK18
	OLE_LINK19
	OLE_LINK19
	OLE_LINK1
	OLE_LINK2
	OLE_LINK1
	OLE_LINK2
	OLE_LINK20
	OLE_LINK21
	OLE_LINK20
	OLE_LINK20
	OLE_LINK21
	OLE_LINK21
	OLE_LINK24
	OLE_LINK25
	OLE_LINK24
	OLE_LINK25
	OLE_LINK22
	OLE_LINK23
	OLE_LINK22
	OLE_LINK23
	OLE_LINK26
	OLE_LINK27
	OLE_LINK26
	OLE_LINK27
	OLE_LINK28
	OLE_LINK28
	OLE_LINK29
	OLE_LINK30
	OLE_LINK29
	OLE_LINK30
	OLE_LINK31
	OLE_LINK32
	OLE_LINK31
	OLE_LINK32
	OLE_LINK33
	OLE_LINK34
	OLE_LINK35
	OLE_LINK33
	OLE_LINK34
	OLE_LINK35
	page39
	page39
	OLE_LINK13
	OLE_LINK36
	OLE_LINK13
	OLE_LINK36
	OLE_LINK13
	OLE_LINK36

