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OPTIMAL SEQUENTIAL SELECTION BASED ON 

RELATIVE RANKS WITH RENEWABLE CALL OPTIONS 

1982-3 
* JOHNS. ROSE 

Sequential sampling probl ems may be affected significantly by the 

presence of sampling costs and the ability to recall historical obser

vations. In the context of the classical secretary problem, we incor

porate these two notions into the decision maker's action set, thereby 

creating a stopped decision process. Whenever a desirable applicant 

appears, we may consider purchasing an option to recall it subsequently. 

The problem is solved for the best-choice criterion , reduced or dis

counted by the option costs incurred. 

KEY WORDS: Optimal choice; Secretary problem; Costly recall; Stopped 

decision process 

1. INTRODUCTION AND MOTIVATION 

Let us review briefly the context of what we shall refer to as 

the classical model of the secretary problem. Sampling sequentially 

without recall from a finite population of applicants, we must select 

exactly one member. Except for its size, no information about the 

population is available a priori. In order to evaluate the applicants 
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we assume only that ~ur preferences would induce a complete ordering 

on any subset of the population. Thus, at any given stage of .the 

process, the decision to select or to reject an applicant must be 

based solely on its relative rank among those already observed. We 

seek a stopping rule which maximizes the probability of selecting the 

best applicant. Suppose now that we observe an applicant which is 

preferable to the previously sampled, and rejected, applicants. Then, 

this applicant is certainly a candidate for the best. If the candidate 

is selected (rejected), then we risk (not) finding a better applicant 

among those yet unsampled. 

In order to mitigate this risk, we propose extending the classical 

model to allow another decision alternative - purchasing an option to 

call the given candidate at the time of the next observation. If the 

applicant observed at the next stage is better, let the option expire 

and decide among selecting, rejecting, or purchasing an option to call 

the new candidate. Suppose the next applicant is worse. All call 

options are assumed to be renewable, so an identical situation is 

encountered: exercise the option (select the prior candidate), let the 

option expire (reject the candidate), or renew it. Thus, the option 

alternative provides a hedge against the immediate future-. For the 

sake of parsimony, we shall refer to this alternative as the holding 

action. 

Two models, differing only in their reward structures, are 

considered. In the additive cost model, the option price is a fixed 

positive amount. For each stage at whiqh we decide to hold a 



3 

candidate, that charge is deducted from the expected return. In the 

other model, the expected return is discounted by a positive pr~per 

fraction, raised to a power equal to the number of holding stages. We 

suggest that the discounted · return model may be applicable · in 

s~tuations where, in return for being on ?all, the candidates demand 

an equity interest in our expected reward. 

Detailed analysis of the classical model of the secretary problem 

and several variations thereof·appear in Gilbert and Mosteller (1966). 

The concept of backward solicitation in this setting seems to have 

originated with Yang (1974) and has since been extended by others; see 

Corbin (1980) or Petruccelli (1981). According to Yang's model, we 

may attempt to recall for selection a previously rejected applicant, 

who in turn may refuse our offer with some known probability, in which 

case we are free to select another applicant. There is no cost asso

ciated with . such solicitation. The essential operational difference 

between Yang's model and ours is that we must decide at the time of 

observation whether or not we shall later have the option to recall 

the candidate. 

Even when recall is available, as in Yang's (1974) model, the 

secretary problem is still a pure stopping problem, provided that no 

penalty is imposed for unsuccessful solicitation. At each stage, the 

decision is either to continue or to (attempt to) stop, and, if the 

latter, then the best available app li cant is so li cited . If the 

solicitation is unsuccessful, then the process continues if!.nyway. 

Because of the holding alternative, our models are more appropriately 
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classified as stopped decision processes, albeit simple ones. Another 

example of a three-action secretary problem is provided by Rubi .n · and 

Samuels (1977) . who suppose that memory capacity is limited. Then, at 

each stage, they must decide among selecting, forgetting, or remembering 

the proffered applicant. However, memory is rent free, and solicitation 

of remembered applicants is not permitted. 

A discounted secretary problem without recall was studied by Ras

mussen and Pliska (1976) who assume that the final payoff is discounted 

for each stage of the sampling process, while we discount only for the 

holding stages. Also without invoking recall, Lorenzen (1981) inves

tigates an infinite secretary problem with sampling cost which again 

is a monotone nondecreasing function of the duration of the process. 

However, the payoffs which he considers are fairly general functions 

of the selected candidate's rank, whereas our return is nil unless the 

best is obtained. Dhariyal and Dudewicz (1981) obtain some numerical 

results for the (finite) secretary problem with sampling costs. Un

fortunately, they did not pursue the limiting behavior of their solu

tion, which might have provided an interesting comparison to the 

asymptotic results obtained here. 

Our notation and terminology are presented in Section 2. The 

additive .cost model is formulated as a stopped decision process and 

its optimality equations are derived. The solution of the model is 

obtained in Section 3, and its asymptotic behavior is specified in 

Section 4. In section 5, ·we compute the optimal procedure for the 

discounted return model, and in Section 6 the asymptotic solution for 
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large sample size and small discount rate is obtained . Throughout the 

paper, we fou~d it informative if not essential to compare our results 

t o t he cl assical model and its solution . 

2. THE ADDITIVE COST MODEL 

Let cx1 , ---, Xn) be a random permutation of {1 ,---, n}, so 

P(X1=i 1 , ---, Xn=in) = 1/nl · for all permutations (i
1

, ·---,i n). We inter

p r et X as the abso l ute . rank within the enti r e population of the r 

applicant observed at stager. After r stages , however, we know only 

the · r elative rankings 

z . = card{i:X.SX., i Sr}, lSjSrSn. (2.1) 
Jr i J 

Thus, when the j th applicant appears, its relative rank within the 

j - sample is z . . ; and, after an additional r-j observations, its 
)) 

relative ranking wi thin the r - sample becomes z . • For convenience , we 
Jr 

shall write Z.=Z .. ; obviously, z.sz. , js r. 
J JJ J Jr 

Note that ·z. is uniform ly 
Jr 

distributed on {1 ,--~, r} and that the observed history , (z
1

, --- ,Zr) , 

and the future, (Z 1 ,---, z ), are independent. r+ n 

There is a unique r andom index, J(r) , such that J( r)Sr and ZJ(r),r 

= 1,r=l,---,n. We shal l .refer to the applicant observed at stage J(r) 

as the candidate for stager. Let A= {pass,hold,stop}, the set of 

actions available at any stage, and l et a €A denote the action taken 
r 

at stager. The candidate for stager is said to be available if 

a = --- = a = hold . If J( r)=r, then z =land the cand ida te is J(r) r - 1 -- r 

available; otherwise , the candidate was held for r-J(r) stages. Let 

Y =1 if the candidate for stager is available; otherwise, l et Y =2, r r 
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say. Then, Y is a function of the history, H =(Z 1 ,a 1 ,---,z 1 , · r r . r ·-

a 1 ,z ), through r stages. As we shall see, the process Y={Y ,r=l,---,n} 
r- r r 

i s a sufficient statistic for the additive cost model. 

The ~odel is formulated as a stopped decision process, which for 

our .. purposes consists of five elements: state space, transition proba

bilities, terminal reward function, one-stage holding costs, and 

admissible actions. Consider these elements in the order given. Our 

choice of action at stager depends in general on the prior history, 

H , of observed ranks . and actions taken. · However ., as we verify below, 
r 

the probabilities, reward, costs, and admissible actions depend on H r 

only through Y. Consequently, it is fairly straightfo rward to show 
r 

that Y is sufficient (cf. Theorem 6.0, p. 3_7, Hinderer (1970), making 
r 

allowance for the optional stopping in our model) for choosing a. r 

Thus, the state is given by Y c{l,2}, r=l,---,n. r 

Next, the transition probabilities from H xA to H 1 are r r+ . 

trivially ind ependent of Hr. The initial distribution on H1=z1 is 

For any r ealization h of H, with a.i stop, 
· r r J 

j=l,---,r-1, we get p ((h ,a ),(h ,a ,z )) = P(Z 1=z) = 1/(r+l), r r r r r r+ 

provided a i stop. 
r --

for the Y-pr ocess. 

It remains to specify the transition probabilities 

Let p (y,a,x) = P(Y 1=xlY =y,a =a), so r r+ r r 

p
0

({1}) = P(Y1=1) = 1, 

p (y,pass,x) 
r --

= {1/(r+l),x= l 

r/(r+l), x=2 
, yc{l,2}, 

p (1,hold,1) = 1, p (2,hold,x) = p (y,pass,x),r=l,---,n-1. 
r -- -r -- r --

( 2. 2) 
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Now, consider the reward achieved if we decide to stop the pro -

b 1 . h .th 1· . cess at stager y se ecting t e J . app icant. Recall that our objective 

is to select the best applicant , so the terminal reward is defined to 

be P(X.=llH , a = stop). Modifying (2 . 1) slightly , we have X.=Z. =Z. 
J r r -- J Jn Jr 

+ card{i:X.<Z. ,r<i~n}. Thus, X. depends 
1 Jr . J 

on H only through z. , 
r Jr 

and 

the terminal reward may now be written as P(X.=llz. ) . Clearly , 
J Jr 

X.~z. , so P(X.=llz. ~2) = O; also P(X.=llz. =1) = r/n, independent 
J JI J Jr J Jr 

of j . It follows that we should consider selecting only the candidate 

for stager , and that is feas~ble only if the candidate is available . 

Consequently, the termina l reward, u(• ) , depends only on the state 

Y e:{1 , 2}; 
r 

u (y) 
r 

= {r/n 

Q . I 

I Y"'l 
(2.3) 

y=2 

Specification of the remaining elements of the stopped decision 

·process is easy . The one-stage holding costs depend only on the 

action taken. If ar = hold, a cost , c>O, is incurred. If ar = pass , 

there i s no cost. Finally, the set of admissib l e acts , A , also 
r 

depends on H only through Y . For all r<n, pass e A, while A = 
r r - - r n 

{stop}. There is no point in holding a noncandidate; according to 

(2.3) it shouldn't be selected , according to (2 . 2) it has no effect on 

the arrival of the next candidate, and it is costly. Consequently , we 

sha l l assume that hold e A if and only if Y =1 , r<n . 
r r 

Next, we define the set of p l ans according to which the actions 

{ar} are chosen . Following conventional terminology , an (n- 1) - tuple 
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f = (f --- f ) . l' ' n-1 is called a (deterministic, Markov) policy if 

fr:{1,2} ~ {pass, hold}. Invoking our admissibility assumption, we 

shall also require that f (2) = pass. Let -c be any Markov time r . 

relative to the sequences (Y1 ,---,Y), r=l,---,n-1, with -c ~ n. The 
. r 

interpretation is that, if,= r, then a = stop. From (2.3), we may 
r --

also require that {-c=r}C{Yr=l}, r<n. Any pair (f,T) is called a plan. 

r { . Let D denote the set of all plans, and let D = (f, -c)cD:T~r},r=l,---,n. 

For any plan, (f,,)cD, the stochastic evolution and termination of the 

process Y1 ,a 1 ,Y
2

,a 2 ,--- are well defined and satisfy (2.2). Let Pf-c 

and EfT denote the associated probability and expectation1 if no 

ambiguity arises, we shall drop the superscripts. It will be conven

ient to characterize plans by their support sets for the . holding and 

stopping actions, respectiv~ly. We shall write ambiguously (f,t) = 

(H,B), meaning that -c=min{{r:rcB,Y =l }U{n}} and H = {r :r¢B,f (1) = r r 

hold}. Then, BC{l,---,n}, HC{l,---,n-1},BAH = ~, and r¢BUH implies 

We conclude this section with a de sc ription of the total returns 

and the optimality equations. For any plan (f,T)=(B,H)cD, let 

R (f,T) 
r 

n 

=_E [ui(Yi)l{T=i } - clH(r)l{Y.=l}l{T>i}], 
1=r 1 

th 
the return from the r stage on , r=l,---,n. Let 

u (y) = 
r 

max Ef'T[R (f,T) IY =y], 
r r r (f,T)CD 

(2.4) 

(2.5) 

the optimal return functions, yc{l,2}. Because Dis finite, the max 

is achieved in (2.5). 
n For r=n, R (•,•) = u (Y) on D, so U (1) = l n n n n 
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and Un(2) = 0. For r<n, let vr = E[Ur+l (Yr+l) lar=pass). Froin (2.2), 

v = u 
1

(1)/(r+l) + ru 
1

(2)/(r+l). r r+ r+ (2.6) 

At last, the optimality equations are 

U (1) = max{r/n,U 1 (1)~c,v }, r r+ r (2.7) 

and U (2) = v, r=l,---,n-1. 
r r 

Using a standard backward induction argument of dynamic programming, 

we can derive (2.7) directly from (2.3)-(2.5). Otherwise, apply more 

general theory for stopped decision processes, as in Rieder (1975, 

Section 6). The interpretation of (2.7) is certainly clear enough. 

If the candidate for stager is available, we may stop, thereby re-

· ceiving the expected terminal reward r/n, we may hold, paylng the 

holding cost c and moving to stage r+l with the candidate available, 

or we may pass, in which case our expected return is v . According to r 
* * the criterion of optimality, (f ,, ) is optimal if and only if it 

* * chooses the maximizing action in (2.7). We may also write {f , , ) = 

* • 
(H ,B to denote the optimal plan. In order to resolve ties, we 

shall always prefer stopping over passing, which in turn is preferable 

to holding. 

3. SOLUTION OF ADDITIVE COST MODEL 

Suppose that Yr=l and that we are undecided between stop and 

hold. The expected return for stopping is u (l)=r/n. If we hold for, . r 

say, k periods and then stop, we expect to receive ur+k(l) = (r+k)./n, 



10 

for which we pay ck. Thus, if c>-1/n , there seems to be no incentive 

to hold, whereas if c<l/n , then we might as well hold until the 

last stage . This line of reasoning motivates the first two theorems of 

this section . 

First, we introduce some notation fo r the classical model , wi th 

which most of our results will be compared. Frequent use is made of 

the sum 

C(r) = l/r+-- -+ l/(n - 1),r=l,- --, n-l. (3.1 ) 

A very impo rt ant r ole is played by r*, the smallest integer r satisfy ing 

C(r ) ~l. The optimal stopping time for the classica l pro blem i s 

T' = min{ {r: r>-r* , Zr =l} V{n}}, where we adopt a convention of using 

primes (' ) to indicate results computed under the classical model . 

Its optimality equations are Ur ' (1) = max{vr' ,r /n} , r=l , ---, n- 1, where 

vr' = (r/n)C(r) for r~r*-1 and u1 • (1) = v 1 • (1) = --- = v'r*-l. See 

Gilbe rt and Mosteller (1966) or De Groo t (1970 , pp.325-331) fo r 

details. 

T HEOREM 3 .1 If c>-1/n, then the optima l plan is equiva l ent to the 

classical p r ocedu re , i.e., B* = {r* ,---, n} and H* = +. 
PROOF Use backwa r d induction on r, and refer to th e optimality 

equations, (2 .7 ), as necessary. Trivially, neB* . If n~2, t hen n-1>-r* 

and U 
1

(1) = max{(n -1 )/n,1-c ,1 /n}=(n -1 )/n. Hence, n-1 £B*. Assume 
n-

now that {k ,---,n }GB*, k>r*, and consider the case r=k-1. Then, vk_ 1= 

vk-l ~(k -1 )/n and Uk(l) = k/n, so Uk- l (n) = max{(k- 1)/ n,k/n-c} = (k- 1)/ n. 
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Therefore, k-leB*, too, and the theorem holds for r~r*. 

Next, let r=r*-1. Then, vr*-l = v' r*-l = (r*-l)C(r*-1)/n~(r*-1)/n, 

so r*-1¢B*. S~nce r*eB*, U *(1) = r*/n, so U * 1 (1) = max{v , 
r r - r*-1 

r*/n-c}. We have (r*-1)/n~r*/n-c and C(r*-1)>1, so vr*-l>r*/n-c and 

r*-1 i H*. Now, assume that r ¢ B*,r ¢ H*, for k~r<r*. For r=k-1, we 

have vk-l = Uk(l), by _assumption. Thus, vk_ 1>uk(l)-c. Furthermore, 

vk-l = --- = vr*-l>(r*-1)/n>(k-1)/n. We conclude that k-1 ¢ H*, 

k-1 ¢ B*. D 

THEOREM 3.2 If c<l/n, then B*={n}. Furthermore, r-1£H* implies 

reH*,r<n-1. 

PROOF With c<l/n and n~2, U 1 (1) = 1-c, so n-1¢B*. The induction . 
n-

hypothesis is that r¢B*,r =k,-~-,n-1. From (2~7), Uk(l)~Uk+l(l)-c~---~ 

1-(n-k)c, so Uk-l (1)~1-(n-k+l)c>l-(n-k+l)/n = (k-1)/n. Th~s, . 

k-1¢B*, and the first assertion is proved. Suppose that the second 

·assertion is false for some r<n-1. Then, we would have u 
1

(1)-c>v 
1 r- r-

~vr~Ur+l (1)-c, or Ur+l (l)<Ur(l). It is nearly trivial to show that 

U 1 (1)~U (1) for all r, so a contradiction is obtained. r+ r D 

As a consequence of Theorem 3.2, the optimal plan may be simply 

characterized by the single integer, s* = min H*. The first s*-1 

applicants are passed. The first candidate (if any) to appear there

after is held, and the candidate for each subsequent stage is held, 

until stage n, at which time the candidate is selected. Fortunately, 

it is not difficult to stilve for s*. 
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C(r-1)~1/cn. 

12 

With c<l/n, s* is the largest integer r such that 

PROOF On r~s*, we get 

Ur(l) = U (1)-c = ••• = 1-(n-r)c. r+l . (3. 2) 

Then, using (2.6), v 1 = U (1)/r+(r-l)v /r, which may be evaluated 
r- r r 

recursively by applying (3.2) n-r times. We obtain 

v 
1 

= (r-1) [A (r ,n)-cB (r ,n)), 
r-

n • n-1 

(3. 3) 

where A.Cr ,n) = E l/(x(x-1)) and B(r,n) = E (n-x)/(x(x-1)). Taking 
x=r x=r 

anti-differences yields A(r,n) = l/(r-1)-1/n and B(r,n) = n/(r-1)-C(r-1)-1. 

By definition, s* is the largest integer r satisfying 

V l ~ U (1)-c. r- r 
(3.4) 

The theorem is established by substituting (3.2) and (3.3) into (3.4). D 

As a corollary, we see that candidates accepted by the classical procedure 

will always be held in our framework. 

COROLLARY 3.4 If c<l/n, then s*~r*. I n particular, i f c<l/(nC(l)), 

then s*=l, and if c~l/(nC(r*-1)), then s*=r*. 

PROOF From the theorem, C(s*-1).::1/cn>h so C(s*-l)>C(r*), which implies 

C(s*-1).::C(r*-l), and that proves the first assertion. For the rest, 

let r=l and r =r* in the theorem. D 

The maximal expected return is u1 (1) = v 1 = = vs*-l' .which is 

obtained from (3.3) with r=s*-1. It is 
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u 1 (1) = l-c(n-s*)+(s*-1) (cc ·(s*) - 1/n). ( 3. 5) 

·Note that as c+l/n, u1 (1) + (r*-1) C (r* -1) /n = ui (1), the expected _: r e t urn 

from the classical model. I n light of Theorem 3.1 , such behavior is 

expected. Also, as c+O, then u1 (1)+1~ Writing c = y/n, for different 

values of n and y, O<y<l, we have computed s* and u
1

(1) numerical i y; 

see Table 1. 

Table 1. Numerical Solution of Additive Cost Model (c<l/n) 

Population 
Size(n) 

5 

25 

100 

1000 

co 

Fraction Cost Optimal 
(y) (c=y/ n ) Plan(s *) 

.1 . 02 1 

.3 . 06 1 

. 7 .1 4 2 

. 9 .18 2-

.1 . 004 1 

. 3 .012 2 

.7 . 028 7 

.9 . 036 9 

.1 .001 1 

.3 . 003 5 

.7 .007 25 

.9 . 009 34 

.1 . 0001 1 

.3 .0003 37 

.7 . 0007 241 

.9 . 0009 330 

.1 s* ::: .00005n 

.3 s* ::: .0357n 

.7 s* ::: .2397n 

.9 s* ::: .3292n 

4 . ASYMPTOTIC SOLUTION, ADDITIVE COST MODEL 

Maximal 
Return(u

1 
(1)) 

.92 

.76 

. 5317 
:. 455 
.904 
. 7173 
.4788 
. 4087 
.901 
.7121 
.4704 
.3993 
.9001 
• 7109 
.468 
. 3966 
.9 
.7107 
.4678 
. 3963 

In order to maintain the condition c<l/n as n gets large, let 

c=y/n, O<y<l. 

THEOREM 4.1 The limit a= lim s*/n exists, and a = exp( -1 /y). 
· n+co 
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PROOF From Theorem 3.3, C(s*)<l/cn = 1/L Using an integral approxi 

n 
mation for the sum C(•), we have f *dx/x<C(s*), so log n/s*<l/y , and . s 

lim inf s*/n~exp( - 1/y). Also, C(s*-1)~1/y, and we ob t ain similar l y n+00 

liw+$up s*/n~exp(-1/y). D 

The limiting return is now easily obtained from (3.5), with 

lim U1 (1) = 1-y+y exp( -1 /y). n• 00 
( 4 . 1) 

So long as y<l, (4.1) exceeds 1/e, the limit in the c l assical model. 
. . 

Also, by combining Corolla ry (3.4), (3.5), and (4 .1), we get 

Aim iif Ul(l) = 9¼1f Aim Ul(l) = 1/e. The limiting solutions computed 

for several values of y appea r in the last r ows of Tab l e 1. 

5. DISCOUNTED RETURN MODEL 

Now, instead of deducting holding costs from t he terminal r eward , 

as done in (2.4), we multiply the reward by a discount factor, 6,0<6< 1, 

for each stage at which the candidate is held. For (f,T) = (H,B)eD, 

the discounted return functions are 

i-1 
n j~r 1H(j)l{Y·=l} 

R (f,T) = E u.(Y.)1{ ' } 6 ' J , r . l. l. T=l. . i=r 
(5 . 1) 

r=l, ••• ,n. .The expressions for U (y) and v are still given by (2.5) 
. r r 

and (2.6) respectively, and Ur(2) = vr' as before. The optimality 

equations become 

U (1) = max{r/n,eu 1(1),v }, 
r .r+ r (5. 2) 

r =l,---, n- 1, and these can be rigorously derived by adapting the usual 
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inductive argument to fit the discounted model. 

The first t heorem and its lemmas provide a convenient and useful 

characterization of the optimal stopping rule. From L_emma 1, we find 

that no candidate should be selected if it is rejected in the classical 

model. Let t* = min B*, the first stage at which an available 

candidate should be selected. 

LEMMA 5.1 The optima~ stopping time has the lower bound, T*~r•. 

PROOF Obviously, v ~v• for all r. Suppose that t*<r*. From (5.2), 
r r 

the optimality of T*, and the definition of r*, we get t*/n~v ~v• = 
t* t* 

v 1 >(r*-1)/n so t*>r*-1 a contradiction. r*-1 ' ' D 

LEMMA 5.2 The optimal stopping set is connected; B* = {t*,t*+l, ••• ,n}. 

PROOF Show that r+leB* follows from reB*. We rely on (5.2). If reB*, 

then r/n~8U 1 (1)~8{r+l)/n, so r+ 

8Sr/(r+l). (5. 3) 

Suppose now that r+liB*. Because neB*, th ere exists an integer k, 

k~r+l, such that k¢'B* and k+leB*. Furthermore, since v.~v. 1 for all 
l. 1.+ 

i, we -get k/n>r/n=U {l)~v ~vk. It follows that keH*, the optimal 
r r 

holding set, so Uk(1)=8Uk+l (1)=8(k+l)/n>k/n. Thus, 8>k/{k+l), 

which violates (5.3). 0 

THEOREM 5.3 Let k be the unique positive integer which satisfies 

(k-1)/k<8Sk/(k+l). Then, · 

t• = ff , 'kSr* 
r*<k<n 

,. k~n 
(5.4) 
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and t* is monotone nondecreasing in a. 

PROOF Suppose that t* =t, with r*<t<n. Then, t-ltB*, and U 
1

(1)= 
t-

max{8t/n, vt~ 1}>(t-1)/n. From Lemma 5.2,vt_ 1=v~_ 1, so vt-l = (t-l)C(t-1)/n 

and C(t-l)SC(r*)Sl. Thus, vt_ 1s(t-1)/n, so Ut-l (l)=St/n>(t-1)/n; 

hence, S>(t-1)/t. That 6St/(t+l) follows from (5.3). Now, suppose 

that 6Sk/(k+l), k~r•. If t>r*, then the preceding argument gives a 

contradiction. From Lenuna 5.1, we conclude that t=r*. Finally, if 

S>(n-1)/n, then Un-l (l)=max{(n-1)/n,6,1/n} = a, so n-lcH*. Since 

B* is connected, t*=n. 0 

Now, we proceed to investigate the optimal holding set,. H*; it, 

too, is connected. 

LEMMA 5.4 If r-lcH*, then rcH* ,r=2, •• :, t* -1. 

PROOF By hypothesis, ~r-l (1} = aur(l)>vr-i· Because r<t*, U (1) = 
r 

max{Sur+l(l),vr}. Suppose that Ur(l} = vr' meaning f;(l) = pass. 

~hen, av >v 1, and v 1 = U (1)/r+(r-l)v /r = vr' from which we 
r r- r- r r 

conclude 6>1. 

As before, lets*= min H*. The next theorem shows how_ to 

~I 

D 

computes*, but we can now describe the optimal plan. Pass the first 

s*-1 applicants and hold the . first candidate, if any, observed at a 

stage betweens* and t*-1, inclusive. Hold the candidate until stage 

t*, when it will then be selected, or until it is superseded at some 

stage prior tot* by yet another candidate, which should also be held. 

Beginning with stage t*, stop and select the first available candidate. 
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THEOREM 5.5 For a ll rcH*, 

t*-1 
(rt*/n) E 

i=r+l 

t*-i · t*-r 
S /i(i-l)+(r/n)C(t* -1 ) < 8 t*/n. (5.5) ' 

PROOF If rcH*, then {r+l,r+2,--~,t* -l }CH*, by the preceding ienuna, so 

U (1) = SU (1) = S2u (1) = ••• = et*-ru (1) = st*~rt*/n , the r r+l r+2 t* 

right side of (5.5). Substituting for U. (1) in (2.6) , we evaluate v 
r 

recursively, 
t*-1 

(rt*/n) E 
i=r+l 

obtaining v = t*St*-(r+l) /(n(r+l))+rv 
1

/(r+l) = 
r r+ 

t*-i . 
B /i(i-l)+ryt*-l/(t"'-1). Now, vt*-l = v~*-l = 

= 

( t *-1))1' 

C(t* -1) /n, so v equals the left .side of (5.5). r For rcH*, we must 

have v <U (1), which is (5.5) . 
r r D 

Then, s* is simply the smallest positive integer, r, for which (5.5) 

holds. Of course, there is no assurance that H*#~. If the terminal 

reward is too deeply discounted, we may never want to hold a candidate. 

THEOREM 5.6 The optimal holding set is null if and only if 

8 S min{(r*-l)C{r*-1)/r*,r*/(r*+l)}. (5. 6) 

PROOF If H*=~, then the optima l .plan is the classical procedure, with 

t*=r*. By Theorem 5.3, SSr*/(r*+l). Furthermore, Ur*-l (l) = v;._ 1 = 

(r*-l)C(r* -1 )/n~SU *(1) = 8r*/n, and (5.6) holds. On the other hand, r 

if (5.6) holds, then t*=r*, by Theorem 5.3 . According to Lemma 5.4, 

if H*#~, then r*-lEH*. However, substituting r=r* - 1 and t*=r* into 

(5.5) contradicts (5.6). We conclude that H*=~. D 

The next proposition complements Lemma 5.1 and asserts that we 

should never reject a . candidate which would be selected under the 

cla .ssical model. 
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PROPOSITION 5.7 If H*/¢, then s*<r*. 

PROOF The proof is by induction on k, as given in Theorem 5.3. 

Suppose first that k=r*, so t*=r*. If H*/¢, the previous theorem sti

pulates that S>(r*- l )~(r*-1)/r*, so r=r*-1 satisfies (5.5) and s*<r*. 

Now, assume that r*-lcH* for t*=r*,---,k, and consider the case 

t*=k+l. Rewriting (5.5) slightly, and letting r=r*-1, the induction 

hypothe.sis becomes 

k 
r Sr-i/i(i-l)+Sr-k~(k)/k < 1/r, (5. 7) 

i =r+l 

(k-1)/k<S~k/(k+l). Then (5.5) will hold with t*=k+l provided that 

(5.8) 

for _ l>A>k/(k+l)~S. The left (right) side of (5.8) is continuous and 

decreasing in A (S), so it is sufficient to consider A=S=k/ (k+l) ,. 

which yields equality in (5.8). D 

As S inc~eases, there is less discount and we should be more inclined 

to hold the candidate for any given stage. Use the notation H*(•) to 

denote explicitly the dependence of the optimal holding set on the 

discount factor. 

PROPOSITION 5.8 If A>S, then H*(S)CH*(A). 

PROOF Let rcH*(S) and essentially replicate the argument of the 

previous proposition to verify also that rcH*(A). D 

Writing S=(n-L)/n, the numerical solution to the discounted return 

model is displayed in Table 2 for certain values of n and L. For 

comparative purposes, we also provide there the solution to the 
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classical model. 

Table 2. Numerical Solution qf -Discounted Return Model(S=(n - L)/n) 

Pop'n Discount Factor Optimal Solution Classica l Solution 
Size(n) (L) (8) s* t* U~(l) r* U!(l)' 

5 .1 .98 1 5 . 224 3 • 333 
.5 . 9 1 5 .6561 
1 .8 2 . 4 .4793 
2 .6 3 3 . 4333 
2.5 .5 3 3 .4333 

25 .1 .996 1 25 .9083 lO .3809 
. 5 :98 3 25 . 6299 
1 .96 6 24 .4536 
2 .92 10 12 .3817 
2.5 . 9 10 10 .38 09 

100 .1 .999 1 100 .9057 38 .3710 
. 5 .995 7 100 .6270 
1 . 99 21 99 .4502 
2 . 98 36 49 .3 728 
2.5 . 975 38 39 .3710 

1000 . 1 .9999 1 1000 .9 049 369 • 3682 
. 5 .9995 64 1000 .6261 
1 . 999 201 999 .4 493 
2 .998 350 499 .3702 
2.-5 .9975 367 399 .3682 

0) .1 . OOOln n .9 048 .3679n .3 679 
.5 .0634n n .6261 
1 .1 998n n .4492 
2 .3493 n .Sn .3700 
2.5 .3665n .4n . 3679 

6. ASYMPTO~IC SOLUTION, DISCOUNTED RETURN 

In view of Theorem 5. 6 , as n gets large, we must also allow 8 to 

approach unity; otherwise , the c l assical solution is obtained. Subse 

quent ana l ysis is facil i tated if we assume that n(l-8) converge t o a 

positive limit, say L, and for simplicity we write 8 = 8(n) = (n-L)/n. 

The solution is surprisingly extremely sensitive to L , as we shall 

see. From Theorem 5.3, we get 



ti
le 

lim t*/h ~ /L 
n+co 1 
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, L>e 
, e2:L.::l 
, L<l. 

(6.1) 

Henceforth, we shall require L~e, .and let u = lim t*/n = min{l,1/L}. n+co 

We want to examine the limiting behavior of s* = s*(n). Consider 

first the case e2:L2:l. Letµ= lim inf s*/n. Also , let r = s* and n+co 

t = t* in (5.5), and take the limit. Dealing first with the 

t-1 t-i t t-x 2 2 summation, we get (rt/n) E 18 /i(i-1)>(8rt/n) f 
1

8 .ax/x = (8rt/n )~ 1.=r+ r+ 
t/n t-ny 2 

cf+l)/n 8 dy/y, to which we may apply Fatou's lemma. First note 

that 8t = [(1-L/n)n/L]t L/n + 1/e, while 8-ny = [(1-L/n)n/L]-yL + 

exp(yL)°, as n+<lo. Thus, 

t-1 · 
lim inf(rt/n) E 

n+co i=r+l 

Integrating by parts, we get 

u 2 
f exp(yL)dy/y = exp(µL)/µ - e/u + LI(µ,u), 

µ 

b 

(6. 2) 

(6.3) 

where I(a,b) = f exp(y/b)dy/y. For the second term on the left side of 
a . 

(5.5), we have C(t-1) = nEl 1/i ~ f~ dx/x ~ -log u, so 
i=t-1 

lim inf (r/n)C(t-1) =-µlog u. 
n+co 

(6.4) 

Finally, we have lim in f 8-r = lim inf[(l-L/n)n/L)-rL/n = exp(µ/u), so 
n+00 n+co 

lim inf 8 t-rt/n = u exp (µ/u-1) , (6. 5) 
n+co 

the limit of the right side of (5.5). Combini'ng (5.5) with (6.2)-(6.5), 

we get I(µ,u)/e-log u~l. Now, let r = s*-1 in (5 .5), thereby reversing 

the inequality. Letµ= lim sup s*/n and modify the preceding argument 
n+oo 



21 

appropriately. We obtain I(µ , u)/e-logu~l. Since I(•,v) is monotone 

decreasing on (0,v], it follows that I(µ,u)SI(µ,u) . Hence, we have proved 

THEOREM 6.1 For 8 = 1-L/n, lSLSe, the limitµ= lim s*/n ex ists and n+~ 

satisfies 

(~/e) f~ ·exp(y/u)dy/y - log v = 1 (6.6) 

In order to computeµ .from (6.6), we may expand I(µ,v) a~ a cower 

series, I(µ,v) = -lo g(µ/u)+ k~l (1-(w~)kl/(kkl), and include as many 

terms as necessary to achieve a desired level of accuracy . The last 

portion of Table 2 gives selected values to four decimal p la ces. 

Now, return to (5.5) and evaluate the limiting return. We eas i

ly obtain JJ.W u1 (1) = J+~m vs*-l = v exp( -1+µ/ ~), which ·we rewrite as 

lim Ul(l) = V exp(-L(u-µ)), 
n+~ 

(6.7) 

~nd (6.7) holds for the case L<l as well as lSLSe. 

The corollary indicates that the classical procedure is a good 

approximation for the optimal plan when 8Sl-e/n. 

COROLLARY 6.2 If e = 1-L/n, L~e, then him s*/n = fi¼fil u1 (1) ~ 1/e. 

PROOF Let L=e in (6.6). Then, v=l/e, so -log u=l; thus, I(u,u)=0. 

The integr and is positive, so µ=u. Now, substitute u=µ=l/e in (6.7), 

and obtain u1 (1)zl/e, too. For L>e, just apply Proposition 5.8. D 

There remains the case L<l. Analysis s imilar to that yielding 

Theorem 6.1 gives 
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exp(-L)L ~1exp(yL)dy(y = 1, (6.8) 

where againµ= lim s*/n. The strategy of always holding the candidate n+oo 

is a good approximation to the optimal plan when S~l-L/n and Lis 

nearly zero. · The following corollary follows almost immediately from 

( 6. 7) and · ( 6. 8) • 

COROLLARY 6.3 For S = 1-L/n, lim 
L+0 

lim s*/n = 0 and lim lim u
1

(1) = 1. 
n+oo L+0 n~ 
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