
St. Cloud State University
theRepository at St. Cloud State
Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and Information
Technology

12-2018

Implementation of Parallel Search Algorithm in
Computational Biology
Rahim Abdul Mohomed
rahimscsu@gmail.com

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

Part of the Computer Sciences Commons

This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at
St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized
administrator of theRepository at St. Cloud State. For more information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Abdul Mohomed, Rahim, "Implementation of Parallel Search Algorithm in Computational Biology" (2018). Culminating Projects in
Computer Science and Information Technology. 28.
https://repository.stcloudstate.edu/csit_etds/28

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St. Cloud State University

https://core.ac.uk/display/232795641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/28?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

1

Implementation of Parallel Search Algorithm in Computational Biology

by

Rahim A. Mohomed

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science in

Computer Science

December, 2018

Starred Paper Committee:

Jie Hu Meichsner, Chairperson

Mehdi Mekni

Denis Guster

2

Abstract

Bioinformatics and Computational Biology are rapidly growing multidisciplinary fields,

which includes wide variety of domains from DNA sequencing to sequence alignments. Recent

advances in both these disciplines have allowed biologists all around the world to quickly gather

a huge amount of DNA sequence data for analysis. DNA sequence alignments are becoming

ever more popular due their impact in early disease diagnosis, in drug engineering, as well as in

criminal investigations. With the vast growth and popularity of biological data, searching for a

DNA sequence of interest in huge databases is not an easy task to produce results within a

realistic time, hence there is a need to enhance the efficiency.

The reason why such information is so popular is because biologists can identify genetic

information by finding sequences of similar genes or proteins with known behavior or structure

without requiring long and expensive laboratory experiments. One of the most widely used tools

for performing searches is Basic Local Alignment Search Tool (BLAST), a program for

performing pairwise sequence alignments. As the BLAST program becomes ever more popular

with biologists around the world, it faces numerous challenges. One of the main challenges is

the issue of performance. The BLAST program has been looked at by researchers on how to

improve the speed of search by reducing overhead costs. One of the ways to reduce the overhead

cost is to incorporate parallelism to improve the performance of the BLAST algorithm.

For this paper, I explored existing variations of parallel implementations of the BLAST

algorithm and compared its performance improvements with that of serial implementation of

BLAST. The speed-up efficiency noted by the parallel program is far greater compared to the

serial program. The paper sheds light on the impact of parallelization of the BLAST algorithm

and the advantages it has on the overall field of computational biology.

3

Table of Contents

 Page

List of Tables ... 5

List of Figures .. 6

List of Algorithms .. 8

Chapter

1. Introduction .. 9

 Overview of the Field of Biology .. 9

 Cells—The Basic Precursor to Living Organisms ... 10

 Goals and Objectives ... 14

 2. BLAST (Basic Local Alignment Search Tool ... 16

 BLAST: A Widely Used Search Tool ... 16

 Access and Use of the BLAST Application .. 18

 The BLAST Family ... 20

 Genomic Database ... 21

 BLAST Heuristic ... 23

 3. Parallel Computing .. 24

 Parallel Computing .. 24

 4. BLAST and its Parallelism .. 28

 BLAST Algorithm Steps.. 28

 Purpose of BLAST ... 30

 Factors Affecting BLAST Performance .. 30

 BLAST Case Study .. 31

4

Chapter Page

 Use of Parallelism to Improve BLAST Performance

 and Related Work .. 35

 Replicated Databases ... 39

 Distributed Databases .. 40

 Batch Query Optimization ... 42

 The Downside to mpiBLAST .. 44

 5. Experiment and Related Work ... 46

 Overview of the BLAST Algorithm .. 46

 Methodology .. 50

 Use of pThreads ... 51

 POSIX Threads .. 55

 Example Program with the Use of pThread: Hello World 56

 Thread Joining ... 58

 The Experiment and its Results ... 58

 Serial BLAST vs. Parallel BLAST .. 61

 Related Work ... 69

 Performance vs. Database Size .. 69

 Performance vs. Batch Size ... 71

 Performance vs. Query Length .. 72

 6. Conclusion and Future Work ... 74

References .. 76

5

List of Tables

Table Page

1. List of 20 Amino Acids ... 14

2. Sequence Serving ... 50

3. Performance of BLAST with Increasing Amount of Threads 60

4. Serial vs. Parallel Implementation Performance:

 DB = 1000 DNA Sequences .. 63

5. Serial vs. Parallel Implementation Performance:

 DB = 10,000 DNA Sequences ... 63

6. Serial vs. Parallel Implementation Performance:

 DB = 100,000 DNA Sequences ... 64

7. Serial vs. Parallel Implementation Performance:

 DB = 500,000 DNA Sequences ... 64

8. Serial vs. Parallel Implementation Performance:

 DB = 1,000,000 DNA Sequences .. 65

9. Serial vs. Parallel Implementation Performance:

 DB = 5,000,000 DNA Sequences .. 65

10. Serial vs. Parallel Implementation Performance:

 DB = 10,000,000 DNA Sequences .. 66

11. Serial vs. Parallel Implementation Performance:

 DB = 50,000,000 DNA Sequences .. 66

12. Serial vs. Parallel Implementation Performance:

 DB = 100,000,000 DNA Sequences .. 67

6
List of Figures

Figure Page

1. The Structure of A DNA and RNA Molecule .. 12

2. The Transcription and Translation Process.. 13

3. Web-based BLAST Application .. 18

4. Web-based BLAST Application .. 19

5. GenBank Statistics ... 23

6. BLAST Algorithm ... 30

7. BLAST Web Interface ... 33

8. BLAST Results Overview ... 34

9. BLAST Results .. 34

10. BLAST Result with User and Database Query.. 35

11. Detailed Information on a Specific DNA Sequence .. 36

12. AGBLAST Web Snip Showing User Steps Required to

 Use AGBLAST .. 38

13. Multithreaded BLAST Algorithm .. 39

14. Replicated BLAST Algorithm ... 40

15. mpiBlast Algorithm ... 42

16. Batch Query Optimization ... 44

17. Master Slave Model of mpiBLAST ... 45

18. Finding the Hook in the Database .. 48

19. pThread Join() .. 59

7
Figure Page

20. Example Run of the Program ... 61

21. Serial vs. Parallel BLAST 1000-500,000 DB Sequences 67

22. Serial vs. Parallel BLAST 1,000,000-10,000,000 DB Sequences 68

23. Serial vs. Parallel BLAST 50,000,000-1000,000,000 DB Sequences 69

24. Performance vs. DB Size ... 72

25. Performance vs. Batch Size ... 73

26. Performance vs. Query Length .. 74

8

List of Algorithms

Algorithm Page

1. Hello World Using pThreads .. 59

9
Chapter 1: Introduction

Overview of the Field of Biology

The field of biology has been revolutionized with technological advancements since the

early 1980s. In the field of bioinformatics and biostatistics, current research and computation are

limited by the available number of computer hardware. This problem can be solved by using

high-performance computing resources. There are several reasons for using high-performance

computing machines: access to huge amounts of data, increased computational requirements due

to the use of sophisticated and complex methodologies, and latest developments in computer

hardware resources.

Modern biology is facing unprecedented challenges mainly in terms of data management,

search and sorting of huge amounts of data. The amount of data stored and retrieved by

biologists all over the world has grown exponentially over the years. For example, a human

DNA is comprised of three billion base pairs with a personal genome representing approximately

100 GB of data. It is forecasted that data will be an ever-increasing problem in the field of

computational biology with the recent developments that rely heavily on computational power

and storage needs.

Over the years, there has also been the need for managing huge amounts of data, and the

advent of such large datasets has significant storage and computational implications. The rise of

cloud computing has been advantageous in the field of biology as researchers need not have to

spend huge amounts of money on buying infrastructure to store the data. Instead, they can hire

infrastructure on a “pay as you go” basis thereby avoiding large capital infrastructure and

maintenance costs.

10
However, problems arise with different solutions of storing data. Big data presents

problems in that it deviates from traditional structural data which are organized and accessed by

rows and columns. Instead we are seeing data stored as semi-structured data, such as XML or

unstructured data including flat files which are not compatible with traditional database methods.

One of the major problems that arise with huge amounts of data is searching through these vast

amounts of information to find an article/information of interest.

A major tool that is facing a data management problem is the Basic Local Alignment

Search Tool (BLAST). This tool helps biologists all over the world to search DNA sequences of

interests from a large database pool. The search times could exceed more than an hour in some

instances. Over the years many researchers have proposed new implementations for the BLAST

algorithm to help to speed up the search time. One of the areas of interests is to use parallel

computing techniques to speed up the search time.

Cells--The Basic Precursor to Living

 Organisms

Cells is the precursor for every living organism. These cells are essentially made up of

proteins and nucleic acids. Nucleic acids are either Deoxyribonucleic Acids (DNA) or

Ribonucleic Acids (RNA). DNA is a molecule that has the necessary instructions required for

the cell to perform its biological functions. DNA contains genetic information and is responsible

to propagate the characteristics of one organism from one generation to another. The DNA

molecule is made up of four nucleic acids: adenine (A), guanine (G), cytosine (C), and thymine

(T). The DNA molecule has the shape of a double helix and the nucleotides are connected to

each other forming strands with two terminals: 5’ and a 3.’ The full DNA sequence of an

11
organism is known as a genome. Figure 1 shows a pictorial representation of a DNA and an

RNA molecule.

(Isa, 2013)

Figure 1

The Structure of a DNA and RNA Molecule

Genes are made of DNAs and each gene provides instructions for cells in living

organisms to make other molecules known as proteins. Proteins arise from DNA from two

separate processes: the transcription and the translation process. During the transcription phase,

information from the DNA is transferred to a molecule called messenger ribonucleic acid

(mRNA). After this step, the mRNA is translated into a protein molecule during the translation

process (Isa, 2013). Figure 2 shows the pictorial representation of the transcription and

12
translation phases. During this translation phase, the information from the mRNA is read into 20

main amino acids as shown in Table 1.

(Isa, 2013)

Figure 2

The Transcription and Translation Process

13
Table 1

List of 20 Amino Acids

(Isa, 2013)

Combinations of any of these 20 main amino acids produce different protein sequences,

each of which has its own biological role to perform. In the field of bioinformatics, tools known

as sequence alignments are used to identify and compare various DNA sequences for reasons

such as mutations or general changes (Isa, 2013). For example, in a pairwise sequence

alignment, a newly discovered biological sequence also known as a query sequence is compared

against sequences in a certain database, while for multiple sequence alignment, a query sequence

is compared against many sequences at once. The reason behind this is for biologists to discover

regions of similarity between the sequences under study, which may provide useful information

on their characteristics. The goal of sequence comparison is to determine the similarities

between two genetic sequences.

14
DNA sequencing is also useful to achieve other goals such as facilitating drug

engineering, the determination of protein’s function, and construction of evolutionary (DNA)

trees. For example, when a human protein is damaged, DNA sequenced is performed to find the

most similar sequence in the database. Based on the most similar sequence in the database,

researchers can model the entire human protein sequence needed to make the specialized drug

that binds to the particular DNA sequence (Isa, 2013).

Goal and Objectives

 As the demand for quick data searches and retrieval is gaining popularity in the field of

biology, this paper aimed to find solutions to improve the speed efficiency and provide solutions

and improvements to the existing BLAST algorithm.

The goal of this paper was to create a parallel implementation of the BLAST algorithm

and compare the speed up efficiency with that of serial implementation. My work focused

mainly on researching existing variations of BLAST and implementing the parallel algorithm

with ideas driven from these variations. This parallel implementation is compared against the

serial implementation of BLAST using various sizes of databases. Finally, the paper provides

examples of other parallel implementations of the BLAST algorithm and provides solutions and

ideas for future work.

 The objective of this paper was to create a serial and parallel implementation of the

BLAST algorithm. Using the serial program as “building blocks” for the implementation of the

parallel BLAST program, the parallel program was developed using the BLAST algorithm in the

serial program and will be parallelized. In other words, the serial implementation of the BLAST

program was created first and then the parallel BLAST program was developed after that using

15
the exact same BLAST algorithm with the only difference being the parallelization of the

program. This was done for the sole purpose of initially focusing on the BLAST algorithm and

later focusing on parallelizing the serial implementation using pthreads.

 The paper is organized to introduce the reader to the basics of genetics and bioinformatics

in Chapter 1. Chapter 2 of this paper describes the BLAST and its uses. Chapter 3 discusses

parallel computing its influence in the field of computation biology. Chapter 4 discusses the

BLAST algorithm in detail and provides examples. Chapter 5 discusses the study carried out

along with comparisons, and Chapter 6 draws examples for future developments and

improvements to the program.

16
Chapter 2: BLAST (Basic Local Alignment Search Tool)

Since the discovery of genetic code, research in the field of biology has undergone a sea

of change in the way it is performed. The growth of molecular biology and research in the field

of genetics during the 20th century moved biological research from the test tube to more

complicated genetic analysis. During this time, biologists started accumulating DNA and protein

sequence data at an exponential rate. Currently there are approximately 97 billion bases

sequences and over 93 million records stored over various databases all around the world

(Zomaya, 2006).

As DNA sequencing grew at the end of the 20th century, scientists turned to computers to

help analyze the abundant and massive amount of genetic data. Today, one of the most common

tools used to examine DNA and protein sequences is the Basic Local Alignment Search Tool

which is also known as BLAST. BLAST is a computer algorithm that is available for use online

at the National Center of Biotechnology Information (NCBI) website (Zomaya, 2006). BLAST

is used to align and compare a query DNA sequence with a database of sequences, which makes

it a critical tool in ongoing genomic research. In recent years, development of BLAST has

enabled scientists to study the genetic blueprint of life across many species, and it has also

helped connect biology and computer science in combined field known as bioinformatics.

BLAST: A Widely Used Search Tool

One of the current search tools for biologists that is in place is BLAST: Basic Local

Alignment Search Tool. This search tool allows the user to find regions of local similarity

between protein sequences of DNA strands. This search algorithm compares protein sequences

that a user can upload to sequence databases and calculates the statistical significance of

17
matches. This is a useful search tool for researchers to find commonalities between sequences as

well as help in identification of members of gene family. Figure 3 shows the Web Application

for BLAST that is used by biologists all around the world to search DNA sequences from huge

databases.

The search strategy used in BLAST is based on scoring matrices to compare short

subsequences (words) in the query sequence against the entire target DNA or protein sequence

database to find statistically significant matches, then extending these matches to find the most

similar sequences or sub-sequences. Figure 4 shows a pictorial representation of two DNA

strands and how the BLAST search algorithm uses local alignment to efficiently search DNA

sequences in the database.

(National Center for Biotechnology Information, 2018)

Figure 3

Web-based BLAST Application

18

(National Center for Biotechnology Information, 2018)

Figure 4

Web-based BLAST Application

Even though BLAST uses a very efficient algorithm, the growing size of sequence

databases and number of searches needed are quickly expanding beyond the computational

capabilities of individual computers. The ever-increasing need for higher performance has

created a demand for a more powerful version of BLAST for use on multiprocessors and PC

clusters and has led to the development of enhanced versions of BLAST, which attempts to

exploit parallelism to improve performance.

Access and Use of the BLAST Application

There are many ways through which a user can submit BLAST searches, but the most

commonly used way to submit searches is via the NCBI website (National Center for

Biotechnology Information, 2018). In the submission page, the user simply inputs a raw

sequence and clicks the BLAST button. If the user would like to modify the default search, they

are given various options. The user can change the database where the DNA sequence will

provide searches for or limit their search taxonomically using autocomplete menus. Once the

BLAST button is clicked, the BLAST algorithm parses the input and creates an Abstract Syntax

Notation (ASN.1) representation of the search, inserts the search into an MSSQL database, and

sends a Request ID (RID) to the user. During this time, the BLAST algorithm is working behind

19
the scenes to provide the user with a detailed search output, which includes similar DNA

sequences and scores. The user’s browser periodically polls the server, checking for complete

results. Once the results are complete, the page displays the report. Results are usually saved for

36 hours on the server. The user may use the RID to retrieve the results in the future.

Users may also be able to access NCBI blast through the BLAST+ remote service, which

is a network service that uses ASN.1 to communicate between the client and the server. In this

case, the client sends the query, parameters, and database to the server in the form of an ASN.1

request. An RID is assigned and sent back to the client. The client polls for the status of the

result on a regular basis. Once the search is done, the ASN.1 results are returned to the client.

Another way that users can search is through NCBI “URL API” interface and the HTTP

protocol to create BLAST jobs and retrieve BLAST results.

There are many use cases for BLAST, but the most common uses are as follows:

1. Data Collection: For biologists that have to gather and analyze large amounts of

DNA sequence data, the biologists can utilize BLAST to query the sequences. For

example, a biologist may collect a large number of DNA sequences as expressed

sequence tags (ESTs) in a single tissue sample, then compare all EST’s against a

known DNA sequence database to estimate their biological properties.

2. Self-Comparisons: Biologists may also wish to compare data with itself to discover

similarities and differences. After collecting a sample amount of DNA sequences,

they may compare each DNA sequence collected against each other to discover

highly expressed sequences of fragments that may be combined into longer

sequences.

20
3. Database Comparisons: Biologists may also wish to perform comparisons using

existing DNA sequence databases, either comparing databases against one another or

against itself. For example, a biologist may compare all human gene sequences

against a monkey gene sequences for comparative genomics or compare the genomes

of different species (Zomaya, 2006).

The BLAST Family

Many variations of the BLAST have been developed and this paper explored a couple of

these variations. In the beginning, the BLAST algorithm was split into two adaptations: the

NCBI BLAST and Washington University BLAST (WU Blast). Both of these BLAST

algorithms have program variations within themselves. A couple years later, more variations of

BLAST were created. Some of them are discussed here:

1. BLASTN can be used to compare two nucleotide sequences;

2. BLASTP can be used to compare two protein sequences;

3. BLASTX can take a nucleotide sequence, translate it, and query it versus a protein

database in one step;

4. TBLASTN compares a protein query sequence to all possible databases, to search for

a new protein, undescribed genomes;

5. WImpiBLAST which is a web interface for mpiBLAST to help biologists perform

large scale annotation using high performance computing. WImpiBLAST provides

an easier to use web interface to biologists to perform searches using parallel

computing.

21
Genomic Database

There are millions of sequences stored in databases all around the world. After the

completion of the Human Genome Project in 2003, biological information such as DNA

sequences is stored securely in databases. Examples of such databases include: GenBank which

was created and managed in the US, DNA Databank of Japan, and European Bioinformatics

Institute. The most widely used are GenBank from the NCBO (National Center for

Biotechnology Information), SwissPort from the Swiss Institute of Bioinformatics, and PIR from

the Protein Information Resource.

GenBank is a database that contains publicly available nucleotide (DNA) sequences for

more than 200,000 organisms, which are obtained primarily through submissions from individual

labs and batch submissions from large scale sequencing projects. Daily data exchanges occur

with the European and the DNA Data Bank of Japan to ensure worldwide coverage.

BLAST provides sequences similarity searches of GenBank and other sequences in

databases. GenBank data is available at no cost over the internet, via FTP and also via a wide

range of web-based applications such as BLAST which operate mainly on GenBank data.

From its inception, GenBank has doubled in size about every 18 months. It now contains

over 65 billion nucleotide bases from more than 61 million individual sequences, with about 15

million sequences added in the past year (Zomaya, 2006). Each GenBank entry includes a

concise description of the sequence, the scientific name, the taxonomy of the source organism,

bibliographic references, and a table of features listing areas of biological significance, such as

regions of interest in the DNA, their mutations and modifications.

22
Figure 5 lists the number of bases and the number of sequence records in each release of

GenBank, beginning with Release 3 in 1982. From 1982 to the present, the number of bases in

GenBank has doubled approximately every 18 months. This has resulted in a massive explosion

in sequence DNA information that is widely available for biologists around the world. The vast

amount of DNA information and its popularity among biologists definitely proves that there is a

huge need for a repository to store and retrieve DNA sequences.

(Zomaya, 2006)

Figure 5

GenBank Statistics

Sequence similarity searches are the most fundamental and most common type of

analysis performed on GenBank Data. NCBI offers the BLAST family of programs to detect

similarities between a query sequence and database sequences. BLAST searches are either

performed on the NCBI’s website or via a set of standalone programs distributed by FTP.

23
BLAST was designed to search nucleotides and proteins of interest from a vast database.

BLAST takes your query (DNA sequence or protein sequence) and searches its protein or DNA

databases for levels of identity that ranges from perfect matches to matches of very low

similarity. After it searches through the database, it reports back to you what it finds, in order of

decreasing significance (in decreasing similarity). BLAST results may take anywhere from a

couple of minutes to several hours during peak times. Peak times is defined as times where there

is a heavy load on the servers as many users around the world try to access the same resources,

which in this case would be the BLAST web application. There are many versions (forms) of

BLAST but for simplicity the BLAST algorithm discussed here will be for nucleotide (DNA)

which is called BLASTN, the N stands for nucleotide (DNA).

BLAST Heuristic

 BLAST increases the speed of the alignment by decreasing the search space or number of

comparisons it makes. Specifically, instead of comparing every DNA sequence against each

other, BLAST uses short “word” segments to create alignment “seeds.” Requiring only words

that are three letters in length to match in order to seed an alignment, means that fewer sequence

regions needs to be compared. Larger word sizes usually mean there are even fewer regions to

evaluate. Once an alignment is seeded, BLAST extends the alignment and a score is given to the

DNA sequence. Since its creation, BLAST has become an essential tool for biologists. Its

sensitivity allows scientists to compare nucleotide and protein sequences to both single

sequences and large databases.

24
Chapter 3: Parallel Computing

Parallel Computing is a computing method of concurrent use of multiple processors

(CPUs) to do computational work. In comparison, serial programming is a method in which a

single processor executes program instructions in a step by step manner. Parallel computation

can be performed on shared-memory systems with multiple CPU’s, distributed memory clusters

made up of smaller shared memory systems or single-CPU systems. Several applications in

computational biology have large run time and memory requirements which can be addressed by

Parallel Computing. The run-time of applications can be reduced by the use of multiple

processors to solve the problem and scaling of memory with processors enables finding solutions

of larger problems (Aluru, 2003).

Parallel Computing

A parallel computer uses a set of processors that are able to work together to solve a

computation problem. This is made possible through splitting the problem load into parts and by

reconnecting the partial computations to create an accurate outcome. The way by which the load

distribution and reconnections are managed is heavily influenced by the system that will support

the execution of the parallel application program.

Parallel computations are broadly classified into two main models based on Flynn’s

specifications: Single-Instruction Multiple Data (SIMD) machines and Multiple Instruction

Multiple Data (MIMD) machines (Aluru, 2003).

SIMD machine consists of many simple processors each with a small local memory. The

complexity and often the inflexibility of SIMD machines, strongly dependent on the

synchronization requirements, have restricted their use mostly to special purpose applications.

25
More commonly used, MIMD machines are more amenable to bioinformatics. In MIMD

machines, each computational process works at its own pace in an asynchronous fashion and is

completely independent of the other computation processes. Memory architecture has a strong

influence on the global architecture of MIMD machines, which becomes a key issue for parallel

execution, and frequently determines the optimal programming model (Julich, 1995).

Parallel software enables massive computational tasks to be divided into several separate

processes that execute concurrently for the solution of a common task through the usage of

different processors. There are two key features that could be used to compare models:

granularity, which is the relative size of the units of computation that execute in parallel; and

communication, the way the separate units of computation exchange data and synchronize their

activity.

An example of granularity is by formulating a block of instructions. At this level, a

programmer identifies sections of the program that can safely be executed in parallel and inserts

the directives that begin to separate the tasks. When the parallel program starts, the run time

support creates a pool of threads that are unblocked by the runtime library as soon as the parallel

section is reached. At the end of the parallel section, all extra processes are suspended, and the

original process continues to execute (Aluro, 2003).

Ideally, if we have n-processors, the run time should be also n times faster with respect to

the wall clock time. In real implementations, however, the performance of a parallel program is

decreased by synchronization between processes, communication and load imbalance.

Coordination between processors represents sources of overhead, in the sense that they require

some time added to the pure computational workload.

26
Most of the effort of a programmer goes into increasing the efficiency of the program.

By lowering the overhead costs such as decreasing the amount of communication between

processors, idle time and work distribution efficiency will help increase the efficiency of the

program. The simplest way when possible is to reduce the number of task divisions; in other

words, to create a coarsely grained application.

Once granularity has been decided, communications needs to be enforced for correct

behavior and to create an accurate outcome. When shared memory is available, inter-process

communication is performed through shared variables. When several processors are working

over the same space, the locks and the critical sections (block of code that only one process can

execute at a time) are required for safe access to shared variables.

When distributed memory is used, sending messages over the network must be performed

all inter-process communication. With this message passing paradigm, the programmer has to

know where the data is, what is to communicate, and when is to communicate with whom.

Library subroutines are available to facilitate the message passing constructions: PVM and MPI

(Aluru, 2003).

Researchers have attempted to use parallelism techniques to improve BLAST. Various

techniques have been implemented over the years and a couple stand for their advantages. One

of the most commonly used techniques is called the Vector Parallelism Technique. This is one

of the earlier techniques to improve BLAST performance by using low-level vector parallelism

to speed up the calculation of scores for sequence alignments. BLAST is able to find hits

between statistically significant words and sequences in the database; it must find a local

pairwise alignment and calculate a score for the alignment, before returning the best score found.

27
This local pairwise alignment can be parallelized in a fine-grain manner using vector parallelism

(Zomaya, 2006).

Another common parallelism technique is known as Multithreading. This approach

improves BLAST performance by using thread-level parallelism to compare queries to different

parts of a sequence database. As a BLAST search is performed against sequence databases

consisting of multiple sequences, searches can easily be performed in parallel using multiple

threads. Some examples of Multithreading include NCBI BLAST and WU BLAST which are

programs that can be run in multithreaded mode on shared-memory multiprocessor (SMP)

machines. These parallel variations of BLAST and along with a couple more variations will be

looked into further later in this paper (Zomaya, 2006).

28
Chapter 4: BLAST and its Parallelism

The BLAST application is used by biologists all over the world to search DNA and

protein sequences. This has caused BLAST to grow in popularity over recent years which has

come with a couple downsides. One of the most notable downside is to do with its efficiency in

providing quick results to biologists. Various parallelism techniques have been researched over

the years to improve the speedup of the search. The BLAST algorithm along with the

parallelism techniques will be surveyed in this chapter.

BLAST Algorithm Steps

The BLAST program is used to search DNA and protein sequences against a database of

DNA and protein sequences. The BLAST algorithm has four stages: build words, find seeds,

extend, and score. Figure 6 gives an overview of these stages.

To explain the algorithm, a DNA query sequence of “ACTGA” and a database sequence

of “GACTGC” can be used as an example.

1. Build Words: The first step is to break the user input query into fragments (“words”)

and then the program compiles a word list. For DNA sequence, for example, the

word list includes all the words with an input length of W in the query sequence.

Therefore, for “ACTGA” if the input length is 3, then the word list is: ACT, CTG,

TGA.

2. Find Seeds: BLAST then scans through the database to find all occurrences of the

words in the list. The words are used as “seeds” for the next step. For example, the

seeds generated in this step are “ACT” and “CTG.”

29
3. Extend: In this step the matching words (Seeds) are extended into ungapped local

alignments between the query sequence and the sequence from the database.

Extensions are made in both left and right directions and only stop when the “score”

drops below a threshold value. The resulting pairwise alignments are called high

scoring pairs (HSPs). For example, the seed extension step would result in the query

sequence of “ACTG.”

4. Score: In this final step: the top scoring HSP’s are combined. HSPs are consistent

only if they can be combined without any overlapping and while maintaining the

same order in both the query and sequential database sequences. Statistical tools are

used to assess the significance of the results and to select the most likely alignment

(Zomaya, 2006).

(Zomaya, 2006)

Figure 6

BLAST Algorithm

30

Purpose of BLAST

Biologists may collect large number of DNA sequences from a breast tissue sample of

cancer patients, and then compare this information against known sequence database (BLAST) to

estimate their biological function/properties. Each sequence collected (from one patient) becomes

a single BLAST query. Hence, biologists frequently perform a large number (batch) of sequence

comparisons at once. The data gathered from BLAST may also be used to discover similarities

and differences between DNA sequences.

Factors Affecting BLAST Performance

Large numbers of BLAST searches tend to cause intensive workloads which can have an

effect on the performance of the search results. Some of the main factors affecting BLAST

performance include:

1. Size of the Database: The BLAST program consists of many databases for a number

of organisms, and this database size can vary greatly. DNA Sequence Databases

consisting of nucleotides (A, C ,T, G) are typically the largest because DNA

techniques are most developed and researched. On the other hand, protein databases

are smaller because protein sequences are shorter and fewer proteins have been

identified and researched.

2. Size of the Searches: Query searches sizes may range from hundreds to potentially

millions of sequences simultaneously.

3. Size of the Searched Sequence Length: The length of the search sequence may also

vary, depending on the bioinformatics application. Sequence lengths may range from

31
50-100 for DNA through 300-500 for proteins, to more than 10,000 for genes

(Zomaya, 2006).

BLAST Case Study

The use of BLAST to find out if a tumor is benign or malignant (cancerous or non-

cancerous):

Patient Jane comes in for a regular physical to her doctor and complains about pain in her

abdomen area. The doctor performs the physical and does two things during the physical: he

takes Jane’s blood for further analysis and sets an appointment for her colonoscopy. The stats

for Patient Jane are as follows:

• Age = 35, Healthy

• Symptoms: pain in abdomen, blood in stool and tiredness

• Colonoscopy performed: Suspicious Polyps (Tumor) found

• Biopsy: Colon Cancer--Confirmed

The doctor then performs a DNA sequencing on the tumor (cancer) cell. The DNA

Sequence of the tumor is as follows:

CTCCGCACTGCTCACTCCCGCGCAGTGAGGTTGGCACAGCCACCGCTCTGTGGCT

CGCTTGGTTCCCTTAGTCCCGAGCGCTCGCCCACTGCAGATTCCTTTCCCGTGCA

GACATGGCCT

The doctor then enters the DNA sequence into the BLAST web application as shown in

the Figure 7. The search is then performed, which takes about an average of couple minutes

(during peak times the time could significantly increase), and then the doctor is presented with

the search results as seen in Figures 8 and 9. As seen in the Figure 9, there is a perfect match

32
with a database DNA sequence. A perfect match here is considered to be a 100% score under

the identity column.

(National Center for Biotechnology Information, 2018)

Figure 7

BLAST Web Interface

33

(National Center for Biotechnology Information, 2018)

Figure 8

BLAST Results Overview

(National Center for Biotechnology Information, 2018)

Figure 9

BLAST Results

34
The BLAST application shows the user query and the DNA sequence with bars shown in

Figure 10, indicating whether the particular letter matches or not. A score and a percentage

match are also provided to the user. After the doctor looks through the results, he then clicks on

the search result for further information. From this link, the doctor is provided further details

about the DNA sequence with information such as what the DNA sequence is, how it was

discovered, the organism it belongs to, and the research article link for further details on the

gene. Figure 11 provides an example of how a BLAST provides information of a particular DNA

sequence. From this the doctor concludes that the patient may have colon cancer and will need

immediate treatment.

(National Center for Biotechnology Information, 2018)

Figure 10

BLAST Result with User and Database Query

35

(National Center for Biotechnology Information, 2018)

Figure 11

Detailed Information on a Specific DNA Sequence

Use of Parallelism to Improve BLAST

 Performance and Related Work

The use of BLAST by so many biologists has required researchers to find ways to

improve the speed and efficiency of BLAST by increasing the overall performance. Researchers

have attempted to use parallelism techniques to improve BLAST.

An obvious way to accelerate the BLAST algorithm is by running them in multiple

processors or multiple nodes. Many techniques were proposed to parallelize the algorithm and

good results were obtained.

36
Biological sequence comparison is a very challenging problem. This is mainly due to the

fact that we must find approximate pattern matching between a query sequence and a huge

database.

Current research techniques use one of the following approaches to improve BLAST

performance: vector instructions, multithreading, replicated databases, distributed databases and

optimized batch queries (Zomaya, 2006).

1. Vector Instructions:

One of the earlier techniques to improve BLAST performance was to use low-

level vector parallelism to speed up the calculation of scores for sequence alignments.

BLAST finds hits between statistically significant words and sequences in the

database. It must find a local pairwise alignment and calculate a score for the

alignment, before returning the best score found. This local pairwise alignment can

be parallelized in a fine-grain manner using vector parallelism (Zomaya, 2006).

A version of BLAST called AGBLAST developed by Apple and Genentech use the

Vector parallelism technique to improve BLAST performance. Research on AGBLAST has

shown performance improvement up to an average of five times faster for BLAST queries with

long sequences, which required more time calculating the local alignments. The web application

for AG Blast is shown in Figure 12.

37

(AGBLAST-UNIX, 2018)

Figure 12

AGBLAST Web Snip Showing User Steps Required to Use AGBLAST

2. Multithreading

Another approach to improve BLAST performance is to use thread-level

parallelism to compare queries to different parts of a sequence database. As a BLAST

search is performed against sequence databases consisting of multiple sequences,

searches can easily be performed in parallel using multiple threads.

A threaded BLAST search slices the given database into equal sized chunks

according to the number of available processors. Each database chunk is then distributed

to a predefined processor using memory mapping. Then, each processor is responsible

38
for a thread scanning, a different database fragment. The sorted results are stored in a

single global structure, which is shared by all processors and then combined to produce

the final BLAST result which is displayed to the user. Figure 13 shows a snapshot

overview of this process.

Some examples of Multithreading include NCBI BLAST and WU BLAST, which

are programs that can be run in multithreaded mode on shared-memory multiprocessor

(SMP) machines. The only downside of this approach is that, database portioning, thread

creation, management, memory contention, and collecting search results in large

overheads, which prevents BLAST from achieving peak performance. However,

experimental studies have shown that multithreaded BLAST appears to achieve good

performance in practice.

Zomaya, 2006)

Figure 13

Multithreaded BLAST Algorithm

39
Replicated Databases

This approach required replicating sequence databases on a distributed memory system.

This is one of the most commonly used methods to improve BLAST performance. The

implementation adopts a master/slave paradigm to maintain load balance. When database size is

small, a full copy of the sequence database can be stored in memory of each node. Batched

queries can be split up evenly and assigned to each node.

The slave nodes then perform local BLAST searches and send the results to the master

node. This method has shown to improve performance when there are a large number of batched

queries. Figure 14 gives an overview of the algorithm. Some of the commonly used BLAST

versions that use the replicated database approach include BeoBLAST and Hi-per BLAST.

(Zomaya, 2006)

Figure 14

Replicated BLAST Algorithm

40
Distributed Databases

One of the downsides of a replicated BLAST algorithm is that when database size

increases, they may no longer fit in the memory of individual computers. This may reduce

performance for batched BLAST queries as each query will need to reload the sequence database

into memory to scan for words. Distributed database approach solves this problem by exploiting

the large amount of aggregate memory available in parallel computers through distributed

sequence databases.

In this approach, the database can be split up, with each processor maintaining a portion

of the sequence database small enough to fit in memory. Multiple BLAST queries can be

processed without retrieving the database from slower disk storage requiring disk I/O. The

downside is that implementing this approach is more complex as sequence database needs to be

partitioned and also distributed equally between processors. Also, increased overheads are

incurred as only partial results are calculated for each query from a single processor. The partial

results are then combined between processors for each query. The overall performance is

improved due to reduced disk access.

The algorithm for mpiBLAST is as follows. Figure 15 gives an overview of the

algorithm.

1. The master node sends a message to each slave node to ask for a list of database

fragments in its local directory.

2. The master node then assigns jobs to the worker node according to the database

fragments at each node.

41
3. If a worker node is idle and has a local copy of a database fragment, the master node

will send a message to that node, directing it to search the fragment.

4. The worker node then performs a local BLAST search for the database fragment

assigned by the master.

5. Once the worker node has finished searching the database fragment, it will send its

results and also an idle message to the master node.

6. As partial search results arrive from worker nodes, the master merges them into the

master result list. Once all fragments have been searched, the master node will notify

all slave nodes to terminate, and then output the merged results (Zomaya, 2006).

(Zomaya, 2006)

Figure 15

mpiBLAST Algorithm

42
Batch Query Optimization

The last approach to improve BLAST performance is by reducing redundancies

between multiple queries found in batch BLAST queries. By combining multiple

BLAST queries, results and data already used can be reused and the number of scans

done on the database can be reduced. This is important particularly for large databases

that take a longer time to scan for information.

Batch Query Optimization does not necessarily make use of multiple processors

but combining this approach and executing in parallel can greatly improve performance.

Versions of BLAST that perform batch query optimization include BLAST++ and HT-

BLAST.

The structure of BLAST++ algorithm is similar to BLAST. The major difference

is how BLAST++ compiles its word list. The BLAST++ algorithm is as follows. Figure

16 contains the following steps:

1. BLAST++ creates a virtual query consisting of all queries.

2. When building a word list, BLAST++ maintains a list of (query ID, list of

offsets) pairs for each word to record all the occurrences of the word in the

entire set of batched BLAST queries.

3. The remaining steps of BLAST++ are identical to that of BLAST.

In this approach a common word is searched only once for all the batched

queries, compared to once for each query, hence reducing the computation

time (Zomaya, 2006).

43

(Zomaya, 2006)

Figure 16

Batch Query Optimization

mpiBLAST

mpiBlast is a type of BLAST algorithm which achieves super linear speedup by

segmenting a BLAST database. It is designed to work on a computer cluster using MPI library

and adopts a master-slave relationship. In mpiBLAST the master node assigns the query

sequence and database fragments to each worker node. The worker node performs the BLAST

search on queries and sends the result to master node. When one worker node completes a task,

the master node assigns a new fragment (of database) to it. This procedure is repeated until all

queries have been searched. The master node merges all the results and sorts them according to

the score. mpiBLAST performance is evaluated by measuring the speedup and efficiency in

comparison to sequential NCBI BLAST version. The mpiBLAST algorithm consists of three

steps as shown in Figure 17.

44

1. Segmenting and distributing the database

2. Running mpiBLAST queries on each node.

3. Merging the results from each node into a single output file (Zomaya, 2006).

Figure 17

Master Slave Model of mpiBLAST

The Downside to mpiBLAST

One of the major problems with mpiBLAST is to do with the master write problem. In

this scenario, the master process is responsible for sorting the intermediate results according to

the score. This scenario has two drawbacks: the results processing is serialized by the master

which can increase the time and decrease performance; second, the master memory may max out

with all the intermediate results coming in. To remedy this issue, a parallel write is used. The

worker threads after searching their fragment of database, converting their intermediate results

45
into the final output, and sending the final output metadata to the master. As the size of each

result alignment output is known to the master, the master then computes the offset ranges for

each output and sends that information back to the workers. With the output offsets, the workers

write the local output records in parallel. By locally buffering the output and parallel processing

the results, the mpiBLAST removes the performance bottleneck.

46
Chapter 5: Experiment and Related Work

 This chapter focuses on the algorithm that was implemented for the purpose of this paper

and also the methodology that was used. Comparisons made between serial and parallel

implementation of BLAST with results will being tabulated.

Overview of the BLAST Algorithm

 Implemented

The algorithm of the BLAST program that was implemented for this paper has the main

objective to show performance results is explained in detail below. For the purposes of

simplicity and to show performance improvements, the program was kept simple and is a hybrid

of various implementation of BLAST.

Below is a detailed pseudocode of the BLAST Algorithm implemented for this paper.

1. User enters the DNA Sequence that he/she wants to search in the database (the

database for this project would be a .txt file).

Example Output of the Program:

Please enter the DNA Sequence that you would like to match:

User Entry: ATGCCCGTCATTCC

2. The first step for search is to break the user entry into three letters:

The program breaks the user input into three-letter words: ATG, TGC, GCC, CCC,

CCG, CGT, GTC, TCA, CAT, ATT, TTC, TCC.

3. The program then searches the database (the user specified .txt file) for sequences that

match the three-letter words which are known as “Hooks.” Figure 18 provides a

pictorial representation of how the hooks are searched by the program in the

respective database file that the user decides to search.

47

Figure 18

Finding the Hook in the Database

4. After finding the “Hook” by matching the three-letter words to the database, the

algorithm then moves left and right along the DNA sequence of interest.

For example, in the above instance, the first sequence was of interest since we were

able to find the three-letter word: ATG in the sequence. Therefore, the algorithm

moves left and right through the sequence to look for similarities between other

letters in the sequence.

GTCATGCCCGTCATTCC

5. When the algorithm moves left and right the program keeps a score using a program

counter. With every match, the algorithm adds +1 to the overall score, and -1 for any

mismatch.

48
In the above example:

User Entry: -- ATGCCCGTCATTCC

Database (Sequence of Interest): TCATGCCCGTCATTCC

 The overall score is calculated based on the algorithm keeping a counter for the number

of hits and misses. The counter begins with a score of 0, and then begins counting the score

from the hook, which in this case is “ATG.” As the hook consists of a three-letter word, the

score then increments to +3. The algorithm then moves all the way to the left and right of the

database sequence and increments/decrements the score based on if the word is a hit or a miss.

After the algorithm reaches the end of the sequence or the beginning of the sequence it stops and

provides the user with a total score.

The algorithm searches the database sequence only if it “sees” a hook in the sequence. If

the database sequence consists of multiple hooks, then it prioritizes the first hook seen compared

to other hooks. In other words, the first hook that the algorithm encounters in the database

sequence is the hook that it considers.

Another important observation to point out here is that the algorithm for BLAST searches

is more complex in nature, with a lot more statistical analysis and comparisons made before a

score is provided to the user. For the purpose of this paper, the algorithm here was kept as

simple as possible to solely provide comparisons of serial and parallel implementation of

BLAST which is the main objective of the paper. This is done so as to not to heavily focus on

the complexity of the BLAST algorithm which may cause the reader to stray away from the

objective and the intent of the paper. Rather, the objective of the paper has to do with

49
parallelism and its advantages on a search algorithm such as BLAST. Table 2 provides a

detailed overview of how the scoring algorithm works.

Table 2

Sequence Scoring

User Entry Database Score Total Score

(Initial Counter = 0)

- T -1 -1

- C -1 -2

A A +3 (HOOK) +1

T T

G G

C C +1 +2

C C +1 +3

C C +1 +4

G G +1 +5

T T +1 +6

C C +1 +7

A A +1 +8

T T +1 +9

T T +1 +10

C C +1 +11

C C +1 +12

 Overall Score: 12

 Three letter Hook: ATG

50
6. After the algorithm matches the user entry with the sequence of interest it provides an

output to the user that looks something like this.

User Entry: - - ATGCCCGTCATTCC

Database (Sequence of Interest): TCATGCCCGTCATTCC

The program also provides the user with the score and a percentage value of how

much matched.

Methodology

The parallel implementation of BLAST algorithm is a done in the language C. The

program can be executed simultaneously in more than one processor. In this section, we will

discuss the details on how both the design and implementation of parallel BLAST algorithm

have been carried out.

Step 1: Splitting the Database. In this algorithm, the database is split up by the master

node, with each processor maintaining a portion of the sequence database small enough

to fit in the memory. Multiple BLAST queries can be processed without retrieving the

database from slower disk storage requiring disk I/O. This is known as distributed

databases. Distributing data among the slave processors involves sending data from the

root processor (master, a processor with rank 0) to all participating processors including

itself.

Step 2: Managing Communication between Interaction Tasks. Most of the

communication occurs during database fragmentation and distributing the fragments

among processors would take place in the beginning, and at the end while gathering

outputs from them. The communication is static and synchronous.

51
Step 3: Input Query Search in Database. During this step, the user query is broken into

words by the master processor and the words are distributed to the worker nodes. These

three letter words (Example: “ATG,” “GGC,” GTA”) are then searched by the slave

processors in their respective database fragments. Each processor performs the

expansion phase on the respective database DNA sequence and calculates the score.

If a node is idle during this phase and has a local copy of the database fragment,

the master node will send a message to that node, directing it to search the database

fragment for the user entry.

Once the slave node has finished searching the database fragment, the slave

processor sends the Highest Scoring Pair’s (HSP’s) to the master processor. After this,

the worker node will send an idle message to the master node.

Step 4: Merging of the Results. As the partial search results arrives from the slave

processors, the master merges them into a master result. Once all database fragments

have been searched, the master node will notify all the slave nodes to terminate and then

the master outputs the merged results.

Use of pThreads

pThreads are defined as a set of C language programming types and procedure calls.

Implemented with a pthread.h/include file and a thread library. pThreads are used for many

reasons; the main motivation is to realize the parallel program performance gains. When

compared to the cost of creating and managing a process, a thread can be created with much less

OS overhead. Managing threads requires fewer system resources than managing processes.

52
Also, inter-thread communication is more efficient and, in many cases, easier than to manage

inter-process communication (Akl, 2014).

A thread is a sequence of such instructions within a program that can be executed

independently. It is an independent set of values for the processor registers (for a single core).

Since threads includes the Instruction Pointer (aka Program Counter), it controls what executes

in what order. Threads also includes the Stack Pointer, which had better point to a unique area of

memory for each thread or else they will interfere with each other (Akl, 2014).

Threads are the software unit affected by control flow (function call, loop, goto) and

because instructions operate on the Instruction Pointer, that belongs to a particular thread.

Threads are often scheduled according to some prioritization scheme (although it is possible to

design a system with one thread per processor core, every thread always runs, and no scheduling

is needed).

The value of the Instruction Pointer and the instruction stored at that location is sufficient

to determine a new value for the Instruction Pointer. For most instructions, this simply advances

the IP by the size of the instruction, but control flow instructions change the IP in other

predictable ways. The sequence of values the IP takes on forms a path of execution weaving

through the program code, giving rise to the name "thread."

Independent flows of control are possible because a thread maintains its own:

• Program Counter

• Stack Pointer

• Registers

• Scheduling Properties

53
• Signals

• Thread specific data (Akl, 2014)

Threads within the same process share the same resources so an issue to look out for: the

changes made by one thread in a shared system will be seen by all other threads. This brings up

the issue of thread safety.

Thread-safeness refers to an application’s ability to execute multiple threads

simultaneously without clobbering shared data or creating race conditions. A situation where a

race condition would take place: an application creates several threads, each of which makes a

call to the same library routine. The library routine accesses/modifies a global structure in local

memory. The issue that might happen is when as each thread calls this routine it is possible that

the threads may try to modify this global structure/memory location at the same time. Therefore,

the routine should employ some sort of synchronization constructs to prevent data corruption.

This issue where threads trying to modify a global structure at the same time is seen in a shared

memory space model. A forked process is considered a child process and forked processes share

no like code, data, or stack with the parent process; whereas, a threaded process can share code

but has its own stack. The purpose of fork() is to create a new process, which in turn becomes

the child process of the system call. The process will then execute the next instruction following

the fork() system call. In this platform, two identical copies of the address space, code and stack

are created; one for parent and the other for child. On the other hand, the purpose of pthread is to

create a new thread. The thread within the same process can communicate using shared memory

whereas processes have their own memory space. Forks() are harder to synchronize than

pthreads.

54
To take advantage of the pThreads, a program must be able to be organized into discrete,

independent tasks which can execute concurrently. For example, if routine 1 and routine 2 can

be interchanged, interleaved, and/or overlapped in real time, they are candidates for threading.

In parallel programming, the master/slave method is used. A single thread, the master thread

assigns work to other threads, the workers. Typically, the master handles all input and parcels

out the work to other tasks. In some instances, the master also gathers the results from the

worker threads and performs the necessary calculations.

There are two forms of master/slave models:

1. Static Load Balancing: This type of load balancing is applied before the execution of

any process. It is referred to as the mapping problem or scheduling problem. A

potential static load-balancing technique is by assigning tasks in sequential order to

processes coming back to the first when all processes have been given a task.

Another way is to select processes at random to assign tasks.

2. Dynamic Load Balancing: In this form, when the job gets done, the worker thread

seeks the next task. Division of tasks is dependent upon the execution of parts of the

program as they are being executed. A variant of Dynamic Load Balancing is

Centralized Dynamic Load Balancing. In this form, the master process holds a

collection of tasks to be performed by the slave process. Tasks are sent to slave

processes and when a task is completed a slave process requests another task when

done.

55
POSIX Threads

POSIX threads is a standardized C language threads programming interface designed to

develop portable threaded applications for UNIX systems. Implementations that adhere to this

standard are referred to as POSIX threads or pThreads. pThreads are defined as a set of C

language programming types and procedure calls. pThread library is considered for the

implementation for the following reasons:

1. Primary motivation is to realize potential program performance gains.

2. Compared to the cost of creating and managing a process, a thread can be created

with much less operating system overhead. Managing threads requires fewer system

resources than managing processes.

3. All threads within a process share the same address space. Inter-thread

communication is more efficient and, in many cases, easier to user than inter-process

communication.

4. Tasks that are more important can be prioritized over less important tasks.

A computer program becomes a process when it is loaded from some store into the

computer’s memory and begins execution. A process can be executed by a single processor of a

set of processors. A thread on the other hand, is a sequence of such instructions within a

program that can be executed independently of the other code. In order to define a thread

formally, we must first understand the boundaries of where a thread operates.

56
Example Program with the Use of pThread:

 Hello World

The simple pThreads program in C language in which the threads print "Hello World!"

message is shown in Algorithm 1. The function PrintHello is the routine that will be executed

by the child threads. This routine prints the string that has been passed to it.

Following the routine is the main function, the starting point for the program. We start

by declaring the variables for child threads. pthread_t is the type of the variable to be declared.

After declaring the variables, we need to initialize the threads. We use pthread_create

routine provided by the Pthreads library to accomplish the same. pthread_create will initialize

the thread, the thread attributes, the address of the routine the thread has to start executing and

the parameters for that routine. As soon as a thread is created, it will start executing the routine

that has been assigned to it by pthread_create. The pthread_create() routine allows the

programmer to pass one argument to the thread start routine.

From the code it can be clearly seen that both the worker threads are executing the same

routine. Each thread has its own copy of the stack variables for the routine. For instance,

Thread1 will execute the routine with “Hello World! It’s me Thread 1.”

pthread_exit is used to explicitly exit a thread. If main () finishes before the threads it

creates, and exits with pthread_exit(), the other threads will continue to execute. Otherwise, they

will be automatically terminated when main() finishes. pthread_exit () routine does not close

any files. Files that are opened inside of the thread will remain open after the thread is

terminated.

57

Algorithm 1

Hello World Using pThreads

Output of the code is as follows:

In main: creating thread 0

In main: creating thread 1

In main: creating thread 2

In main: creating thread 3

In main: creating thread 4

Hello World! It’s me, thread #0!

Hello World! It’s me, thread #1!

Hello World! It’s me, thread #2!

Hello World! It’s me, thread #3!

Hello World! It’s me, thread #4!

58
Thread Joining

Joining is a way to accomplish synchronization among threads as shown in Figure 19.

The pthread_join () subroutine clocks the calling thread until the specified thread terminates.

The programmer is able to obtain the target thread’s termination return status if it was specified

in the target thread’s call to pthread_exit (). If successful, the pthread_join () function returns

zero; otherwise an error number shall be returned to indicate the error.

(Costa & Lifschitz, 2003)

Figure 19

pThread Join()

The Experiment and Its Results

BLAST is a relatively fast program that efficiently calculates the sequence alignment of

two biological sequences. BLAST search first breaks the query into words of length w (default

word length = 3) and compare them to each database sequence. The matching words (or seeds)

are then extended in both directions until the score of alignment drops below a threshold to form

the High Scoring Segment Pair (HSP). Before conducting a rigorous amount of detailed

experiments, a simple and quick experiment was performed to understand how the parallel

59
implementation differs from the serial implementation of BLAST. Both the serial and parallel

program were run using a database file that contained 999 DNA sequences. The number of

threads used was increased exponentially to a maximum of 16. Figure 20 shows an example run

of the program and Table 3 shows an example of the study with increasing amount of threads

and keeping the number of database sequences constant.

Table 3

Performance of BLAST with Increasing Amount of Threads

No. of DB Sequences No. of Threads Parallel Implementation (Time in ms)

999 1 51

999 2 27

999 4 18

999 8 16

999 16 16

60

Figure 20

Example Run of the Program

Efficiency here is defined as the time taken by the program to search the user entry within

the database file. From the experiment it was noted that the maximum efficiency was achieved

with eight threads and eight database fragments. After that, the efficiency of the program goes

down. This could be due to the overhead costs with communication when the number of worker

threads increase in parallel write. Sixteen threads were utilized in the last experiment and the

efficiency of the program decreased. This could be due to several reasons but one of the main

reason would be that the master thread could be waiting on all the worker threads to search

61
through their database fragments and provide the master thread with the searches and the

respective score. The worker threads search through their respective database fragments, provide

the top results and the scores to the master thread. The master thread then sorts through the

matches provided by the worker threads and displays the results to the user.

The following are the results of the experiment shown in this paper using a system with

the following configuration:

• Hostname: csci606

• Number of cores: 8

• Processor: Intel Xeon CPU E5-2680 v2 @2.8 Ghz

• Memory: 16 GB

Serial BLAST vs. Parallel BLAST

In the next experiment, Serial BLAST algorithm was compared with Parallel BLAST

algorithm. Both programs ran on the exact same hardware using the same database file. The

results of the experiment are shown below. The experiment was performed on various sizes of

database files and with increasing number of threads. The objective of this experiment is to

show the advantage of using pThreads over a serial implementation.

62
Table 4

Serial vs. Parallel Implementation Performance: DB = 1000 DNA Sequences

Number of DB Sequences = 1000 DNA Sequences

No. of Threads Serial Implementation

 (Time in milliseconds)

Parallel Implementation

(Time in milliseconds)

1 51

2

66

4

61

6

76

8

72

Table 5

Serial vs. Parallel Implementation Performance: DB = 10,000 DNA Sequences

Number of DB Sequences = 10,000 DNA Sequences

No. of Threads Serial Implementation

(Time in milliseconds)

Parallel Implementation

(Time in milliseconds)

1 97

2

98

4

111

6

118

8

120

63
Table 6

Serial vs. Parallel Implementation Performance: DB = 100,000 DNA Sequences

Number of DB Sequences = 100,000 DNA Sequences

No. of Threads Serial Implementation

 (Time in milliseconds)

Parallel Implementation

(Time in milliseconds)

1 197

2

129

4

79

6

65

8

66

Table 7

Serial vs. Parallel Implementation Performance: DB = 500,000 DNA Sequences

Number of DB Sequences = 500,000 DNA Sequences

No. of Threads Serial Implementation

(Time in milliseconds)

Parallel Implementation

(Time in milliseconds)

1 403

2

156

4

132

6

128

8

96

64
Table 8

Serial vs. Parallel Implementation Performance: DB = 1,000,000 DNA Sequences

Number of DB Sequences = 1,000,000 DNA Sequences

No. of Threads Serial Implementation

(Time in milliseconds)

Parallel Implementation

(Time in milliseconds)

1 785

2

543

4

365

6

298

8

208

Table 9

Serial vs. Parallel Implementation Performance: DB = 5,000,000 DNA Sequences

Number of DB Sequences = 5,000,000 DNA Sequences

No. of Threads Serial Implementation

(Time in milliseconds)

Parallel Implementation

(Time in milliseconds)

1 3815

2

2976

4

2762

6

1428

8

992

65
Table 10

Serial vs. Parallel Implementation Performance: DB = 10,000,000 DNA Sequences

Number of DB Sequences = 10,000,000 DNA Sequences

No. of Threads Serial Implementation

(Time in milliseconds)

Parallel Implementation

(Time in milliseconds)

1 7748

2

4672

4

3892

6

3196

8

1999

Table 11

Serial vs. Parallel Implementation Performance: DB = 50,000,000 DNA Sequences

Number of DB Sequences = 50,000,000 DNA Sequences

No. of Threads Serial Implementation

(Time in milliseconds)

Parallel Implementation

 (Time in milliseconds)

1 43,450

2

28,282

4

17,462

6

10,345

8

8563

66
Table 12

Serial vs. Parallel Implementation Performance: DB = 100,000,000 DNA Sequences

Number of DB Sequences = 100,000,000 DNA Sequences

No. of Threads Serial Implementation

(Time in milliseconds)

Parallel Implementation

 (Time in milliseconds)

1 82,600

2

56,272

4

31,938

6

24,726

8

18,282

Figure 21

Serial vs. Parallel BLAST 1000-500,000 DB Sequences

67

Figure 22

Serial vs. Parallel BLAST 1,000,000-10,000,000 DB Sequences

68

Figure 23

Serial vs. Parallel BLAST 50,000,000-100,000,000 DB Sequences

Per the results in Figures 21, 22, and 23, the parallel program’s performance was

significantly better compared to the serial implementation of BLAST. As the database file size

grew, the serial implementation of BLAST showed a significant time difference compared to the

parallel implementation.

Initially, as the database file size was less than 10,000, the parallel implementation was

slightly less efficient compared to the serial implementation. This could be due to the overhead

costs which worsens the performance when there is less sequences to search. Also, as the

database files grew in size, the performance of the parallel implementation improved. As the

number of threads increased, the parallel implementation performance was affected. Again, the

parallel performance suffered when the number of threads increased. This experiment helps us

69
come to a conclusion that there should exist a right balance in the number of threads with the

database file. If the database file is too small or the number of threads is too large for the amount

of database sequences to search through, then the parallel performance suffers.

In parallel computation, in which multiple processors are all focused on the solution of a

single problem. Many of these applications may be speed up by preprocessing their input data,

carrying out a large number of independent and concurrent computation on the preprocessed data

which is done in parallel, and post-processing the results of the independent computations to

construct the final outputs. A significant approach to speed up the search would be to split the

database to create small subtasks which gets assigned to the worker threads.

Speedup here is defined as the ratio of the time for the execution of the sequential code

on a single core to the execution time of the parallel code. Therefore, speedup = Ts/Tp where Ts

is the execution time of the sequential code, and Tp is the execution time for the parallel code.

We saw an average speed-up of 3.67 when using the parallel program compared to the serial

program.

Related Work

Researchers have extended the above experiment further and have provided further

analysis on performance with regards to size of the database, the size of user batch entries, and

the length of the DNA sequence.

Performance vs. Database Size

The first step is to analyze if there is an impact of sequence database size on

performance. The actual BLAST database can store four nucleotides as a single byte, so a

sequence database with 4 billion sequences would require about 1 GB of space. Figure 24

70
represents the performance of various versions of BLAST including mpiBLAST for a wide range

of database sizes for nine processors on a PC cluster. The Y axis represents execution time and

the X axis represents sequence database size in billions of sequences.

The execution times tend to increase for larger databases as more sequences must be

examined for each user query. The results show that before the database size reaches the

memory limit, both BLAST and BLAST++ perform better than mpiBLAST. This is due to

lower parallelization overhead enjoyed by replicated BLAST and replicated BLAST++.

However, once database sizes increase over 4 billion DNA sequences, the databases no longer fit

in the memory of a single node, this is due to the choice of the researchers to use PC nodes that

have 1 GB memory. The performance of BLAST and BLAST++ degrades sharply as portions of

databases are evicted from the file cache and need to be slowly reloaded from the disk (Naruse &

Nishinomiya, 2002).

In comparison, the performance of mpiBLAST does not experience major performance

issues with an increase of the database size to over 4 billion sequences or when the database size

exceeds the limit of a certain PC node. Instead performance degrades linearly with an increase

of database sizes. Steep performance drops are avoided in mpiBLAST since each node only

performs searches on a portion of partitioned database (Naruse & Nishinomiya, 2002). Sharp

performance drops will only be noticed in mpiBLAST when each database fragment becomes

too large for the memory of each individual node. This experiment results demonstrates that

mpiBLAST works best for large sequence databases that do not fit into the memory of a single

node.

71

Figure 24

Performance vs. DB Size

Performance vs. Batch Size

The next step that the researchers looked at is to see the impact on the BLAST algorithm

performance with respect to the number of queries entered by the user. Figure 25 represents the

performance of the various versions of BLAST as the batch size varies between 32 and 256. The

results were obtained on a PC cluster using eight processors. In the figure, the Y axis represents

the execution time and the X axis represents query batch size. The database size of 250 million

DNA sequences and the query length is 64 letters long (Costa & Lifschitz, 2003).

Results as expected show that the execution time increases for all the variations of

BLAST as the batch size increases because more user queries need to be searched through the

database. BLAST++ is able to reduce execution times for batched BLAST queries even for

small batches. It also reduced redundancy and the execution time only increases slightly as the

batch grows. BLAST++ is able to accomplish this efficiency by creating a virtual query sequence

72
that consists of all the user query sequences (the batch sequence). Unfortunately, a side effect of

maintaining all the additional information for the combined query sequence, increases the

memory usage for BLAST++ compared to BLAST.

(Zomaya, 2006)

Figure 25

Performance vs. Batch Size

Performance vs. Query Length

The researchers vary the user query length from 256 words to 4096 words. mpiBLAST

achieves the best performance because the large sequence database cannot fit in the memory of a

single node. Serial implementation of BLAST required 2131.8 seconds on one of the machines.

Compared to the parallel implementation of BLAST with 11 threads, only 130 seconds was

required, representing an improvement in the speedup of the algorithm. Figure 26 displays the

time in seconds required with increasing query length sequences for various parallel

implementations of BLAST.

73

(Zomaya, 2006)

Figure 26

Performance vs. Query Length

74
Chapter 6: Conclusion and Future Work

The experiments carried out shows that there are many factors affecting the performance

of BLAST searches. These factors include, size of DNA sequence database, the length of the

user query, and the number of user queries. Among these factors, the size of the sequence

database seems to be the most important in determining the total search time. This is because

databases can take up a lot of memory and also because the BLAST algorithm is an exhaustive

search algorithm which examines each and every database DNA sequence for every user query.

Further research is being performed to investigate new data indexing and organization methods

for these databases. These new methods show promise for improving the BLAST search

performances further (Costa & Lifschitz, 2003).

From this paper we have seen that there are various ways to improve the performance of

BLAST searches by exploiting parallelism at number of levels. Some of the notable ways

include vector instructions, multithreading, replicated databases, distributed databases and

optimized batch queries, or a hybrid of any of these.

Some of the future work are as follows:

1. Integration of Existing Approaches: Biologists along with researchers are developing

version of BLAST that combine various implementations of parallel BLAST

algorithms. pThreads and UMD-BLAST is a first step in this direction.

2. Preprocessing Sequence Databases: Another area that researchers are currently

looking into is to analyze and pre-process DNA sequence databases to make them

more efficient for BLAST searches. Such pre-processing can take advantage of

knowledge of properties of the BLAST algorithm. For example, the BLAST scoring

75
algorithm may be analyzed to index and partition sequence databases to reduce the

portion of the database that must be scanned.

3. Exploiting Grid Resources: For large user query searches, researchers may attempt to

take advantage of CPU cycles in large grid systems. Grid computing attempts to

provide a common interface for a variety of computing resources, ranging from

dedicated computing clusters at supercomputing centers to spare CPU cycles

harvested from pools of idle computers. Researchers are also looking into the

interfaces and infrastructure required for supporting BLAST in a grid environment.

Prototype grid-based versions of BLAST attempt to provide transparent user

interfaces for performing BLAST searches on a grid. Such system will increase in

importance as grid computing becomes even more popular.

4. Alternative Search Algorithms: Lastly, researchers are looking into developing new

search algorithms that yield results as precise or even better than BLAST along with

better performance. Examples include BLAT, PatternHunter, and MEGABLAST.

Although these new algorithms can be quite powerful and precise, BLAST is so

frequently and commonly used tool that convincing biologists to use a new search

tool will require much more evidence of positive results and also training (Akl, 2014).

76
References

AG BLAST-UNIX. (2018). VCU wiki. Retrieved October 7, 2018, from

wiki.vcu.edu/display/unix/AGBlast.

Akl, S. G. (2014). Parallel sorting algorithms. Academic Press.

Aluru, S (2003, September). Computational biology on parallel computers. European Control

Conference, pp. 3370-3377.

Costa, R., & Lifschitz, S. (2003). Database allocation strategies for parallel blast evaluation on

clusters. Distributed Parallel Databases, 13, 99-127.

Isa, M. N. (2013). High performance reconfigurable architectures for biological sequence

alignment.

Julich, A. (1995). Implementations of BLAST for parallel computers. Computer Application

Bioscience, 11(1), 3-6.

Naruse, A., & Nishinomiya, N. (2002). Hi-per BLAST: High performance BLAST on PC cluster

system. Genome Informatics, 13, 254-255.

National Center for Biotechnology Information. (2018, October). BLAST: Basic local alignment

search tool. U.S. National Library of Medicine: National Center for Biotechnology

Information.

Zomaya, A. Y. (Ed.). (2006). Parallel computing for bioinformatics and computational biology:

Models, enabling technologies, and case studies. John Wiley & Sons.

	St. Cloud State University
	theRepository at St. Cloud State
	12-2018

	Implementation of Parallel Search Algorithm in Computational Biology
	Rahim Abdul Mohomed
	Recommended Citation

	tmp.1548442135.pdf.Y6EWM

