
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

3-2018

Using Shared Memory as a Means to Provide Data
Concurrency Across Vm’s in a Cloud Architecture
Shravani Meneni
St. Cloud State University, smeneni@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Meneni, Shravani, "Using Shared Memory as a Means to Provide Data Concurrency Across Vm’s in a Cloud Architecture" (2018).
Culminating Projects in Information Assurance. 63.
https://repository.stcloudstate.edu/msia_etds/63

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St. Cloud State University

https://core.ac.uk/display/232794899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/63?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Using Shared Memory as a Means to Provide Data Concurrency

Across Vm’s in a Cloud Architecture

by

Shravani Meneni

A Starred Paper

Submitted to the Graduate Faculty

of St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science in

Information Assurance

March, 2018

Starred Paper Committee:

Dennis Guster, Chairperson

Susantha Herath

Balasubramanian Kasi

2

Abstract

As the world is progressing towards full adoption of the - WWW (World Wide Web),

communication of data becomes more vital, especially when it must be achieved by making use

of Restful web services. Restful web services enable the ease to transfer data between virtual

machines on the cloud or the virtual machines hosted on-premises. The main idea of the project

is to showcase that data replication is possible between Primary HOSTS and Secondary HOSTS,

with the primary host responsible for sharing the data with other virtual machines, by making use

of a REST API. Further, any changes made to the data resided in the primary host must

be reflected in the secondary hosts. Concepts of virtualization, cloud computing and Rest API are

used here in this paper to achieve the goal of this project.

3

Table of Contents

Page

List of Tables ...6

List of Figures ..7

Chapter

I. Introduction ..10

 Definition of Terms..13

II. Literature Review and Background ...14

 Advantages of Virtualization ...14

 Need for the REST API ...16

 Advantages of the REST API ..17

 Shared Memory ..18

III. Methodology ..19

 Scope ..19

 Design Approach ...19

 Primary Host ..19

 Secondary Hosts...19

 Design of Study..20

 Tools and Techniques ..22

 Java 1.8 ..22

 Spring Boot ..22

 Tomcat 7.0.81 ..23

4

Chapter Page

 JPA ...23

 IntelliJ IDEA ..23

 MySQL5.5 Server ..24

 Gradle ...24

 Technology Stack...24

 UML Diagrams ..25

IV. Implementation ..31

 Gradle Setup...31

 MySQL Serve Setup ..31

 Install MySQL Server ..32

 Configure Environment Variables ...35

 Install Java ...39

 Install Tomcat ..40

 Configure Tomcat ..41

 Technical Design Explained ..43

 Primary Host ..43

 MySQL Data Base Schema ...45

 Secondary Host ..54

 Setting up an IDE for the Development Environment ...55

 Build and Deployment ...61

V. Conclusion ...73

5

 Page

References ..74

Appendix ..76

6

List of Tables

Table Page

1. Glossary of Different Terms Used in This Paper...13

2. Classification of API’s ...17

3. Student Table Schema..45

4. Log Table Schema ...45

7

List of Figures

Figure Page

1. Database Server Using Shared Memory to Enable Virtual Processors18

2. Architecture..20

3. High Level Design ...20

4. Data Model in MySQL ..21

5. Class Diagram ..21

6. Get Request Sequence Diagram...25

7. POST Request Sequence Diagram...25

8. PUT Request Sequence Diagram ...26

9. DELETE Request Sequence Diagram ...26

10. Secondary Host Get Sequence Diagram ..27

11. Project Structure...28

12. Primary Host Technical Design ...43

13. Secondary Host Technical Design ...43

14. Create Student Request ..46

15. Update Student ...48

16. Database with Updated Record ..48

17. DELETE Request on Postman ...49

18. Deleted Record in the Database ...50

19. Secondary Host Changes ...55

20. Development Environment in IntelliJ IDEA ...56

8

Figure Page

21. Gradle Settings ...57

22. Run /Debug Configuration ...58

23. Window that Appears to Create a Configuration ...58

24. Configuration is Created Enabling us to do a Debug or a Run ..59

25. Client Cron Setup Instructions ...60

26. Window that Appears to Create a Cron Configuration ..60

27. Setup Instructions for Cron ..61

28. Application BootRun Option ...62

29. Build Successful Message on Command Prompt ..63

30. War File Generated ..63

31. Tomcat Configuration ..64

32. Tomcat Deployment...65

33. War File Generated in Tomcat Folder ...66

34. Student Details Displayed ..66

35. Jar File Being Generated ..67

36. Jar File Generated Inside the Build Folder ..67

37. Execution of Cron Job ...68

38. POST Operation ...70

39. Database Before Modification ...70

40. PUT Operation ...71

41. Modified Date in Log Table ..71

9

Figure Page

42. Student Table After Modification ..71

43. Updated Data is Printed as a Response in the Cron Job Fetch ..72

44. Log Table Cron Job ...72

10

Chapter I: Introduction

This chapter gives a brief introduction about Data replication between virtual machines

through the use of a REST API.

The world is progressing towards the complete adoption of the internet, and hence it is

necessary to explore the possibilities for sharing the pool of data between terminals, virtual

machines, and hosts, making it easier for the Database Administrators (DBAs). Anyone who

can understand the REST API can easily access the data. More importantly, a monitoring tool

can be built to check the status of back-end systems, and better log management is made

possible.

REST stands for Representational State Transfer, which is an architectural style for

designing networked applications. Earlier, communication between machines was achieved

using complex methods like SOAP, CORBA, and RPC. Now, with the REST protocol in place,

they can communicate directly through the HTTP protocol. RestFul applications make use of

HTTP requests to read, create, update and delete data through CRUD operations.

In the existing approach, sharing or updating data between a Master-Slave database (DB)

is possible through database administration, SOAP, and RPC. However, DBAs can only

understand the replication procedure as well as the related issues involved with the process. Also,

it is time-consuming to analyze the log files to resolve any issues with them, and there are no

monitoring tools available.

Remote machines and the use of virtualization are considered as the essential inside

handling development techniques in current use. Besides these, the use of VM (Virtual Machine)

communication is a step beyond, and it is also recognized as one of the primary roots of data

11

heightened structures and applications in most of the server-based systems and disseminated

processing circumstances (Lombardi & Di Pietro, 2010). One way to improve the VM

communication capability is to reinforce the local VM communication by making use of

information exchange methods and fall back on routine TCP/IP for exchange between remote

systems that are on different physical machines.

Recently, another approach is concentrated on upgrading communication capability

between local VMs using shared information documents, and the change fluctuates with each

different way the standard memory channel is set-up. However, this paper gives a clear outline of

the setup of choices and systems for execution of local VM communication (Pearce, Zeadally, &

Hunt, 2013).

This project is configured with on premise (local machines), but this could also be

deployed in a cloud environment. In the same way, it can also be implemented on Virtual

Machines and made accessible to other users. When trying to get access to the code on VM’s

for security purposes, it is available only by making use of a VPN (Virtual Private Network).

When it comes to large organizations, users are provided with tokens (which generate a

random number) to get access to the VM’-s, and this is the most secure way as these tokens are

used every time to gain access to the VM’-s. When it comes to the cloud, it is a similar

process. The advantage of having it in the cloud is that, based on the traffic, the number of

users, and CPU’-s the number of systems could be increased. At the same time, it acts more

drastically, and thus it incurs an enormous cost (Gurav & Shaikh, 2010).

12

In the existing approach, if data has to be replicated, the database administrators must

handle the data on their systems and every other system. DBAs will set up one primary MySQL

database server and two secondary MySQL database servers. Using MySQL scripting they will

have enabled data replication in place. Following this approach might cause a delay in updating

the data, and it might generate errors with frequent changes. Also, if the number of slave

databases are increased, it becomes riskier for the DBA. Though an automated process can

accomplish this, there is no mechanism to monitor for errors. Any issues encountered can only

be understood and then solved by the DBA. For this reason, it is not considered as a reliable

approach (Tutorials Point, n.d.-a).

Making use of REST API will help us to handle these issues. REST has few rules that

must be incorporated into the application, which will make it REST specific and easy for us to

understand. Using the CRUD operations, we can communicate with the backend efficiently to

handle HTTP requests, and support post, put, delete and get commands. The response format of

REST is in JSON (Javascript Object Notation) and JSON is preferred over XML, as it is more

lightweight (Tutorials Point, n.d.-b).

This approach does not need a DBA to administer the data because REST APIs will

handle the replication and other related tasks. The only thing to be considered with this approach

is to implement the REST API with all of the necessary infrastructure considerations taken into

account, like the application server. In this method, Tomcat is used to host the application, which

will communicate to the backend using the REST API. The advantage of using the REST API is

that, if the same data must be replicated in multiple systems, it is not required to copy the same

code manually each time. Instead, we can have a build system like GRADLE or MAVEN, which

13

will create a WAR file during the build process and then this WAR file can be directly deployed

into Tomcat.

Definition of Terms

Table 1

Glossary of Different Terms Used in This Paper

TERMS ABBREVIATION

API Application Programming Interface

JSON Java Script Object Notation

REST Representational State Transfer

CORBA Common Object Request Broker

Architecture

RPC Remote Procedure Call

SOAP Simple Object Access Protocol

VM Virtual Machine

XML Extensible Markup Language

DBMS Database Management System

PK Primary Key

FK Foreign Key

HTTP Hypertext Transfer Protocol

Tomcat Apache Tomcat

WAR Web Application Resource

MySQL Structured Query Language

14

Chapter II: Literature Review and Background

According to Wood et al. (2009), various data center virtualization courses of action, for

instance, VMware ESX, use content-based page sharing to have the advantage of using multiple

servers. The concept of page sharing involves the technique of comparing virtual machine

memory pages to an uncertain substance and then coalesce them into a single shared page. This

type of system, when executed at the host level, is applied just between the VMs that are put

together on a given physical host. In a multi-server environment, the chances of sharing may be

greater in the light of the fact that the VMs holding undefined pages are localized on multiple

servers. To make use of content-based page sharing it is critical to put virtual machines to such a

degree as possible, to the point that VMs with practically identical memory substance are

arranged on similar hosts.

With the concept of virtualization, multiple VMs can be executed in parallel on a single

processor. Also, various operating systems can co-exist on the same physical platform.

Traditionally when it was first introduced, it was mainly used in server environments with a

motive to increase the usage and availability of resources whenever required. Now-a-days, it is

used in embedded systems as well. More recently, considering all the factors like performance,

power, security and safety of the embedded domain, researchers have put their efforts into

developing more effective solutions to the embedded virtualization environment (Heiser, 2008;

Varanasi & Heiser, 2011).

Advantages of Virtualization

 Following are advantages of virtualization:

• Dynamic Load-balancing

15

• Disaster Recovery

• Server Consolidation

• Testing and Development

• Improved System Reliability

• Security

Cloud computing depends on the concept of virtualization to share its resources with the

end users over the web. It is composed of both a distributed and VM computing infrastructure.

There are three different ways in which the cloud provides its services to the end user (Albeshri

& Caelli, 2010). They are (a) infrastructure as a service, platform as a service, and (c) software

as a service (Albeshri & Caelli, 2010).

According to Ren et al. (2016), virtual machines (VMs) and virtualization are one of the

core computing technologies today. When VM communication is considered, it is the most basic

and one of the primary roots for data concentrated structures and applications in most server-

based environments and cloud computing. Making use of local VM communication is considered

as an essential step in improving the intercommunication between VMs more efficient, which

indirectly makes use of REST API for communicating between different VMs located on

different machines.

Also, when the sender VM and the receiver VM are co-resident on the same physical

host, the data can also be transmitted to the shared host and bypass the long method for the

TCP/IP system stack (Wang, 2009).

When the sender VM and the receiver VM are on different hosts, the data will be sent

from sender to receiver through standard TCP/IP protocol stack. To develop such a typical

16

information exchange between VM communication channels, it is required to recognize the

following limitations:

• Get every possible data request, dissect it, and recognize whether the recipient VM is

a co-resident with the sender VM on the similar host.

• Maintain both adjacent and remote midway VM communication techniques, and an

unending supply of neighborhood inter-VM communication, which enables switching

and redirects the dynamic data to the shared memory-based station.

• Twist the simple memory-based inter-VM communication into the current virtualized

system in a compelling and distinct route over existing programming layers, which

can be complex (Burtsev et al., 2009).

In earlier days, communication between different hosts was achieved by making use of

client/server architecture. In this kind of approach, each time a client wants to collect the data

from the server, it has to send it a request first. The request must be accepted and acknowledged

by the server, and then the communication is established between them (Muthunagai, Karthic, &

Sujatha, 2012).

Need for the REST API

REST API will make communication between machines through the HTTP protocol.

RESTFUL applications use HTTP requests to read, create, update and delete data through

CRUD operations which are easy to understand. APIs can also act as a network between the

software application and the operating system. It also serves as a guide between different

applications by directing them in each step.

17

Table 2

Classification of API’s

Web Service APIs

SOAP

XML-RPC and JSON-RPC

REST

Library-based APIs JavaScript

TWAIN

Class-based APIs Java API

Android API

OS Functions and routines Access to file system

Access to user interface

Object remoting APIs COBRA

.NET Remoting

Hardware APIs

Video acceleration

Hard disk drives

PCI buses

Advantages of the REST API

Among all of the available APIs, REST is best used for service application development.

REST is the simpler data processing solution. The four most-important operations: GET, PUT,

POST, and DELETE will also make it easier to obtain a uniform interface and simplifies the data

transmission.

It acts as an interface between any systems using the HTTP call, which will enable the

data collection process. It will also allow us to perform all sorts of operations on the data and

generate output formats as required. It is lightweight and more flexible in comparison to any

other API currently available. Following are a few advantages of REST for development.

• Separation between the client and server.

• Visibility, reliability and scalability.

• It is both platform and language independent.

18

Shared Memory

Memory that can be shared and accessed by a different number of programs is called

shared memory. Multiple applications can easily communicate with each other by making use of

shared memory. It can be considered the easiest and fastest means of communicating with

different applications.

Figure 1. Database Server Using Shared Memory to Enable Virtual Processors

19

Chapter III: Methodology

Scope

The main scope of this project is to showcase the ability to share the data between master

and slave nodes using the Rest API. Any changes in master data should be replicated in the

slaves. Any changes made in slaves will be overridden by server changes as server changes

require the highest priority.

Design Approach

A primary host and two secondary hosts are considered for the design and

implementation. The data resides in the primary host and all updates occur on the primary host.

Data is replicated in the secondary hosts periodically using REST API exposed by the primary

host. A standard application is built to serve for both the primary and the secondary hosts.

Primary Host

• Server application is built to serve CRUD operations through the REST API.

• When the data is created, createdDate is updated.

• When the data is updated, lastModifiedDate is updated.

• Log Table is available to manage tables and lastFetchedDate in the application.

Secondary Hosts

• Secondary hosts use the same application except that, the client uses a pull approach

to update its DB.

• Cron job is triggered on a specified time-frame to see if there are any updates on the

Server Data.

20

• If anything is updated, the delta which is greater than “lastFetchDate” is returned in

a JSON format.

• Once the response is fetched, the POST call is made to the secondary host with the

delta.

• All of these are handled in a separate thread for performance optimization reasons.

Design of Study

 The following diagram explains the architecture used for this project. Secondary virtual

hosts check for updated Delta (i.e., data) and make a GET request. Each time when the data is

updated in the primary host, the database gets updated, from their it sends the data to the

secondary virtual hosts.

Figure 2. Architecture

Figure 3. High Level Design

21

Figure 4. Data Model in MySQL

The Student Controller uses log service through autowiring and updates the last fetched

date if the GET request is triggered from a Cron job.

Figure 5. Class Diagram

➢ Student Controller: The class is mapped with @RestController annotation, which is

readily used by Spring MVC to handle web requests. The controller also has

@RequestMapping annotation, which will assign the API call to the corresponding

method implementation. The controller is auto-wired to the service layer using

annotation @autowired. The controller acts as a serving point for any CRUD

operations.

22

➢ Student Service (Interface): This interface exposes all necessary operations that

need to be performed on the Student entity.

➢ StudentSerivceImpl: This class implements all the interface methods exposed by

student service, which depends on the repository through @autowiring.

➢ StudentRepository: The Interface implements a CRUDRepository interface, which

will have a default behavior for all CRUD related operations to be performed on the

entities.

➢ CRUDRepository: The interface provides most of the CRUD operation methods

needed. Any additional methods are written to the custom repository.

Tools and Techniques

Java 1.8. Java is a high-level programming language. It was developed by Sun

Microsystems, and was released in 1995. It is simple, robust, dynamic, platform independent and

a flexible programming language compared to many other languages. With each version that has

been released, there are new features that have been added. After Java 1.5 was released, Java 1.7

called Dolphin has been the most significant update. The version 1.8 release is the latest and has

more available features compared to earlier versions, Java 1.8 is what is used in this project.

Spring boot. The project uses Spring boot which makes the creation of stand-alone

applications easy. Spring boot has embedded Tomcat and Jetty enabling easy deployment

especially if there is no specific need to generate the .war file. It also allows for less

configuration in XML for the Spring framework and provides a starter configuration for Maven

files which, in turn, makes it easy to kick-start any web application development. It is also easy

to integrate with Gradle, as it is the most used build management system.

23

Tomcat 7.0.81. It implements almost all the Java EE specifications like Java Servlets,

JSP, Java Expression language and Web socket. With all of these specs, Tomcat makes it easy to

run the Java code in an HTTP server environment. It is light-weight, open-source, highly flexible

and fully secured. It is also a stable platform that makes the Java applications run more smoothly.

JPA. Java Persistence API (JPA) provides a better way for the developers to easily

access and manage data between Java applications and its associated database, by making use of

Object Relational Mapping. It is easy to understand and easy to implement.

 Overall the application uses Spring Boot, with Java 1.8 and Gradle as a dependency and

build deployment system (Java Code Geeks, n.d.).

IntelliJ IDEA. IntelliJ Idea is used for development purposes. It is a Java IDE

(Integrated Development Environment) which was developed by JetBrains. Choosing an IDE for

code development is the most critical factor to be considered by any programmer. IntelliJ IDEA

is the best IDE in comparison to others such as Eclipse, NetBeans, BlueJ and many others, the

following describes why it is the best option (JetBrains, n.d.).

A few of the advantages to are:

• Autocomplete option makes it faster for the IDE to understand the keystrokes and

auto-populate the suggestions based on the keywords typed. This functionality will

reduce the time taken to write the code.

• IDEA refactoring is intelligent in that they provide various options based on the

situation.

• Debugging is the best part of IDEA, it easily understands all the variables and makes

it is easy as possible for the developer to track and fix bugs.

24

MySQL5.5 server. MySQL is used for the back-end database application. MySQL is an

open-source database management system, which is a traditional way of storing the data in the

back-end. MySQL Workbench, which is an integrated environment for MySQL is used to write

different tables that are required for this project. It is very user-friendly and easily understood.

Gradle. Gradle is an open-source build automation system. It is built on the concepts of

ANT and MAVEN. ANT and MAVEN are implemented using XML, whereas Gradle makes use

of Groovy. The Project is developed with Gradle to generate the .war and .jar file, which can

eventually be run on multiple systems. The .war file is deployed in the Tomcat application server

to serve the REST endpoints.

Technology Stack

• Java 1.8

• Spring Boot

• Tomcat 7.*

• JPA

• MySQL 5.5

• Gradle 2.14.1

• IntelliJ Idea

25

UML Diagrams

Figure 6. Get Request Sequence Diagram

Figure 7. POST Request Sequence Diagram

26

Figure 8. PUT Request Sequence Diagram

Figure 9. DELETE Request Sequence Diagram

27

When the data is created, the last modified date is set equal to the created date. And when

the subsequent data is modified, the last modified data is then updated. In this way, the created

data is not lost and sent back to the client to do an UPSERT.

When the data is deleted, a column with the name isDeleted is set to true, which is the

logical deletion of data rather than a physical deletion, which will also be updated in the slave

machines.

Thus, the records created, updated or deleted are synced up to date.

Figure 10. Secondary Host Get Sequence Diagram

28

Figure 11. Project Structure

➢ Main file. StudentCollaborationMain.java serves as the main file. The Java

compiler looks for this main file and is configured for the Spring boot and all the

necessary JPA parameters like the package to lookup for Service, Repository and

Model are configured through the respective annotations.

29

➢ Cron Package. The Cron Folder has the

StudentCollaborationClientSimpleJob.java and StudentCollaborationJob.java

files which are mainly used by slave machines to trigger and fetch modified data from

the server. A separate MySQL connection is used to connect to the server and bring

the latest data which then returns a JSON response, and which again triggers a CRUD

request on its virtual machines to save the data back to its DB.

➢ Student API Package. This package contains the Controller, Model and Service.

➢ Controller. The Controller is used to process CRUD user requests, build an

appropriate model and pass over it to view. The Controller’s dependency is specified

through an autowiring concept through annotation @autowired. The necessary

dependencies a controller can have is the service.

➢ Model. Model is a Plain Old Java Object that encapsulates the application specific

data and is mainly used by the controller and Repository to take further actions on

entities.

➢ Service. The Service is autowired with the controller for CRUD related operations to

be performed through an Interface without having to create an object. The custom

implementations can be handled here.

➢ Repository. The Repository is mainly used to reduce the boilerplate code required to

access data layers for various persistence stores. Spring provides a CRUDRepository

interface, which has almost all the CRUD related operations performed without

having to re-create them. The custom implementations can be implemented by

30

extending the CRUDRepository interface and providing any additional methods

needed.

➢ Util. Util contains any utility methods needed for the Project. One example is the

Custom error class which is required to simplify error messages to be returned to the

user.

➢ Application.properties. The properties file is used to specify any application related

properties such as MySQL connection, username, password, connectivity type,

environment-related settings, and log levels. These features are used by Spring and

tweaking this file during run-time is easier, enabling to change the properties based

on the environment.

➢ Build.gradle. The build dependencies in the project are specified in the build.gradle

file which uses a Groovy-based DSL (Domain Specific Language), which supports

automatic download of build dependencies. The file has tasks and dependencies

which can be specified for compile time as well as run time.

➢ Settings.gradle. Settings related to Gradle is specified as the project name and all the

subprojects to be included for the build and can be added here.

31

Chapter IV: Implementation

Gradle Setup

➢ In your browser, go to https://gradle.org/releases/ and choose Version 2.x preferably

2.14.1.

➢ Create a folder in c: drive as c:/gradle, unzip the downloaded gradle file and copy it

to the new directory created.

➢ Set PATH variable for gradle under system variable section to "C:\Gradle\gradle-

2.14.1\bin".

MySQL Server Setup

To build, run and deploy the research platform database, you will need the following:

• MySQL Server 5.5 or above

You may also want to consider these optional tools for your deployment.

• MySQL Client (e.g., mysql-workbench or similar)

32

Install MySQL Server

1

In your web browser, go

to http://dev.mysql.com/downloads/mysql/5.5.html#downloads.To download

MYSQL server 5.5v. Click on the Download button with respect to your system

architecture i.e., Windows (x86, 32-bit) or Windows (x64, 64-bit).

33

2

You can skip this option by clicking the link at the bottom of the page that

says, “No thanks, just start my download.” and Click on the “Save file to your

system.”

3

Once the file is downloaded, Run the MySQL installation file. Click on Typical

button and then click on the Next button.

34

4

During MySQL installation, use Advanced Configuration > Show Advanced

Options and set the MySQL ROOT Password. Then click on the Save button. Now

your user name will be root and password will be the password provided by you.

35

Configure Environment Variables

This section assumes a Windows environment, the content is the same for other

environments, but the methods for accessing and setting the environment variables are different.

1

Open your Environment Variables:

Start Menu > Control Panel > System and Security > System > Advanced System Settings

> Environment Variables

36

2

Create JAVA_HOME variable:

• Click on the New button, under the User Variables section.

• For Variable Name, enter JAVA_HOME

• For Variable Value, provide the Java path for, example: C:\Program

Files\Java\jdk1.8.0_144

• Click the OK button.

1. If you are running 32-bit Windows, then the path would be ex:- C:\Program

Files (x86)\Java\jdk1.8.0_144

2. Java jdk path "jdk1.8.0_144" will be with respect to the installed version and it

may not be the same as mentioned in the above example.

37

 Edit PATH variable:

• In the System Variables section, scroll down to and select the Path variable.

• Click the Edit button just below.

• Click your mouse cursor onto Variable Value box.

Using your keyboard's right-arrow or End key, move all the way to the far right of

the current text in Variable Value.

• Add the following text onto the end of the existing Variable Value text:

o For Java path example:- ;C:\Program Files\Java\jdk1.8.0_144\bin

o For MySQL server path example:- ;C:\Program Files\MySQL\MySQL

Server 5.5\bin

o For Gradle Path example: C:\Gradle\gradle-2.14.1\bin

1. There must be exactly one semi-colon between whatever is already in your PATH

variable, and the new C:\Program Files\Java\jdk1.8.0_66\bin – don't add a semi-

colon if your previous PATH already ended with a semi-colon.

2. Java jdk path "jdk1.8.0_66" will be with respect to the installed version and it may

not be the same as mentioned in the example.

38

3

Create JAVA_OPTS variable:

• Click the New button again, under the User Variables section.

• For Variable Name, enter JAVA_OPTS

• For Variable Value, enter: -Xms512m -Xmx1024m

Note: Variable value example can be changed with respect to the system memory

size for example: -Xms512m -Xmx1024m

4

Add CLASSPATH variable:

In the System variables section, create JAVA_HOME (jdk path), JRE HOME (jdk path)

and CATALINA_HOME (tomcat path)

• point classpath variable to

%JAVA_HOME%\bin;%JRE_HOME%\bin;%CATALINA_HOME%\lib;

Then click OK button

39

Install Java

1 Before beginning, uninstall any existing versions of Java currently on your computer.

2
In your web browser, go to http://www.oracle.com/technetwork/java/javase/downloads/jdk8-

downloads-2133151.html, to download Java 1.8.

3

Oracle requires that you read the license agreement, then click the circle labeled Accept

License Agreement.

4

Click the link to download with respect to your system architecture i.e., x86 for 32-bit or x64

for 64-bit.

40

5 Save the Java installation file to your computer

6 Run the Java Installation

7

Open a command line and execute java -version to verify that the install was successful.

Install Tomcat

1

In your browser, go to http://tomcat.apache.org/download-70.cgi to download Tomcat 7.

• Under the section Binary Distributions Core click on the link to 32-bit or 64-bit zip

(that corresponds to your system architecture) to download.

2 Extract apache-tomcat-7.0.82.zip

3 Folder: apache-tomcat-7.0.82, gets extracted

4 Move apache-tomcat-7.0.82 folder to /usr/local/tomcat7

5 Open Command prompt and enter:- cd /usr/local/tomcat7

6 Enter: ./bin/startup.sh

41

Configure Tomcat

1

Setting up Lib folder

1. Download drizzle jdbc jar file

from https://mvnrepository.com/artifact/org.drizzle.jdbc/drizzle-jdbc/1.3

2. Once downloaded, copy and paste to lib folder → Go to /usr/local/tomcat7/lib and

put the jar file there.

Note: If tomcat-jdbc.jar file is not available in the /usr/local/tomcat7/lib folder then you

will need to download and add it to the tomcat/lib folder from:

http://www.java2s.com/Code/JarDownload/tomcat-jdbc/tomcat-jdbc.jar.zip

2

Generate keystore

Generate a new keystore using java keytool

• Open the command prompt

• Go to the $JAVA_HOME/bin folder.

• Run this command to generate the key: keytool -genkey -keyalg RSA -alias tomcat

-keystore /usr/share/tomcat.keystore

• Provide the password.

• Provide input and enter: y (for ”yes”) for the last question to confirm.

42

3

Updating server.xml configuration file

• Open c:/tomcat7/conf/server.xml in your text editor

• Copy and paste the following contents into server.xml

<?xml version='1.0' encoding='utf-8'?>

<Server port="8005" shutdown="SHUTDOWN">

 <Listener className="org.apache.catalina.core.AprLifecycleListener" SSLEngine="on" />

 <Listener className="org.apache.catalina.core.JasperListener" />

 <Listener className="org.apache.catalina.core.JreMemoryLeakPreventionListener" />

 <Listener className="org.apache.catalina.mbeans.GlobalResourcesLifecycleListener" />

 <Listener className="org.apache.catalina.core.ThreadLocalLeakPreventionListener" />

 <GlobalNamingResources>

 <Resource name="UserDatabase" auth="Container" type="org.apache.catalina.UserDatabase"

 description="User database that can be updated and saved"

 factory="org.apache.catalina.users.MemoryUserDatabaseFactory"

 pathname="conf/tomcat-users.xml" />

 <Resource type="javax.sql.DataSource" name="jdbc/mifosplatform-tenants"

 factory="org.apache.tomcat.jdbc.pool.DataSourceFactory"

 driverClassName="org.drizzle.jdbc.DrizzleDriver"

 url="jdbc:mysql:thin://#MYSQL_DB_ADDRESS#:3306/mifosplatform-tenants"

 username="#MYSQL_USER#"

 password="#MYSQL_PASSWORD#"

 initialSize="3"

 maxActive="10"

 maxIdle="6"

 minIdle="3"

 validationQuery="SELECT 1"

 testOnBorrow="true"

 testOnReturn="true"

 testWhileIdle="true"

 timeBetweenEvictionRunsMillis="30000"

 minEvictableIdleTimeMillis="60000"

 logAbandoned="true"

 suspectTimeout="60"

 />

 </GlobalNamingResources>

 <Service name="Catalina">

 <Connector protocol="org.apache.coyote.http11.Http11Protocol"

 port="443" maxThreads="200" scheme="https" secure="true" SSLEnabled="true"

 keystoreFile="/usr/share/tomcat.keystore" keystorePass="#KEYSTORE_PASSWORD#"

 clientAuth="false" sslProtocol="TLS" URIEncoding="UTF-8" compression="force"

 compressableMimeType="text/html,text/xml,text/plain,text/javascript,text/css"/>

 <Connector port="8009" protocol="AJP/1.3" redirectPort="8443" />

 <Engine name="Catalina" defaultHost="localhost">

 <Realm className="org.apache.catalina.realm.LockOutRealm">

 <Realm className="org.apache.catalina.realm.UserDatabaseRealm" resourceName="UserDatabase"/>

 </Realm>

 <Host name="localhost" appBase="webapps" unpackWARs="true" autoDeploy="true">

 <Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs"

 prefix="localhost_access_log." suffix=".txt"

 pattern="%h %l %u %t "%r" %s %b" />

 </Host>

 </Engine>

 </Service>

</Server>

You'll need to replace the following placeholders with appropriate values for your environment.

• #MYSQL_DB_ADDRESS# = server name or IP address

• #MYSQL_USER#

• #MYSQL_PASSWORD#

• #KEYSTORE_PASSWORD#

Save the file

43

Figure 12. Primary Host Technical Design

Figure 13. Secondary Host Technical Design

Technical Design Explained

Primary host.

• The StudentCollaborationController has the trigger point for

Create/Get/Update/Delete requests.

• The Controller interacts with the service layer when the corresponding requests are

triggered.

44

• The StudentService looks up corresponding CRUD operation and performs the

CRUD on the Student entity

• Spring framework with JPA will help to do manipulation on the entities.

• When a new student is created, createdDate and lastModifiedDate is set to the same

time.

• When the same student is modified, lastModifiedDate is updated.

• This way, the last operations performed on the student entity are not lost, but it is

created or updated.

• The response is returned in a JSON format.

• The custom error message can be returned as the JSON response to any business logic

failure such as, “Student Already exists or No student with that name to update or

delete.”

• The data is deleted logically instead of a physical deletion to sync the same in the

client DB.

45

MySQL database schema.

Table 3

Student Table Schema

Table 4

Log Table Schema

• CreateStudent Request: This request shows how to create a student entry. In

POSTMAN set the path as – http://localhost:8080/api/student/Shravani and select

POST option. Then put the following code under body and select the radio button

“raw” and content-type as application/JSON, then click send. This request will create

a new entry with the following details.

http://localhost:8080/api/student/Shravani

46

{

 "studentName":"Shravani",

 "studentAge":"20",

 "studentGrade":"A",

 "studentInterest":"Technology, freelancing, music",

 "studentAddress":"Thompson7 st",

 "email":"shravanimenneni@gmail.com"

}

Figure 14. Create Student Request

• UpdateStudent Request: This request shows how to update a student entry. In

POSTMAN set the path as - http://localhost:8080/api/student/Shravani1 and select

PUT option. Then put the following code under Body and select the radio button

“raw” and content-type as application/JSON, then click send. This request will update

the changes for the entry with the username specified.

http://localhost:8080/api/student/Shravani

47

{

 "studentName":"Shravani1",

 "studentAge":"21",

 "studentGrade":"B",

 "studentInterest":"Technology",

 "studentAddress":"Thompson43 st",

 "email":"shravanimenneni1@gmail.com"

}

• Response:

{

 "id": 3,

 "studentName": "Shravani1",

 "studentAge": "21",

 "studentGrade": "B",

 "studentInterest": "Technology",

 "studentAddress": "Thompson43 st",

 "email": "shravanimenneni1@gmail.com",

 "createdDate": 1507656613000,

 "lastModifiedDate": 1507656790174,

 "deleted": false,

 "studentLog": {

 "logId": 1,

48

 "tableName": "Student",

 "lastFetchedDate": 1507615646000

 }

}

Figure 15. Update Student

Figure 16. Database with Updated Record

49

• DeleteStudent Request: This request shows how to delete a student entry. In

POSTMAN set the path as – http://localhost:8080/api/student/Shravani2 and select

Delete option. Then put the following code under body and select the radio button

“raw” and content-type as application/JSON, then click send. This request will delete

the entry with the studentName set to Shravani2.

{

 "studentName":"Shravani2",

 "studentAge":"20",

 "studentGrade":"A",

 "studentInterest":"Technology, freelancing",

 "studentAddress":"Thompson9 st",

 "email":"shravanimenneni2@gmail.com"}

Figure 17. DELETE Request on Postman

http://localhost:8080/api/student/Shravani

50

Figure 18. Deleted Record in the Database

• GetStudents Request: This request shows how to get all the entries. In POSTMAN set

the path as – http://localhost:8080/api/students then click send. It returns the

following output.

• Response:

 [{

 "id": 2,

 "studentName": "Shravani",

 "studentAge": "20",

 "studentGrade": "A",

 "studentInterest": "Technology, freelancing, music",

 "studentAddress": "Thompson7 st",

 "email": "shravanimenneni@gmail.com",

 "createdDate": 1507656532000,

 "lastModifiedDate": 1507656532000,

 "deleted": false,

 "studentLog": {

 "logId": 1,

 "tableName": "Student",

http://localhost:8080/api/students

51

 "lastFetchedDate": 1507615646000

 }

 },

 {

 "id": 3,

 "studentName": "Shravani1",

 "studentAge": "21",

 "studentGrade": "B",

 "studentInterest": "Technology",

 "studentAddress": "Thompson43 st",

 "email": "shravanimenneni1@gmail.com",

 "createdDate": 1507656613000,

 "lastModifiedDate": 1507656790000,

 "deleted": false,

 "studentLog": {

 "logId": 1,

 "tableName": "Student",

 "lastFetchedDate": 1507615646000

 }

 },

 {

 "id": 4,

52

 "studentName": "Shravani2",

 "studentAge": "20",

 "studentGrade": "A",

 "studentInterest": "Technology, freelancing",

 "studentAddress": "Thompson9 st",

 "email": "shravanimenneni2@gmail.com",

 "createdDate": 1507656628000,

 "lastModifiedDate": 1507657118000,

 "deleted": true,

 "studentLog": {

 "logId": 1,

 "tableName": "Student",

 "lastFetchedDate": 1507615646000

 }

 },

 {

 "id": 5,

 "studentName": "Shravani3",

 "studentAge": "20",

 "studentGrade": "A",

 "studentInterest": "Technology, freelancing",

 "studentAddress": "Thompson10 st",

53

 "email": "shravanimenneni3@gmail.com",

 "createdDate": 1507656640000,

 "lastModifiedDate": 1507656640000,

 "deleted": false,

 "studentLog": {

 "logId": 1,

 "tableName": "Student",

 "lastFetchedDate": 1507615646000

 }

 },

 {

 "id": 6,

 "studentName": "Shravani4",

 "studentAge": "20",

 "studentGrade": "A",

 "studentInterest": "Technology, freelancing",

 "studentAddress": "Thompson11 st",

 "email": "shravanimenneni4@gmail.com",

 "createdDate": 1507656650000,

 "lastModifiedDate": 1507656650000,

 "deleted": false,

 "studentLog": {

54

 "logId": 1,

 "tableName": "Student",

 "lastFetchedDate": 1507615646000

 }

 }

]

Secondary host.

• Secondary Host performs the same operations as the primary host.

• Secondary Host always pulls the data from the server.

• The main difference is that secondary host triggers Get Request using CRON on a

periodic time frame.

• When there is any delta available on the server, the server responds in a JSON

format.

• The client again makes a PUT request, which UPSERTS the data in the DB.

• If the server contains data that is deleted, lastModifiedDate is updated along with

isDeleted field set to true. The same changes are updated on the client.

55

Figure 19. Secondary Host Changes

Setting up an IDE for the Development Environment

IntelliJ Idea is used for the development purpose with the latest download community

edition from https://www.jetbrains.com/idea/download/#section=windows.

Next it is necessary to create a project with the proper java structure in place along with

the build.gradle specifying the necessary dependencies.

https://www.jetbrains.com/idea/download/#section=windows

56

Figure 20. Development Environment in IntelliJ IDEA

Once done, Gradle has a few built-in tasks available enabling us to create war, jar files.

Since Spring boot is used for development, which also has the embedded tomcat, the project can

be executed by creating RUN/DEBUG configuration as Gradle application and setting a boot

run task.

In IntelliJ, Go to View -> Tools window -> Gradle, below the side panel appears a

displaying of tasks and run configurations to be set for Gradle.

57

Figure 21. Gradle Settings

➢ Enable RUN/DEBUG configuration

Go to Run -> Edit Configuration -> Click on the “+” on the top left corner of the

popup window. Select Gradle from the list of applications as shown below.

58

Figure 22. Run/Debug Configuration

Figure 23. Window that Appears to Create a Configuration

59

In the Name field, specify the name of config as “Bootrun” (the name can be

anything). Under the Configurations tab, set the below parameters:

Gradle Project: Root folder of the Project where build.gradle is visible

Tasks: clean bootrun

Arguments: --debug

Click on Apply -> OK

Figure 24. Configuration is Created Enabling us to do a Debug or a Run

➢ Setting up Client cron

 Go to Run-> click on + -> select Application from the list

60

Figure 25. Client Cron Setup Instructions

Figure 26. Window that Appears to Create a Cron Configuration

61

In the Name field, enter “Cron” (name can be anything)

Under the Configurations Tab,

Enter the following:

Main Class: Select the StudentCollaborationClientSimpleCronJob

Working directory: by default, it is populated.

Use the class path of Module: Select StudentCollaboration_main

Click on Apply -> OK

Figure 27. Setup Instructions for Cron

Build and Deployment

 The application can be built both for development and a production environment, the

development environment can be setup on an IDE to enable debugging and finding of issues.

62

➢ Development Environment

On the right side of the IDE or from the Run menu, choose the configuration

“BootRun” created above as debug or run configuration. The application starts to

debug, and can be viewed in the console.

Figure 28. Application BootRun Option

Once done, check the application by clicking on the browser or postman.

POSTMAN is an HTTP client that is used for testing web services. It is useful in

interfacing with the REST API’s.

➢ Production Environment

Primary Host: Go to the root folder of the project in the terminal or command

prompt and enter the command “gradle clean war”.

63

Figure 29. Build Successful Message on Command Prompt

The .war file is generated successfully in /StudentCollaboration/build/libs/1-1.0-

SNAPSHOT.war.

Figure 30. War File Generated

• Copy the generated .war file.

• Paste the .war file in c:\Tomcat\webapps.

• Start the tomcat -> Go to c:\tomcat\bin > startup.bat.

64

Figure 31. Tomcat Configuration

• Tomcat will start to deploy the .war file and the entire logs can then be found in the

console.

65

Figure 32. Tomcat Deployment

66

The above console shows that the tomcat is deployed successfully. Note that the .war file

will be extracted in the name of 1-1.0-SNAPSHOT and can be accessible by the context as

http://localhost:8080/ 1-1.0-SNAPSHOT/api/student.

Figure 33. War File Generated in Tomcat Folder

• Go to a browser and enter: http://localhost:8080/api/students

• The server is now up and running, see Figure 34.

Figure 34. Student Details Displayed

Secondary Host:

• Follow the same steps as with the primary host build deployment.

67

• Additional steps required are to generate a .jar file to be able to run on an

independent application, see Figure 35.

Figure 35. Jar File Being Generated

• .jar is generated in build\libs folder

Figure 36. Jar File Generated Inside the Build Folder

• Once the .jar is generated, start the client application cron job to see if there are

any modifications to the data from the last fetched date.

68

• For the very first time, the last fetched date is null and hence all the data is

fetched from the server and inserted in the DB. Also, the last fetch date is now

updated to the current date and time.

• To start the cron job from jar go to build/libs folder where .jar is generated

and execute the command “java -cp studentcollaboration-all-1.0-SNAPSHOT.jar

cron.StudentCollaborationClientSimpleJobMain”

Figure 37. Execution of Cron Job

From the above console screen in Figure 37, you can see that the cron job has started

successfully and makes the request to the server to fetch any modified data. The cron time can

be tweaked to minutes, hours, seconds and the frequency of updates can also be set.

Sample application explained:

• To prove the capability of data transfer between the primary and secondary hosts, a

StudentCollaboartion application is created.

69

• Considered only student Create/Update/Get/Delete scenarios.

• Maintained a Log table to update the last fetched time for the corresponding table.

• The idea is to have the same application to be hosted in all three hosts, which will

have their own application server(tomcat) running along with the MySQL database.

• The only difference between the secondary and primary hosts is that the secondary

host will have a cron job running to look for any modifications on the server.

• If there are any modifications, the delta is fetched greater than the last fetched time.

• Secondary hosts cron job makes a Get request to the student API with the

lastfetchdate parameter.

• It will check for the last modified data after the given fetch date.

• The client performs UPSERT (update or insert) of data based on the current state of

DB.

• Any updates in the client will be overwritten by the server update.

• Insert data in the Student table through create request and start the cron job as

specified before.

70

Figure 38. POST Operation

Figure 39. Database Before Modification

71

• Meanwhile, go to postman and update the student as seen below in Figure 40.

Figure 40. PUT Operation

Figure 41. Modified Date in Log Table

Figure 42. Student Table After Modification

72

Figure 43. Updated Data is Printed as a Response in the Cron Job Fetch

Figure 44. Log Table Cron Job

73

Chapter V: Conclusion

In this paper, a Java application was developed using Java server pages to replicate the

data from the primary host to secondary hosts by making use of the REST API. Even though

this process can be achieved by a DBA or through the use of SOAP and RPC, it is time-

consuming and solely dependent on the DBA, which makes it complicated to find the issues and

resolve them on time. Whereas, with REST API it is easy to replicate the data without any

limitations and it can be replicated on as many servers as we need. Also, REST acts as a secure

platform for transforming the data and makes it easy to track performance issues.

Virtualization, cloud computing and REST API concepts are implemented here to meet

the objective of the paper and achieve the successful implementation of the project. Data shared

with REST API in place has more advantages and is more secure when compared to the method

involved with DBA handling. This shows better handling of data within the emerging changes

in the IT industry.

74

References

Albeshri, A. A., & Caelli, W. (2010). Mutual protection in a cloud computing environment. In

IEEE 12th International Conference on High Performance Computing and

Communications (pp. 1-3). Melbourne.

Burtsev, A., Srinivasan, K., Radhakrishnan, P., Voruganti, K., & Goodson, G. R. (2009, June).

Fido: Fast inter-virtual-machine communication for enterprise appliances. Retrieved

from https://www.usenix.org/legacy/events/usenix09/tech/full_papers/Burtsev/

Burtsev_html/index.html

Gurav, U., & Shaikh, R. (2010). Virtualization: A key feature of cloud computing. In

Proceedings of the International Conference and Workshop on Emerging Trends in

Technology (ICWET’10) (pp. 227-229).

Heiser, G. (2008). The role of virtualization in embedded systems. In IIES 2008 Proceedings of

the First Workshop on Isolation and Integration in Embedded Systems (pp. 11-16).

Glasgow, Scotland.

Java Code Geeks. (n.d.). The gradle build automation handbook. Retrieved from

https://www.javacodegeeks.com/wp-content/uploads/2016/09/Gradle-Build-

Automation-Handbook.pdf

JetBrains. (n.d.). The IntelliJ IDEA help. Retrieved from

https://www.jetbrains.com/help/idea/2016.1/intellij-idea-help.pdf

Lombardi, F., & Di Pietro, R. (2010). Secure virtualization for cloud computing. Journal of

Network and Computer Applications, 34(4), 1113-1122.

75

Muthunagai, S., Karthic, C., & Sujatha, S. (2012). Efficient access of cloud resources through

virtualization techniques. In Proceedings of International Conference on Recent Trends

in Information Technology (pp. 174-178).

Pearce, M., Zeadally, S., & Hunt, R. (2013). Virtualization: Issues, security threats, and

solutions. ACM Computing Surveys, 45(2), 17.

Ren, Y., Liu, L., Zhang, Q., Wu, Q., Guan, J., Kong, J., . . . & Shao, L. (2016). Shared-data

optimizations for inter-virtual-machine communication. ACM Computing Surveys, 48(4),

49.

Tutorials Point. (n.d.-a). The MySQL tutorial. Retrieved from

https://www.tutorialspoint.com/mysql/mysql_tutorial.pdf

Tutorials Point. (n.d.-b). The RESTful web services tutorial. Retrieved

https://www.tutorialspoint.com/restful/

Varanasi, P., & Heiser, G. (2011). Hardware-supported virtualization on arm. In Proceedings of

the Second Asia-Pacific Workshop on Systems (p. 11).

Wang, J. (2009). Survey of state-of-the-art in inter-vm communication mechanisms. Retrieved

from

https://pdfs.semanticscholar.org/6555/64255d8c6bb4df3f93f128a955101b6e13ed.pdf

Wood, T., Tarasuk-Levin, G., Shenoy, P., Desnoyers, P., Cecchet, E., & Corner, M. D. (2009,

March). Memory buddies: Exploiting page sharing for smart colocation in virtualized

data centers. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments (pp. 31-40).

76

Appendix

Student controller

package student.api.controller;

import com.google.gson.*;

import com.google.gson.reflect.TypeToken;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.HttpEntity;

import org.springframework.http.HttpHeaders;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import student.api.model.Log;

import student.api.model.Student;

import org.springframework.web.util.UriComponentsBuilder;

import student.api.service.LogService;

import student.api.service.StudentService;

import student.api.util.CustomErrorType;

import java.lang.reflect.Type;

77

import java.text.DateFormat;

import java.text.ParseException;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Date;

import java.util.List;

import static org.springframework.util.MimeTypeUtils.APPLICATION_JSON_VALUE;

@RestController

@RequestMapping("/api")

public class StudentController {

 public static final Logger = LoggerFactory.getLogger(StudentController.class);

 @Autowired

 StudentService studentService;

 @Autowired

 LogService logService;

 @RequestMapping(value = "/students", method = RequestMethod.GET)

 public ResponseEntity<List<Student>> listAllStudents(@RequestParam(required = false,

value = "lastFetchedDate") String lastFetchedDate, @RequestParam(required = false, value =

"isCron") boolean isCron) throws ParseException {

78

 List<Student> students = new ArrayList<>();

 if(isCron) {

 if (lastFetchedDate.isEmpty() || lastFetchedDate == "null"){

 students = studentService.findAllStudents();

 }

 else {

 DateFormat df = new SimpleDateFormat("MM/dd/yyyy HH:mm:ss");

 Date lastFetchDate = null;

 try {

 lastFetchDate = df.parse(lastFetchedDate);

 } catch (ParseException e) {

 e.printStackTrace();

 }

 students = studentService.findAllStudentsUpdatedAfterDate(lastFetchDate);

 }

 if(!students.isEmpty()) {

 Log log= logService.findBytableName("Student");

 log.setLastFetchedDate(new Date());

 logService.saveLog(log);

 }

 } else {

 students = studentService.findAllStudents();

79

 }

 if (students.isEmpty()) {

 return new ResponseEntity(HttpStatus.NO_CONTENT);

 // You many decide to return HttpStatus.NOT_FOUND

 }

 return new ResponseEntity<List<Student>>(students, HttpStatus.OK);

 }

 @RequestMapping(value = "/student/", method = RequestMethod.POST)

 public ResponseEntity<?> createStudent(@RequestBody Student, UriComponentsBuilder

ucBuilder) {

 logger.info("Creating student : {}", student);

 if (studentService.isStudentExist(student) && student.getDeleted() == true) {

 logger.error("Unable to create new. A User with name {} already exist",

student.getStudentName());

 student.setDeleted(false);

 student.setLastModifiedDate(new Date());

 studentService.saveStudent(student);

 return new ResponseEntity<String>(HttpStatus.CREATED);

// //return new ResponseEntity(new CustomErrorType("Unable to create. A User with

name " +

80

// student.getStudentName() + " already exist."),HttpStatus.CONFLICT);

 }

 Log log= logService.findBytableName("Student");

 log.getLogId();

 student.setStudentLog(log);

 student.setCreatedDate(new Date());

 student.setLastModifiedDate(new Date());

 student.setDeleted(false);

 studentService.saveStudent(student);

 HttpHeaders headers = new HttpHeaders();

headers.setLocation(ucBuilder.path("/api/student/{email}").buildAndExpand(student.getEmail())

.toUri());

 return new ResponseEntity<String>(headers, HttpStatus.CREATED);

 }

 @RequestMapping(value = "/updateStudents", method = RequestMethod.PUT, consumes =

APPLICATION_JSON_VALUE)

 @ResponseBody

 public ResponseEntity<?> updateStudents(HttpEntity<String> httpEntity) {

 logger.info("Updating bulk Students ");

81

 // Creates the json object which will manage the information received

 GsonBuilder builder = new GsonBuilder();

// Register an adapter to manage the date types as long values

 builder.registerTypeAdapter(Date.class, new JsonDeserializer<Date>() {

 public Date deserialize(JsonElement json, Type typeOfT, JsonDeserializationContext

context) throws JsonParseException {

 return new Date(json.getAsJsonPrimitive().getAsLong());

 }

 });

 Gson = builder.create();

 String body = httpEntity.getBody();

 List<Student> jsonList = gson.fromJson(body, new

TypeToken<ArrayList<Student>>(){}.getType());

 for (Student s: jsonList) {

 studentService.updateStudent(s);

 }

 return new ResponseEntity<Student>(HttpStatus.OK);

 }

 @RequestMapping(value = "/student/{id}", method = RequestMethod.PUT)

 public ResponseEntity<?> updateStudent(@PathVariable("id") String id, @RequestBody

82

Student student) {

 logger.info("Updating Student with id {}", id);

 Student currentStudent = studentService.findByName(id);

 if (currentStudent == null) {

 logger.error("Unable to update. Student with id {} not found.", id);

 return new ResponseEntity(new CustomErrorType("Unable to update. Student with id "

+ id + " not found."),

 HttpStatus.NOT_FOUND);

 }

 currentStudent.setStudentName(student.getStudentName());

 currentStudent.setStudentAddress(student.getStudentAddress());

 currentStudent.setStudentAge(student.getStudentAge());

 currentStudent.setStudentGrade(student.getStudentGrade());

 currentStudent.setStudentInterest(student.getStudentInterest());

 currentStudent.setLastModifiedDate(new Date());

 studentService.updateStudent(currentStudent);

 return new ResponseEntity<Student>(currentStudent, HttpStatus.OK);

 }

 @RequestMapping(value = "/student/{id}", method = RequestMethod.DELETE)

 public ResponseEntity<?> deleteStudent(@PathVariable("id") String name) {

 logger.info("Fetching & Deleting Student with id {}", name);

 Student = studentService.findByName(name);

83

 if (student == null) {

 logger.error("Unable to delete. User with id {} not found.", name);

 return new ResponseEntity(new CustomErrorType("Unable to delete. Student with id " +

name + " not found."),

 HttpStatus.NOT_FOUND);

 }

 student.setDeleted(true);

 student.setLastModifiedDate(new Date());

 studentService.updateStudent(student);

 return new ResponseEntity<Student>(HttpStatus.NO_CONTENT);

 }

 @RequestMapping(value = "/students/", method = RequestMethod.DELETE)

 public ResponseEntity<Student> deleteAllUsers() {

 logger.info("Deleting All Students");

 studentService.deleteAllStudents();

 return new ResponseEntity<Student>(HttpStatus.NO_CONTENT);

 }

}

Model

Log

84

package student.api.model;

import javax.persistence.*;

import java.io.Serializable;

import java.util.Date;

@Entity

public class Log implements Serializable{

 @Id

 @GeneratedValue(strategy= GenerationType.AUTO)

 @Column(name = "log_id")

 private Integer logId;

 private String tableName;

 private Date lastFetchedDate;

 public String getTableName() {

 return tableName;

 }

 public void setTableName(String tableName) {

 this.tableName = tableName;

 }

 public Date getLastFetchedDate() {

 return lastFetchedDate;

85

 }

 public void setLastFetchedDate(Date lastFetchedDate) {

 this.lastFetchedDate = lastFetchedDate;

 }

 public Integer getLogId() {

 return logId;

 }

 public void setLogId(Integer logId) {

 this.logId = logId;

 }

}tudent

package student.api.model;

import org.springframework.data.annotation.CreatedDate;

import org.springframework.data.annotation.LastModifiedDate;

import javax.persistence.*;

import java.io.Serializable;

import java.util.Date;

@Entity

public class Student implements Serializable{

 @Id

 @GeneratedValue(strategy= GenerationType.AUTO)

86

 private Integer id;

 private String studentName;

 private String studentAge;

 private String studentGrade;

 private String studentInterest;

 private String studentAddress;

 private String email;

 @CreatedDate

 private Date createdDate;

 @LastModifiedDate

 private Date lastModifiedDate;

 @Column(name = "deleted", columnDefinition = "boolean default false", nullable = false)

 private Boolean deleted;

 @ManyToOne(cascade = CascadeType.ALL)

 @JoinColumn(name="logId", referencedColumnName="log_Id")

 public Log studentLog;

 public Log getStudentLog() {

 return studentLog;

 }

 public void setStudentLog(Log studentLog) {

87

 this.studentLog = studentLog;

 }

 public Student(String email, String studentName, String studentAge, String studentGrade,

String studentInterest, String studentAddress) {

 this.studentName = studentName;

 this.studentAge = studentAge;

 this.studentGrade = studentGrade;

 this.studentInterest = studentInterest;

 this.studentAddress = studentAddress;

 this.email = email;

 }

 public Student() {

 }

 public String getStudentName() {

 return studentName;

 }

 public void setStudentName(String studentName) {

 this.studentName = studentName;

 }

 public String getStudentAge() {

 return studentAge;

88

 }

 public void setStudentAge(String studentAge) {

 this.studentAge = studentAge;

 }

 public String getStudentGrade() {

 return studentGrade;

 }

 public void setStudentGrade(String studentGrade) {

 this.studentGrade = studentGrade;

 }

 public String getStudentInterest() {

 return studentInterest;

 }

 public void setStudentInterest(String studentInterest) {

 this.studentInterest = studentInterest;

 }

 public String getStudentAddress() {

 return studentAddress;

 }

 public void setStudentAddress(String studentAddress) {

 this.studentAddress = studentAddress;

89

 }

 public String getEmail() {

 return email;

 }

 public void setEmail(String email) {

 this.email = email;

 }

 public Integer getId() {

 return id;

 }

 public void setId(Integer id) {

 this.id = id;

 }

 public Date getCreatedDate() {

 return createdDate;

 }

 public void setCreatedDate(Date createdDate) {

 this.createdDate = createdDate;

 }

 public Date getLastModifiedDate() {

 return lastModifiedDate;

 }

90

 public void setLastModifiedDate(Date lastModifiedDate) {

 this.lastModifiedDate = lastModifiedDate;

 }

 public Boolean getDeleted() {

 return deleted;

 }

 public void setDeleted(Boolean deleted) {

 this.deleted = deleted;

 }

}

Repository

LogRepository

package student.api.repository;

import org.springframework.data.repository.CrudRepository;

import student.api.model.Log;

public interface LogRepository extends CrudRepository<Log,String> {

 public Log findBytableName(String tableName);

}

StudentRepository

package student.api.repository;

import org.springframework.data.repository.CrudRepository;

91

import student.api.model.Student;

import java.util.Date;

public interface StudentRepository extends CrudRepository<Student, Long>{

 public Iterable<Student> findByLastModifiedDateAfter(Date lastModifiedDate);

}

Service

StudentService

package student.api.service;

import student.api.model.Student;

import java.util.Date;

import java.util.List;

public interface StudentService {

 Student findById(String email);

 Student findByName(String name);

 void saveStudent(Student student);

 void updateStudent(Student student);

 void deleteStudentById(String id);

 List<Student> findAllStudents();

 void deleteAllStudents();

 boolean isStudentExist(Student student);

92

 List<Student> findAllStudentsUpdatedAfterDate(Date lastUpdatedDate);

 }

StudentServiceImpl

package student.api.service;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

import student.api.model.Student;

import student.api.repository.StudentRepository;

import java.util.*;

import java.util.concurrent.atomic.AtomicLong;

@Service("studentService")

public class StudentServiceImpl implements StudentService{

 private static final AtomicLong counter = new AtomicLong();

 private static List<Student> students;

 @Autowired

 public StudentRepository;

 static {

 students = populateDummyStudents();

 }

93

 @Override

 public Student findById(String email) {

 List<Student> students_ = (List<Student>) studentRepository.findAll();

 for(Student : students_){

 if(student.getEmail().equalsIgnoreCase(email)){

 return student;

 }

 }

 return null;

 }

 @Override

 public Student findByName(String name) {

 List<Student> students_ = (List<Student>) studentRepository.findAll();

 for(Student : students_){

 if(student.getStudentName().equalsIgnoreCase(name)){

 return student;

 }

 }

 return null;

 }

 @Override

94

 public void saveStudent(Student student) {

 studentRepository.save(student);

 }

 @Override

 public void updateStudent(Student student) {

 studentRepository.save(student);

 }

 @Override

 public void deleteStudentById(String id) {

 for(Student : students){

 if(student.getEmail().equalsIgnoreCase(id)){

 studentRepository.delete(student);

 }

 }

 }

 @Override

 public List<Student> findAllStudents() {

 List<Student> students = (List<Student>) studentRepository.findAll();

 /*for (Student: students) {

95

 student.getLog().setLastFetchedDate(new Date());

 studentRepository.save(student);

 }*/

 return students;

 }

 public List<Student> findAllStudentsUpdatedAfterDate(Date lastUpdatedDate){

 return (List<Student>) studentRepository.findByLastModifiedDateAfter(lastUpdatedDate);

 }

 @Override

 public void deleteAllStudents() {

 studentRepository.deleteAll();

 }

 @Override

 public boolean isStudentExist(Student student) {

 return findByName(student.getStudentName())!=null;

 }

 private static List<Student> populateDummyStudents(){

 List<Student> students = new ArrayList<Student>();

 students.add(new Student("student1@email.com", "student1", "20", "A", "music,

gardening", "address1"));

 students.add(new Student("student2@email.com", "student2", "19", "B", "music,

96

gardening", "address2"));

 students.add(new Student("student3@email.com", "student3", "21", "O", "music,

gardening", "address3"));

 students.add(new Student("student4@email.com", "student4", "18", "C", "music,

gardening", "address4"));

 return students;

 }

}

Util

package student.api.util;

public class CustomErrorType {

 private String errorMessage;

 public CustomErrorType(String errorMessage){

 this.errorMessage = errorMessage;

 }

 public String getErrorMessage() {

 return errorMessage;

 }

}

StudentCollaborationMain

97

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.boot.autoconfigure.domain.EntityScan;

import org.springframework.boot.builder.SpringApplicationBuilder;

import org.springframework.boot.web.support.SpringBootServletInitializer;

 org.springframework.data.jpa.repository.config.EnableJpaRepositories;

@SpringBootApplication(scanBasePackages={"student.api", "student.api.repository"})

@EnableJpaRepositories("student.api.repository")

@EntityScan("student.api.model")

public class StudentCollarbrationMain extends SpringBootServletInitializer {

 @Override

 protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {

 return application.sources(StudentCollarbrationMain.class);

 }

 public static void main(String[] args) {

 SpringApplication.run(StudentCollarbrationMain.class, args);

 }

}

Cron

98

MySqlCon

package cron;

import student.api.model.Log;

import java.sql.*;

import java.util.List;

public class MySqlCon {

 public Log getLogTableDetails(String tableName) {

 Log = new Log();

 try {

 Connection con =

DriverManager.getConnection("jdbc:mysql://localhost:3306/university-collaboration", "root",

"mysql");

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("select * from log where table_name='" + tableName +

"'");

 while (rs.next()) {

 System.out.println(rs.getInt(1) + " " + rs.getString(2) + " " + rs.getString(3));

 log.setLogId(rs.getInt(1));

 log.setTableName(rs.getString(3));

 log.setLastFetchedDate(rs.getTimestamp(2));

 }

 con.close();

99

 } catch (Exception e) {

 System.out.println(e);

 }

 return log;

 }

}

StudentCollaborationSimpleCron

package cron;

import org.quartz.*;

import org.quartz.impl.StdSchedulerFactory;

public class StudentCollaborationClientSimpleJobMain {

public static void main(String args[]) throws Exception{

 JobDetail job = JobBuilder.newJob(StudentCollaborationJob.class)

 .withIdentity("fetchLatestmodificationsJob", "group1").build();

 Trigger = TriggerBuilder

 .newTrigger()

 .withIdentity("latestModificationTrigger", "group1")

 .withSchedule(

 CronScheduleBuilder.cronSchedule("0 0/5 * 1/1 * ? *"))

 .build();

100

 //schedule it

 Scheduler = new StdSchedulerFactory().getScheduler();

 scheduler.start();

 scheduler.scheduleJob(job, trigger);

 }

}

StudentCollaborationJob

package cron;

import com.google.gson.Gson;

import com.google.gson.JsonElement;

import com.google.gson.JsonObject;

import com.google.gson.reflect.TypeToken;

import org.quartz.Job;

import org.quartz.JobExecutionContext;

import org.quartz.JobExecutionException;

import org.springframework.http.*;

import org.springframework.web.client.RestTemplate;

import student.api.model.Log;

import student.api.model.Student;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

101

import java.util.ArrayList;

import java.util.Date;

import java.util.List;

public class StudentCollaborationJob implements Job {

 private String server = "http://localhost:8080/api";

 private RestTemplate rest;

 private HttpHeaders headers;

 private HttpStatus status;

 public StudentCollaborationJob() {

 this.rest = new RestTemplate();

 this.headers = new HttpHeaders();

 headers.add("Content-Type", "application/json");

 headers.add("Accept", "*/*");

 }

 public String get(String uri) {

 HttpEntity<String> requestEntity = new HttpEntity<String>("", headers);

 ResponseEntity<String> responseEntity = rest.exchange(server + uri, HttpMethod.GET,

requestEntity, String.class);

 this.setStatus(responseEntity.getStatusCode());

 return responseEntity.getBody();

 }

102

 public String post(String uri, String json) {

 HttpEntity<String> requestEntity = new HttpEntity<String>(json, headers);

 ResponseEntity<String> responseEntity = rest.exchange(server + uri, HttpMethod.POST,

requestEntity, String.class);

 this.setStatus(responseEntity.getStatusCode());

 return responseEntity.getBody();

 }

 public void put(String uri, String json) {

 HttpEntity<String> requestEntity = new HttpEntity<String>(json, headers);

 ResponseEntity<String> responseEntity = rest.exchange(server + uri, HttpMethod.PUT,

requestEntity, String.class);

 this.setStatus(responseEntity.getStatusCode());

 }

 public void delete(String uri) {

 HttpEntity<String> requestEntity = new HttpEntity<String>("", headers);

 ResponseEntity<String> responseEntity = rest.exchange(server + uri,

HttpMethod.DELETE, requestEntity, String.class);

 this.setStatus(responseEntity.getStatusCode());

 }

 public HttpStatus getStatus() {

103

 return status;

 }

 public void setStatus(HttpStatus status) {

 this.status = status;

 }

 @Override

 public void execute(JobExecutionContext context) throws JobExecutionException {

 MySqlCon con = new MySqlCon();

 Log = con.getLogTableDetails("Student");

 Date = log.getLastFetchedDate();

 DateFormat df = new SimpleDateFormat("MM/dd/yyyy HH:mm:ss");

 String reportDate = "";

 if(date != null) {

 reportDate = df.format(date);

 System.out.println("Report Date: " + reportDate);

 }

 String response = this.get("/students?isCron=true&lastFetchedDate=" + reportDate);

 System.out.print(response);

 if(response != null) {

 this.put("/updateStudents", response);

104

 }

 }

}

build.gradle

group '1'

version '1.0-SNAPSHOT'

buildscript {

 repositories {

 mavenCentral()

 }

 dependencies {

 classpath 'org.springframework.boot:spring-boot-gradle-plugin:1.5.6.RELEASE'

 'com.bmuschko:gradle-tomcat-plugin:2.3'

 }

}

apply plugin: 'java'

apply plugin: 'eclipse'

apply plugin: 'idea'

apply plugin: 'war'

apply plugin: 'com.bmuschko.tomcat'

apply plugin: 'org.springframework.boot'

dependencies {

105

 def tomcatVersion = '7.0.79'

 tomcat "org.apache.tomcat.embed:tomcat-embed-core:${tomcatVersion}",

 "org.apache.tomcat.embed:tomcat-embed-logging-juli:${tomcatVersion}"

 tomcat("org.apache.tomcat.embed:tomcat-embed-jasper:${tomcatVersion}") {

 exclude group: 'org.eclipse.jdt.core.compiler', module: 'ecj'

 }

}

tomcatRun.contextPath='/'

tomcatRunWar.contextPath='/'

jar {

 baseName = 'student-collaboration-rest-service'

 version = '0.1.0'

}

task fatJar(type: Jar) {

 manifest {

 attributes 'Main-Class': 'cron.StudentCollaborationClientSimpleJobMain'

 }

 baseName = project.name + '-all'

 from { configurations.compile.collect { it.isDirectory() ? it : zipTree(it) } }

 with jar

}

sourceCompatibility = 1.8

106

repositories {

 mavenCentral()

}

dependencies {

 compile("org.springframework.boot:spring-boot-starter-web")

 providedRuntime("org.springframework.boot:spring-boot-starter-tomcat")

 compile 'org.springframework.boot:spring-boot-starter-data-jpa'

 compile 'com.google.code.gson:gson:2.3.1'

 compile 'mysql:mysql-connector-java'

 compile 'org.quartz-scheduler:quartz:2.1.5'

 compile 'org.slf4j:slf4j-api:1.6.1'

 testCompile group: 'junit', name: 'junit', version: '4.12'

 providedCompile "javax.servlet:javax.servlet-api:3.1.0"

}

Settings.gradle

/*

 * This settings file was auto generated by the Gradle buildInit task

 * by 'mpilli' at '5/10/17 11:45 AM' with Gradle 2.14.1

 *

 * The settings file is used to specify which projects to include in your build.

 * In a single project build this file can be empty or even removed.

107

 *

 * Detailed information about configuring a multi-project build in Gradle can be found

 * in the user guide at https://docs.gradle.org/2.14.1/userguide/multi_project_builds.html

 */

/*

// To declare projects as part of a multi-project build use the 'include' method

include 'shared'

include 'api'

include 'services:webservice'

*/

rootProject.name = 'studentcollaboration'

	St. Cloud State University
	theRepository at St. Cloud State
	3-2018

	Using Shared Memory as a Means to Provide Data Concurrency Across Vm’s in a Cloud Architecture
	Shravani Meneni
	Recommended Citation

	tmp.1521580904.pdf.dUEVy

