
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

3-2018

Long Term Assessment of Object Strength in a
Web Service as Managed by the Garbage
Collection in Java Based Services
Patrick Jackson
St. Cloud State University, pjackson@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

This Thesis is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Jackson, Patrick, "Long Term Assessment of Object Strength in a Web Service as Managed by the Garbage Collection in Java Based
Services" (2018). Culminating Projects in Information Assurance. 57.
https://repository.stcloudstate.edu/msia_etds/57

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St. Cloud State University

https://core.ac.uk/display/232794817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/57?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu


     

 

 

 

 

Long Term Assessment of Object Strength in a Web Service as  

Managed by the Garbage Collection in Java Based Services 

by 

Patrick Jackson 

 

 

A Thesis 

Submitted to the Graduate Faculty of 

St. Cloud State University 

in Partial Fulfillment of the  

Requirements for the Degree of 

Master of Science in Information Assurance 

 

 

March 2018 

  
 
 

 
 

Committee members: 

Dennis Guster, Chairperson 

Erich Rice 

Balasubramanian Kasi 

 



2 

 

 
 

Abstract 

Garbage collection is proving to be an important feature that supports high-performance web 

services, especially those running data-intensive applications. Due to the use of the object-

oriented paradigm, many applications have increasingly opted for the dynamic memory 

allocation method of assigning their objects in computer memory. During program execution, the 

application allocates its objects to a memory space called a heap and constantly references these 

objects within that memory space. With the passage of time, if the objects are not referenced, 

they become weak/dead to the extent that they can no longer be referenced by an application 

which allocated them. In such a scenario, the application is required to allocate new objects to a 

heap in order to continue performing its functions. And, there must be a garbage collection 

mechanism to remove the dead/weak (unreferenced) objects from the memory heap so that the 

memory space can be reclaimed and dynamically allocated to other application objects. Java as a 

Virtual machine, performs memory allocation and reclamation by itself thereby allowing the 

programmer to concentrate only on the functionality of the application. In other words, the 

developer is not concerned about how the memory will be managed during the program 

execution because that will be the duty of the Java language executing on Java Virtual machine. 

 

Therefore, for Java to effectively manage the computer memory, it uses five garbage collection 

mechanisms which will be explained in detail in the introduction section. 

Most of the garbage collections are triggered based on the objects’ lifetime predictions set by the 

developer of the garbage collection algorithms. None or very few consider the strength of the 

objects that are no longer referenced in the heap. For example, some objects may still be strong 

enough that they can be referenced by the application but they are collected anyway because they 

have reached their predicted age threshold.  

 

Garbage collection mechanisms also vary when used in a different framework other than the 

traditional (standalone) one. For example, garbage collection in distributed systems becomes 

more complicated as compared to the traditional garbage collection performed in standalone 

systems. Similarly, garbage collection in a web-service framework has slight differences as 

compared to the local/standalone systems due to the inclusion of web service technology 

elements. 

 

In this paper, the goal is to strive to determine the strength of objects that are no longer 

referenced by an application in a web service as managed by Java-based services; in relation to 

the performance of a web application. 

 

Keywords: Garbage collection, Apache Tomcat, Object strength, Web service, YourKit Java 

Profiler  

 

 

 



3 

 

 
 

Acknowledgements 

It is amazing how some things are learned in life. Honestly I am not a fan of 

programming, hence I had no idea of what an “object” means in a programming context. In 

2016, I enrolled in a data management class which consisted entirely of unix OS instruction and 

java programming. Day in and day out, I heard about objects and the word “object” kept on 

echoing in my mind. Eventually I developed an interest to know more about objects and how 

they are used in programming. In April 2016, I decided to work with Dr. Dennis Guster on a 

memory management project with the aim of learning more about object’s behavior and 

eventually develop the thesis paper you are holding right now.  

I should admit that it was not easy to develop this thesis considering that the project I was 

involved in was a big one, and sometimes I would hit a wall due to its complexity. However, I 

thank Dr. Guster for the assistance he rendered in elaborating some of the critical and 

complicated processes. Let me also thank Dr. Rice and Dr. Kasi for persistently guiding me to 

produce this paper. Last but not least, I would like to thank my colleague Andrew Erickson for 

providing tremendous effort to setup the lab and help perform this complex experiment.  

Finally I would like to thank my father Fernand, and my mom Elsie for encouraging me 

to undertake this project and develop this paper. My wife Mildred and my son Elkan also deserve 

a big recognition for the role they played in this project. They constantly gave me phone calls 

just to instill trust and encouragement in me. Glory be to God! 

 

 

 

 



4 

 

 
 

Table of Contents 

                                                                                                                                       Page 

List of Tables ........................................................................................................................7 

List of Figures ........................................................................................................................8 

Chapter 

I: Introduction ........................................................................................................................10 

 Problem Statement .....................................................................................................12 

 Nature and Significance of the Problem ....................................................................13 

 Objective of the Study ...............................................................................................13 

 Hypotheses .................................................................................................................13 

 Introducing Services ..................................................................................................14 

  Web Services .................................................................................................14 

  Apache Tomcat ..............................................................................................19 

  YourKit Java Profiler .....................................................................................25 

  Garbage Collection in Java ............................................................................27 

 Definition of Terms....................................................................................................32 

 Chapter Summary ......................................................................................................32 

II: Background and Review of Literature ..............................................................................33 

 Background Related to the Problem ..........................................................................33 

 Literature Related to the Problem ..............................................................................34 

 Literature Related to the Methodology ......................................................................35 

 Chapter Summary ......................................................................................................37 

III: Methodology  ...................................................................................................................39 



5 

 

 
 

Chapter                                                                                                                               Page 

 Design of the Study ....................................................................................................39 

 Data Collection ..........................................................................................................39 

 Tools and Techniques ................................................................................................40 

 Hardware and Software Environment ........................................................................40 

 Constraints  ................................................................................................................41 

 Chapter Summary ......................................................................................................42 

IV: Implementation and Results ............................................................................................43 

 Systems and Requirements ........................................................................................43 

 The Crops Program ....................................................................................................43 

 Installation and Setup .................................................................................................44 

  Installing Apache Tomcat 8 on Ubuntu Server..............................................44 

  Deploying the Crops Java Program ...............................................................44 

  Deploying the program using Tomcat manager .............................................45 

 Starting YourKit Java Profiler ...................................................................................47 

 Results and Analysis: Input, Output, and Snapshots .................................................49 

  Locating memory heap for Tomcat................................................................49  

  1st day of web application execution ..............................................................50 

  2nd day after web application execution .........................................................60 

  3rd day after web application execution .........................................................63 

  4th day after web application execution .........................................................64 

  5th-10th day after web application execution ..................................................65 

 Chapter Summary ......................................................................................................69 



6 

 

 
 

Chapter                                                                                                                                Page 

V: Conclusion, Discussion, and Future Work .......................................................................71 

 Conclusion  ................................................................................................................71 

 Discussion ..................................................................................................................72 

  Object pooling ................................................................................................72 

 Future Work ...............................................................................................................72 

References   ............................................................................................................................73 

Appendices 

A: Crops Program Code .........................................................................................................75 

B: Apache Tomcat 8 Installation Procedure ..........................................................................77 

C: Garbage Collection Logs...................................................................................................81 

   

 

 

 

 

 

 

 

 

 

 

 



7 

 

 
 

List of Tables 

Table   Page 

1. Definition of Terms Used in this Study .....................................................................32 

2. Summary of the Object Strength for 10 Days ............................................................66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 

 
 

List of Figures 

Figure                                                                                                                                 Page 

1. A Depiction of XML and JSON ................................................................................16 

2. WSDL Document Example .......................................................................................18 

3. Web Service Architecture ..........................................................................................19 

4. Illustration of Serial Garbage Collection ...................................................................28 

5. Garbage Collection Process in Java ...........................................................................31 

6. Web Application Interface .........................................................................................41 

7. “Crops” Web Application Interface ...........................................................................44 

8. Tomcat Deployment Interface ...................................................................................45 

9. Listing of Deployed Web Applications .....................................................................46 

10. Architecture to Access Crops Program ......................................................................47 

11. Yourkit Java Profiler Attach Interface on Start with Tomcat ....................................48 

12. Heap Memory Segments ............................................................................................50 

13. JVM Initialization Period ...........................................................................................51 

14. Objects Strength Immediately after Execution ..........................................................51 

15. Object Allocation in First 40 Seconds .......................................................................52 

16. Garbage Collection Pauses ........................................................................................52 

17. Loaded Classes...........................................................................................................52 

18. System State Immediately after Execution ................................................................52 

19. GC in Young Generation ...........................................................................................55 

20. GC in Old Generation ................................................................................................55 

21. Object Allocation and Promotion ..............................................................................55 



9 

 

 
 

Figure                                                                                                                                  Page 

22. Object Allocation Variations .....................................................................................58 

23. Minor+Major Garbage Collections on First Day of Execution .................................58 

24. Client-Server Requests...............................................................................................59 

25. Calls to the Server ......................................................................................................60 

26. Object Strength after a Day of Execution ..................................................................61 

27. GC (Minor+Major) after a Day of Execution ............................................................62 

28. Minor Garbage Collection Pauses .............................................................................62 

29. CPU Usage on Interaction with Web Application .....................................................63 

30. GC Pauses on Interaction with Web Application ......................................................63 

31. Object Allocation on Interaction with Web Application ...........................................63 

32. Object Strength 3 Days after Execution .....................................................................64 

33. Object Strength 4 Days after Execution .....................................................................64 

34. Object Allocation Rate on 4th Day .............................................................................64  

35. GC Pauses on 4th Day ................................................................................................65 

36. Object Strength 5-10 Days after Execution ...............................................................65 

37. Garbage Collections for 10th Day ..............................................................................66 

38. Process to See Web Application Objects ...................................................................67 

39. Objects Specific to Web Application Immediately after Execution ..........................67 

40. Web Element Objects ................................................................................................68 

41. Object Sizes Specific to Web Application .................................................................68 

42. Objects Specific to Web application after 10 Days ...................................................69 

 



10 

 

 
 

Chapter I: Introduction 

Garbage Collection technology has been widely used in managed runtime systems, such 

as Java virtual machine (JVM) and Common Language Runtime (CLR) systems (Shaoshan, Jie, 

Ligang, Xiao-Feng, & Jean-Luc, 2012). The principal aim of Garbage Collector design is to 

maximize the recycled space in memory as applications are running. Basically, a memory heap is 

segmented into Nursery Object Space (NOS) and Mature Object Space (MOS) and applications 

use these regions to allocate their objects during runtime.   

Typically, during run-time, an application first sets an age threshold on a new object and 

allocates the object in Nursery space, sometimes called Eden space within the heap. When the 

nursery space fills up or the object’s age is met, a minor garbage collection is triggered and the 

aged (referenced) objects are moved to the next survivor space and the dead (unreferenced) 

objects are collected. Eventually, the aged objects need to be collected through the process called 

major garbage collection but the strengths of these objects are not considered or known. This 

means that an object might be collected by a garbage collector while it is still strong to the extent 

that it can still be referenced by an application but it is collected anyway because it has reached 

its age threshold.  

The purpose of this study is to identify the relationship between application performance 

and the strength of objects in a web-based service. The study involves discovering the strength of 

objects that have survived both minor garbage collection and general (major) garbage collection 

phases. In other words, determining the strength of objects in a mature object space (MOS) will 

help to discover if the objects are still in a state that they can be referenced by an application and 

how that factor affects the observed performance of the application.   



11 

 

 
 

Many algorithms have been implemented that predict the lifetime of an object, 

“predicting which allocations will result in long-lived objects and then allocate them to regions 

that are not frequently collected” (Hajime, Darko, & Forrest, 2006). However, no research has 

been conducted on finding out the strength of objects that have passed through nursery space, 

survivor space 0, survivor space 1 up to mature object space. This observation suggests the 

usefulness of thorough research to understand the strength of objects that have aged in a heap. In 

this paper, the assessment was based on the two main characteristics: responsiveness and 

throughput of an application. This was done by examining the application events implemented 

by Apache that supports high-performance web services. Upon examination of the application 

events, it became clear how strong the objects were with the passage of time. Responsiveness 

basically focuses on how quickly an application or system responds to a data request. For 

instance, a system’s responsiveness can be measured by determining the time required for its 

user interface to respond to an event, the response time of a website to return a page, and time 

required for a database query to be returned.  

On the other hand, throughput is a measure of the amount of work an application can 

complete in a given period of time. Examples of measures of throughput include the number of 

transactions completed in a specific time- period, the number of tasks that a batch program can 

complete in a specific time-period, and the number of database queries that can be completed 

within a given period of time. These two assessment criteria were used to determine the strength 

of objects in a web service as managed by the garbage collector.  

In this study, Java virtual machine (JVM) was used because of its capabilities to perform 

automatic garbage collection, its platform independence, its object-oriented architecture, and its 

rich standard library.  



12 

 

 
 

Problem Statement 

The ideal garbage collection algorithm should collect only those objects that can no 

longer be referenced by an application. Most of these algorithms are designed in such a way that 

they operate based on age threshold. Once the chosen age threshold is reached, the garbage 

collector is triggered to collect all the objects that are no longer referenced by an application. By 

doing so, the garbage collection process ensures that the computer memory is utilized efficiently 

by maximizing the throughput.  

However, these algorithms are only triggered when a certain condition (the age threshold) 

is met not necessarily that most of the objects are dead/weak in a memory heap. In some 

circumstances, objects might be unreachable due to the idleness of the system or an application. 

In this case, the garbage collector might be triggered at a time when the application or system is 

idle, causing the garbage collector to still collect these unreferenced objects from the memory 

heap with an assumption that the objects are dead or weak. In fact, the objects are not necessarily 

dead or weak, but they simply cannot be referenced by the idle application which created them. 

Most often, an object dies (becomes unreferenced) when an assignment operation causes the 

object’s last reference to be overwritten. Similarly, if an object’s last reference is on a stack 

frame and suddenly the frame’s method returns an exception, that causes an object to die. 

The inefficiency of this type of garbage collection system represents a significant 

performance burden for the application. Consider the application that has just transitioned from 

the state of idle to active. In this scenario, an application is required to generate and allocate new 

objects to the memory heap since the previously allocated objects have been collected due to the 

idle state of the application. The generation of new objects requires computing power in the form 

of CPU utilization, hence, it affects the throughput of the system as a whole. 



13 

 

 
 

Nature and Significance of the Problem 

Examining the strength of objects that are deemed to be dead or weak for not being 

referenced by the application, will help to design efficient and effective garbage collection 

algorithms that do not waste strong objects merely based on age threshold or idleness of the 

application that created them. Anything that the garbage collector cleans up is something that the 

application itself allocated, so in view of that, studying the strength of an object will not only 

help in designing effective garbage collection algorithms but also fine-tuning the application 

itself. Besides, the computing power wasted on repeatedly generating application objects can be 

used on other important computing functions hence maximizing throughput of the entire system. 

Objective of the Study 

The main objective of this study is to determine the strength of objects in a computer 

memory heap in relation to the performance of the application in a web service architecture as 

managed by Java services. The study will help to provide recommendations on the best way to 

develop a garbage collection algorithm that will not allow the wastage of objects that are still 

strong and at the same time maintain the performance of the application. 

Hypotheses 

If application objects in a memory are unreferenced for a certain period of time, they 

eventually die (lose pointers to the application) or become weak and the garbage collector 

removes them to create space for more object allocation. However, the fact that an object has lost 

its pointers to the application that created it does not necessarily mean that it is dead or weak. 

Sometimes, an object may lose its pointers or become weak due to the idleness of the application 

that created it. Most often, as already mentioned above, an object dies (becomes unreferenced) 

when an assignment operation causes the object’s last reference to be overwritten. The study 



14 

 

 
 

conducted by  Raqeeb, Guster, & Schmidt (2017) proved the point that object’s last reference 

can be overwritten. In that study, it was observed that a number of objects became unreachable 

when the heap was filled with random characters (values). It suggests that the previously 

allocated objects references were overwritten by those new random characters causing them to 

lose their pointers to the application which created them.  

Similarly, if an object’s last reference is on a stack frame and suddenly the frame’s 

method returns an exception, that causes an object to die. In that regard, it is believed that some 

application objects in the heap may still be strong enough even though they are not being 

referenced by the application. More precisely, the study wants to answer the following questions: 

1. Can premature collection of objects be avoided 

2. Are objects really collected at their weakest stage 

3. Are application objects in a web architecture reusable 

In an attempt to answer the three questions raised above, the author predicted the following: 

1. Some application objects in the heap may still be strong enough even though they are 

not being referenced by the application 

2. Some objects are prematurely collected, and thus, the scenario can be avoided 

3. Objects in a web architecture might be reusable 

Introducing Services 

This section briefly describes the services that have been used in this study. The 

associated elements of each service are fully explained so as to give a clear understanding of how 

the elements interact with each other.   

Web services. Simply put, a web service is an interface positioned between code and the 

user of that code. It provides a method of communication between two electronic devices over a 



15 

 

 
 

network that allows two software systems to exchange data over the internet regardless of 

infrastructure or language-specific details.  Different software products may use different 

programming languages, so there is a need for a mechanism of data exchange that does not 

depend upon a particular programming language. 

Most types of software have capabilities to interpret XML tags. Hence, web services often use 

XML files for data exchange (Wikipedia, 2017). In brief, XML is a data structure that contains 

both data and metadata within the same structure. A web service may also use the JSON 

structure to transfer data. WSDL is a metadata structure used for describing the services 

available and UDDI lists what services are available. These elements are described below. 

JavaScript Object Notation (JSON). JavaScript Object Notation (JSON) language uses 

name/value pairs, similar to the tags used by XML. Despite using conventions of C-family of 

languages, JSON is completely language-independent whose data-interchange format can easily 

be read and written by humans. Primarily JSON is responsible for structuring data in a readable 

format and transmit that data between a server and web application. In fact, “XML and JSON are 

more flexible and dynamic as they capture the information and its metadata” (Helland, 2017). 

JSON is mainly built on two structures that can be nested, namely: a collection of name/value 

pairs and an ordered list of values (JSON, n.d.). 

An example from the figure below shows, at the left, the XML tag of "<city>" with the value of 

"Lilongwe." The pairs for JSON are at the right. It similarly shows the name "city" is paired with 

the value "Lilongwe." Note that the name/value pairs do not need to be in a specific order. 



16 

 

 
 

Figure 1. A Depiction of XML and JSON 

Web Service Definition Language (WSDL). WSDL is an XML language that describes 

the functionality provided by web service. It includes defining “network services as a set of 

endpoints that function via exchanging messages containing either document-oriented or 

procedure-oriented information” (Guruge', 2004). Services are defined using seven major 

elements: data types, message, operation, port type, binding, port, and service which is used to 

combine a set of related ports. The figure below shows the WSDL definition of a simple service 

providing stock quotes and the associated elements mentioned above, used simultaneously with 

SOAP. 



17 

 

 
 



18 

 

 
 

Figure 2. WSDL Document Example 

Note: Reprinted from Christensen, Curbera, Meredith, & Weerawarana (2001). 

 

Universal Description, Discovery and Integration (UDDI). This is a directory that 

defines the type of software system to contact for specific type of data. Every time an 

application, in this case a service requester, needs one particular report/data, it uses WSDL to 

contact the UDDI in order to locate any other system it can contact for receiving that report/data. 

The service broker would reply with the information about the system to contact in order to get 

the requested data/information. Once the application receives the reply and discovers which 

other system it should contact, it would then contact that system using the JSON protocol. 



19 

 

 
 

Prior to processing and sending data to the service requester under the JSON protocol, the 

service provider system would first validate the data request by referring to the WSDL file. The 

figure below demonstrates how UDDI interacts with other web elements. 

  
Figure 3. Web Service Architecture 

 

The standards-based interfaces offered by web services enhance interoperability since 

any language that supports the web service can access the deployed application (Kulchenko, 

Tidwell, & Snell, December, 2001). For example, web services allow two separate 

infrastructures such as Windows and Unix systems to operate which would be difficult to 

integrate without the web. 

Apache Tomcat. This application server is an open source implementation of the Java 

Servlet, Java Server Pages, Java Expression Language and Java Web Socket technologies. 

Apache Tomcat provides a "pure Java" HTTP web server environment to run Java code. It also 

includes configuration and management tools that allow direct configuration changes by editing 

XML configuration files. Apache Tomcat is a cross-platform software product, written in Java, 

which runs on a variety of operating systems. 



20 

 

 
 

Java Server Pages (JSPs). JSPs are basically web pages with embedded Java code. 

When the client requests data from the web server, the server executes the embedded Java code 

before returning the page to the browser. To illustrate JSPs, observe the following code: 

<html> 

           <body> 

                    <% 

                    out.println("<h1>Programming is fun!!!</h1>"); 

                                   %> 

                  </body> 

</html> 

The code above illustrates the standard HTML web page. The web page above is comprised of 

standard HTML and Java code embedded between the <% and %> character sequences. The <% 

and %> along with the embedded Java code is called a scriptlet. Executing the above code will 

produce the web page that shows plain text “Programming is fun!!!” Note that the text 

“Programming is fun!!!” could have directly been incorporated into the html code, but to 

illustrate dynamic web pages java script was used. 

When the browser sends a request to the web server for a JSP, the web server transfers 

control to a JSP container. A container interacts with the web server to provide the runtime 

environment and other services a JSP needs. It knows how to interpret the special elements that 

are part of JSPs. If this is the first time this JSP has been invoked, the JSP container will convert 

it into an executable unit called a servlet. The entire page, including the parts that are in HTML, 

is translated into source code. Thereafter, when the code has been translated, the JSP container 

compiles the servlet, loads it automatically, and then executes it. 



21 

 

 
 

In addition, Mark, Allan, & Kunal (2003) elaborates that “typically, the JSP container 

checks to see whether a servlet for a JSP file already exists and whether the modification date on 

the JSP is older than the servlet. If the JSP is older than its generated servlet, the JSP container 

assumes that the JSP has not changed and that the generated servlet still matches the JSP’s 

contents”. Due to the length of time taken to generate and compile a servlet, the JSP container 

tries to minimize the number of compiles it has to perform by avoiding unnecessary compiles 

(Mark, Allan, & Kunal, 2003). 

Servlets. Servlets form the underlying technology behind Java Server Pages. Servlets are 

composed entirely of Java code, unlike JSPs which are combination of HTML and scriptlets or 

other elements. In addition, JSPs focus more on presentation than servlets. Particularly, Mark et, 

al. (2003), explain that “when a request comes in for a particular servlet, the servlet container 

loads the servlet (if it has not yet been loaded) and invokes the servlet’s service method” (Mark, 

Allan, & Kunal, 2003). They further stated that “the method takes two arguments: an object 

containing information about the request from the browser and an object containing information 

about the response going back to the browser” (Mark, Allan, & Kunal, 2003). Thereafter, the 

servlet should inform the web browser the kind of content being returned. In several 

circumstances, HTML content is returned so it is better to set the content type to text/html before 

starting sending text back to the browser. However, content type can also be set to text/xml if 

you prefer to return data in XML format. 

Many books have illustrated various procedures to run a servlet. Among them, the 

invoker servlet is the easiest. The administrator installing Tomcat must enable the invoker servlet 

by uncommenting the servlet declaration in web.xml file found in conf/ directory within Tomcat 

installation folder. Doing so informs Tomcat of the invoker servlet’s configuration. 



22 

 

 
 

Alternatively, a URL that includes the path “servlet/” can be used to invoke a servlet. The 

invoker matches whatever follows “servlet/” to a servlet class in the container’s classpath and 

executes it.  

Note: Caution should be taken when using a /servlet/ pattern. It is not good practice to 

use a /servlet / pattern on production servers because it can randomly load Java classes despite 

not being servlets. The /servlet / pattern first loads the classes before it can determine whether 

they implement the servlet interface. Hence, a hacker could force the container to load a class 

and potentially harm or compromise the production server.  

 

Despite the fact that servlets can be executed individually, it is recommended to package 

them into WAR (Web Archive) files. A WAR file may contain servlets, JSPs, HTML files, JAR 

files, and even other classes. This kind of component mix is well-managed by a file called 

web.xml. Web.xml is a deployment descriptor that contains all the necessary definitions for the 

application, including the list of servlets and their associated pathnames. The major difference 

between a JSP and a servlet is in the way responses are returned to the browser. While most JSP 

responses are embedded in the JSP in the form of static text in a template, the servlet response is 

usually in the form of code—usually calls to out.print and out.println. At minimum, a servlet 

needs to perform two tasks to send a response: (1) Set the content type and (2) write the 

response. The ServletRequest and ServletResponse objects assist with these tasks. Any 

references to these objects are given to the servlet as parameters of the service method. Every 

time a browser requests a file from the server, the server sends back a content type along with the 

file. The content type informs the web browser how it should display the file (Mark, Allan, & 

Kunal, 2003). Most web servers rely on filename extensions to determine the content type. With 

servlets, it is difficult (if at all possible) for the web server to precisely determine the content 

type the servlet is going to return. Instead, the servlet dictates the webserver what is being 

returned (Mark, Allan, & Kunal, 2003). 



23 

 

 
 

When the web server receives an initial request, a Java servlet handles the request. The 

Java code embedded on the servlet page is executed. Thereafter, the servlet calls a JSP to provide 

the output in order to send a response back to the browser (Mark, Allan, & Kunal, 2003). 

Java Expression Language. This is a library designed to support the implementation of 

dynamic and scripting features in Java-coded applications and frameworks. Using JEXL, a 

programmer is given the capability to enter his own expression into a program. For instance, a 

programmer is given the capability to plot user-defined functions, calculate integrals involving 

user-defined functions, and to fit the data by random user-defined functions. JEXL was designed 

for two main purposes: to create a simple expression compiler that will generate extremely fast 

executable code, and to make the language have direct access to all built-in Java data types and 

functions just like Java language. The Expression Language supports the dynamic access of data 

stored in the Java Bean component, and other objects like request, session, and application.  

JEXL’s emphasis is mainly on code execution time and not on compilation time. It compiles 

expressions directly to Java bytecodes, making the evaluation process extremely fast. Moreover, 

no recompilation is required when JEXL is transferred from one platform to another. Generally, 

JEXL maximizes program performance because there is no need to write an interpreter for 

expressions. 

Below is an example of JEXL code that is using an expression. As can be seen from the code, the 

test attribute of the conditional tag is provided with an EL expression that compares 0 with the 

number of items in the session-scoped bean named cart. 

                       

 

 



24 

 

 
 

<c:if test="${sessionScope.cart.numberOfItems > 0}"> 

... 

</c:if> 

Note: Reprinted from Oracle (2010). 

Java Web Socket technologies. WebSocket is a full-duplex protocol that uses a single 

TCP connection for communication between the client and the server/endpoint. Unlike HTTP, 

WebSocket allows for simultaneous two-way communication and has much smaller header. The 

small header allows for more efficient communication even over small packets of data.  

The WebSocket protocol is divided into two parts: handshake and data transfer. A 

handshake is initiated when the client sends a request to a WebSocket endpoint using its URI. 

But, the handshake must be compatible with existing HTTP-based infrastructure. Web servers 

interpret a handshake as an HTTP connection upgrade request.  Lissack (2013) briefly described 

the WebSocket lifecycle as follows: 

1. Client sends the Server a handshake request in the form of a HTTP upgrade header with 

data about the WebSocket it’s attempting to connect to (Lissack, 2013). 

2. The Server responds to the request with another HTTP header, this is the last time a 

HTTP header gets used in the WebSocket connection. If the handshake was successful, 

then server sends a HTTP header telling the client it’s switching to the WebSocket 

protocol (Lissack, 2013). 

3. Now a constant connection is opened and the client and server can send any number of 

messages to each other until the connection is closed. These messages only have about 2 

bytes of overhead (Lissack, 2013). 

The code below demonstrates how a server socket is built:  



25 

 

 
 

import java.net.ServerSocket; 

import java.net.Socket; 

public class Server{ 

    public static void main(String[] args){ 

        ServerSocket server = new ServerSocket(8080); 

        System.out.println("Server has started on 127.0.0.1:8080.\r\nWaiting for a 

connection..."); 

        Socket client = server.accept(); 

        System.out.println("A client is connected."); 

    } 

} 

 

When the ServerSocket class is instantiated, it is bound to the port number specified 

by the port argument. The WebSocket protocol is currently supported in most major browsers 

and minimizes latency due to the less bandwidth requirement. 

Overall, it is worth noting that Tomcat can act as a stand-alone Web server and also as a 

servlet/JSP engine for other Web servers. Tomcat also includes tools for administering the server 

and applications. Furthermore, Tomcat comes in a version that can be embedded into other 

applications. 

YourKit Java Profiler. YourKit Java Profiler is a full featured, easy to use, low 

overhead profiler for Java EE and Java SE platforms. YourKit solutions have facilitated both 

CPU and memory profiling on huge applications while maintaining maximum throughput and 

zero overhead. YourKit has brought many benefits to professional Java developers because of its 

capabilities to profile applications at both production and development phases. Its uniqueness in 



26 

 

 
 

terms of providing high level results and automated analysis surpasses a traditional profiler's 

capabilities. Specifically, Yourkit Java Profiler has the capability to profile memory leaks, usage, 

and garbage collection. According to the Yourkit official website, the profiler is able to produce 

memory usage graphs that show heap and non-heap memory pools, garbage collection activity 

and, if recorded, object creation rate per-second. The profiler also performs a comprehensive 

heap inspection and analysis (YourKit, 2017). In addition, YourKit Java Profiler records object 

allocation which is more useful in solving garbage collection and memory allocation issues. To 

some extent, it traces “paths from roots to analyze memory leaks and object retention, with the 

ability to immediately see what would happen if particular references were excluded (i.e. to test a 

proposed memory leak fix effect without re-running the application)” (YourKit, 2017). 

Sometimes, it identifies objects holding most memory with dominator tree and class list. And 

best of all, the profiler categorizes objects by class, class loader, web application, generation 

(time of creation), reachability, shallow size range and allocation point if recorded.  

As already mentioned above, YourKit Java profiler has many advantages and some of the 

benefits are expanded below. 

1. High-level results. 

YourKit Java profiler achieves higher-level results through event recording and 

performance charts. The profiler can record higher level events, for instance, database queries, 

web requests and I/O calls besides low level profiling results like method calls. Generated 

performance charts display basic and higher-level telemetry graphs of web, database, and I/O 

activity. 

 

 



27 

 

 
 

2. Powerful analysis capabilities. 

Yourkit Java Profiler produces real-time profiling results immediately. In some cases, the 

profiler is able to perform a sophisticated analysis by capturing a snapshot, saving the results for 

history records and eventually sharing the results. YourKit Java Profiler also has capabilities to 

compare performance or memory snapshots to determine if there are any changes. Most 

importantly, the profiler uses lightweight basic telemetry graphs which allow recent telemetry 

results to be remembered inside the profiler agent. This is a very useful and unique feature 

because it enables the user to see how the application behaved in the past by being able to 

connect to the profiled application on demand. Lastly, YourKit Java profiler has an automatic 

inspection feature that detects typical problems which would be very difficult to inspect 

manually. 

Garbage Collection in Java. Garbage collection is very important in Java applications 

development to ensure memory is utilized efficiently. There are hundreds of Garbage collection 

algorithms but according to JDK 7, there are only five types of garbage collection in Java 

namely;  

                 1. Serial garbage collection 

                 2. Parallel garbage collection 

                 3. Parallel Compacting garbage collection 

                 4. Concurrent Mark and Sweep garbage collection  

                 5. Garbage first (G1) collection.  

The brief description of each of these methods is provided below. 

Serial Garbage Collection. Before sweeping, the algorithm first marks the surviving 

objects in the old generation. Then the sweeping process involves checking the heap from the 



28 

 

 
 

forepart and leaving only the surviving objects behind. Lastly, the algorithm compacts the heap 

by filling up the heap from the forepart with the objects so that they are piled up consecutively. 

Thereafter, the algorithm divides the heap into two parts: one part with objects and another 

without objects (Lee, 2017). The figure below summarizes the process serial garbage collection 

follows. 

 

Figure 4: Illustration of Serial Garbage Collection 

Note: Reprinted from Sun Microsystems (2006). 

The serial Garbage Collection method works best for a small memory and a small 

number of CPU cores (Lee, 2017). It is not recommended to use Serial Garbage Collection on an 

operating server because it freezes all the application threads while performing garbage 

collection. Initially the algorithm was designed when there was only one CPU core on desktop 

computers. Hence, using this serial Garbage Collection will remarkably reduce application 

performance. 

Parallel Garbage Collection. Unlike the serial Garbage Collection method which uses 

only single thread to process a garbage collection, the parallel Garbage Collection method uses 

multiple threads to perform a garbage collection. As a result, Parallel Garbage Collection is 

faster, compared to Serial Garbage Collection. However, it is worth noting that Parallel Garbage 

Collection is practical when there is sufficient memory and considerably a large number of cores 



29 

 

 
 

(Lee, 2017). In some books this type of algorithm is also called “throughput Garbage 

Collection”. 

Parallel Compacting Garbage Collection. This type of algorithm goes through three 

steps: mark, summary, and compaction. In the summary phase, the algorithm identifies the 

surviving objects separately in order to re-allocate them to the areas that the Garbage Collection 

has previously processed. The algorithm is slightly different from the Parallel Garbage 

Collection in the sense that the Parallel Compacting Garbage Collection is usually used to clean 

old generation. When the algorithm marks the objects, it does not immediately perform the 

sweep process but rather it first summarizes the objects, making the process a bit more complex. 

Concurrent Mark and Sweep Collection. This type of Garbage Collection algorithm is 

the most complex algorithm of those compared in this paper. It requires more memory and CPU 

as compared to other Garbage Collection types. And, by default the compaction step is not 

provided.  However, the algorithm has the benefit of short stop-the-world time. With this 

algorithm, the surviving objects that are among the objects closest to the class loader are 

analyzed first (Lee, 2017). This is the early initial mark step and the pause time required is very 

brief. Then in the concurrent mark step, the algorithm tracks and checks the surviving objects 

that it has just confirmed. The concurrent mark step does not have a pause time; it progresses 

while other threads are being processed simultaneously. Next the algorithm goes into the remark 

step, whereby it checks the objects that were newly added or cease to be referenced in the 

concurrent mark step (Lee, 2017). Finally, the Garbage Collection procedure is triggered in the 

concurrent sweep step. So, other threads continue being processed while the garbage collection is 

performed (Lee, 2017). As already stated above, the algorithm has a very short pause time 

because of the manner it performs its procedures. Thus, response time from all applications is 



30 

 

 
 

paramount to the usefulness of this algorithm. Concurrent-Mark-Sweep algorithm is sometimes 

referred to as low latency Garbage Collection (Lee, 2017). 

Garbage First (G1). Garbage first algorithm was created to replace the concurrent mark 

sweep garbage collection method which had several issues due to its complexity. The algorithm 

works as follows: First, it divides the heap into a set of equal-sized regions, each an adjacent 

range of virtual memory. Then it determines the live objects throughout the heap by marking 

them, the process called concurrent global marking. Upon completion of concurrent global 

marking phase, the algorithm knows specifically the regions which are mostly empty. These 

empty regions are collected first resulting in reclamation of large amount of space. Garbage first 

algorithm dedicates its collection and compaction activity on the areas containing many dead 

objects (garbage) attributing to its name “garbage first”. Garbage first algorithm allows a user to 

specify pause time so that it can select the number of regions to collect. The algorithm achieves 

this by the use of a pause prediction model that works based on the user specified pause time 

target. 

While live objects are being evacuated from the identified reclaimable regions, the 

algorithm simultaneously copies objects from one or more regions to a single region on the heap. 

The evacuation process is carefully performed in parallel on multi-processors, to reduce pause 

times and maximize throughput. Then the objects are compacted and in the process large 

memory space is released (Detlefs, Heller, Flood, & Printezis, 2004). Once that region is full, the 

live objects are allocated to another region and then a Garbage Collection is performed. Hence, 

every time Garbage collection is triggered, the algorithm tries to defragment the memory space 

but working within the user defined pause times. This is an added advantage to the Garbage first 



31 

 

 
 

algorithm as compared to parallel compacting garbage collection which compacts the whole heap 

and resulting in considerable pause times. 

Garbage first algorithm is the fastest of all the algorithms discussed above resulting in the 

highest performance of all the above-mentioned algorithms. And it is worth noting that the 

Garbage First collector targets multi-processor machines with large memory space preferably 

servers. Below figure represents the summary of garbage collection in Java. 

 

Figure 5: Garbage Collection Process in Java. 

Note: Reprinted from Williams & Chitta (n.d.) 

NB: In Java, JVM references GC roots objects which in turn keep every other object from being 

garbage-collected. 

 

 

 

 

 

 

 

 



32 

 

 
 

Definition of Terms 

Table 1: Definition of Terms Used in this Study 

Term Definition 

GC Garbage collection; automatic process of 

freeing up space in a computer’s memory 

by removing data that is no longer required 

or in use. 

Algorithm A process or set of rules to be followed in 

problem-solving operations by a computer. 

Memory heap Area of computer memory used for 

dynamic object allocations 

CPU Central Processing Unit of a computer. 

RMI Remote Method invocation 

 

Chapter Summary 

In this chapter, the process of garbage collection has been described and the garbage 

collection algorithms have been classified accordingly. It has been observed that most of these 

garbage collection algorithms remove unreferenced objects from the memory heap when objects’ 

age threshold is met. The strength of the removed objects is generally not considered. And this 

study predicts that some application objects in the heap may still be strong enough to be 

referenced by an application even though they reach their age threshold. The study of the 

strength of these unreferenced objects will assist in the development of more effective garbage 

collection algorithms as well as web applications.  

Finally, the chapter gave a description of some of the services as well as technical terms 

used in the paper. The next chapter will give insight into the background of the problem that has 

been explained above.  



33 

 

 
 

Chapter II: Background and Review of Literature 

This chapter discusses efforts that have been put so far by various researchers to develop 

efficient garbage collection algorithms. In addition, the chapter gives a detailed explanation of 

various strategies employed by other researchers in an attempt to study the behavior of objects in 

a memory heap. Furthermore, the chapter distinguishes the garbage collection in a local systems 

from the distributed systems. An understanding of garbage collection in a distributed system will 

help to devise a good and clear approach to garbage collection in a web service since the two are 

closely related. 

Background Related to the Problem 

Previous research in garbage collection focused more on throughput maximization, than 

determining the strength of the object to be collected at a particular time. And, if research is 

restricted to object strength, there has been only a small amount of work done and the subject 

remains mostly unexplored. With an understanding of why the heap is separated into different 

generations, it is useful to look at the strength of objects found in those segments of the memory 

heap. In order to find the memory location of a heap, for example, a java program can be 

executed, and using the program’s process ID a memory mapping command can be executed 

which will reveal the relative memory address range of the heap. The objects in this memory 

range can then be observed over time to analyze their strengths as the application continues to 

reference them.  

Unfortunately, in most garbage collection algorithms developers did not include the 

strength of objects as a concern. But rather they were concerned with lifetime predictions of an 

object. For instance, Hajime, et.al (2006) constructed an object lifetime predictor which based its 

predictions on information available at allocation time. The information included the dynamic 



34 

 

 
 

sequence of method calls that caused the request and the actual type of the object being 

allocated. They classified this information as request allocation context. This predictor was 

designed in such a way that it would observe lifetimes of all objects with the same request 

allocation context. If there was uniformity in the lifetimes of all objects with the same request 

allocation context, then “the predictor would predict that value at runtime for all objects 

allocated at the site” (Hajime, Darko, & Forrest, 2006). It implied that the objects were being 

removed from the memory heap by the garbage collector when the value predicted at allocation 

time was met. The strengths of these objects at that particular time was not taken into account by 

the predictor. 

Literature Related to the Problem 

The issue of strength of object at the time of collection becomes more complicated when 

dealing with distributed systems. Sometimes it is possible for a premature collection of remote 

objects to occur. According to an Oracle article published in 2010, this is likely to occur in cases 

where a network partition exists between a client and a remote server object, causing the 

transport assume that the client crashed (Oracle, 2010). Due to the likelihood of premature 

collection, remote references cannot ensure referential integrity because not all objects exist for 

remote reference. Therefore, an application is required to handle “RemoteException” errors if a 

remote reference is made to a non-existent object (Oracle, 2010).  

It is worth noting that it is preferable to automatically remove those objects that no longer 

hold references to the client in a distributed system just as in a local system. However, in a 

distributed system this is achieved by the use of a reference-counting garbage collection 

algorithm similar to Modula-3’s Network Objects (Andrew, Greg, Susan, & Edward, 1995). The 

Oracle (2010) article states that a reference counting garbage collection algorithm helps ensure 



35 

 

 
 

that the object is not prematurely collected by making sure that the protocol maintains the 

ordering of referenced and unreferenced messages (Oracle, 2010).   

The article further explains that within each Java virtual machine, all live references are 

tracked by the RMI runtime to achieve the reference-counting garbage collection. When the Java 

virtual machine receives a live reference, it increments the reference count of that particular live 

reference. The server receives a “referenced” message from the first reference to an object. 

Conversely, as live references become unreachable, the local virtual machine decrements the 

count. Finally, the server receives an “unreferenced message” when the last reference has been 

discarded (Oracle, 2010).  

Then the RMI runtime refers to an unreferenced remote object using a weak reference. In 

the research 115 SRC report titled “Network Objects”, Andrew, B. et al. (1995) observed that 

once the remote object is referenced using a weak reference, the Java virtual machine’s garbage 

collector discards the object if no other local references to the object exist (Andrew, Greg, Susan, 

& Edward, 1995). This implies that any loss in connectivity will cause the remote object to be 

marked for collection due to a loss in reference even though the object might still be strong 

enough that it can be referenced by the client.   

Literature Related to the Methodology  

Similarly, in an attempt to find how secured a heap is in memory, Raqeeb, et.al (2017) 

managed to locate a heap in a very small segment of memory. They used the process ID of a 

java_class that was not yet loaded into Kernel space but rather in a user-space (low area of 

memory space) for easy viewing and modification of the heap. Thereafter, they attached a GNU 

debugger to the process ID of the java_class to dump the relative memory address associated 

with the heap and extract the contents for that process ID. Eventually, they were able to notice 



36 

 

 
 

the objects that the heap was mapping for that particular process ID (Raqeeb, Guster, & Schmidt, 

2017).  

The fact that they were able to see the mapping of objects and the heap, gives a very 

important clue to this research since it is possible to manipulate the heap and observe the 

behavior of mapped objects and eventually determine their strengths. This paper leverages the 

fact that the memory heap can be easily viewed and modified at a user space or lower memory 

level.  

To some extent, Raqeeb, et al. (2017) tried to assess the strength of objects in a heap 

when they were analyzing denial of service and performance issues at memory level. Yourkit 

Java Profiler was installed on an Ubuntu server and executed a command to attach the profiler to 

a java application. After the attachment, the profiler and application were left running for a day. 

Immediately after execution, it was observed that most of the objects were being referenced as 

the client was making calls to the server. However, after a day, a higher percentage of objects 

became unreferenced but the objects were not yet collected by the garbage collector. The 

researchers attributed this loss of reference to objects as the result of not refreshing the 

application for a long period of time (Raqeeb, Guster, & Schmidt, 2017).    

In addition, researchers modified the memory heap with random values which showed a 

rise in object allocation and a decrease in a number of objects reachable by the garbage collector 

(Raqeeb, Guster, & Schmidt, 2017). The study was not explicit as to whether the application 

objects were no longer reachable to the garbage collector due to a decline in strength or because 

other objects were allocated when random values were induced into the heap. This suggests that 

it would be useful to investigate more about the strength of these objects in a memory heap as 

managed by Java in a web-based service architecture.  



37 

 

 
 

Similarly, the study’s approach to the problem resembles the one used by Raqeeb, et.al 

(2017) with some adjustments. Most importantly, this study was a prolonged study and the 

examination was based on the application running on a web-based architecture. Unlike the 

above-mentioned study, the manipulation of objects in the heap is simplified through the use of a 

user interface. Instead of using Linux commands to input or manipulate values, the user just have 

to input random values on the interface and observe changes in the memory heap using the 

Yourkit Java profiler program attached to the web application. 

To complete the study, the Java Servlets framework had been chosen since it has a 

history of supporting the implementation of dynamic web pages. Specifically, the study used 

Apache Tomcat web server (a Java Servlet) so that the project would produce quality and 

desirable results.  

Chapter Summary  

This chapter has introduced the subject of garbage collection in distributed systems. 

Specifically, the chapter has pointed out that sometimes objects can be prematurely removed 

from the memory heap due to loss of network connectivity. Technically such objects might still 

be strong enough to be referenced by applications but loss of a network connection causes them 

to lose their pointers. This idea supports the hypotheses explained in the previous section that 

some objects might be removed by garbage collectors while they are still strong. The chapter has 

also covered a similar study previously conducted by a research team. The objective of the study 

was to determine how secured a memory heap is in order to survive a denial of service attack. 

However, in the course of performing the study, it was observed that some objects became 

unreachable in the heap as time elapsed. The unreachability of objects was attributed to lack of 



38 

 

 
 

application refreshing over a longer period of time. The following chapter provides the detailed 

methodology to be used in order to complete the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

 
 

Chapter III: Methodology 

Every study is unique and requires a different approach. Likewise, this study followed the 

descriptive survey approach with slight differences in terms of data gathering and analysis. In 

this chapter, the detailed design, tools, and techniques required for this study are presented. 

Design of the Study 

The study used a descriptive survey method to assess the strength of objects in a memory 

heap as managed by Java-based services executing in a web-based architecture. A descriptive 

survey falls in the category of quantitative research and it is crucial to this study because it 

provides an essential framework for data gathering, analyzing, classifying, and tabulation about 

trends or processes. Thus, the use of descriptive survey method clarified cause-effect 

relationships so that adequate and accurate interpretation of such data could be made and 

accurate conclusions be drawn. As the Java-coded web application was constantly running, the 

data was collected from the attached “YourKit Java Profiler” program over a specified lengthy 

period of time. The data collected includes, but is not limited to, memory heap allocation, CPU 

utilization, number of objects dead and collected, and object allocation rate. This data was 

analyzed by the researcher to determine if the claimed hypotheses hold true or if a further study 

on the subject is warranted with respect to the web application performance.  

Data Collection 

Data analyzed in this study was entirely collected from YourKit-Java Profiler toolkit and 

garbage collection logs. The profiler’s agent was attached to the test web application used in this 

study. When the test web application was executing, the profiler consistently collected various 

information about the test web application. The process of starting and attaching the profiler to 

the web application is described in implementation section. 



40 

 

 
 

Tools and Techniques  

The main tool that was used to collect data was the “YourKit Java Profiler” toolkit that 

was attached to the web application. As the web application was running, the profiler was able to 

collect data about the allocated objects as well as those objects that had been removed from the 

memory heap. However, it has to be noted that undertaking this type of study requires a 

moderate background in Java programming including experience with garbage collection. 

Besides, good analytical skills are also important. For analysis purposes, graphs and tables have 

been provided. At one point, an online analysis tool called “GCeasy” was used to analyze the 10-

day period garbage collection logs. 

Hardware and Software Environment 

The project was implemented by applying a client-server model involving a web user 

interface for inducing objects into the memory heap. Mainly the project used Apache Tomcat, a 

free and open-source software, for easy access and processing of web pages. Apache Tomcat 

works on various operating systems and is an implementation of Java Servlet, Java Server Pages, 

Java Expression Language and Java Web Socket technologies. Thus, it provides an “absolute 

Java” HTTP web server environment in which Java code can be executed. Its configuration and 

management tools allow direct configuration by editing XML configuration files. 

The web page(s) may be accessed using any browser, e.g. Internet Explorer, Firefox, or 

Google Chrome. However, the program that was used for experimental purposes was coded in 

Java and the program was deployed as a web-based service. Specifically, the program was 

implemented in Java programming language because Java is a powerful language that manages 

its own memory allocation including garbage collection. Once the program was deployed and 

running, a software program called YourKit Java Profiler was attached to the program and 



41 

 

 
 

relevant data was collected for analysis. Any input of data on the user interface triggered the 

creation of more objects in the memory heap and that was reflected in the YourKit Java Profiler. 

The user-interface below is the one that was used to input data. 

 

Figure 6: Web Application Interface 

For the above-mentioned software to operate properly, the machine must be running on 

Ubuntu 16.04.2 LTS. For better performance, the machine should have a processor of 2x AMD 

Opteron(tm) 6174 2200.00 MHz and a 4GB memory. 

Constraints 

Initially the author developed and implemented a simple web application. But it was 

noticed that the web application was too small that it was not allocating many objects to the 

memory heap. That posed a threat of not being able to collect enough sample data for analysis. 

Lack of enough sample data would have led to biased or incorrect results of the study. As a 

remedy, another test web application capable of allocating several objects onto the memory heap 

was developed and it was the one used throughout this study.  

 

 



42 

 

 
 

Chapter Summary 

In this chapter, the approach to the study has been presented. In particular, the study 

follows a descriptive survey whereby processes or trends are analyzed. The study used a data 

gathering tool called “YourKit Java Profiler” to collect necessary information and also used 

GCeasy tool to analyze the collected logs. 

Furthermore, the study used a Linux machine with 4GB memory space. To accomplish 

the study, the author required good background in Java programming language as well as good 

analytical skills besides the automated analysis tools.  The web application deployed on this 

Linux machine was accessed by users through the web browser (client). During the study, it was 

a challenge for the author to develop a fairly large web application capable of allocating 

moderate number of objects into the heap memory. The next chapter covers the processes 

followed to test the hypotheses outlined above, and ultimately accomplish the study. 

 

 

 

 

 

 

 

 

 

 

 



43 

 

 
 

Chapter IV: Implementation and Results 

The implementation section uses a Java Program that calculates cost/revenue based on 

the number of acres for each type of crop input in the data entry boxes on the user interface. This 

section presents the system requirements, installation and setup procedures, and the outcomes. 

Systems and Requirements 

         Server machine 

Running on Ubuntu 16.04.2 LTS 

Processor: 2x AMD Opteron(tm) processor 6174 2200.00 MHz 

Memory: 4046MB 

      Client machine 

Any browser such as Google Chrome, Firefox, Internet Explorer 

The Crops Program 

In an attempt to determine the strength of objects in a heap as managed by java in a web 

based service, the author deployed a simple java program on a Linux server. The client machine 

accesses the program through the web browser as dictated by client-server architecture. 

Basically, the program calculates the cost and revenue of crops based on the input values 

supplied in the data entry boxes. The figure below shows the interface of the web based java 

program hosted on a Linux server and accessed by the client through the web browser. 

The source code of the program can be found in the appendix section. 



44 

 

 
 

Figure 7: “Crops” Web Application Interface 

Installation and Setup 

Installing Apache Tomcat 8 on Ubuntu Server. First, install java8 and then create 

tomcat users. Thereafter, use the command below to install tomcat8 apache on the Ubuntu 

server: 

 sudo apt-get install tomcat8 

For step by step details on how to install apache tomcat8 on Ubuntu server, see 

https://www.digitalocean.com/community/tutorials/how-to-install-apache-tomcat-8-on-ubuntu-

16-04  or see the appendix. 

Deploying the Crops Java Program. Web applications are deployed in apache tomcat 8 

server in various ways. Some of the well-known deployment methods are: copying web 

application archive file (.war), copying unpacked web application directory, and using tomcat’s 

manager application. In this study, the last method was used, the tomcat manager. But before 

that, the web archive (war) of the web application files to be used was created as shown below. 

patrick@patrick:/var/lib/tomcat8/webapps/crops$ sudo jar -cvf crops.war * 

[sudo] password for patrick: 

added manifest 

adding: Crop.class(in = 2779) (out= 1478)(deflated 46%) 

https://www.digitalocean.com/community/tutorials/how-to-install-apache-tomcat-8-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-apache-tomcat-8-on-ubuntu-16-04


45 

 

 
 

adding: crop.html(in = 248) (out= 164)(deflated 33%) 

adding: index.html(in = 248) (out= 164)(deflated 33%) 

adding: WEB-INF/(in = 0) (out= 0)(stored 0%) 

adding: WEB-INF/lib/(in = 0) (out= 0)(stored 0%) 

adding: WEB-INF/web.xml(in = 429) (out= 235)(deflated 45%) 

adding: WEB-INF/classes/(in = 0) (out= 0)(stored 0%) 

adding: WEB-INF/classes/Crop.java(in = 2140) (out= 693)(deflated 67%) 

adding: WEB-INF/classes/Crop.class(in = 2779) (out= 1478)(deflated 46%) 

patrick@patrick:/var/lib/tomcat8/webapps/crops$ ls 

Crop.class  crop.html  crops.war  index.html  WEB-INF 

patrick@patrick:/var/lib/tomcat8/webapps/crops$ cp crops.war ~ 

patrick@patrick:/var/lib/tomcat8/webapps/crops$ 

Deploying the program using Tomcat manager. Invoke the web browser, type 

localhost:8080/manager/html and press enter. Under tomcat8-admin, click on “webapp”. Then 

click on “Browse” and navigate to where the war file is located and select it; then click on 

“Deploy”.  

 

 

Figure 8: Tomcat Deployment Interface 

After successful deployment, the program should be listed in the apache tomcat8 management 



46 

 

 
 

console as shown in the figure below. Just refresh the web page and the program will be listed as 

shown below. 

 

 

Figure 9: Listing of Deployed Web Applications 

After the program has been successfully deployed, it is possible to execute it and collect 

necessary information required for this study. Apache Tomcat 8 comes with examples of web 

applications. Notice that in the figure above those sample web applications were removed except 

manager applications to let only the web application of interest, in this case crops application to 

run in the tomcat container. The diagrammatic presentation of how the program was accessed is 

demonstrated in Figure 10 below. 



47 

 

 
 

 

Figure 10: Architecture to Access Crops Program 

 

Starting YourKit Java Profiler 

Below are the steps that were followed in order to complete the data collection process. 

On the web server, execute the following steps: 

1. Download and extract YourKit Java profiler for Ubuntu  

2. Navigate to the desktop and open LXTerminal 

3. To start the profiler, change from your home directory to the directory where the 

downloaded YourKit Java profiler program folder is stored. In this case, the profiler 

program was stored in the home directory, “Downloads” folder. Enter the command:  

a) cd /Downloads/yourkit/yjp-2017.02/bin and press enter.  



48 

 

 
 

b) Once you are in the profiler’s directory, execute the YourKit Java Profiler 

program by typing: ./yjp.sh as shown below: 

 
4. Once the command is executed, Yourkit Java Profiler screen will be displayed (Leave the 

window open.) 

5. Open Firefox ESR on the desktop. Type in the name of the web application in the URL 

box. For this study, navigate in the browser to localhost:8080/Crops or go to the 

bookmarks and select Crops for Spring!. 

6. Accept/allow all the notifications and eventually the web application should be displayed 

and usable. Once the web application is up and running you can navigate back to the 

profiler. 

7. Within the profiler double-click on Tomcat and it should be able to attach to the profiler 

agent. Note that the PluginMain does not belong to the web application, it is a plugin that 

belongs to the web browser so do not attach it. Once Tomcat is successfully attached to 

the profiler, the below interface will be displayed. 

 
Figure 11: YourKit Java Profiler Attach Interface on Start with Tomcat 



49 

 

 
 

Note: The web application and java profiler should be run using the same user (who has the 

ownership on the two programs), otherwise, the application will not show in the profiler and you 

will not be able to attach the web application for profiling. Also to avoid time delays and be able 

to have full profiling capabilities, the profiler agent was made to execute upon startup of Tomcat. 

In this case, the profiler will show that it was started when Tomcat started as shown in Figure 11 

above. 

 

8. From this location navigate through the tabs and observe as well as collect the important 

data. 

Results and Analysis: Input, Output, and Snapshots 

The web application and YourKit Java Profiler were left running for 10 days. Every day, 

the necessary data was collected from the profiler and the following section presents the analysis 

of this 10-days data. 

Locating memory heap for Tomcat. In an attempt to verify the amount of memory 

space Tomcat was occupying immediately after application execution, the below command was 

issued on the server on which the web application was deployed and the following results were 

obtained: 

 
 

The results above show that the heap memory of Tomcat, which the profiler is inspecting and 

analyzing, resides on the memory range of 00c51000-00d9300. The hex value of this memory 

range is 19E4000 which is equivalent to 25MB of memory used by the Tomcat and also the web 

application program is running within Tomcat in this memory range. But remember that the heap 



50 

 

 
 

memory size can increase or decrease when the application is executing up to the allocated limit 

of 2GB. 

1st day of web application execution. When the application started, JVM created a heap 

in the memory to allocate the objects. It is worth noting that the heap may increase or decrease in 

size while the application executes but it has a virtual reservation limit of 2GB. In this study, 

upon execution of the web application, a 495MB memory heap was committed and segmented 

into Eden space, survivor space, and Old generation space as shown in Figure 12 below. As it 

can be seen from Figure 12a, the size of Eden space is greater than other spaces because that is 

the area where objects are allocated first before they are moved to the next spaces. After the 

garbage collection, the Eden size decreased and the old generation size increased because it 

received some objects promoted from Eden space as shown in Figure 12b. 

    

(a) Heap before GC                                             (b) Heap after GC 

       

(c)  Used Parallel Garbage Collector Only                (d) Used Both Parallel and CMS Collectors 

Figure 12: Heap Memory Segments 

Once the JVM finished creating the memory heap, the web application started allocating 

its objects to the Eden space. The creation of memory heap took a few seconds as shown in 



51 

 

 
 

Figure 13 below. Out of 495MB allocated to heap memory, only 60MB was used by the 

application’s objects at the start-up. Most often the process of creating memory heap is called the 

JVM initialization process. As shown in Figure 13 below, the initialization process took less than 

4 seconds and thereafter the application started allocating the objects.  

 
Figure 13: JVM Initialization Period 

Immediately after the execution of the web application, 41% of its objects were reachable via 

strong references, and 1% of objects were referenced via weak references with 58% of 

unreachable objects as illustrated in Figure 14 below. 

 
Figure 14: Objects Strength Immediately after Execution 

In the first 40 seconds of execution, the application generated almost 7500 objects and 

within the time-frame of 9 minutes a total of 7 garbage collection pauses were observed. 4 out of 

the 7 garbage collection pauses were observed immediately after the web application executed as 

illustrated in Figure 16 below. It is possible for an application to have short-lived (temporary) 

objects that die immediately as they are being allocated to the heap and that would have caused 

the triggering of garbage collection 4 times immediately after the program executed. Figures 15 

and 16 below show the recorded objects as well as the number of garbage collections. 



52 

 

 
 

 
Figure 15: Object Allocation in First 40 Seconds            Figure 16: Garbage Collection Pauses 

During the same period of start-up, the observed number of classes loaded into the memory also 

increased from approximately 2500 to 3355 before the number became constant. The figure 

below shows the number of loaded classes at the start-up of program execution. 

 
Figure 17: Loaded Classes 

 

Figure 18 below shows the summary of allocated heap size, loaded classes, number of threads, 

and number of garbage collections immediately after the application was executed. 

 

Figure 18: System State Immediately after Execution 

Based on the following logs, let us analyze the first minor garbage collection that 

occurred immediately after program execution. Before garbage collection was triggered, out of 

76672K (74MB) of Young generation, only 68160K (66MB) of Eden space was used and the 



53 

 

 
 

rest of the spaces (survivor spaces) were empty. Similarly, 439104K (428MB) of Old Generation 

space was never used immediately after execution. After 30 seconds, minor garbage collection 

was triggered which resulted in live objects being pushed to the next survivor space. Since the 

survivor space could only accommodate 8512K (8MB) of live objects, extra live objects were 

promoted to the old generation based on their ages. After the first minor garbage collection, out 

of 76672K (74MB) of Young generation only 8510K (8MB) of survivor space was used and the 

Eden space was empty. A large number of dead/unreferenced objects were collected. Again, 

8949K (8MB) out of 439104K (428MB) of Old generation was used. Consequently, 50701K 

(50MB) of heap memory was reclaimed upon completion of the first minor garbage collection. 

 

 
 

The logs depicted above also explain one important aspect of why the garbage collector 

was triggered. Not only is the garbage collector triggered when the Eden space is 100% full, but 



54 

 

 
 

also when the data structure fails to fit in any region in Young generation.  Thus, in the above 

scenario, the garbage collector was triggered when there was an allocation failure. Notice that the 

live objects were pushed to old generation right after the first minor garbage collection. Possibly 

the web application created a large number of objects which consumed Eden space. Most of 

these objects were still being referenced by live threads during the first minor garbage collection. 

The minor garbage collection was forced to push these objects to the next survivor space and 

eventually to old generation space in order to accommodate newly-generated objects. This is 

called premature object aging because the objects are being pushed to the old generation space 

not because they have reached their age limit but because the Eden space is filled up. Eventually, 

these prematurely aged objects will be collected by a major garbage collection in the old 

generation space. Even though some important objects will remain reachable in the old 

generation space until the program exits, some will still be prematurely collected during the 

major garbage collection. Therefore, it concurs with one of the hypotheses stated above that 

some objects are destroyed while in their active state in such a way that they can still be 

referenced by live threads. Since premature collection occurred due to the application generating 

more objects at startup, one could consider to reasonably increase the size of Eden and survivor 

spaces to maximize the full potential of the objects. For more detailed garbage collection 

activities happening in the JVM, see the 10-days logs included in Appendix C. The below graphs 

partially summarize the above-explained scenario.  



55 

 

 
 

 

Figure 19: GC in Young Generation 

 

Figure 20: GC in Old Generation 

 

Figure 21: Object Allocation and Promotion 



56 

 

 
 

Now let us look at the choice of garbage collector used in this study. As already 

discussed in the garbage collection section above, Java language uses 5 types of garbage 

collectors namely: serial, parallel, parallel compacting, concurrent mark and sweep, and garbage 

first collectors. JVM chooses the garbage collector depending on the design of the garbage 

collector to satisfy the demands of both small and large (those with many threads and high 

transaction rates) applications. In this study, the garbage collector to be used was not specified in 

the configuration file to allow the JVM chose on its own. In J2SE 5.0 the choice of garbage 

collector is based on the type of the machine on which the application is run. When applications 

run on machines with two or more processors and large amount of memory, the parallel collector 

is selected by default. In that regard, in this study, JVM chose the parallel garbage collector for 

Eden space and Survivor space; compact mark and sweep garbage collector was chosen for the 

old generation space as depicted in Figure 12d above. This proves that the web application used 

for the study is large enough that serial garbage collector could not be selected by JVM. Most 

often serial garbage collectors are efficient for small applications requiring approximately 100 

MB of heap on modern processors. Figure 12d shows that the JVM allocated 495 MB of heap 

which is greater than 100 MB hence the JVM could not select the serial garbage collection 

algorithm. It is important to note that the JVM selects heap size, garbage collector, and runtime 

compiler at startup within the initialization time-period. 

When the web application was being developed, it was tested on several stages of 

development. The first stage was when the application was small, and it was allocating fewer 

objects into the memory heap. Figure 12c shows that the JVM chose Parallel Scavenge collector 

for all the heap segments instead of selecting CMS for old generation as was the case in Figure 

12d. As already explained above, this is because the JVM allocated 60 MB of memory heap 



57 

 

 
 

which is less than 100 MB, hence CMS could not be selected in that scenario. Parallel scavenge 

is also a “stop-the-world” copying collector that uses multiple GC threads but cannot be used 

with CMS. On the other hand, even though Garbage first (G1) collector works perfectly on both 

young and old generations, it could not be used in either of the above cases because it was 

designed for larger heap sizes of at least 10 GB.  

Comparing the Figures 12c and 12d, it can be deduced that the web application in Figure 

12c is allocating few objects as far as the heap size is concerned, unlike the web application in 

Figure 12d. It can also be seen that in Figure 12c, the survivor spaces could sometimes be empty 

(0bytes) meaning that the objects in Eden space are not yet aged to be pushed to the next 

(survivor) space. It is possible that the application is only generating short-lived objects that are 

being collected by minor garbage collection in such a way that they are not aging enough to be 

pushed to the survivor space. The other possibility is that the application is generating objects at 

a very slow rate so that it takes time for Eden space to be 100% full and calling for minor 

garbage collection, thus making the survivor space sometimes empty. Nevertheless, this is good 

because in ideal situations, one of the survivor spaces should be empty at any given time to serve 

as the destination of any live objects from Eden and/or the other survivor space during the next 

minor garbage collection. 

In contrast, throughout the experiment it was observed that using the crops application, 

neither the survivor space 0 nor the old generation space was empty at any point in time after 

first minor garbage collection. This may imply that the application was allocating objects at a 

fast rate in such a way that the objects were aging rapidly to accommodate new objects. The 

figures below show the rate at which the web application is allocating objects. Figure 22a 



58 

 

 
 

represents the small application and Figure 22b is for the large application that has been used in 

the rest of the study.     

 
(a) Small Application                                             (b) Large Application 

Figure 22: Object Allocation Variations 

As the rate of object allocation suggests, the large web application is generating many 

objects per second causing the Eden space to fill up quickly and call for minor garbage 

collection; eventually major garbage collection would follow. That might be the reason why the 

survivor space 0 and old generation space have not been empty after the first minor garbage 

collection. Figure 23 below illustrates the rate of garbage collection being called by the JVM to 

clean up the dead objects in the first 22 minutes of program execution. Notice that the spikes are 

sparsely distributed and each spike takes a considerably small amount of time. This tells us that 

at this time most of the objects were reachable via strong references, thus, the garbage collector 

was not triggered so frequently. Even though the garbage collector was called from time to time, 

it would not take longer times because there were few unreferenced objects to clean up from the 

heap.  

 
Figure 23. Minor+Major Garbage Collections on First Day of Execution 



59 

 

 
 

However, there is a danger in the sense that many of the objects might be prematurely 

collected in order to accommodate newly-generated objects. If the application is generating more 

objects than the Eden space can handle, the result is that minor garbage collection is triggered 

frequently. Most of the objects that are still active (being referenced from a live thread) will be 

pushed to the next survivor space and eventually to the old generation space where they will be 

cleaned up by major garbage collection. In this scenario it can be observed that the objects are 

being prematurely collected for the sake of accommodating newly-generated objects. Premature 

collection might compromise the study because it might be concluded that the objects generated 

by the web application are not strong enough to live longer, yet the JVM did not predict the 

object generation rate properly. Premature object collection mostly happens when the JVM did 

not appropriately estimate the number of active short-lived objects to be generated by the 

application in order to correctly size the Eden space during the start-up. In ideal situations, the 

old generation space is expected to be empty for the first 3-8 minor garbage collections 

depending on the size of the application. However, the generation rate does not matter that much 

for this study because with passage of time the number of objects retained within the 10-day 

period will matter.   

On the first day of the experiment, the author was also interested in learning how the web 

application was handling request calls to the web server. It was observed that in the first 15 

minutes the client made many requests to the server. But with time, the number of requests 

dropped and became constant as shown in the figure below. 

 
Figure 24: Client-Server Requests 



60 

 

 
 

These servlet requests are invoked in response to a URL request issued by the client (browser) 

for processing. When the values are inserted in the text box of the web application interface and 

click cost/revenue, the browser issues an HTTP request, and the server sends the request message 

to the “Crops” java program for processing. Among other objects, the HTTP request may contain 

two types of objects namely: HTTPRequest object and HTTPResponse object. The figure below 

shows the interaction between the client and the server. The application was fed with data and 

calculated cost/revenue three times, and those three times are reflected in the figure below when 

the client issued requests and got responses. The transmitted bytes are also captured in the same 

figure. 

 
Figure 25: Calls to the Server 

2nd day after web application execution. On second day of the trial, it was observed that 

the number of reachable objects via strong references declined by 18% as compared to the data 

obtained on the first day of execution. The figure below captures this change of object 

reachability. 

 



61 

 

 
 

 
Figure 26: Object Strength after a Day of Execution 

 

As shown in the Figure 26 above, 74% of floating garbage (objects unreachable from GC roots, 

but not yet collected) was recorded surpassing the objects that can be referenced by live threads. 

Only 1% of objects were pending finalization to be marked as unreachable. Usually the next 

concurrent collection cycle sweeps the floating garbage. Interestingly, even though Figure 26 

shows that only 25% of objects were reachable via strong references, the number of objects 

reachable is almost the same as the number of objects that were 41% reachable via strong 

references immediately after execution as depicted in Figure 14. The assumption is that most of 

these 160 thousand plus objects are the important objects required for the application to execute 

and most of the unreferenced objects belong to web service elements. This assumption was 

proved by looking specifically at the objects allocated by the crops web application, excluding 

Tomcat objects and the results are shown in the following section. 

As opposed to the first day of program execution, in the second day it was observed that 

garbage collection was triggered frequently and most of the time it took longer pauses than the 

first day of program execution. This might suggest that on the second day, most of the allocated 

objects had aged hence the frequent calling of the garbage collector to clean up the unreferenced 

objects. Figures 27 and 28 below illustrate the behavior of garbage collection for both minor and 

major collections during the second day of program execution. 

 



62 

 

 
 

 

Figure 27: GC (Minor+Major) Pauses after a Day of Execution 
 

 
Figure 28: Minor Garbage Collection Pauses 

 

The above two figures show that after a day of running the web application, there is an 

increase in number of GC pauses. Obviously garbage collection is called frequently because 

many objects could not be referenced at this time. As Figure 14 illustrates, 58% of the objects 

that were allocated immediately after application execution had decayed in such a way that they 

can no longer be referenced by the live threads. As time goes on, the application is becoming 

almost idle making some objects become unreachable by the live threads. Therefore, the calling 

of garbage collection now and then is to reclaim memory used by the dead (unreferenced) 

objects. 

Heap manipulation. On the same second day of execution, the researcher also tried to 

induce extra objects into the heap by calculating cost and/or revenue several times and observing 

the results. It was discovered that CPU time, object allocation recording, and garbage collection 

increased drastically.  The CPU usage increased from around 25% constant to about 80% as 

shown in Figure 29 below. At this time, the CPU was utilized to allocate the newly-induced 

objects into the heap and also trigger the garbage collector to sweep the aged objects for the 

purpose of creating memory space in the Eden space. 



63 

 

 
 

 
Figure 29: CPU Usage on Interaction with the Web Application 

 

Also, the GC pauses increased dramatically after generating extra objects into the heap as can be 

seen in the Figure 30 below starting from the vertical red line and after sometime the spikes 

became sparsely distributed. This denotes that most of the objects are now reachable, thus, 

garbage collector can no longer be triggered frequently. 

 
Figure 30: GC Pauses on Interaction with Web Application 

 

Of course the newly-allocated objects were also depicted in the object allocation graph starting 

from the vertical red line in the Figure 31 below. 

 
Figure 31: Object Allocation on Interaction with Web Application 

3rd day after web application execution. On the third day, only 21% of the allocated 

objects were reachable via strong references and no objects were reachable via weak references. 

The decrease in number of reachable objects confirms the fact that some objects are not being 

referenced by the live threads due to inactivity of the web application, thus, the objects lose their 

pointers. These unreferenced objects eventually become garbage and are removed from the 

memory by the garbage collector. However, the strong reachability percentage decrease is 

slightly small (25%-21%) because some new objects were induced on the second day after web 



64 

 

 
 

application execution. Again as mentioned above, the percentage of reachability declined but the 

number of those reachable objects remained almost constant.  

 
Figure 32: Object Strength 3 Days after Execution 

4th day after web application execution. On the fourth day, the percentage of reachable 

objects via strong references declined further by 5% as illustrated in the figure below. 

 
Figure 33: Object Strength 4 Days after Execution 

It was also observed that the rate of object allocation into the heap declined when the application 

stayed idle for four days. Remember, upon execution the application was allocating 

approximately 40K/s, but after four days the rate reduced to approximately 1.2K/s. The figure 

below shows that after four days the application allocated a total of 110 million objects although 

the allocation rate decreased when the application stayed idle for those four days. 

 
Figure 34: Object Allocation Rate on 4th Day 

Furthermore, on this fourth day it was noticed that there was no much garbage collection 

activities taking place except one pause that was recorded as illustrated in the figure below. At 

this moment most of the objects that the application allocated on the first day of execution had 



65 

 

 
 

died (become unreachable) and swept by the garbage collector. Since there is no interaction with 

the web application, it is obvious that the application is no longer allocating new objects onto the 

heap let alone maintaining only those objects deemed to be important. This explains why the rate 

of object allocation and garbage collection decreased over the four-day period: the application 

was almost idle.  

 
Figure 35: GC Pauses on 4th Day 

5th-10th day after web application execution. Starting from day 5 up to day 10 the 

author observed a constant number of objects being referenced by live threads. Only 6% of the 

allocated objects was still accessible by the live threads. The figure below shows that about 92% 

of the allocated objects became unreachable from GC roots. 

 
Figure 36: Object Strength 5-10 Days after Execution 

For five days the application maintained 6% of objects reachable from GC roots using strong 

references. The garbage collector could no longer sweep because most of the dead objects had 

been cleared. It is assumed that these maintained 6% of objects reachable via strong references 

are the most important and dominant GC roots objects and remains reachable until the program 

exits. These objects can still be referenced by the live threads in the old generation space 

throughout the program’s execution cycle. 



66 

 

 
 

 
Figure 37: Garbage Collections for 10th Day 

Figure 37 above shows that there was almost no garbage collection activity taking place on this 

day. As explained above, this might be because the application is no longer assigning new 

objects to the heap that would cause the garbage collector to be triggered. 

Table 2: Summary of the Object Strength for 10 Days 

Day  % of obj. reachable via 

strong references 

% of obj. reachable via 

weak references 

% of obj. 

unreachable by live 

threads 

1 41 1 58 

2 25 0 74 

3 21 0 78 

4 16 0 83 

5 6 0 92 

6 6 0 92 

7 6 0 92 

8 6 0 92 

9 6 0 92 

10 6 0 92 

 

The results and analysis explained so far depict the decaying of objects as Tomcat is 

running. Since the crops java program is accessed through the web service, it was very important 

for this study to examine the strength of the objects of the web service as a whole, in this case the 

Apache Tomcat container. However, the profiler used provides an opportunity to isolate and 

examine the web application in particular to be able to determine the objects the application is 



67 

 

 
 

allocating and how many are retained by the end of the trial period. On the YourKit Java 

Profiler, the below processes were followed to find out the objects for specific web application: 

1. Using the iconic menu, the researcher captured the snapshot and clicked on open 

2. Navigated to web applicationRight click on web application (crops)Selected 

ObjectsReachability. The figure below depicts the process explained above. 

 
Figure 38: Process to See Web Application Objects 

Ultimately you will land on a page that shows the web application’s objects reachability and 

other information as shown in the figure below. 

 
Figure 39: Objects Specific to Web Application Immediately after Execution 

At the beginning of the trial, the author followed the process explained earlier to get the 

results depicted in Figure 39 above. As can be seen, 100% of the web application’s objects were 

reachable via strong references even though the overall object reachability of the web service at 

start was 41% as depicted in Figure 14. One would argue that the 58% of objects that were 

unreachable at start-up belong to Tomcat (web service) elements and not the internal web 

application that it is managing. As the figure below shows, the web socket is also allocating its 

objects within the same heap and some of the dead objects are being collected. The figure shows 



68 

 

 
 

that object number 44386 belonging to web socket adaptor has already been collected and object 

number 44397 is still reachable to the live thread.  

 

Figure 40: Web Element Objects 

Again, going down with the menu of Figure 38 and selecting “Shallow size”, the author 

was able to see the sizes of the objects the application was allocating. The figure below shows 

the breakdown of the objects in terms of sizes and if the numbers are summed, a total number of 

6,310 objects shown in the Figure 39 above is obtained. This type of object size breakdown 

might help the garbage collection developer to fine-tune the algorithm to suit the application 

simply by determining the sizes of objects being allocated by the application. 

 
Figure 41: Object Sizes Specific to Web Application 

The information depicted in Figure 39 was collected on the first day of the trial immediately after 

starting up Tomcat. And at the end of the 10-day trial period, the author also wanted to know the 

number of objects specifically belonging to the web application that were retained. It was 

observed that only one object was deleted but still the reachability via strong references was 

100% as shown in the figure below. 

 



69 

 

 
 

 
Figure 42: Objects Specific to Web Application after 10 Days 

At the end of trial period, the author also tried again to calculate the cost/revenue of the 

crops using the web application. Surprisingly the application was able to provide the correct 

results in a short period of time without even hanging. The researcher expected the application 

not to respond after staying idle for 10 days but the application responded normally. One would 

conclude that objects belonging to an application are long maintained in a web service and that 

most of the objects that become unreachable belong to the web elements. As it was observed 

throughout the 10-day trial period, the reachability percentage of objects kept on decreasing but 

the real number of objects that were reachable via strong references remained almost constant, 

about 160 thousand plus. 

Chapter Summary 

In this chapter, the author has demonstrated the aging of the web application’s objects 

over a period of 10 days. It has been observed that most of the web application’s objects become 

unreachable with the passage of time if there is no interaction with the web application. 

However, it was also noticed that there were some dominant objects that the web application 

maintained until it exited the execution cycle. Most importantly the author has shown that even 

though the percentage of objects reachable via strong references continued to decrease with the 

passage of time, the real number of objects referenced via strong GC roots references remained 

almost the same. It is shown that throughout the 10-day trial, the specific web application (crops) 

lost only one object out of the 6310 objects it allocated during the initial execution. This trend 

prompts to conclude that an application in a web service retains most of its objects for a long 



70 

 

 
 

time and that most of the objects that decay belong to the web elements and not the application 

program itself.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 

 

 
 

Chapter V: Conclusions, Discussion, and Future Work 

This chapter concludes this thesis. It also suggests the future work which might be an 

extension to this work, but a necessary one. 

Conclusion 

The main aim of this thesis was to evaluate the strength of web application objects with 

the passage of time as the application keeps on executing. Due to idle state of an application, the 

application’s allocated objects might be assumed dead/ weak (unreferenced) and swept by the 

garbage collectors. However, using YourKit-Java Profiler, the suggested hypotheses were tested 

and proved that the web application used, retained most of its objects for a long time until the 

program exited execution phase. The above-mentioned profiling tool was able to detect the 

various strengths of web application’s objects at different levels of the trial. Most importantly, 

the profiler was able to separate the objects allocated by the web application and the web service 

elements so as to give a clear picture of the strength of objects belonging to the test web 

application in particular. Ultimately, it was proved that the allocated objects were still strong by 

observing the high-performance of the web application at the end of the 10-day trial period. This 

answered the question of object reusability in web architecture raised above. The web application 

reused the objects that were maintained in a pool for 10 days. Despite garbage collections being 

triggered for hundreds of times, the number of objects allocated by the web application remained 

almost constant. This suggests that most of the objects that became unreachable and collected by 

the garbage collectors belonged to web elements. With passage of time, the percentage of 

reachable objects via strong references declined but objects belonging to the test web application 

remained reachable throughout the study period. Furthermore, using the garbage collection logs, 

the study has shown that objects can be prematurely aged/collected and the situation can be 



72 

 

 
 

avoided by assigning a reasonably large amount of memory space in Eden space. In this case, the 

objects were not collected at their weakest stage but due to allocation failure which eventually 

caused premature collection. 

Discussion 

Object pooling. This study has shown that the test web application used mostly the 

technology called object pooling, a creational design pattern that places objects in a pool. From 

the study it can be seen that the web application is maintaining most of its objects until the 

program exits the execution phase. By using the object pooling method, the web application is 

placing its objects in a pool address instead of creating and destroying them on demand. This 

suggests that the web application’s objects are considered to be expensive to be created and 

destroyed on demand. Only less expensive objects allocated by the web elements will be 

generated and destroyed on demand. And that explains why the author was able to use the 

application after 10-days of idleness without hanging, because object pooling allows object 

reusability and improves performance. 

Future Work 

This study used Apache Tomcat as a container for the test web application. Similarly, the 

same study can be retried on Microsoft IIS to determine if the web application behaves the same 

way on different infrastructure using the same java garbage collectors. Considering that 

Microsoft IIS and Apache Tomcat have many functionality differences despite offering the same 

web services, will the web application behave the same way as observed on the Apache Tomcat 

container?! 

 

 



73 

 

 
 

References 

Andrew, B., Greg, N., Susan, O., & Edward, W. (1995). Network Objects. Palo Alto, Califonia: 

Digital Systems Research Center. 

Chavhan, M. (2017, January 8). (The Complete Guide) to Configure & Install Tomcat 8 on 

Ubuntu 14.04. Retrieved from Poweruphosting.com: 

https://poweruphosting.com/blog/install-tomcat-8-ubuntu/ 

Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001, March 15). Web Services 

Description Language (WSDL) 1.1. Retrieved from www.w3.org: 

https://www.w3.org/TR/2001/NOTE-wsdl-20010315 

Detlefs, D., Heller, S., Flood, C., & Printezis, T. (2004). Garbage-First garbage collection. 4th 

International Symposium on Memory Management (pp. 1-2). Vancouver: Sun 

Microsystems, Inc. 

Guruge', A. (2004). Web Services Theory and Practice. Burlington: Elsevier Digital Press. 

Hajime, I., Darko, S., & Forrest, S. (2006). On the Prediction of Java Object Lifetimes. IEEE 

Transactions on Computers, 880. 

Helland, P. (2017, December). JSON and XML Are Like Cardboard. Communications of the 

ACM, p. 46. 

JSON. (n.d.). Introducing JSON. Retrieved from Json.org: http://www.json.org/ 

Kulchenko, P., Tidwell, D., & Snell, J. (December, 2001). Programming Web Services with 

SOAP. CA: O'Really media, Inc. 

Lee, S. (2017, May 31). Understanding Java Garbage Collection. Become a Java GC Expert. 

Lissack, S. (2013, December 4). WebSockets – A Quick Introduction and a Sample Application. 

IDR Solutions. Retrieved from idrsolutions.com: www.idrsolutions.com 



74 

 

 
 

Mark, W., Allan, M., & Kunal, M. (2003). Sams Teach Yourself JavaServer Pages 2.0 with 

Apache Tomcat in 24 Hours. Indianapolis: Sams Publishing. 

Oracle. (2010). RMI System Overview; Garbage Collection of Remote Objects. Retrieved from 

Java Remote Method Invocation: 

https://docs.oracle.com/javase/8/docs/platform/rmi/spec/rmi-arch4.html 

Oracle Corporation. (2010). The Java EE 6 Tutorial: Overview of the EL. Retrieved from Oracle 

Corporation website: https://docs.oracle.com/cd/E19798-01/821-1841/bnahq/index.html 

Raqeeb, A., Guster, D. C., & Schmidt, M. (2017). Application level memory management 

strategies via the "Garbage Collector": Performance and security ramifications. 

mics_2017_proceedings (pp. 7-12). St. Cloud: micsymposium. 

Shaoshan, L., Jie, T., Ligang, W., Xiao-Feng, L., & Jean-Luc, G. (2012). Packer: Parallel 

Garbage Collection Based on Virtual Spaces. IEEE Transactions on Computers, 1611. 

Sun Microsystems. (2006, April). Memory Management in the Java Hotspot Virtual Machine. 

Sun Microsystems, Inc. 

Wikipedia. (2017, June 23). Web service. Retrieved from Wikipedia: 

https://en.wikipedia.org/wiki/Web_service 

Williams, M. J., & Chitta, K. (n.d.). Java Garbage Collection Basics. Retrieved from 

oracle.com: 

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html 

YourKit. (2017, June 2). The Industry Leader Among Profiling Tools. Retrieved from YourKit 

website: www.YourKit.com 

 

 

 

 



75 

 

 
 

Appendix A: Crops Program Code 

import javax.swing.*; 

import java.awt.*; 

import java.awt.event.*; 

public class Crop extends JApplet implements ActionListener 

{ 

private JTextField n1Text = new JTextField(); 

private JTextField n2Text = new JTextField(); 

private JTextField n3Text = new JTextField(); 

private JTextField ansText = new JTextField(); 

private JLabel Instructions = new JLabel("Enter number of acres for desired for each crop then 

press cost or reveune"); 

private JLabel n1Label = new JLabel("Enter acres of soybeans here"); 

private JLabel n2Label = new JLabel("Enter acres of corn here!"); 

private JLabel n3Label = new JLabel("Enter acres of potatoes here"); 

private JLabel answerLabel = new JLabel("Total cost or revenue"); 

private JButton costButton = new JButton("cost"); 

private JButton revenueButton = new JButton("revenue"); 

double sum; 

double n1; 

double n2; 

double n3; 

 

public void init() 

{ 

ansText.setEditable(false); 

JPanel content = new JPanel(new GridLayout(4,2,1,1)); 

// content.add(Instructions); 

content.add(n1Label); 

content.add(n1Text); 

content.add(n2Label); 

content.add(n2Text); 

content.add(n3Label); 

content.add(n3Text); 

content.add(answerLabel); 

content.add(ansText); 

JPanel buttonPanel = new JPanel(new FlowLayout(FlowLayout.RIGHT)); 

buttonPanel.add(costButton); 

buttonPanel.add(revenueButton); 

 

add(content, BorderLayout.NORTH); 



76 

 

 
 

add(buttonPanel, BorderLayout.SOUTH); 

revenueButton.addActionListener(this); 

costButton.addActionListener(this); 

 

} 

public void actionPerformed(ActionEvent e) 

{ 

if (e.getActionCommand().equals("cost")) 

{ 

n1 = stringToDouble(n1Text.getText()); 

n2 = stringToDouble(n2Text.getText()); 

n3 = stringToDouble(n3Text.getText()); 

sum = (n1 * 900) + (n2 * 100) + (n3 * 750); 

ansText.setText(Double.toString(sum)); 

} 

else if (e.getActionCommand().equals("revenue")) 

{ 

n1 = stringToDouble(n1Text.getText()); 

n2 = stringToDouble(n2Text.getText()); 

n3 = stringToDouble(n2Text.getText()); 

sum = (n1 * 1300) + (n2 * 1650) + (n3 * 1200); 

ansText.setText(Double.toString(sum)); 

} 

 

else 

{ 

ansText.setText("Error"); 

}} 

private static double stringToDouble(String stringObject) 

{ 

return Double.parseDouble(stringObject.trim()); 

}} 

 

 

 

 

 



77 

 

 
 

Appendix B: Apache Tomcat 8 Installation Procedure 

1. Add Java repository into the server by typing the following command: 

sudo add‐apt‐repository ppa:webupd8team/java 

 press enter; 

 https://launchpad.net/~webupd8team/+archive/ubuntu/java 

Press [ENTER] to continue or ctrl‐c to cancel adding it 

press enter; 

2. If any repository package is missing, use the following command: 

     sudo apt‐get install software‐properties‐common ‐y 

3. Update index repository to add Java using the command below: 

      sudo apt‐get update 

4. Now you can install Java by typing: 

       sudo apt‐get install oracle‐java8‐installer ‐y 

5. Create tomcat user and client by doing the following: 

       sudo groupadd tomcat 

       sudo useradd ‐s /bin/false ‐g tomcat ‐d /opt/apache‐tomcat‐8.0.49 tomcat 

6. Download the tomcat from trusted source using the below command: 

       sudo wget http://www‐us.apache.org/dist/tomcat/tomcat‐8/v8.0.49/bin/apache 

7. Unzip the downloaded package and remove the archive file 

       sudo tar ‐xvzf apache‐tomcat‐8.0.49.tar.gz && rm ‐rf apache‐tomcat‐8.0.49 

8. Change the directory to tomcat folder 

     cd apache-tomcat-8.0.49 

9. Provide recursive permissions to conf folder 

https://launchpad.net/~webupd8team/+archive/ubuntu/java
http://www‐us.apache.org/dist/tomcat/tomcat‐8/v8.0.49/bin/apache


78 

 

 
 

       sudo chgrp ‐R tomcat conf/ 

10. Give tomcat client group access to the conf folder and read rights to the records in that 

folder 

       sudo chmod g+rwx conf/ 

       sudo chmod g+r conf/* 

11. Provide recursive permission to temp folder 

        sudo chmod ‐R g+rwx work/ logs/ temp/ 

12. Check the location of installed Java 

        sudo update‐alternatives ‐‐config java 

13. Open the tomcat configuration file by typing the command below: 

        sudo nano /etc/init/tomcat.conf 

14. Configure the tomcat configuration file by inserting the below script: 

 start on runlevel [2345] 

 stop on runlevel [!2345] 

 respawn 

 respawn limit 10 5 

 setuid tomcat 

 setgid tomcat 

 env JAVA_HOME=/usr/lib/jvm/java-8-oracle/jre 

 env CATALINA_HOME=/opt/apache-tomcat-8.0.49 

 env JAVA_OPTS="-Djava.awt.headless=true -

Djava.security.egd=file:/dev/./urandom" 



79 

 

 
 

 env CATALINA_OPTS="-XX:+PrintGCDetails -XX:+PrintHeapAtGC -

Xloggc:/opt/apache-tomcat-8.0.49/logs/gc.log 

 -agentpath:home/patrick/Desktop/YourKit-JavaProfiler-2017.02/bin 

/linux-x86-64/libyjpagent.so=disablestacktelemetry,exceptions=disable,delay=10000" 

 exec $CATALINA_HOME/bin/catalina.sh run 

 post-stop script 

 rm -rf $CATALINA_HOME/temp/* 

 end script 

NB: Make sure the Java location is the one found on step 12 above. 

15. Initialize the configurations made in step 14 by typing the command below: 

      sudo initctl reload‐configuration 

16. Start tomcat by issuing the following command: 

     sudo initctl start tomcat 

17. Open the tomcat-users.xml file: 

      sudo nano /opt/tomcat/conf/tomcat‐users.xml 

18. Add tomcat web-app users and roles by including the following script: 

 <tomcat‐users> 

 <role rolename=”manager-gui”/> 

 <role rolename=”admin-gui”/> 

 <user username="Administrator" password="P@ssw0rd" roles="manager-gui, 

admin-gui” 

 </tomcat‐users> 

19. Save and quit the tomcat users file 



80 

 

 
 

20. Restart the tomcat by issuing the following command:  

       sudo initctl restart tomcat  

21. Check the service if it is running: 

  sudo netstat ‐antup | grep 8080 

22. Access tomcat web application by typing the below URL 

       http://"localhost":8080/manager/html 

23. Finally create a log file called log.gc in /opt/apache-tomcat-8.0.49/logs by typing the 

command: 

          sudo touch /opt/apache-tomcat-8.0.49/logs/log.gc 

Note: Adapted from Chavhan (2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 

 

 
 

Appendix C: Garbage Collection Logs 

 

Java HotSpot(TM) 64-Bit Server VM (25.161-b12) for linux-amd64 JRE (1.8.0_161-b12), built 

on Dec 19 2017 16:12:43 by "java_re" with gcc 4.3.0 20080428 (Red Hat 4.3.0-8) 

Memory: 4k page, physical 2049908k(718868k free), swap 2096124k(2096124k free) 

CommandLine flags: -XX:InitialHeapSize=536870912 -XX:MaxHeapSize=1073741824  

-XX:MaxNewSize=87244800 -XX:MaxTenuringThreshold=6 -XX:NewSize=87244800 -

XX:OldPLABSize=16 -XX:OldSize=174489600 -XX:+PrintGC -XX:+PrintGCDateStamps  

-XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC  

-XX:+UseCompressedClassPointers -XX:+UseCompressedOops -XX:+UseConcMarkSweepGC  

-XX:+UseParNewGC  

2018-03-01T10:11:22.811-0600: 34.733: [GC (CMS Initial Mark) [1 CMS-initial-mark:  

0K(439104K)] 61909K(515776K), 0.1870193 secs] [Times: user=0.09 sys=0.00, real=0.18 secs]  

2018-03-01T10:11:22.998-0600: 34.920: [CMS-concurrent-mark-start] 

2018-03-01T10:11:23.051-0600: 34.973: [CMS-concurrent-mark: 0.053/0.053 secs]  

[Times: user=0.01 sys=0.01, real=0.06 secs]  

2018-03-01T10:11:23.065-0600: 34.987: [CMS-concurrent-preclean-start] 

2018-03-01T10:11:23.067-0600: 34.989: [CMS-concurrent-preclean: 0.002/0.002 secs]  

[Times: user=0.01 sys=0.00, real=0.00 secs]  

2018-03-01T10:11:23.088-0600: 35.010: [CMS-concurrent-abortable-preclean-start] 

{Heap before GC invocations=0 (full 1):  par new generation   total 76672K, used 68160K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 0K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 21771K, capacity 22052K, committed 22292K, reserved 1069056K   class 

space    used 1896K, capacity 1978K, committed 2048K, reserved 1048576K 

2018-03-01T10:11:27.901-0600: 39.823: [GC (Allocation Failure)  

2018-03-01T10:11:27.902-0600: 39.824: [ParNew2018-03-01T10:11:28.003-0600: 39.925:  

[CMS-concurrent-abortable-preclean: 0.506/4.915 secs] [Times: user=2.31 sys=0.06, real=4.92 

secs]  

: 68160K->8512K(76672K), 0.6636648 secs] 68160K->17462K(515776K), 0.6640229 secs] 

[Times: user=0.29 sys=0.04, real=0.66 secs]  

Heap after GC invocations=1 (full 1):  par new generation   total 76672K, used 8512K 

[0x00000000c0000000,  



82 

 

 
 

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K, 100% used [0x00000000c4ae0000, 0x00000000c5330000,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000, 

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 8950K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 21771K, capacity 22052K, committed 22292K, reserved 1069056K   class 

space    used 1896K, capacity 1978K, committed 2048K, reserved 1048576K } 

2018-03-01T10:11:28.580-0600: 40.502: [GC (CMS Final Remark) [YG occupancy: 11515 K 

(76672 K)]2018-03-01T10:11:28.587-0600: 40.509: [Rescan (parallel) , 0.0413391 secs]2018-

03-01T10:11:28.636-0600: 40.558: [weak refs processing, 0.0139206 secs]2018-03-

01T10:11:28.650-0600: 40.572: [class unloading, 0.0282938 secs]2018-03-01T10:11:28.684-

0600: 40.605: [scrub symbol table, 0.0044955 secs]2018-03-01T10:11:28.688-0600: 40.610: 

[scrub string table, 0.0057054 secs][1  

CMS-remark: 8950K(439104K)] 20465K(515776K), 0.1143235 secs] [Times: user=0.05 

sys=0.00, real=0.11 secs]  

2018-03-01T10:11:28.708-0600: 40.630: [CMS-concurrent-sweep-start] 

2018-03-01T10:11:28.726-0600: 40.648: [CMS-concurrent-sweep: 0.018/0.018 secs]  

[Times: user=0.01 sys=0.00, real=0.02 secs]  

2018-03-01T10:11:28.726-0600: 40.648: [CMS-concurrent-reset-start] 

2018-03-01T10:11:28.795-0600: 40.716: [CMS-concurrent-reset: 0.050/0.069 secs] [Times: 

user=0.03 sys=0.01, real=0.07 secs]  

{Heap before GC invocations=1 (full 1):  par new generation   total 76672K, used 76672K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K, 100% used [0x00000000c4ae0000, 0x00000000c5330000,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 8950K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23896K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2057K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-01T11:06:39.405-0600: 3352.178: [GC (Allocation Failure)  

2018-03-01T11:06:39.445-0600: 3352.218: [ParNew: 76672K->8512K(76672K), 0.3291716 

secs] 85622K->18983K(515776K), 0.3689226 secs] [Times: user=0.28 sys=0.04, real=0.37 secs]  



83 

 

 
 

Heap after GC invocations=2 (full 1):  par new generation   total 76672K, used 8512K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K, 100% used [0x00000000c4290000, 0x00000000c4ae0000,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 10471K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23896K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2057K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=2 (full 1):  par new generation   total 76672K, used 76672K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K, 100% used [0x00000000c4290000, 0x00000000c4ae0000,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 10471K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23904K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2057K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-01T12:15:58.783-0600: 7511.556: [GC (Allocation Failure)  

2018-03-01T12:15:58.783-0600: 7511.557: [ParNew: 76672K->8122K(76672K), 0.2125507 

secs] 87143K->27409K(515776K), 0.2136497 secs] [Times: user=0.15 sys=0.06, real=0.21 secs]  

Heap after GC invocations=3 (full 1):  par new generation   total 76672K, used 8122K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,  95% used [0x00000000c4ae0000, 0x00000000c52ceae0,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 



84 

 

 
 

 Metaspace       used 23904K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2057K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=3 (full 1):  par new generation   total 76672K, used 76282K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,  95% used [0x00000000c4ae0000, 0x00000000c52ceae0,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23914K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2058K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-01T13:26:32.395-0600: 11745.168: [GC (Allocation Failure)  

2018-03-01T13:26:32.395-0600: 11745.168: [ParNew: 76282K->2436K(76672K), 0.1583342 

secs] 95569K->21723K(515776K), 0.1587952 secs] [Times: user=0.11 sys=0.04, real=0.16 secs]  

Heap after GC invocations=4 (full 1):  par new generation   total 76672K, used 2436K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,  28% used [0x00000000c4290000, 0x00000000c44f1358,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23914K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2058K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=4 (full 1):  par new generation   total 76672K, used 70596K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,  28% used [0x00000000c4290000, 0x00000000c44f1358,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 



85 

 

 
 

 Metaspace       used 23915K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2058K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-01T14:36:31.947-0600: 15944.721: [GC (Allocation Failure)  

2018-03-01T14:36:31.948-0600: 15944.721: [ParNew: 70596K->1009K(76672K), 0.1302101 

secs] 89883K->20296K(515776K), 0.1306909 secs] [Times: user=0.10 sys=0.03, real=0.13 secs]  

Heap after GC invocations=5 (full 1):  par new generation   total 76672K, used 1009K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,  11% used [0x00000000c4ae0000, 0x00000000c4bdc7f8,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23915K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2058K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=5 (full 1): 

 par new generation   total 76672K, used 69169K [0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,  11% used [0x00000000c4ae0000, 0x00000000c4bdc7f8,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23918K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-01T15:47:46.512-0600: 20219.285: [GC (Allocation Failure)  

2018-03-01T15:47:46.512-0600: 20219.285: [ParNew: 69169K->658K(76672K), 0.1410045 

secs] 88456K->19945K(515776K), 0.1414930 secs] [Times: user=0.12 sys=0.02, real=0.14 secs]  

Heap after GC invocations=6 (full 1):  par new generation   total 76672K, used 658K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4290000, 0x00000000c4334960,  

0x00000000c4ae0000) 



86 

 

 
 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23918K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=6 (full 1):  par new generation   total 76672K, used 68818K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4290000, 0x00000000c4334960,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23919K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-01T16:58:33.273-0600: 24466.046: [GC (Allocation Failure)  

2018-03-01T16:58:33.273-0600: 24466.046: [ParNew: 68818K->648K(76672K), 0.1441306 

secs] 88105K->19935K(515776K), 0.1445697 secs] [Times: user=0.09 sys=0.05, real=0.14 secs]  

Heap after GC invocations=7 (full 1): 

 par new generation   total 76672K, used 648K [0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b821c0,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23919K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=7 (full 1):  par new generation   total 76672K, used 68808K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b821c0,  



87 

 

 
 

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23919K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-01T18:09:58.200-0600: 28750.973: [GC (Allocation Failure)  

2018-03-01T18:09:58.201-0600: 28750.974: [ParNew: 68808K->703K(76672K), 0.1462758 

secs] 88095K->19990K(515776K), 0.1466830 secs] [Times: user=0.10 sys=0.05, real=0.15 secs]  

Heap after GC invocations=8 (full 1):  par new generation   total 76672K, used 703K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   8% used [0x00000000c4290000, 0x00000000c433ff00,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23919K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=8 (full 1):  par new generation   total 76672K, used 68863K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000, 

0x00000000c4290000) 

  from space 8512K,   8% used [0x00000000c4290000, 0x00000000c433ff00,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23933K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-01T19:20:25.744-0600: 32978.517: [GC (Allocation Failure)  

2018-03-01T19:20:25.744-0600: 32978.517: [ParNew: 68863K->645K(76672K), 0.2038301 

secs] 88150K->19932K(515776K), 0.2045051 secs] [Times: user=0.18 sys=0.02, real=0.20 secs]  

Heap after GC invocations=9 (full 1):  par new generation   total 76672K, used 645K 

[0x00000000c0000000,  



88 

 

 
 

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b81610,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23933K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=9 (full 1):  par new generation   total 76672K, used 68805K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b81610,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23933K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-01T20:31:04.627-0600: 37217.400: [GC (Allocation Failure)  

2018-03-01T20:31:04.627-0600: 37217.400: [ParNew: 68805K->725K(76672K), 0.1462418 

secs] 88092K->20012K(515776K), 0.1472318 secs] [Times: user=0.12 sys=0.03, real=0.15 secs]  

Heap after GC invocations=10 (full 1):  par new generation   total 76672K, used 725K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000, 

0x00000000c4290000) 

  from space 8512K,   8% used [0x00000000c4290000, 0x00000000c4345770,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23933K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 



89 

 

 
 

{Heap before GC invocations=10 (full 1):  par new generation   total 76672K, used 68885K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   8% used [0x00000000c4290000, 0x00000000c4345770,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23935K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-01T21:41:42.762-0600: 41455.535: [GC (Allocation Failure)  

2018-03-01T21:41:42.763-0600: 41455.536: [ParNew: 68885K->653K(76672K), 0.2693052 

secs] 88172K->19940K(515776K), 0.2699700 secs] [Times: user=0.10 sys=0.04, real=0.27 secs]  

Heap after GC invocations=11 (full 1):  par new generation   total 76672K, used 653K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b83640,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23935K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=11 (full 1):  par new generation   total 76672K, used 68813K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b83640, 

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 



90 

 

 
 

 Metaspace       used 23935K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-01T22:52:41.151-0600: 45713.924: [GC (Allocation Failure)  

2018-03-01T22:52:41.152-0600: 45713.925: [ParNew: 68813K->732K(76672K), 0.2653744 

secs] 88100K->20018K(515776K), 0.2664209 secs] [Times: user=0.21 sys=0.05, real=0.26 secs]  

Heap after GC invocations=12 (full 1):  par new generation   total 76672K, used 732K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   8% used [0x00000000c4290000, 0x00000000c4347040,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23935K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=12 (full 1):  par new generation   total 76672K, used 68892K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   8% used [0x00000000c4290000, 0x00000000c4347040,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23941K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T00:03:33.387-0600: 49966.160: [GC (Allocation Failure)  

2018-03-02T00:03:33.387-0600: 49966.160: [ParNew: 68892K->666K(76672K), 0.1714158 

secs] 88178K->19953K(515776K), 0.1719200 secs] [Times: user=0.14 sys=0.02, real=0.17 secs]  

Heap after GC invocations=13 (full 1):  par new generation   total 76672K, used 666K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b868a0, 

0x00000000c5330000) 



91 

 

 
 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23941K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=13 (full 1):  par new generation   total 76672K, used 68826K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b868a0,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23943K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T01:14:22.815-0600: 54215.588: [GC (Allocation Failure)  

2018-03-02T01:14:22.815-0600: 54215.588: [ParNew: 68826K->731K(76672K), 0.1391793 

secs] 88113K->20017K(515776K), 0.1400163 secs] [Times: user=0.11 sys=0.03, real=0.14 secs]  

Heap after GC invocations=14 (full 1):  par new generation   total 76672K, used 731K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   8% used [0x00000000c4290000, 0x00000000c4346c60,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23943K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=14 (full 1):  par new generation   total 76672K, used 68891K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   8% used [0x00000000c4290000, 0x00000000c4346c60,  



92 

 

 
 

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000, 

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23943K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T02:26:51.522-0600: 58464.685: [GC (Allocation Failure)  

2018-03-02T02:26:51.522-0600: 58464.686: [ParNew: 68891K->660K(76672K), 0.1424780 

secs] 88177K->19947K(515776K), 0.1429617 secs] [Times: user=0.10 sys=0.03, real=0.14 secs]  

Heap after GC invocations=15 (full 1):  par new generation   total 76672K, used 660K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b852b0,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23943K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=15 (full 1):  par new generation   total 76672K, used 68820K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b852b0,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23961K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T03:37:40.406-0600: 62713.569: [GC (Allocation Failure)  

2018-03-02T03:37:40.406-0600: 62713.569: [ParNew: 68820K->719K(76672K), 0.2657879 

secs] 88107K->20006K(515776K), 0.2661477 secs] [Times: user=0.09 sys=0.04, real=0.27 secs]  

Heap after GC invocations=16 (full 1):  par new generation   total 76672K, used 719K 

[0x00000000c0000000,  



93 

 

 
 

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   8% used [0x00000000c4290000, 0x00000000c4343e80,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000, 

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23961K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=16 (full 1):  par new generation   total 76672K, used 68879K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   8% used [0x00000000c4290000, 0x00000000c4343e80,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23961K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T04:48:30.252-0600: 66963.415: [GC (Allocation Failure)  

2018-03-02T04:48:30.252-0600: 66963.415: [ParNew: 68879K->647K(76672K), 0.1385863 

secs] 88166K->19933K(515776K), 0.1390805 secs] [Times: user=0.11 sys=0.02, real=0.14 secs]  

Heap after GC invocations=17 (full 1):  par new generation   total 76672K, used 647K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b81c08,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23961K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 



94 

 

 
 

{Heap before GC invocations=17 (full 1):  par new generation   total 76672K, used 68807K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b81c08,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23964K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 2018-03-

02T05:59:29.228-0600: 71222.392: [GC (Allocation Failure)  

2018-03-02T05:59:29.228-0600: 71222.392: [ParNew: 68807K->640K(76672K), 0.1540331 

secs] 88093K->19927K(515776K), 0.1551003 secs] [Times: user=0.12 sys=0.02, real=0.16 secs]  

Heap after GC invocations=18 (full 1):  par new generation   total 76672K, used 640K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4290000, 0x00000000c4330260,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23964K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=18 (full 1):  par new generation   total 76672K, used 68800K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4290000, 0x00000000c4330260,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19286K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 



95 

 

 
 

 Metaspace       used 23965K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T07:10:10.333-0600: 75463.497: [GC (Allocation Failure)  

2018-03-02T07:10:10.334-0600: 75463.497: [ParNew: 68800K->636K(76672K), 0.1312685 

secs] 88087K->19982K(515776K), 0.1317528 secs] [Times: user=0.11 sys=0.02, real=0.13 secs]  

Heap after GC invocations=19 (full 1):  par new generation   total 76672K, used 636K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b7f360,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19345K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23965K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

} 

{Heap before GC invocations=19 (full 1):  par new generation   total 76672K, used 68796K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b7f360,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19345K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23965K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T08:21:05.961-0600: 79719.124: [GC (Allocation Failure)  

2018-03-02T08:21:05.961-0600: 79719.124: [ParNew: 68796K->583K(76672K), 0.1533227 

secs] 88142K->19930K(515776K), 0.1537727 secs] [Times: user=0.12 sys=0.03, real=0.15 secs]  

Heap after GC invocations=20 (full 1):  par new generation   total 76672K, used 583K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c4321d00,  



96 

 

 
 

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23965K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=20 (full 1):  par new generation   total 76672K, used 68743K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c4321d00,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23965K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T09:31:27.290-0600: 83940.453: [GC (Allocation Failure)  

2018-03-02T09:31:27.290-0600: 83940.454: [ParNew: 68743K->574K(76672K), 0.1456788 

secs] 88090K->19922K(515776K), 0.1463330 secs] [Times: user=0.10 sys=0.04, real=0.15 secs]  

Heap after GC invocations=21 (full 1):  par new generation   total 76672K, used 574K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b6faa0,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23965K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=21 (full 1):  par new generation   total 76672K, used 68734K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 



97 

 

 
 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b6faa0,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23968K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T10:42:05.796-0600: 88178.959: [GC (Allocation Failure)  

2018-03-02T10:42:05.796-0600: 88178.959: [ParNew: 68734K->617K(76672K), 0.1497064 

secs] 88082K->19965K(515776K), 0.1502260 secs] [Times: user=0.13 sys=0.03, real=0.15 secs]  

Heap after GC invocations=22 (full 1):  par new generation   total 76672K, used 617K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4290000, 0x00000000c432a790,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23968K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=22 (full 1): 

 par new generation   total 76672K, used 68777K [0x00000000c0000000, 0x00000000c5330000, 

0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4290000, 0x00000000c432a790,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23969K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T11:52:54.723-0600: 92427.886: [GC (Allocation Failure)  

2018-03-02T11:52:54.723-0600: 92427.886: [ParNew: 68777K->587K(76672K), 0.1300942 

secs] 88125K->19934K(515776K), 0.1304894 secs] [Times: user=0.11 sys=0.02, real=0.13 secs]  



98 

 

 
 

Heap after GC invocations=23 (full 1):  par new generation   total 76672K, used 587K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b72d80,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23969K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=23 (full 1):  par new generation   total 76672K, used 68747K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b72d80,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T13:03:55.612-0600: 96688.775: [GC (Allocation Failure)  

2018-03-02T13:03:55.612-0600: 96688.775: [ParNew: 68747K->612K(76672K), 0.2581242 

secs] 88094K->19959K(515776K), 0.2585423 secs] [Times: user=0.08 sys=0.04, real=0.26 secs]  

Heap after GC invocations=24 (full 1): 

 par new generation   total 76672K, used 612K [0x00000000c0000000, 0x00000000c5330000, 

0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4290000, 0x00000000c43291b0,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 



99 

 

 
 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=24 (full 1):  par new generation   total 76672K, used 68772K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4290000, 0x00000000c43291b0,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T14:14:42.924-0600: 100936.087: [GC (Allocation Failure)  

2018-03-02T14:14:42.924-0600: 100936.088: [ParNew: 68772K->588K(76672K), 0.1500159 

secs] 88119K->19935K(515776K), 0.1508630 secs] [Times: user=0.10 sys=0.04, real=0.15 secs]  

Heap after GC invocations=25 (full 1):  par new generation   total 76672K, used 588K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b73058,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=25 (full 1):  par new generation   total 76672K, used 68748K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000, 

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b73058,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  



100 

 

 
 

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T15:26:31.030-0600: 105244.194: [GC (Allocation Failure)  

2018-03-02T15:26:31.031-0600: 105244.194: [ParNew: 68748K->570K(76672K), 0.1865460 

secs] 88095K->19918K(515776K), 0.1868992 secs] [Times: user=0.13 sys=0.05, real=0.18 secs]  

Heap after GC invocations=26 (full 1):  par new generation   total 76672K, used 570K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c431ebc8,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=26 (full 1):  par new generation   total 76672K, used 68730K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c431ebc8,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T16:38:00.253-0600: 109533.416: [GC (Allocation Failure)  

2018-03-02T16:38:00.253-0600: 109533.416: [ParNew: 68730K->560K(76672K), 0.1800214 

secs] 88078K->19907K(515776K), 0.1804499 secs] [Times: user=0.13 sys=0.05, real=0.18 secs]  

Heap after GC invocations=27 (full 1):  par new generation   total 76672K, used 560K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000, 

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b6c078,  



101 

 

 
 

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=27 (full 1):  par new generation   total 76672K, used 68720K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b6c078,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T17:49:28.057-0600: 113821.221: [GC (Allocation Failure)  

2018-03-02T17:49:28.057-0600: 113821.221: [ParNew: 68720K->604K(76672K), 0.2932165 

secs] 88067K->19951K(515776K), 0.2935994 secs] [Times: user=0.11 sys=0.04, real=0.30 secs]  

Heap after GC invocations=28 (full 1):  par new generation   total 76672K, used 604K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4290000, 0x00000000c4327250,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=28 (full 1):  par new generation   total 76672K, used 68764K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 



102 

 

 
 

  from space 8512K,   7% used [0x00000000c4290000, 0x00000000c4327250,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000, 

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T19:00:58.549-0600: 118111.713: [GC (Allocation Failure)  

2018-03-02T19:00:58.549-0600: 118111.713: [ParNew: 68764K->582K(76672K), 0.2948191 

secs] 88111K->19930K(515776K), 0.2951752 secs] [Times: user=0.11 sys=0.04, real=0.30 secs]  

Heap after GC invocations=29 (full 1):  par new generation   total 76672K, used 582K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b71af0,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=29 (full 1):  par new generation   total 76672K, used 68742K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b71af0,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T20:12:53.676-0600: 122426.839: [GC (Allocation Failure)  

2018-03-02T20:12:53.676-0600: 122426.839: [ParNew: 68742K->570K(76672K), 0.1330805 

secs] 88090K->19917K(515776K), 0.1334585 secs] [Times: user=0.08 sys=0.04, real=0.13 secs]  



103 

 

 
 

Heap after GC invocations=30 (full 1):  par new generation   total 76672K, used 570K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c431e938,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000, 

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=30 (full 1):  par new generation   total 76672K, used 68730K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c431e938,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T21:25:59.035-0600: 126808.776: [GC (Allocation Failure)  

2018-03-02T21:25:59.035-0600: 126808.777: [ParNew: 68730K->587K(76672K), 0.4216312 

secs] 88077K->19935K(515776K), 0.4219700 secs] [Times: user=0.18 sys=0.02, real=0.42 secs]  

Heap after GC invocations=31 (full 1):  par new generation   total 76672K, used 587K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b72ee0,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 



104 

 

 
 

 Metaspace       used 23971K, capacity 24464K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=31 (full 1):  par new generation   total 76672K, used 68747K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b72ee0,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000, 

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T22:38:04.978-0600: 131134.719: [GC (Allocation Failure)  

2018-03-02T22:38:04.978-0600: 131134.719: [ParNew: 68747K->559K(76672K), 0.1489634 

secs] 88095K->19906K(515776K), 0.1493338 secs] [Times: user=0.11 sys=0.03, real=0.15 secs]  

Heap after GC invocations=32 (full 1):  par new generation   total 76672K, used 559K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c431bc08,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=32 (full 1):  par new generation   total 76672K, used 68719K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c431bc08,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19347K [0x00000000c5330000,  



105 

 

 
 

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-02T23:50:21.645-0600: 135471.386: [GC (Allocation Failure)  

2018-03-02T23:50:21.645-0600: 135471.386: [ParNew: 68719K->598K(76672K), 0.3593216 

secs] 88066K->19946K(515776K), 0.3596166 secs] [Times: user=0.15 sys=0.03, real=0.36 secs]  

Heap after GC invocations=33 (full 1):  par new generation   total 76672K, used 598K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b75990,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000, 

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=33 (full 1):  par new generation   total 76672K, used 68758K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b75990,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T01:02:39.007-0600: 139808.748: [GC (Allocation Failure)  

2018-03-03T01:02:39.008-0600: 139808.749: [ParNew: 68758K->567K(76672K), 0.4041199 

secs] 88106K->19915K(515776K), 0.4057014 secs] [Times: user=0.16 sys=0.06, real=0.41 secs]  

Heap after GC invocations=34 (full 1):  par new generation   total 76672K, used 567K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c431dee0,  



106 

 

 
 

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=34 (full 1):  par new generation   total 76672K, used 68727K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c431dee0,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T02:14:55.707-0600: 144145.448: [GC (Allocation Failure) 2018-03-

03T02:14:55.707-0600: 144145.448: [ParNew: 68727K->552K(76672K), 0.1339622 secs] 

88075K->19900K(515776K), 0.1343080 secs] [Times: user=0.09 sys=0.04, real=0.14 secs]  

Heap after GC invocations=35 (full 1):  par new generation   total 76672K, used 552K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b6a1a8,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=35 (full 1):  par new generation   total 76672K, used 68712K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 



107 

 

 
 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b6a1a8,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T03:25:41.906-0600: 148391.648: [GC (Allocation Failure)  

2018-03-03T03:25:41.907-0600: 148391.648: [ParNew: 68712K->572K(76672K), 0.1342712 

secs] 88060K->19920K(515776K), 0.1347573 secs] [Times: user=0.10 sys=0.02, real=0.14 secs]  

Heap after GC invocations=36 (full 1):  par new generation   total 76672K, used 572K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c431f0f0,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

} 

{Heap before GC invocations=36 (full 1):  par new generation   total 76672K, used 68732K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c431f0f0,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T04:36:56.148-0600: 152665.889: [GC (Allocation Failure)  

2018-03-03T04:36:56.148-0600: 152665.889: [ParNew: 68732K->618K(76672K), 0.1354810 

secs] 88080K->19966K(515776K), 0.1358861 secs] [Times: user=0.12 sys=0.02, real=0.14 secs]  



108 

 

 
 

Heap after GC invocations=37 (full 1):  par new generation   total 76672K, used 618K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b7a970,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=37 (full 1):  par new generation   total 76672K, used 68778K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b7a970,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T05:47:56.785-0600: 156926.790: [GC (Allocation Failure)  

2018-03-03T05:47:56.785-0600: 156926.790: [ParNew: 68778K->592K(76672K), 0.2598813 

secs] 88126K->19941K(515776K), 0.2657309 secs] [Times: user=0.11 sys=0.02, real=0.27 secs]  

Heap after GC invocations=38 (full 1):  par new generation   total 76672K, used 592K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c43242f0,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 



109 

 

 
 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=38 (full 1):  par new generation   total 76672K, used 68752K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c43242f0,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T06:58:12.838-0600: 161142.843: [GC (Allocation Failure)  

2018-03-03T06:58:12.838-0600: 161142.843: [ParNew: 68752K->587K(76672K), 0.2620563 

secs] 88101K->19935K(515776K), 0.2623916 secs] [Times: user=0.11 sys=0.02, real=0.26 secs]  

Heap after GC invocations=39 (full 1):  par new generation   total 76672K, used 587K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b72e10,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23980K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=39 (full 1):  par new generation   total 76672K, used 68747K 

[0x00000000c0000000, 0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4ae0000, 0x00000000c4b72e10,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 



110 

 

 
 

 Metaspace       used 23982K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T08:09:05.584-0600: 165395.589: [GC (Allocation Failure)  

2018-03-03T08:09:05.584-0600: 165395.589: [ParNew: 68747K->575K(76672K), 0.1306504 

secs] 88095K->19923K(515776K), 0.1310088 secs] [Times: user=0.09 sys=0.04, real=0.13 secs]  

Heap after GC invocations=40 (full 1):  par new generation   total 76672K, used 575K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c431fc70,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23982K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=40 (full 1):  par new generation   total 76672K, used 68735K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c431fc70,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23982K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T09:19:58.161-0600: 169648.166: [GC (Allocation Failure)  

2018-03-03T09:19:58.161-0600: 169648.167: [ParNew: 68735K->614K(76672K), 0.1345798 

secs] 88083K->19963K(515776K), 0.1349286 secs] [Times: user=0.09 sys=0.04, real=0.14 secs]  

Heap after GC invocations=41 (full 1):  par new generation   total 76672K, used 614K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b79bb0,  

0x00000000c5330000) 



111 

 

 
 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23982K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=41 (full 1):  par new generation   total 76672K, used 68774K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   7% used [0x00000000c4ae0000, 0x00000000c4b79bb0,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23982K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T10:30:55.296-0600: 173905.301: [GC (Allocation Failure)  

2018-03-03T10:30:55.296-0600: 173905.302: [ParNew: 68774K->591K(76672K), 0.1860584 

secs] 88123K->19939K(515776K), 0.1863945 secs] [Times: user=0.10 sys=0.03, real=0.18 secs]  

Heap after GC invocations=42 (full 1):  par new generation   total 76672K, used 591K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c4323da0,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23982K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2059K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=42 (full 1):  par new generation   total 76672K, used 68751K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 



112 

 

 
 

  from space 8512K,   6% used [0x00000000c4290000, 0x00000000c4323da0, 

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23988K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T11:49:53.543-0600: 178643.591: [GC (Allocation Failure)  

2018-03-03T11:49:54.500-0600: 178644.505: [ParNew: 68751K->467K(76672K), 177.0854452 

secs] 88099K->19816K(515776K), 178.1548781 secs] [Times: user=0.71 sys=0.23, real=178.16 

secs]  

Heap after GC invocations=43 (full 1):  par new generation   total 76672K, used 467K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   5% used [0x00000000c4ae0000, 0x00000000c4b54f38,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23988K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=43 (full 1):  par new generation   total 76672K, used 68627K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   5% used [0x00000000c4ae0000, 0x00000000c4b54f38,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T13:42:53.213-0600: 185424.233: [GC (Allocation Failure)  



113 

 

 
 

2018-03-03T13:42:53.426-0600: 185424.415: [ParNew: 68627K->52K(76672K), 37.5398080 

secs] 87976K->19400K(515776K), 37.9694845 secs] [Times: user=0.68 sys=0.44, real=37.98 

secs]  

Heap after GC invocations=44 (full 1):  par new generation   total 76672K, used 52K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c429d168, 

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=44 (full 1):  par new generation   total 76672K, used 68212K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c429d168,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T15:37:15.317-0600: 192288.337: [GC (Allocation Failure)  

2018-03-03T15:37:15.652-0600: 192288.659: [ParNew: 68212K->19K(76672K), 63.6918074 

secs] 87560K->19368K(515776K), 64.1657388 secs] [Times: user=0.80 sys=0.53, real=64.19 

secs]  

Heap after GC invocations=45 (full 1):  par new generation   total 76672K, used 19K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae4fa8,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  



114 

 

 
 

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=45 (full 1):  par new generation   total 76672K, used 68179K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae4fa8,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000, 

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T17:32:45.820-0600: 199221.935: [GC (Allocation Failure)  

2018-03-03T17:32:46.094-0600: 199222.167: [ParNew: 68179K->15K(76672K), 73.0527890 

secs] 87528K->19363K(515776K), 73.4664910 secs] [Times: user=0.83 sys=0.51, real=73.47 

secs]  

Heap after GC invocations=46 (full 1):  par new generation   total 76672K, used 15K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4293d60,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=46 (full 1):  par new generation   total 76672K, used 68175K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4293d60,  



115 

 

 
 

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T19:25:21.304-0600: 205979.623: [GC (Allocation Failure)  

2018-03-03T19:25:21.459-0600: 205979.778: [ParNew: 68175K->7K(76672K), 3.7110027 

secs] 87523K->19355K(515776K), 3.9033487 secs] [Times: user=0.33 sys=0.09, real=3.91 secs]  

Heap after GC invocations=47 (full 1):  par new generation   total 76672K, used 7K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae1c10,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000, 

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=47 (full 1):  par new generation   total 76672K, used 68167K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae1c10,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T21:16:21.072-0600: 212641.903: [GC (Allocation Failure)  

2018-03-03T21:16:21.073-0600: 212641.904: [ParNew: 68167K->9K(76672K), 0.1999384 

secs] 87515K->19357K(515776K), 0.2007248 secs] [Times: user=0.16 sys=0.04, real=0.20 secs]  

Heap after GC invocations=48 (full 1):  par new generation   total 76672K, used 9K 

[0x00000000c0000000,  



116 

 

 
 

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4292550,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=48 (full 1):  par new generation   total 76672K, used 68169K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4292550,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19348K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-03T23:06:04.364-0600: 219227.740: [GC (Allocation Failure)  

2018-03-03T23:06:04.364-0600: 219227.740: [ParNew: 68169K->3K(76672K), 0.2805121 

secs] 87517K->19355K(515776K), 0.2811219 secs] [Times: user=0.15 sys=0.06, real=0.29 secs]  

Heap after GC invocations=49 (full 1):  par new generation   total 76672K, used 3K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0c50,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19351K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 



117 

 

 
 

{Heap before GC invocations=49 (full 1):  par new generation   total 76672K, used 68163K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0c50,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19351K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-04T00:56:59.813-0600: 225885.730: [GC (Allocation Failure)  

2018-03-04T00:56:59.813-0600: 225885.730: [ParNew: 68163K->2K(76672K), 0.1996204 

secs] 87515K->19354K(515776K), 0.2000248 secs] [Times: user=0.13 sys=0.06, real=0.20 secs]  

Heap after GC invocations=50 (full 1):  par new generation   total 76672K, used 2K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290810,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=50 (full 1):  par new generation   total 76672K, used 68162K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290810,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 



118 

 

 
 

2018-03-04T02:47:30.120-0600: 232518.613: [GC (Allocation Failure)  

2018-03-04T02:47:30.121-0600: 232518.614: [ParNew: 68162K->2K(76672K), 0.2040379 

secs] 87514K->19354K(515776K), 0.2046078 secs] [Times: user=0.16 sys=0.04, real=0.20 secs]  

Heap after GC invocations=51 (full 1):  par new generation   total 76672K, used 2K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0810,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=51 (full 1):  par new generation   total 76672K, used 68162K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0810,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-04T04:38:29.211-0600: 239178.992: [GC (Allocation Failure)  

2018-03-04T04:38:29.211-0600: 239178.992: [ParNew: 68162K->2K(76672K), 0.1921370 

secs] 87514K->19354K(515776K), 0.1927518 secs] [Times: user=0.14 sys=0.05, real=0.20 secs]  

Heap after GC invocations=52 (full 1):  par new generation   total 76672K, used 2K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290810,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 



119 

 

 
 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=52 (full 1):  par new generation   total 76672K, used 68162K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290810,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-04T06:29:23.254-0600: 245835.661: [GC (Allocation Failure)  

2018-03-04T06:29:23.254-0600: 245835.661: [ParNew: 68162K->2K(76672K), 0.2545379 

secs] 87514K->19354K(515776K), 0.2550031 secs] [Times: user=0.13 sys=0.08, real=0.26 secs]  

Heap after GC invocations=53 (full 1):  par new generation   total 76672K, used 2K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0810,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=53 (full 1): 

 par new generation   total 76672K, used 68162K [0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0810,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  



120 

 

 
 

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-04T08:20:05.350-0600: 252480.382: [GC (Allocation Failure)  

2018-03-04T08:20:05.350-0600: 252480.383: [ParNew: 68162K->2K(76672K), 0.1996202 

secs] 87514K->19354K(515776K), 0.2001894 secs] [Times: user=0.15 sys=0.05, real=0.20 secs]  

Heap after GC invocations=54 (full 1):  par new generation   total 76672K, used 2K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290810,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=54 (full 1):  par new generation   total 76672K, used 68162K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290810,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-04T10:10:35.548-0600: 259113.263: [GC (Allocation Failure)  

2018-03-04T10:10:35.549-0600: 259113.263: [ParNew: 68162K->2K(76672K), 0.2012052 

secs] 87514K->19354K(515776K), 0.2016894 secs] [Times: user=0.16 sys=0.04, real=0.20 secs]  

Heap after GC invocations=55 (full 1): 

 par new generation   total 76672K, used 2K [0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  



121 

 

 
 

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0810,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=55 (full 1):  par new generation   total 76672K, used 68162K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0810,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-04T12:01:20.997-0600: 265761.391: [GC (Allocation Failure)  

2018-03-04T12:01:20.998-0600: 265761.392: [ParNew: 68162K->2K(76672K), 0.2018385 

secs] 87514K->19354K(515776K), 0.2023533 secs] [Times: user=0.14 sys=0.06, real=0.21 secs]  

Heap after GC invocations=56 (full 1):  par new generation   total 76672K, used 2K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290810,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=56 (full 1):  par new generation   total 76672K, used 68162K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 



122 

 

 
 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000, 

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290810,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-04T13:52:03.121-0600: 272406.220: [GC (Allocation Failure)  

2018-03-04T13:52:03.122-0600: 272406.220: [ParNew: 68162K->2K(76672K), 0.1906724 

secs] 87514K->19354K(515776K), 0.1910330 secs] [Times: user=0.15 sys=0.04, real=0.19 secs]  

Heap after GC invocations=57 (full 1):  par new generation   total 76672K, used 2K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0810,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23990K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=57 (full 1):  par new generation   total 76672K, used 68162K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0810,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23991K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-04T15:42:56.621-0600: 279061.076: [GC (Allocation Failure)  



123 

 

 
 

2018-03-04T15:42:56.621-0600: 279061.076: [ParNew: 68162K->2K(76672K), 0.1916484 

secs] 87514K->19354K(515776K), 0.1922134 secs] [Times: user=0.15 sys=0.04, real=0.19 secs]  

Heap after GC invocations=58 (full 1):  par new generation   total 76672K, used 2K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000, 

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290810,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23991K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=58 (full 1):  par new generation   total 76672K, used 68162K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290810,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23991K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-04T17:33:38.764-0600: 285705.969: [GC (Allocation Failure)  

2018-03-04T17:33:38.764-0600: 285705.969: [ParNew: 68162K->2K(76672K), 0.1980523 

secs] 87514K->19354K(515776K), 0.1990939 secs] [Times: user=0.14 sys=0.05, real=0.20 secs]  

Heap after GC invocations=59 (full 1):  par new generation   total 76672K, used 2K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0810,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  



124 

 

 
 

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23991K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=59 (full 1):  par new generation   total 76672K, used 68162K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0810, 

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23991K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-04T19:24:28.756-0600: 292358.745: [GC (Allocation Failure)  

2018-03-04T19:24:28.756-0600: 292358.745: [ParNew: 68162K->2K(76672K), 0.1970454 

secs] 87514K->19354K(515776K), 0.1977691 secs] [Times: user=0.15 sys=0.04, real=0.20 secs]  

Heap after GC invocations=60 (full 1):  par new generation   total 76672K, used 2K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290810,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23991K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=60 (full 1):  par new generation   total 76672K, used 68162K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290810,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 



125 

 

 
 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23991K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-04T21:14:59.321-0600: 298992.122: [GC (Allocation Failure)  

2018-03-04T21:14:59.321-0600: 298992.122: [ParNew: 68162K->2K(76672K), 0.2248872 

secs] 87514K->19354K(515776K), 0.2255714 secs] [Times: user=0.16 sys=0.06, real=0.22 secs]  

Heap after GC invocations=61 (full 1):  par new generation   total 76672K, used 2K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0810, 

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23991K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=61 (full 1):  par new generation   total 76672K, used 68162K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0810,  

0x00000000c5330000) 

  to   space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290000,  

0x00000000c4ae0000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23991K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-04T23:05:30.551-0600: 305625.786: [GC (Allocation Failure)  

2018-03-04T23:05:30.551-0600: 305625.786: [ParNew: 68162K->2K(76672K), 0.2020811 

secs] 87514K->19354K(515776K), 0.2024862 secs] [Times: user=0.16 sys=0.05, real=0.20 secs]  

Heap after GC invocations=62 (full 1):  par new generation   total 76672K, used 2K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K,   0% used [0x00000000c0000000, 0x00000000c0000000,  

0x00000000c4290000) 



126 

 

 
 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290810,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000,  

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23991K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K } 

{Heap before GC invocations=62 (full 1):  par new generation   total 76672K, used 68162K 

[0x00000000c0000000,  

0x00000000c5330000, 0x00000000c5330000) 

  eden space 68160K, 100% used [0x00000000c0000000, 0x00000000c4290000,  

0x00000000c4290000) 

  from space 8512K,   0% used [0x00000000c4290000, 0x00000000c4290810,  

0x00000000c4ae0000) 

  to   space 8512K,   0% used [0x00000000c4ae0000, 0x00000000c4ae0000,  

0x00000000c5330000) 

 concurrent mark-sweep generation total 439104K, used 19352K [0x00000000c5330000, 

0x00000000e0000000, 0x0000000100000000) 

 Metaspace       used 23991K, capacity 24528K, committed 24704K, reserved 1071104K   class 

space    used 2060K, capacity 2154K, committed 2176K, reserved 1048576K 

2018-03-05T00:56:03.553-0600: 312260.512: [GC (Allocation Failure)  

2018-03-05T00:56:03.553-0600: 312260.513: [ParNew: 68162K->2K(76672K), 0.3505282 

secs] 87514K->19354K(515776K), 0.3509026 secs] [Times: user=0.29 sys=0.06, real=0.36 secs]  

 

 

 

 

 

 

 


	St. Cloud State University
	theRepository at St. Cloud State
	3-2018

	Long Term Assessment of Object Strength in a Web Service as Managed by the Garbage Collection in Java Based Services
	Patrick Jackson
	Recommended Citation


	tmp.1522258932.pdf.5YiSW

