
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

5-2018

Virtualization Using Docker Containers: For
Reproducible Environments and Containerized
Applications
Srinath Reddy Meadusani
St. Cloud State University, srinathreddy45.sr@gmail.com

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Meadusani, Srinath Reddy, "Virtualization Using Docker Containers: For Reproducible Environments and Containerized
Applications" (2018). Culminating Projects in Information Assurance. 50.
https://repository.stcloudstate.edu/msia_etds/50

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St. Cloud State University

https://core.ac.uk/display/232794802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/50?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Virtualization Using Docker Containers: For Reproducible

Environments and Containerized Applications

by

Srinath Reddy Meadusani

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

In Partial Fulfillment of the Requirements

For the Degree

Master of Science

In Information Assurance

May, 2018

Starred Paper Committee:
Susantha Herath, Chair person

Ezzat Kirmani
Balasubramanian Kasi

2

Abstract

Software Development practices which evolved in recent years have
fundamentally changed the development and management of applications in
environment. This evolution includes the Microservices architecture where the
applications with large monolithic code has transformed into collections of many small
services which are loosely coupled together. The evolution of microservices has
changed the requirements of underlying infrastructure, technologies, and tools which
were once used to manage the applications. These services improved the agility of
delivering software which are portable across all the platforms and infrastructures.
Previously large workloads have been processed in large servers which are provisioned
by Virtual Machines. But in today’s application development environment these large
applications have been divided into small applications which collectively run across a
collection of commodity hardware. Containers have become handful in running these
applications on the same OS as they share the same kernel and hardware. In this
paper, I will be discussing about new container technology which is Docker and I will be
presenting you how this technology has overcome the previous issues which includes
building and deploying large applications. This paper also discusses about the security
features of Docker which provides an additional layer of isolation and security for
application services.

3

Acknowledgements

I would like to thank all the committee members Dr. Herath, Dr. Kirmani, and

Dr. Kasi for their time, encouragement and valuable suggestions. This paper would not

have been possible without their guidance.

4

Table of Contents

 Page

Lists of Tables .. 6

List of Figures ... 7

Chapter

 I. Introduction .. 10

 Introduction .. 10

 Problem Statement .. 11

 Nature and Significance of the Problem ... 12

 Objective of the Study .. 12

 Study Questions and/or Hypotheses .. 12

 Definition of Terms ... 13

 Summary .. 13

 II. Background and Review of Literature .. 15

 Introduction .. 15

 Background Related to the Problem .. 15

 Literature Related to the Problem .. 16

 Literature Related to the Methodology ... 23

 Summary .. 25

 III. Methodology .. 26

 Introduction .. 26

 Design of the Study .. 26

5

Chapter Page

 Data Collection ... 31

 Tools and Techniques .. 31

 Hardware and Software Environment .. 31

 IV. Implementation .. 33

 Introduction .. 33

 Docker Networking ... 33

 Docker Storage .. 39

 Dockerfile ... 41

 Docker Swarm .. 44

 Docker Compose ... 46

 Setting Up the Environment and Running Containerized

 Applications .. 47

 Spinning Up an Apache-based Web Container and Exposing It

 to Outside World ... 49

 Scaling the Website Using Docker Swarm ... 57

 Docker Security .. 69

 V. Conclusion ... 72

 Future Work ... 72

References ... 73

Appendix .. 74

6

List of Tables

Table Page

 1. Hardware Requirement ... 31

 2. Software Requirement ... 32

 3. Manager and Worker Nodes .. 57

7

List of Figures

Figure Page

 1. Virtualization Using Virtual Machines .. 17

 2. Cgroups in Linux Containers ... 19

 3. Containerization Using Docker .. 26

 4. Containers in VMs Using Docker ... 27

 5. Docker Architecture ... 28

 6. Web Interface for DTR ... 29

 7. Bridge Network .. 34

 8. Overlay Network .. 36

 9. Host Network ... 37

 10. Macvlan Network ... 38

 11. Containers Storage .. 40

 12. Dockerfile Sample ... 42

 13. Image Creation from Dockerfile ... 42

 14. Image Layers 1 .. 43

 15. Image Layers 2 .. 43

 16. Containerization in Swarm Mode ... 45

 17. Installing Docker Engine 1 ... 48

 18. Installing Docker Engine 2 ... 48

 19. Docker Engine Status .. 49

 20. Dockerfile for Apache Webserver .. 50

8

Figure Page

 21. Building the Apache Image from Dockerfile 1 .. 51

 22. Building the Apache Image from Dockerfile 2 .. 51

 23. Running the Container Out of Apache Image .. 52

 24. Accessing the Website Using Hostname ... 53

 25. Pushing the Image to Docker Hub ... 54

 26. Verifying the Push on Docker Hub ... 54

 27. Updated Web Content ... 55

 28. Pushing the Updated Image Content to Docker Hub 56

 29. Verifying the Updated Push on Docker Hub .. 56

 30. Retrieving the Manager IP Address ... 58

 31. Initializing the Swarm on Manager Node ... 58

 32. Joining Worker1 to Swarm ... 58

 33. Joining Worker2 to Swarm ... 59

 34. Verifying Nodes Status .. 59

 35. Creating the Service on Our Swarm .. 60

 36. Verifying Service Status on Manager Node ... 61

 37. Verifying Service Status on Worker1 Node ... 61

 38. Verifying Service Status on Worker2 Node ... 61

 39. Accessing the Website Using Manager Node Hostname 62

 40. Accessing the Website Using Worker1 Node Hostname 62

 41. Inspecting the Service ... 63

9

Figure Page

 42. Building the Updated Image .. 63

 43. Pushing the Updated Image to Docker Hub .. 64

 44. Verifying the Updated Image on Docker Hub .. 64

 45. Rolling Update of Image on all the Containers .. 65

 46. Accessing the Updated Website Using Manager Node Hostname 66

 47. Accessing the Updated Website Using Worker2 Node Hostname 66

 48. Scaling the Number of Containers Hosting Our Website 67

 49. Verifying the Number of Containers Running o Worker1 67

 50. Draining a Node ... 68

 51. Verifying Nodes Status .. 68

 52. Verifying Capacity on Worker 1 ... 69

 53. Verifying Capacity on Worker2 .. 69

10

Chapter I: Introduction

Introduction

In the history of computing, Containers have unique recognition because of its

importance in virtualization of infrastructure. Unlike traditional Hypervisor virtualization

where one or more independent machines run virtually on physical hardware via an

intermediate layer, containers run the user space on top of the operating system kernel.

Containers provide the isolation between multiple user work space instances. Because

of this unique feature container virtualization is often referred to as operating system

level virtualization. Instead of starting a complete operating system on the host

operating system containers shares the kernel with the operating system which

eliminates the overheads and it also provide isolation between the applications. These

features of the containers make it possible to ship the small container which acts as a

complete operating system which encapsulates only those files which are needed to run

our desired applications.

 This paper exclusively discusses about one of the containers technology which

is currently being used in many production environments to package their applications

in isolated environment. This newly evolved containers are none other than Docker

which has changed the perspective of deploying the applications in production

environment. Docker is an open-source engine which was introduced by Docker Inc in

2013 under apache 2.0 license. The primary goal of the Docker is to provide fast and

lightweight environment in which to run the developers code as well as the efficient

workflow to get that from the Dev environment to test environment and then into

11

production Environment. Docker containers are built from application images which are

stored and managed in Docker hub. Users can also create their own Docker registries

to store their customized images which are created from a Docker file or from an

existing container. These flexible functionality features of Docker have made it popular

with in no time.

Problem Statement

In today’s competitive environment using the available resources efficiently has

become imperative for IT organizations. The traditional virtualization techniques which

are being used to create virtual machines from few past years, has shown some

degradation in the performance of applications which are deployed on those virtual

machines. Data center size of these organizations have also been increasing because

of these obsolete virtualizations techniques which in turn increasing the cost of

infrastructure. Even though the public clouds like Amazon Web Services (AWS),

Microsoft Azure have been evolved in past few years to solve these increasing size of

private data centers but unfortunately using large number of servers on these public

clouds has become an overhead for the organizations because of the monetary

constraints. So, it has become a highly important concern for any organization to solve

this problem to sustain in today’s competitive environment.

There is also been a huge issue in developing and deploying applications in

development and production environments. Applications working perfectly fine in

Development environment have been showing glitches when they are deployed in

production environment. This environment issues have widened the gap between

12

Development and Operation Teams. Further, this issue has led to the slower delivery of

the software with increasing the cost of maintenance. This shows that there is an urgent

need of a technology which can deliver the reproducible environments to avoid

difference development and production environments.

Nature and Significance of the Problem

Above problem statement has stated the issues facing by the organizations

which are using traditional virtualization techniques. The significance of improving the

performance of organizations operations by solving this problem has become an

inevitable task. There is an urgent need for these organizations to adapt new

virtualization techniques to avoid the unnecessary overheads which are specified in the

above problem statement.

Objective of the Study

The primary objective of this study is to discuss the available alternative solutions

for the specified problem statement. This paper introduces a new virtualization

technique using Docker containers which is as an alternative solution for the traditional

Virtual Machines for reproducible environments. This paper also compares the security

and performance of the applications running in the Containers and Virtual Machines and

their resource utilization.

Study Questions and/or Hypotheses

• Why there is a need for virtualization of infrastructure in an organization?

• What are the problems with existing virtualization techniques?

13

• Why there is a need to use containerized virtualization?

• How did these containers solve the overheads of an organization?

• How secure and compatible are these Containers?

 Definition of Terms

Virtualization: Virtualization is a technology in which an application, data

storage or guest operating system is abstracted from the truly underlying software or

hardware.

Virtual machines: A virtual machine or VM is a virtual computer within the

physical computer that runs with an operating system and can used to run applications.

Containers: Containers uses Operating system level virtualization for deploying

applications instead of creating an entire VM.

Docker: Docker is an open source tool which is developed to create light weight

containers.

Amazon Web Services (AWS): Amazon web services provides public cloud

service developed by Amazon where we can host our applications on their servers.

Summary

 In this chapter, we discussed about the problems and overheads faced by the

organizations who are using existing and obsolete virtualization techniques to virtualize

the infrastructure using virtual machines. This chapter introduced the new virtualization

technique using Docker Containers which is an alternative approach for the virtual

14

machines. Further chapters of this paper discuss more about the Operation,

Networking, and Security of the Docker containers.

15

Chapter II: Background and Review of Literature

Introduction

 Virtualization is the process of migrating physical environment into virtual

environment. This virtual environment can include anything from virtual operating

systems to virtual servers. Many companies have already adopted virtualization

because they reduce the overheads like maintaining the hardware which is included in

large rooms or data centers occupied with large number of devices and cables.

Although Virtualization did not completely solve the problem of using bulky hardware but

it got succeeded in reducing the usage of unnecessary bulky and costly hardware which

was a burden to most of the organizations. This chapter focuses more on the existing

and newly evolved virtualization technologies.

Background Related to the Problem

With virtualization, a company can have limitless access to the computing

resources which improves operations speed and the business capabilities. There are

many ways to do virtualization where creating Virtual Machines using Hypervisors is

one of them. Most of the organizations used this method for the virtualization of their

operations but the disadvantages of using this method have been widespread recently.

VM is a large-weight computer resource and an average VM is a copy of an operating

system running on a top of a hypervisor which is running on top of a physical hardware

which our application is run on top of. This presents some challenges in for speed and

performance and also some other problems in agile sort of environment.

16

Linux Container technology (LXC) has been evolved to solve this problem but

they haven’t completely succeeded in overcoming this problem. This chapter discusses

more about the problems with the Virtual Machines in production and non-production

environment. This paper gives an insight about solve problem of producing a more

lightweight, more agile computer resource. Further a brief over view of existing Linux

Containers (LXC) is given and their operation is compared with the newly evolved

Docker container.

Literature Related to the Problem

In “Using Docker to support reproducible Research” R. Chamberlain and J.

Schommer [1] stated that reproducibility and sharing of an environment is imperative

factor for an organization to make faster operations. A brute-force approach to achieve

this reproducibility and sharing of an environment is through virtual machines. Virtual

machines are safe and predictable way to share a complete computational environment.

However, there are serious drawbacks in using Virtual machines for reproducibility and

sharing of resources. Firstly, it is very hard for a user to do this reproducibility without

the very high-level knowledge of Systems administration. Secondly, Virtual Machines

consume lots of storage space irrespective of the applications or processes running on

them. The below figure depicts how virtualization has been achieved using Virtual

Machines and the problem with this method has been discussed with respect to the

figure.

17

Figure 1. Virtualization Using Virtual Machines [2]

 The above figure clearly portrays that a Hypervisor which is an intermediate layer

is used to create virtual machines with different operating systems. This hypervisor is

installed on the host operating system which distributes the resources to virtual

machines as per the configurations specified by the user. Running the virtual machines

on these hypervisors consume a lot of CPU memory which degrades the performance

of the Host machines if it got bumped up with more virtual machines. Each virtual

machine creates a new guest server with GUI, dedicated hardware and library files

which means they create a complete replica of the operating systems. A user wants

only particular binary files and software in a machine to host and run his applications.

But Virtual Machines provides unnecessary binary files which are not required by the

user. These unnecessary files consume lots of storage space leading to the ineffective

use of infrastructure resources.

18

 Linux Containers (LXC) have been introduced to solve the problem of resource

utilization which was created by virtual machines. These containers do not need a

separate hypervisor to create an isolated environment. In a large-scale environment

using Virtual Machines would mean you are probably running many duplicate instances

of the same OS and many redundant boot files which are not required [2]. Containers

are lightweight compared to VM’s since they contain only the bootable files specific to

that application. Since Containers decouple the applications from operating systems

users can have a clean and minimal Linux operating system and they can run in one or

more isolated containers.

 These Linux Containers (LXC) are designed for operating system level

virtualization method for running multiple Linux containers on the single Linux Host

machine. Cgroups and Namespaces are the two primary features that make this Linux

containers possible. Linux Cgroups are developed by google, which governs the

isolation and usage of system resources like CPU and memory usage for a group of

processes. Consider an example application which takes up a lot of CPU cycles and

memory we can put this application in a Cgroup to limit the usage of CPU and memory

by that application. Below figure clearly portrays the functionality of cgroups:

19

Figure 2. Cgroups in Linux Containers [3]

From the above diagram, we can say that resources allocated to group 2 are

twice as that of group 1. In the above example web applications are hosted on Apache

web server and they are using MySQL database as a backend server to store the users’

data. Since the backend servers like MySQL uses more memory and CPU cycles

resources have been allocated to them twice that of front end servers like Apache. In

above Figure 2, Apache web server processes have been allocated with 6, 7 CPUs and

1 block of RAM whereas 1,2,3,5 CPUs and two blocks of RAM have been allocated to

MySQL servers since they consume more resources. Although these Cgroups are

created using the Host Resources these Cgroups control the allocation of resources to

processes which is important in isolating the applications from Host operating system.

This isolating functionality of Cgroups plays a vital role in creating Linux containers.

20

 Another important feature in creating Linux containers is Namespaces. While

Cgroups provides isolation for group processes Namespaces deals with the isolation of

resources for a single process. Namespaces isolate the set of system resources and

dedicate them to a single process. There are six Namespaces currently, which are

implemented Linux. The purpose of each Namespace is to provide an isolated

environment for the processes and to implement lightweight containers in Linux

distributed systems. In the following paragraphs, we will be discussing about these

namespaces one by one:

Mount namespaces. This Namespace isolate the set of file systems seen by the

group of processes. Thus, the processes in each namespace will see distinct single

directory hierarchies. The mount() and unmount() calls in mount namespace ceases

the set of mount points which are visible to all the global processes and then these set

of mount points are dedicated to a single process which is associated with the mount

namespace. Mount propagation is another advantage in mount namespaces where

mount event in one mount object propagates to another mount object and vice versa if

the two mount objects have shared relationship. The mount object which propagates the

mount event is called “shared mount” and the mount object which receives the mount

event is called “slave mount”. Mount object which neither propagates mount event nor

receives an event is called “private mount”.

UTS namespaces. The term UTS is derived from the name of the structure

passed to the uname() system call. By using this namespace, we can give a separate

domain name and host name to the processes. Sethostname() and setdomainname()

21

systems calls are used to set these separate names for a process. This UTS

namespace allows the containers to have its own domain name and host name. We can

initialize the scripts in containers to automate the tasks based on these separate

domain and host name of the containers.

IPC namespaces. IPC stands for inter process communications which isolates

the certain inter process communication resources namely System V IPC and POSIX

message queues. By using this namespace, we can isolate the communication between

two processes and we can also share data between processes in the form of

messages.

PID namespace. Process ID namespace isolates the process ID numbers, which

means that processes in different namespaces can have same PID. The main benefit of

this namespace is we can migrate the containers between the hosts without changing

the PIDs of processes running inside the containers. Migration of containers would have

been failed without this namespace because the PIDs would have been same in the

destination host which creates the conflicts between when addressing the tasks using

their respective PIDs. This namespace creates its own init(PID1) for the containers,

which is the ancestor of all processes responsible for various system initialization tasks.

Network namespace. Network Namespace isolates the system resources

associated with networking. With this namespace, each network can have its own IP

addresses, IP route tables, Network devices and port numbers etc. Containers can have

their own virtual network devices and its own applications that bind to isolated port

numbers, which is possible by changing the routing rules in the host system such that

22

the network traffic can be directed to the network devices associated with a specific

container. By leveraging this namespace, we can host multiple webservers (running on

different containers) on a single host with network traffic routed to port number 80.

User namespaces. So far, this namespace is the most complex namespace

added to the Linux kernel. This namespace allows the per-namespace mapping of user

and group IDs. In containers, this namespace allows the users and groups to have

certain privileges only inside that container. For example, a user can have root

privileges inside the container but he/she is a guest user on the host system. Each

process user IDs and group IDs have two different values one inside the container and

the one outside the container which is host system. This duality can be achieved by

mapping the user IDs on host system to the user IDs inside the container. For example,

a user ID 1500 host system might be mapped to the user ID 10 inside a container where

user ID 1500 would be a normal user on the host system and user ID 10 would have

root privileges inside the container.

 Although there are so many complex operations in Linux Containers which can

solve our above-mentioned problem, they are not portable as they do not completely

abstract the applications from lower level resources like networking, OS, and storage.

To address this issue Docker Inc. has come with a solution by introducing their new

software in 2013 which is called Docker. Further sections of this paper discuss more

about how Docker solved the above-mentioned problems.

23

Literature Related to the Methodology

 Docker is open source platform based on Linux Containers (LXC) which

completely packages software applications. It is backed by a private company that

focuses on providing a platform which is easy and scalable for hosting web applications.

As we discussed in the above sections LXCs provide a completely operating system

level virtualization which creates a sandboxed virtual environment in Linux that

eliminates the overhead without creating a complete virtual machine. Docker extends

this terminology of LXCs to make it user friendly and provides easy versioning,

distribution, and deployment.

 These Docker containers can be launched in a sub second, and then you can

have a hypervisor that sits directly on top of the operating system. By this we can pack

a lot of the containers on a single Physical or Virtual Machine. This gives an added

advantage of effective usage of available resources. Docker, allows there to be just one

host operating system, and provides a layer of software at the top of the operating

system that isolates multiple applications and their required supporting stacks of

software from each other, and from the operating system.

 Docker are created to provide lightweight and fast environment in which to run

users code with efficient workflow and get that code from user’s laptop to test

environment and then into production environment [4]. Docker is very simply because

one can run it on simple host which has nothing but a compatible Linux kernel and

binary files. The mission of Docker is to provide following features:

24

Easy and lightweight way to model reality. Docker are so fast such that one

can easily containerize their applications within minutes. Users can modify their

applications and dockerize their applications within no time. When a change is applied

to an application a new container will be created to run these modified applications.

Unlike Virtual machines which uses hypervisor Docker containers takes only seconds to

launch. Then the modified applications are packaged into the newly created containers.

Logical segregation of duties. With Docker, it has become easy for an

organization to segregate the duties between Development and Operations teams.

Development focuses on developing the applications inside the containers while

operations team focuses on managing these containers. Docker enhances the

consistency by providing the same environments in which Developers write the code

and operations team deploy the code. This methodology removes the conflicts between

Dev and Ops teams by resolving “worked in Dev, failed in Ops” problem [4].

Fast and efficient application lifecycle development. The downtime in the

production environment can be drastically reduced by using Docker. They reduce the

cycle time between code being written by developers and code being tested, deployed

by the operations team into the production environment.

 With the above features, Docker have resolved many challenges like

Dependency Hell, imprecise documentations, tackling code-rot with image versions and

barriers to adoption and research [5]. Docker containers also enhances the security

features of application in two ways. One is by providing isolation between application

and another is providing isolation between application and host system. They also

25

reduce the host surface area to protect both the host and co-located containers by

restricting access to the host [6].

 Docker Containers also enhances security by providing Process restrictions,

Device and file restrictions, application image security and open-source security and

other Linux kernel security features. Inside the containers unprivileged users cannot be

added to root group so that they won’t have privileges like sudo. This improves the

overall security of the applications and makes running applications inside the containers

more secure.

Summary

 In this chapter, we have discussed about the literature related to the problems

created by using Virtual Machines. A brief theory about Linux containers has been

discussed which are the major contributors to the above-mentioned Docker

methodology. Introduction to Docker features and their security enhancements have

been provided in this chapter. In the next chapter, this paper discusses more about

Docker methodology, architecture, design of study and work in progress.

26

Chapter III: Methodology

Introduction

 This chapter discusses more about architecture of Docker methodology which

has been introduced in the above chapter. It also gives more information about how

Docker containers are used in real time environments. By the end of this chapter

audience will gain a high-level idea about how to create containers using Docker and

how to deploy them in production environment.

Design of the Study

 The proposed study uses the mix of Qualitative and Quantitative approach as we

are comparing the security features and resource utilization of containers and virtual

machines. Docker containers have been used to support the study and detailed

explanation of these technology has been provided in the following paragraphs.

 Before moving on to discussing how Docker works let us first understand how

Docker are used in creating the containers with in no time and how its functionality is

different from traditional Virtual machines.

Figure 3. Containerization Using Docker [6]

27

From above figure, it is evident that by using Docker we do not need to use a

hypervisor to create a new environment for our applications. Containers created using

Docker are vanilla which means the containers are created only with the bootable files

which are necessary to start up the system and it does not contain all the unnecessary

binary files or libraries. These containers have only those files which are specific to that

application running inside the container. Since these containers are vanilla flavored its

easy and fast to create them. One can also create containers on virtual machines using

Docker for to achieve more flexibility in deploying the applications. The following figure

gives the architecture of how containers are created on virtual machines:

Figure 4. Containers in VMs Using Docker [6]

28

From the above figure, it is evident that it is very easy to create containers on

Virtual Machines using Docker. The only thing we need to do is to install Docker engine

on the required virtual machines where containers are needed to be created.

Docker architecture. The working operation of Docker can be understood by

taking a deep dive at its architecture. The following figure depicts the underlying

architecture of Docker:

Figure 5. Docker Architecture [7]

Docker client, Docker Daemon and Registry are the three main components of

the Docker architecture. More about these components are discussed below:

Docker client. Docker is a Client-server application, where Docker client talks

with the Docker server or daemon which in turn does all the work. Docker ships with a

command line client library Docker and full restful API [4]. One can run Docker client

29

and daemon on the same host or can connect local Docker client to remote Docker

Daemon which is running on the remote host like AWS Server.

Docker daemon. Docker Daemon listens for Docker API requests from Client

and manages Docker images, containers, networks, and volumes. When a request from

client has been received to create a container, Docker daemon pulls the specified

image from the Docker registry or local image registry and then creates the container

from that image. A Daemon can also communicate with other Daemons to manage

Docker services.

Docker registry. Images which are used to create containers by Docker are

stored in Docker registry. Docker Hub and Docker cloud are two official public registries

maintained by Docker Inc, and is supported by the Docker community by uploading

thousands of images regularly into those registries. When a user use Docker pull or run

command the required images are pulled from their docker hub registries.

Figure 6. Web Interface for DTR [8]

30

 For enterprise users Docker Trusted Registry (DTR) is a secured repository to

store their images. Users can install it behind their firewall so that images can be stored

and accessed securely. DTR can be installed on on-premises virtual machines or a

public cloud depending up on the organizations requirement and it can also be

accessed easily because of its user-friendly web interface.

Docker commands. In this section, we will be discussing few basics commands

used by Docker to create and manage containers:

The following command is used to create a container:

“docker run -it --name <name of the container> <image> /bin/bash”

Here it is optional to give a name for the container, but it is best practice to give a name

to avoid confusions between other containers. Image can be any Linux operating

system flavor such as Ubuntu, centos, openSUSE etc. If the image is not available

locally then the above command will pull the required image from the docker hub or

DTR and then run it inside the container. If we want to explicitly pull or get an image

from the docker hub use the below command:

 “docker pull <image_name>”

To start a stopped container, we need to run:

“docker start <container name or id> “

“docker attach <container name or id>”

To run the container in background or in daemonized mode we need to give parameter

“-d” while creating the container.

31

 For this research, Docker engine will be installed on the local server and

containers will be created. Subsequently Applications will be deployed on the

Containers which are created using Docker and on Virtual Machines. These

applications and their resource utilization will be monitored, and their data will be

analyzed using various tools.

Data Collection

As of now no data has been collected for this paper. Subsequently no tools or

techniques have been used to analyze the data. In the future, performance and

resource utilization of the Applications will be analyzed using Nagios tool and Splunk

data analyzing Tool and applications security will be tested using AppDynamics.

Tools and Techniques

 For this study, Nagios Monitoring tool will be installed on Local server and on

virtual machines to monitor the resource utilization by this machine. AppDynamics will

be used for security analysis of the applications and data will be analyzed using Splunk.

Hardware and Software Environment

Table 1. Hardware Requirement

Resource Minimum Required

Processor Intel/AMD

Processor Type 32/64 bit

Speed 2 GHz

Disk Space 100 GB

32

Table 2. Software Requirement

Tools Docker Engine

Hypervisor VMware work station, Virtual Box

Operating System Linux (Ubuntu, Centos or RHEL)

Database MySQL

Languages HTML, CSS, Shell Scripting

Web / Application Server Apache

Web browser Google chrome

Cloud Provider Amazon Web Services(AWS)

33

Chapter IV: Implementation

Introduction

 This chapter provides more information about how to implement docker

containers in developing and testing environments by leveraging its out of box features

and techniques. As the containerization using docker is a vast topic one should have

knowledge about its core features such as Docker Networks, Docker Storage,

Dockerfile, Docker Swarm, Docker Compose and Security. Before we implement

anything using docker, understanding these core features is an imperative task which

would make it easy to understand the further topics while we are implementing the

containers using docker.

Docker Networking

 The way networking has been designed for docker containers is one of the

primary reasons for making it as the one of the most modern day powerful tool for

containerization. Docker networking is much sophisticated that the containers and

services can be run together on same hosts or a different host and a container running

on a Linux machine can connect with a container running on a windows machine. These

features can be implemented by using network drivers such as bridge, host, overlay and

macvlan drivers which are provided by docker engine itself. Depending on the

application requirements we will be using the below container networks for our project.

 Bridge network driver. When a Docker engine is installed, and a container is

spanned up on the host machine, bridge network is the default network that our

container is created on. It is the most simple and easy to create networks on docker

34

engine, which restricts its capability to single host. This creates a private internal

network on the host and containers created within this network can communicate to

each other and external access to this container is granted by exposing its ports [9].

Docker engine takes care of behind the scenes such as iptables, network interfaces and

host routes to make this communication and connections possible. Below figure gives a

clear idea about the functionality of docker’s bridge network:

Figure 7. Bridge Network

The above figure depicts that a bridge network called mybridge has been

created on our host and the containers db and web are created within this bridge

network. Here web container can directly communicate with db container for any

selects, inserts or updates without any networking hassles as they are created within

35

the same network. To access the contents of the website which has been deployed in

web container, we need to expose the ports of web container to the host machine. In

our above example, website has been served in web container on port 5000 and this

port has been mapped with port 8000 on host machine. So that user can access this

website by using the host’s IP address and the associated mapped port.

 The bridge network is easy to understand, simple to create and troubleshoot but

its capability is limited to only single host. If we want to deploy our website and

databases on different hosts bridge network cannot provide us the essential networking

features for the communication between these two. Overlay networks overcome these

difficulties of hosting on single host which has been discussed in the next section.

Overlay network driver. Overlay network is a built-in network driver which

simplifies the complexity of hosting the containers on multiple hosts without any external

provision or components. Load balancing between the containers, service discovery

and multi-host connectivity are built right in this driver, which makes it one of the most

efficient container networking drivers. The overlay driver utilizes an industry-standard

VXLAN data plane that decouples the container network from the underlying physical

network (the underlay). This has the advantage of providing maximum portability across

various cloud and on-premises networks [9]. Below figure depicts the powerful features

of this driver:

36

Figure 8. Overlay Network

Here db container and web containers are created on different hosts hostA and

hostB respectively but they are connected to the same network which is pets-overlay

network. This network can be created on universal control pane (UCP) or on docker

swarm manager and this network should be attached to the containers while spinning

up them. Based upon the traffic one can scale up the number of web containers to

reduce the down time where UCP and Docker swarm will take care of load balancing

the traffic between these containers. When services are deployed in multiple containers

VIP based load balancing will be distributing the traffic across all the containers. Overlay

networks provides an outstanding solution for many networking challenges to host the

applications on multi host containers.

Host network driver. Host networks is the simplest form of network drivers

which does not isolate the container network from docker host network. For example, if

we bind the port 9090 on our container and if we use host network that container

37

application which is hosted on that port will be accessible on the same port (9090) of the

docker host.

Figure 9. Host Network

Above figure depicts that a web container has been hosted on the my-host

network which is a host network with port 9090 exposed and this port can be accessed

on the same port number of the host such as <host_ip>:9090. Host network has limited

capabilities and if your container doesn’t use or publish ports then host network is a no

go.

Macvlan network driver. Macvlan driver is the newest driver in this driver stack

of docker which connects the containers interfaces directly to the host interfaces. Some

of the legacy applications which monitors the network traffic expect to be directly

38

connected to the physical network. In this case we can use the macvlan network driver

to assign a MAC address to each container’s virtual network interface, making it appear

to be a physical network interface directly connected to the physical network.

Containers on this network are addressed with the routable IP addresses which are on

the subnet of external network.

 The macvlan driver can be configured in different ways to achieve different

results. In the below example we create two MACVLAN networks joined to different sub

interfaces. This type of configuration can be used to extend multiple L2 VLANs through

the host interface directly to containers. The VLAN default gateway exists in the external

network.

Figure 10. Macvlan Network

39

 In the above figure the db and web containers are connected to different

MACVLAN networks in this example. Each container resides on its respective external

network with an external IP provided from that network. Using this design an operator

can control network policy outside of the host and segment containers at L2. The

containers could have also been placed in the same VLAN by configuring them on the

same MACVLAN network.

Docker Storage

 One of the biggest challenges in using containerization is about storing the data

of the applications which are running inside the container. Data persistence can be lost

when a container has been longer running and another container needs the data from

this stopped container. Data can also be completely if a container has been removed or

crashed due to the internal glitches. Docker provides us a mechanism to persist the

data irrespective of stopping or removing the containers. It offers three different

approaches such as volumes, bind mounts and tmpfs to mount the data into the

container from the host where this container is up and running.

40

Figure 11. Containers Storage

 The above figure gives a clear idea about where the container’s data is stored on

the docker host using those different approaches to mount the data. Upcoming section

describes about these three approaches and the differences between them in storing

and persisting the data.

Volumes. Volumes are created and managed by docker and are stored as part

of the host file system, where as non-docker processes should not modify this file

system. One can create a volume by explicitly using docker volume create command or

docker will be automatically creating a volume for you when you create a container.

When we create a volume, it is stored inside the directory on the docker host and this

directory will be mounted into the container when we mount volume into that container

[10]. A Volume can be mounted into more than one container and the data will be

persisted on the docker host even though when that container is removed or stopped.

41

Volumes also support the use of volume drivers which would allow to store your data on

cloud providers or remote host which would make the data more persistent.

Bind mounts. Bind mounts are similar to volumes where a file or directory is

mounted into the containers when we use the bind mount. But this file or directory is

referenced by its full path on the host machine and it doesn’t need to be already exist on

the docker host. When the data of these files or directory changes on docker host these

changes are automatically reflected inside the containers and vice versa where it has

been mounted. One of the disadvantages of using bind mounts is it completely relies on

host filesystem having a specific directory structure available and it also has the

capability of modifying the important data on the host file system by the processes

running inside the container which is a major security concern.

Tmpfs mounts. Tmpfs mounts can be best used in the scenario where you do

not want the data to persistent either on the host or inside the container. This can be for

security reasons or the performance of your container where your application writes a

large amount of non-persistent data. Tmpfs mount store the data on the host memory

which makes it volatile and this data cannot be shared by multiple containers.

Dockerfile

 Dockerfile is best described as infrastructure as a code where one can create

the images which are necessary for building an QA or Production environments by

scripting the Dockerfile and these images can be used to spin up multiple number of

container for reproducible environments. Dockerfile simply consists of a bunch of

command which will be executed in the order they were scripted and finally gives us the

42

image where these instructions have been assembled. Below figures give us a clear

idea about how this can be achieved:

Figure 12. Dockerfile Sample

Figure 13. Image Creation from Dockerfile

43

Figure 14. Image Layers 1

Figure 15. Image Layers 2

 In the figure depicts a Dockerfile which creates a ubuntu image, updates the

packages, installs python and wget and then with help of python’s pip library installs

redis. Here we can see that for every step in Dockerfile it creates a new container and

creates a new image out of that container and merges them all together at end and

44

removes all those intermediate containers. One can spin up as many containers as

he/she can with this newly created image and the dependency between these

containers is not at all a mandatory task.

 As discussed in the previous sections one can also store these images on

Docker hub or DTR so that it would be easy to share them to other members of the

organization. If we want to delete an image on your local docker host all the associated

containers of that image must be stopped and removed first and then we would be able

to delete our image.

Docker Swarm

 For any application to be up and running with zero percentage of downtime, the

underlying infrastructure should be able to scale up or down based upon the traffic to

that application. Container orchestration system takes care of this hassles by deploying

the applications on multiple cluster of nodes or virtual machines based upon that

application’s traffic which are running inside the container. This system should also be

able to perform the health checks on the nodes where the containers and running and

should be capable of routing away the traffic from the node where the health checks

have failed. Apart from this it should also be able to load balance the traffic and should

be capable of doing the rolling updates on the applications deployed in the cluster.

Docker Swarm is an orchestration tool which comes within the docker engine which

performs the all the above tasks and makes sure that down time to be at zero

percentage of the applications which are deployed in the swarm cluster.

45

 Docker swarm uses the concept of Manager nodes and worker nodes where the

worker nodes are registered with one of the manager nodes and sends the health

checks to the manager so that manager could schedule the tasks on these worker

nodes. Swarm mode is composed of multiple docker hosts where any host can perform

as manager, worker or both based upon the application requirement. When a worker

node is unavailable the manager would automatically assign that task to the healthy and

available node. There can be more than one manager node but however only one

manager node will be the primary while the rest are used as standby manager nodes

which only participates in the election to elect the primary manager when it is down.

Orchestration using Docker Swarm can be easily understood by looking at the below

figure:

Figure 16. Containerization in Swarm Mode

46

 Docker swarm uses Raft consensus algorithm to store the state of all the nodes

so that scheduling the tasks on worker nodes would make easy for manager node.

Whenever a task or service is scheduled on the nodes the task status and swarm state

get updated on all the manager nodes to maintain the synchronization between them.

Whenever a primary manager goes down the newly elected manager could easily

continue it tasks as it would have already received the status of the swarm. For better

fault tolerance it is always a best practice to have at least three managers but

increasing the number of managers might decrease the performance of the cluster as

the data synchronization would take more time between the multiple number of

manager nodes.

 It is also a best practice to not to assign any tasks on manager nodes so that we

can always make sure that load on the manager node is low and this can be achieved

by making the availability of manager nodes to drained state. We can also promote

worker node to manager node whenever a manager node is taken down for

maintenance. All these docker swarm features are implemented practically in the

upcoming sections which would give a better idea of clustering and orchestration using

docker swarm.

Docker Compose

 When your application needs more than one container which are isolated Docker

compose would come in handy in building, running, and connecting those containers

and entire setup can be done on single host. Docker compose is very useful in Dev and

QA environments which reduces the overhead of maintaining and monitoring the

47

infrastructure. One can easily spin up a development environment on his/her local

desktop by using docker-compose.yml file and this can be shared on the source control

repositories with the other team members contributing to it and leveraging the rapid

creation of an environment without installing any tools locally.

 Docker-compose.yml contains the instructions which are written in YAML (Yet

Another Markup Language or YAML Ain’t Markup Language) to spin up our Dev / QA

environments. Compose tool is such powerful that it can manage the whole application

lifecycle such as starting and stopping the services, building the services, running a

command against your service, and monitoring your service logs. Implementation of the

docker compose has been explained in the upcoming sections which would explicitly

describes its core features.

Setting Up the Environment and Running
Containerized Applications

 For implementing this project, we will be using Linux based virtual machines

which are hosted on Amazon web services (AWS) with 1 core, 2GB RAM and 20GB

disk space. First of all, we need to install the docker engine on all these host machines

using CLI which has been depicted in the following figures:

48

Figure 17. Installing Docker Engine 1

Figure 18. Installing Docker Engine 2

Here we are following three steps in installing the docker engine, first we need to

install few packages such as yum-utils, device-mapper-persistent-data and lvm2.

Second, we need to setup stable repository by yum-config-manager which comes from

yum-utils package and then add the docker repo. Finally install the docker engine on the

host machine using yum install where yum is the package manager for Redhat based

Linux machines and start the docker engine using systemctl command. To check the

version of docker engine installed on your host machine use “docker -v” and to check if

docker engine has started on your host machine use “systemctl status docker”.

49

Figure 19. Docker Engine Status

As carrying the activities on Linux machines without using the root user is

considered as industry’s best practice, one need not to be a root or sudo user to run

docker commands and to achieve this add user name to docker group using the

following command ‘usermod -aG docker <user_name>’.

Spinning Up an Apache-based Web Container and
Exposing It to Outside World

 After installing the docker engine successfully we will be spinning up an apache-

based web container and deploy our website in that container which can be accessed

by the outside world. Here we will be creating a Dockerfile which consists of all the

instructions which are needed to host our website on apache web server which is

running inside our container. Before that we need to build our website and it should be

ready to get deployed in our container.

 For this project the website for “animals” was build using HTML and CSS and the

following figures describes how this website was deployed into the container:

50

 Figure 20. Dockerfile for Apache Webserver

 Here we are using ubuntu as our container OS and running the update command

inside the conatiner followed by installing the apache webserver using RUN command

and then exposing the port of the conatiner to outside host on which our apache server

runs using EXPOSE command and then starting the webserver using CMD command.

After editing our Dockerfile we will be using docker build command to build our image

as shown in below figures. Once this command is being exceuted all the instructions in

our Dockerfile will be executed layer by layer image and at the end all these layers are

formed into one single image which is used to create our container. These execution

steps are depicted in the figures below:

51

Figure 21. Building the Apache Image from Dockerfile 1

Figure 22. Building the Apache Image from Dockerfile 2

 Since our image has been ready to use, now we should be able to spin our

container to host our website. Before that I have create a directory called website where

our website contents reside, and this can be viewed in below figures where I have used

tree command for this purpose.

52

Figure 23. Running the Container Out of Apache Image

After creating the directory, we will be using docker run command and few other

parameters to spin our container which has been shown in above figure. We have

named our container as apacheconatiner using the parameter --name and this

container runs in the interactive mode, allocates a pseudo-tty and runs in the detached

mode by using -i, -t and -d parameters respectively.

 Since apache runs on the default port 80 it has been mapped to port 8080 of the

docker host using -p parameter so that it can accessed by the outside world. Here we

are mounting the contents of website directory onto the containers /var/www/html

directory which is the path of apache webservers website content using volumes -v

parameter. Since both the contents are binded together changes made in one paths

index.html file reflects in another path and also on the website content. At the end we

will be using the image name apacheimage which has been created using Dockerfile

and finally executes our command.

 Once the command has been executed Docker engine will spinning up a

container with a random container id. To check the status of our container run docker

ps command which shows the details of our container such as container id, name of the

53

container, image used, and ports exposed. Website deployed inside our container can

be accessed using docker host’s hostname followed by the port mapped on the host on

your favorite web browser, in this case hostname and port are

srinathreddy455.mylabserver.com and 8080 respectively. Below figure shows our

website content on google chrome’s web browser where our docker host’s hostname

and port are highlighted in the yellow color:

Figure 24. Accessing the Website Using Hostname

 After verifying the web content has been served as expected we can push our

apacheimage to our dockerhub repository to reproduce the similar environment on

other Docker hosts. Before that we need to login to our dockerhub repository using

docker login command and provide username and password of our repository which

has been shown in below figure:

54

Figure 25. Pushing the Image to Docker Hub

Also tag the apacheimage name with our dockerhub login id using docker tag

command and then push your image to the repository using docker push command.

To verify if the image has been pushed to your repository visit dockerhub website and

then look for your image name which has been shown in below figure highlighted in

yellow:

Figure 26. Verifying the Push on Docker Hub

55

 If we want to change the content of our website, we can simply change the code

in index.html file on our docker host. Since it is mapped to the container our website

content will be changed automatically once we refresh our webpage. Here I have

changed the image of tiger from Siberian tiger to Bengal tiger and this change has been

immediately affected once we refresh our webpage which has been shown in below

figure:

Figure 27. Updated Web Content

By leveraging the volumes, we could deliver the changes to our website in a fast-

paced environment which has been evident in the above figure.

 Previously we have only pushed the plain apacheimage where our website has

been not deployed yet. After verifying the content, we can create an image out of our

container using docker commit command followed by our container name and desired

image name which has been shown below figure:

56

Figure 28. Pushing the Updated Image Content to Docker Hub

Here 1.0 denotes the version of our image which is used to identify the changes

to our web content. Once the image has been created we will be pushing the image to

our dockerhub repo using docker push. We can verify the push by visiting dockerhub

as shown in below figure:

Figure 29. Verifying the Updated Push on Docker Hub

57

Scaling the Website Using Docker Swarm

 Suppose if the server where we deployed our website has been crashed

because of the traffic overload or internal system issue, our website will be down until

we fix the issue. But in today’s competitive world down time is considered as a major

setback for an organization which could lose the credibility of the customers. So, it is

always best practice to deploy your application in more than one server.

 We will be leveraging docker swarm mode to deploy our application in more than

one server with docker engine installed and running on each of the server. The group of

these servers can be referred to as cluster which consists of at least one manager and

worker. For our project I have used three servers with docker engine installed on them

where one of the servers acts as manager while rest two act as workers. Details of the

servers and their roles are listed in the below table:

 Table 3. Manager and Worker Nodes

Hostname Role

srinathreddy452.mylabserver.com Manager

srinathreddy453.mylabserver.com Worker1

srinathreddy454.mylabserver.com Worker2

Initializing the swarm. First, we need to initialize the swarm mode in our

manager node, before that we need to know the IP address of our manager server

which can be used while using init command. To get the IP address we will be using

ifconfig command which has been shown in below figure:

58

Figure 30. Retrieving the Manger IP Address

After retrieving the IP address of the manager node use docker swarm init --

advertise <ip_address> command on our manager server to initialize the swarm mode

which has been shown in below figure:

Figure 31. Initializing the Swarm on Manager Node

A token gets generated from the manager after initializing the swarm mode,

which can be used by the workers to get registered with the manager. Use docker

swarm join --token <token> command on each of our workers as shown in below

figures:

Figure 32. Joining Worker1 to Swarm

59

Figure 33. Joining Worker2 to Swarm

We will be getting a confirmation message from the node like “this node joined a

swarm as a worker” after joining the swarm. One can check the swarm status and the

nodes details of the cluster using docker node ls command where

srinathreddy452.mylabserver.com manager status is shown as leader since the

swarm mode has been initialized in this server.

Figure 34. Verifying Nodes Status

Deploying the website in swarm. As our swarm is setup now, we are ready to

deploy our website in this cluster for achieving high availability and reliability. Each task

deployed in the cluster is considered as service and service has a name which can be

further used for debugging purposes. We will be docker service create command to

deploy our website in the cluster and this has been depicted in below figure:

60

Figure 35. Creating the Service on Our Swarm

Here we are deploying our website in three container which is denoted by --

replicas parameter with each container running on our three nodes of the swarm and --

name parameter can initialize our service name, in our case which is apachewebsite.

Containers ports are being exposed to docker engine host using -p parameter so that

website deployed can be accessed by outside world.

 Finally, we will be giving the image name where our application is packaged,

here it is srinathreddy45/apacheimage:1.0 which has been created in the previous

section. Once we execute the command it would take few minutes to deploy our website

on all the hosts inside the containers. To check the status of our service use docker

service ps <service_name> command so that it could display the heath of the server

and the container IDs where this service has been deployed. To verify if our service has

been deployed run docker ps command on the manager and worker nodes and check

the containers as shown in below figures:

61

Figure 36. Verifying Service Status on Manager Node

Figure 37. Verifying Service Status on Worker1 Node

Figure 38. Verifying Service Status on Worker2 Node

 To access the website deployed in our swarm we can go a web browser and we

can access it by using the hostname name or IP address of any node in the cluster

followed by the port mapped which is 8080 in our case. The following figures denotes

the same where the website accessed using the IP addresses of our manger node and

one of the worker node.

62

Figure 39. Accessing the Website Using Manger Node Hostname

Figure 40. Accessing the Website Using Worker1 Node Hostname

The configurations of our service can be retrieved using docker service inspect

command followed by our service name.

63

Figure 41. Inspecting the Service

Updating the contents of the website. Once our website has been deployed

and serving the traffic in swarm mode successfully we might need to make some

changes to our web content to attract more users. In our case I have changed the

image of tiger from Siberian to Bengal tiger in our website and then created a new

docker image from Dockerfile after making the changes to index.html file.

Figure 42. Building the Updated Image

64

 Once the image has been built it has been pushed to our docker hub repository

so that it can accessed by our swarm to update all the containers which are hosting our

website.

Figure 43. Pushing the Updated Image to Docker Hub

Figure 44. Verifying the Updated Image on Docker Hub

65

After pushing the image to docker hub we will be doing rolling update on our

containers using docker service update command followed by image name and service

name which has been shown in below figure:

Figure 45. Rolling Update of Image on all the Containers

Here we can see that updates have been affected on the containers one at a

time to ensure zero percent down time. One more thing to observe is the previous

containers which have old image have been shutdown and the new containers have

been spanned up to run the latest image. We can see in the below figure that our

website content has been now changed with the Bengal tiger.

66

Figure 46. Accessing the Updated Website Using Manger Node Hostname

Figure 47. Accessing the Updated Website Using Worker2 Node Hostname

Scaling up the number of containers. Suppose after making above changes to

our web content if the number of users has been increased there be might chance that

our containers hosting our website might go down because of the increase in load. To

avoid this, we can increase the number of containers hosting our website using docker

67

service scale command by number of containers we want to be deployed in our swarm

as shown in below figure.

Figure 48. Scaling the Number of Containers Hosting Our Website

Here I have scaled up to six containers and we can see that a new container has

been spanned up in each of the nodes in swarm with each node now hosting two

containers on them. To verify, run docker ps command has been ran on each node as

shown in below figure:

Figure 49. Verifying the Number of Containers Running on Worker1

Draining a node in the swarm. It is always a best practice to keep load as low

as possible on our manager node since performance issues on our manager node

68

would make our entire website to go down. So, we can keep our manager in drain mode

so that it won’t take any tasks which could increase the load. To achieve this, we will be

using docker node update command followed by the hostname of our manager as

shown in the below figure:

Figure 50. Draining a Node

We can also see that containers running on our manager node has been

shutdown and the new containers have been spanned on our worker nodes. We can

verify the status of our nodes using docker node ls command which would show the

availability of our manager node as drain.

Figure 51. Verifying Nodes Status

69

We can verify the capacity of number of containers hosting our application by

running docker ps command on each of our worker nodes as shown in below figures:

Figure 52. Verifying Capacity on Worker1

Figure 53. Verifying Capacity on Worker2

 From the above project it is evident that it is easy to deploy an application using

docker containers and it can be scaled up within no time to decrease the down time of

an application. It is also evident that using docker containers an application can be

packaged, shipped, and delivered across different environments within no time using

the out of box features of docker.

Docker Security

 Although there are certain rich features from Docker which we have discussed in

above sections, there are few downsides in using docker containers when considering

70

its security. However, these security vulnerabilities can be avoided by following some of

the industry’s best practices for securing the containerized applications.

 Risk of privilege escalation is very high when using containers, for example if an

attacker can become a root user inside the container it would be a cake walk for him/her

to gain the root access of host system which could be disastrous for the entire Dev/Prod

environment. To avoid this, it is always a best practice to run the docker containers with

-u flag so that they run as ordinary user instead of root user. Spanning up the

containers on traditional hypervisors such as KVM and Hyper-V would mitigate the risk

of privilege escalation as virtual environment is strictly abstracted from the host system

[11].

 One needs to careful while using images from public repositories, these

unsecure images would become absolute threat which would compromise the

infrastructure of our application. It always a best practice to use official images which

are approved by the docker itself or one can build their own images by leveraging

Dockerfile.

 Another thing which needs to be considered while using containers is Denial of

Service(DoS) attack, where one compromised container can seize the operability of

other containers by denying the host system resources to other containers. Using

Cgroups and namespaces can avoid this vulnerability, since cgroups sets the limitations

on resources that a container can use while name spaces isolates one container from

the other [11].

71

 While container security is no longer a concern in an application development

lifecycle but it is always a best practice to be more vigilant while spanning up the

containers. We can also consider using third party tools which would scan our docker

servers and detect the vulnerabilities. By taking proactive approach and by creating

strict security polices one can easily prevent the vulnerabilities in a containerized

environment.

72

Chapter V: Conclusion

 From this paper we can concluded that Docker containers have made application

lifecycle development easy in all the environments such as develop, test and

production. It also evident that Docker can be used to reproduce the environments on

our local desktops or remote servers within no time to test and deploy our application

without any additional installation of tools which could consume the resources of the

machines. This paper also concludes that application downtime can be decreased by

scaling up the number of containers within no time where the application is hosted in

those containers.

Future Work

 In this paper I have primarily focused on Docker containers and it is out of box

features used for faster delivery and containerization of our applications. In the future I

would like to work on automating the creation of containers using scripts and several

other automation tools such as Jenkins where we can achieve Continuous Integration

and Continuous Delivery while building an application. Apart from this I would also like

to work on several other third-party cluster management tools such as Apache Mesos

and Kubernetes which are much more sophisticated and advanced than the Docker’s

own swarm mode which has been discussed in this paper.

73

References

[1] R. Chamberlain and J. Schommer, “Using Docker to Support Reproducible
Research,” 2014.

[2] C. Wang, Chenxi, “Containers 101: Linux containers and Docker explained,” 2016,

http://www.infoworld.com/article/3072929/linux/containers-101-linux-containers-
and-docker-explained.html.

[3] G. Henningsen, “How I used cgroups to manage system resources in Oracle Linux

6,” 2012, http://www.oracle.com/technetwork/articles/servers-storage-
admin/resource-controllers-linux-1506602.html.

[4] J. Turnbull, “The Docker Book,” 2014, https://dockerbook.com/#toc.

[5] C. Boettiger, “An introduction to Docker Reproducible Research with Examples
from R Environment,” 2014.

[6] “What are containers,” 2015, https://www.sdxcentral.com/cloud/containers/

definitions/what-are-containers-like-docker-linux-containers/.

[7] “Docker overview,” 2016, Official docs: https://docs.docker.com/engine/docker-

overview/.

[8] https://docs.Docker. com/ datacenter/ucp/2.2/ guides/admin/configure/integrate-

with-dtr/#2-test-your-local-setup).

[9] M. Church, “Understanding Docker networking drivers and their use cases,” 2016,

https://blog.docker.com/2016/12/understanding-docker-networking-drivers-use-
cases/.

[10] E. Mavungu, “Docker storage: An introduction,” 2017, https://blog.codeship.

com/docker-storage-introduction/.

[11] C. Tozzi, “Securing Docker containers,” 216, https://www.sumologic.com/blog/

security/securing-docker-containers/.

http://www.infoworld.com/article/3072929/linux/containers-101-linux-containers-and-docker-explained.html
http://www.infoworld.com/article/3072929/linux/containers-101-linux-containers-and-docker-explained.html
https://www.sdxcentral.com/cloud/containers/%20definitions/what-are-containers-like-docker-linux-containers/
https://www.sdxcentral.com/cloud/containers/%20definitions/what-are-containers-like-docker-linux-containers/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://blog.docker.com/2016/12/understanding-docker-networking-drivers-use-cases/
https://blog.docker.com/2016/12/understanding-docker-networking-drivers-use-cases/
https://www.sumologic.com/blog/%20security/securing-docker-containers/
https://www.sumologic.com/blog/%20security/securing-docker-containers/

74

Appendix

Following is the sample code which has been used to build our animal world

website and this code has been written in simple HTML and CSS:

<html>

<style>

.fonting-conf{

font-family:monospace;

font-size:20px;

}

 p{

color:black;

}

h1{

font-family:"times",fantasy;

color:brown;

}

h2{

font-family:monospace;

color:brown;

font-style:solid;

font-size:30;

}

75

body{

background-image:url("https://upload.wikimedia.org/wikipedia/commons/c/c7/Uinta-

national-forest-banner02.jpg");

background-color:gray;

}

.border-image{

border-style:solid;

border-color:black;

border-radius:50px;

}

</style>

<head>

<title>AnimalWorld</title>

</head>

<body>

<center>

<h1>

This webpage is for animals

</h1>

</center>

<h2>Tigers</h2>

<center>

76

<img class="border-image"

src="http://www.irctctourism.com/ttrs/railtourism/images/CDR03.jpg" alt="tiger is

sleeping"/>

</center>

<p class="fonting-conf">

The tiger is the largest cat species, most recognisable for their pattern of dark vertical

stripes on reddish-orange fur with a lighter underside. The species

 is classified in the genus Panthera with the lion, leopard, jaguar and snow leopard.

 For more information on tigers <a href="https://en.wikipedia.org/wiki/Tiger"

target="_blank">click here.

</p>

<h2>Lions</h2>

<center>

<img class="border-image"

src="https://cbs.umn.edu/sites/cbs.umn.edu/files/public/african_lion_king-wide.jpg"

alt="lion" style="width:420px;height:250px;"/>

</center>

<p class="fonting-conf">

The lion (Panthera leo) is one of the big cats in the genus Panthera and a member of

the family Felidae.

The commonly used term African lion collectively denotes the several subspecies in

Africa. With some males

77

 exceeding 250 kg (550 lb) in weight,[5] it is the second-largest living cat after the tiger,

barring hybrids

 like the liger.[6][7] Wild lions currently exist in sub-Saharan Africa and in India (where

an endangered

 remnant population resides in and around Gir Forest National Park). In ancient historic

times, their

 range was in most of Africa, including North Africa, and across Eurasia from Greece

and southeastern

 Europe to India. For more information on Lions click here.

 </p>

</body>

</html>

For creating our containers following code has been scripted in Dockerfile:

FROM ubuntu

File Author / Maintainer

MAINTAINER srinath_reddy

78

Update the repository sources list

RUN apt-get update

Install and run apache

RUN apt-get install -y apache2 && apt-get clean

EXPOSE 80

CMD apachectl -D FOREGROUND

	St. Cloud State University
	theRepository at St. Cloud State
	5-2018

	Virtualization Using Docker Containers: For Reproducible Environments and Containerized Applications
	Srinath Reddy Meadusani
	Recommended Citation

	tmp.1525360920.pdf.OVPAq

