
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

5-2018

Prevention of SQL Injection Attacks using AWS
WAF
Mohammed Kareem
St. Cloud State University, makareem0618@gmail.com

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Kareem, Mohammed, "Prevention of SQL Injection Attacks using AWS WAF" (2018). Culminating Projects in Information Assurance.
47.
https://repository.stcloudstate.edu/msia_etds/47

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St. Cloud State University

https://core.ac.uk/display/232794796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/47?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Prevention of SQL Injection Attacks using AWS WAF

by

Mohammed Abdul Kareem

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science in

Information Assurance

 May 2018

Starred Paper Committee:

Susantha Herath, Chairperson
Dien D. Phan

Balasubramanian Kasi

2

 Abstract

SQL injection is one of several different types of code injection techniques used to

attack data driven applications. This is done by the attacker injecting an input in the

query not intended by the programmer of the application gaining the access of the

database which results in potential reading, modification or deletion of users’ data. The

vulnerabilities are due to the lack of input validation which is the most critical part of

software security that is often not properly covered in the design phase of the software

development lifecycle. This paper presents different techniques and some of the

countermeasures for detection and prevention of SQL injection attacks. The proposed

procedure in the paper is to use a database firewall between the client (user) side and

the database server through AWS to avoid the malicious codes injected by the

attackers.

3

Table of Contents

List of Tables ... 6

List of Figures .. 7

Chapter I: Introduction ... 8

Introduction ... 8

Problem Statement ... 9

Nature and Significance of the Problem ... 9

Web Application Environment... 10

Objective of the Research .. 12

SQL Injection Attack Overview ... 12

Applications Vulnerable to SQL Injection .. 14

Summary .. 16

Chapter II. Background and Literature Review .. 17

Introduction ... 17

Literature Related to the Problem ... 18

Literature Related to the Methodology .. 20

Types of SQL Injection Attacks... 21

Tautologies ... 21

Illegal or Logically Incorrect Queries ... 22

Union Query ... 24

Piggy-Backed Queries .. 25

Stored Procedures .. 26

4

Inference .. 28

Blind Injection ... 29

Timing Attacks .. 29

Alternate Encodings ... 31

Main Causes of SQL Injection .. 33

Detection and Prevention Techniques .. 35

Injection Detection at the Web Tier ... 39

Summary .. 40

Chapter III. Methodology ... 41

Introduction ... 41

Design of the Study .. 42

Data Analysis .. 44

Summary .. 45

Chapter IV: Analysis of Results ... 46

Introduction ... 46

Data Presentation ... 47

Compute ... 47

Storage ... 49

Security .. 51

Networking.. 52

Data Analysis .. 52

Overview for IPv4 ... 57

5

Overview for IPv6 ... 58

Create a VPC ... 64

Template 1.. 69

Create an Amazon S3 Bucket .. 76

Template 2.. 76

Summary .. 80

Chapter V: Conclusions and Future Work ... 81

Results ... 81

Conclusion .. 82

Future Work .. 82

References .. 83

6

List of Tables

4.1 Routing for IPv4 ... 60

4.2 Routing for IPv6 .. 61

4.3 Security for IPv4 .. 62

4.4 Security for IPv6 .. 64

7

List of Figures

1.1 Web Application Firewall .. 10

1.2 Web Tier Environment... 11

1.3 SQL Injection Attack Overview .. 14

3.1 AWS WAF Architecture ... 43

4.1 Configure Instance Details .. 53

4.2 Configure Security Group .. 54

4.3 Launsh an Instance ... 55

4.4 Change Security Group ... 56

4.5 Overview for IPv4 .. 58

4.6 Overview for IPv6 .. 59

8

Chapter I: Introduction

Introduction

In today’s world where almost every task is performed through web applications

such as banking, online shopping, and bill payments we entrust our personal

information to these web applications and their underlying databases because of the

trust on the confidentiality and integrity of the security of their data. As the usage of

these services is increasing day by day on a large scale we are also facing a

devastating increase in the number of attacks which can potentially give an attacker

complete access to an individual’s database such as one containing credit card

information underlying the secured database.

SQL injection attacks (SQLIAs) are the most effective and malicious system

attacks which can be used to gain or manipulate the data in data-driven systems. The

risk of SQLIAs is that when they are performed by the victim back-end system, they will

be running with the same privileges that the system has in the database, that means if

the system has been assigned a role as a power user or administrator which has the

read and write permissions then the injection code could be executed with disastrous

effect on the victim machine.

A SQL Injection attack (SQLIA) is one in which a malicious minded person injects

their own crafted query as an input and replaces the default query. The backend server

executes the injected query statement and sends the result to the attackers. Therefore,

most of the attackers use SQL for accessing the database and for the detection and

prevention of these attacks various tools have been developed. There are multiple types

9

of SQLIA’s and each one of them has a different approach and effect for attacks on the

target website. To counter these attacks, we will be extensively discussing some of the

modern SQL Injection attacks and the ways to protect and defend against these types

of attacks. The negligence at the initial stage of development can lead to monetary

losses at later stages.

Problem Statement

Because of the large variation in the pattern of SQL injection attacks the use of a

Web Application Firewall (WAF) is often unable to protect the databases from attack.

Besides, it is very difficult for startups & small business firms to meet the high-end

capital and time requirements for the installation and maintenance of a database

firewall.

Nature and Significance of the Problem

One of the most commonly used approaches to identify SQL injection attacks is

using WAF (Web Application Firewall). A WAF which operates in front of the Web

servers monitors the traffic which goes in and out of the Web servers and attempts to

identify patterns that constitute a threat. While this can be effective in detecting certain

classes of attacks against Web applications, it has proven ineffective in detecting all but

the simplest SQL injection attacks.

Considering the poor detection of the SQL injection attacks and because of the

high-end capital and time-consuming prerequisites for maintaining a WAF will not be

that useful in the Web security environment. On the other hand, WAFs provide

reasonable protection from header injection, XSS (Cross-Site-Scripting) attacks and

10

many more simple attacks. Considering the additional benefits of a WAF it should

always be considered as a part of Web security defense in depth strategy.

Figure 1.1 Web Application Firewall. A taxonomy of SQL injection detection and
prevention techniques (p. 54), by Sadeghian, A., Zamani, M., & Manaf, A. A. (2013).
2013 International Conference on Informatics and Creative Multimedia.

Web Application Environment

Before we initiate any discussion on the approaches for detection and prevention

of SQL injection attacks, let’s first explore the Web application environment itself. In a

Web Application environment, the web application information is presented to the Web

server by the user's client, in the form of URLs, cookies and form inputs (POSTs and

GETs). These inputs drive both the logic of the applications as well as the queries which

11

help the attacker to gain access to these applications for creating and sending a query

to the database to extract relevant data.

Unfortunately, many applications do not frequently validate user input and so are

more susceptible to SQL injection. Attackers capitalize on these flaws to attempt to hack

the backend database to do something different than what the application or the search

is intended for. This can include extracting sensitive information of employees,

customers, destroying information or executing a DOS (Denial of Service) attack that

limits the usage of the application.

Figure 1.2 Web Tier Environment. SQL injection is still alive: A study on SQL injection
signature evasion techniques (p.256), by Sadeghian, A., Zamani, M., & Ibrahim, S.,
2013, International Conference on Informatics and Creative Multimedia.

12

Objective of the Research

• The main objective of this research is to provide multiple layers of security to

protect databases from SQL Injection from a method which has highly durable

storage and high-performance databases.

• To provide virtual clouds for organizations which are easy to access, have low

maintenance and a capital prerequisite which can be taken care of even by small

private companies and startup firms.

SQL Injection Attack Overview

SQL injection attacks are initiated by the manipulation of the data input on a Web

form such that the traces of the SQL instructions are passed to the Web applications

and these Web applications then combine with the rogue SQL fragments with the

proper SQL dynamically generated by the application and create valid SQL requests.

These new, unanticipated requests cause the database to perform the tasks intended

by the attacker.

To have a clear understanding let us consider an example: If we have an

application whose web page contains a simple form of the query with the input fields for

username and password. With these credentials, the user can get a list of all the credit

card accounts the various customers hold with a bank. Further, if the bank’s application

was built without taking into consideration the potential of SQL injection attacks.

In this situation, it is reasonable to assume that the application merely takes an

input the user types and places it directly into the SQL query constructed to retrieve that

user's information. In PHP, the query string would be like this:

13

$query = “select accountName, accountNumber from creditCardAccounts where

username='”.$_POST[“username”].”' and password='”.$_POST[“password”].”'”

Normally this would work properly as a user entered their credentials, say johnSmith

and my Password, and forms the query:

$query = “select accountName, accountNumber from creditCardAccounts where

username='johnSmith' and password='myPassword'

This query will come up with the total number of accounts Mr. John Smith is holding.

Now consider someone with a fraudulent intent. If the person attempts viewing the

account information of one or more of the bank’s customers, he enters the following

credential into the form:

' or 1=1 -- and anyThingsAtAll

When this SQL fragment is inserted into the SQL query by the application it becomes:

$query = “select accountName, accountNumber from creditCardAccounts where

username='' or 1=1 -- and password= anyThingsAtAll

 The injection of the term, ' or 1=1 --, accomplishes two things. Firstly, it causes

the first term to be true for all the rows of the query in the SQL statement; Secondly, it

causes the rest of the statement to be treated as a comment and is ignored during

runtime. Thus, as a result, the attacker has all the valuable information customers were

seeking all the credit card information up to the limit the Web page will list.

It should be noted that this simple example is just one of an infinite number of

variations that can be used to accomplish the same attack. Further, there are many

other ways to exploit a vulnerable application.

14

Figure 1.3 SQL Injection Attack Overview. Runtime monitors for tautology-based SQL
injection attacks (p. 26), by Dharam, R.; Shiva, S.G., 2012, Cyber Security, International
conference on Cyber Warfare and Digital Forensic (CyberSec).

Applications Vulnerable to SQL Injection

Due to several factors, writing these applications securely has become very rare.

Many applications were written at the time when Web security was not a major threat.

While due to the recent discussions on SQL injection at security conferences and other

settings, an awareness was spread that the attack frequency of SQL injection only five

or so years ago was so low that most developers were simply not aware.

In addition, the applications were exposed to the web with a lower security

threshold and subsequently exposed to the web without even considering the security

threats that it might have in the future because of SQL injections. Even applications

15

which are written and deployed today often inadequately addresses security concerns.

IBM's X-Force project recently found that 47% of all vulnerabilities that result in

unauthorized disclosures are Web application vulnerabilities by Kar, Panigrahi,

Sundarajan (2016) For packaged applications from commercial software vendors

Cross-Site Scripting & SQL injection vulnerabilities continue to dominate as the attack

vector of choice. Vulnerabilities in custom applications were not reported. Since this

software is generally not as carefully treated for security robustness, it is reasonable to

assume that the problem is much greater because 97% of data breaches worldwide are

still due to SQL injection somewhere along the line by Kar, Panigrahi, Sundarajan

(2016).

Interestingly, modern environments and development approaches create a subtle

vulnerability. By the advent of Web 2.0, there has been a massive shift in how

developers treat user input. In these applications, the input transmits the information to

the web server directly in a simpler form for processing. Most frequently the JavaScript

portion of the application performs input validation so the feedback to the user is

handled more smoothly. This often creates the sense that the application is protected

because of this very specific input validation; resulting in the negligence of the server

side on a large scale. Unfortunately, attackers will not inject their input into an

application using another application rather they leverage intermediate applications to

capture the client-side input and allow them to manipulate it.

16

Summary

 The introduction gives a brief overview of the different types of SQL Injection

attacks and how the web application firewalls are used to obstruct the unwanted queries

in malfunctioning the codes of any web application. A brief overview of how a SQL

injection attack is performed by an attacker is explained with the causes initiating the

SQL injection attacks.

17

Chapter II. Background and Literature Review

Introduction

Over the past few years, SQL Injection attacks have been slipping seamlessly

through the network firewalls over port 80 (HTTP) or 443 and are bypassing their web

application firewalls (WAF) through obfuscation, thereby breaching many organizations.

Moreover, the count of SQL injection attacks against organizations has increased over

the years causing devastating effects on their databases and security. At that point, the

attacker can exploit the soft internal network and vulnerable databases because SQL

injection has become the most dangerous threat that is being tackled by many

organizations.

Detection of SQL fragments injected into a Web application has proven

extremely challenging. There are several preventions and security measures that

enterprises can adopt. When implementing prevention and remediation efforts, the

enterprise strives to develop secure code and/or encrypt confidential data stored in the

database. However, these are not always available options. For example, in some

cases, the application source code may have been developed by a third party and not

be available for modification. Additionally, patching deployed code requires significant

resources and time because of which rewriting an existing operational application would

need to be prioritized ahead of projects driving new business. Similarly, efforts to

encrypt the confidential data stored in the database can take even longer time and

require more resources. Given today’s compressed development cycles, and a limited

number of developers with security domain experience, even getting the code rewrite

18

project off the ground could prove difficult.

Literature Related to the Problem

 A novel technique was proposed by Wei Ke, Muthuprasanna, and Kothari,

(2006) to defend the SQL Injection attacks targeted at stored procedures. This

technique was the combination of static application code analysis with runtime

validation which can eliminate the occurrence of such attacks. The technique, in which a

stored procedure parser was designed for any SQL statement which depends on user

inputs to compare the original SQL statement structure to the user inputs was used.

An anomaly-based approach was described by Kiani, Clark & Mohay, (2008)

which utilizes the character distribution of certain sections of HTTP requests to detect

previously unseen SQL injection attacks. This approach does not require user

interaction, and no modification of, or access to, either the backend database or the

source code of the web application itself.

The hybrid approach based on the Adaptive Intelligent Intrusion 725 Detector

Agent (AIIDA-SQL) proposed by Pinzon, Paz, Bajo & Herrero, (2010) was used for the

detection of various SQL Injection attacks. “The AIIDA-SQL agent incorporates a Case-

Based Reasoning (CBR) engine which is equipped with learning and adaptation

capabilities for the classification of SQL queries and detection of malicious user

requests” Pinzon et.al (2010). To carry out the tasks of attack classification and

detection, the agent incorporates advanced algorithms in the reasoning cycle stages.

 Basically, an innovative classification model based on a mixture of an Artificial

Neuronal Network together with a Support Vector Machine is applied in the reuse stage

19

of the CBR cycle. This strategy enables to classify the received SQL queries in a

reliable way. Finally, a projection neural technique is incorporated, which notably eases

the revision stage carried out by human experts in the case of suspicious queries by

Pinzon et.al (2010).

The Database driven web application is subsequently threatened by SQL

Injection Attacks (SQLIAs) because this type of attack can compromise confidentiality

and integrity of information in databases and to stop these type of attacks various

approaches had been proposed but because of their respective limitations they are not

enough to block these attacks Tajpour & Jor, (2010).

 To test the tools in a realistic scenario, Vulnerability and Attack Injection is

applied in a setup based on three web applications of different sizes and complexities

designed by Elia, Fonseca & Vieira, (2010). Results show that the assessed tools have

a very low efficiency and only perform well under specific circumstances, which highlight

the limitations of current intrusion detection tools in detecting SQL Injection attacks.

Based on the class of injection flaw in which specially crafted input strings leads

to illegal queries to databases, an effective solution TransSQL was developed by

Zhang, Lin, Chen, Hwang, Huang & Hsu (2011). TransSQL automatically translates a

SQL request to an LDAP-equivalent request. After queries are executed on a SQL

database and an LDAP one, TransSQL checks the difference in responses between a

SQL database and an LDAP one to detect and block SQL injection attacks.

A framework which can be used to handle tautology-based SQL Injection Attacks

using a post-deployment monitoring technique was proposed by Dharam & Shiva,

20

(2012). Their framework uses two pre-deployment testing techniques i.e. basis path and

data flow testing techniques to identify legal execution paths of the software. Runtime

monitors are then developed and integrated to observe the behavior of the software for

identified execution paths such that their violation will help to detect and prevent

tautology-based SQL Injection Attacks.

Wu & Chan (2012), proposed a very effective method named k-centers (KC) to

detect SQL injection attacks (SQLIAs). The number and the centers of the clusters in

KC are adjusted according to unseen SQL statements in the practical environment, and

in which the types of attacks are changed after a period to adapt to different kinds of

attacks.

One of the most common solutions for defending against SQL Injection Attacks is

the use of web application firewalls. Usually, these firewalls use signature-based

techniques as the main core for the detection in which the firewall checks each packet

against a long list of predefined SQL injection attacks known as signatures. “The

problem with this technique is that an attacker with a good knowledge of SQL language

can change the look of the SQL queries in a way that firewall cannot detect them but

still they lead to the same malicious results” Sadeghian, Zamani & Abdullah (2013).

Literature Related to the Methodology

Amazon Web Services (AWS) provides a variety of infrastructure services, such

as computing power, storage options, networking, and databases. These databases will

be available in seconds and are delivered as a utility. “This allows enterprises, start-ups,

small and medium-sized businesses, and customers in the public sector to access the

21

building blocks they need to respond quickly required to change the business

requirements” Mathew, (2006). In 2006, Amazon Web Services (AWS) began offering

IT infrastructure services to businesses in the form of web services—now commonly

known as cloud computing Amazon Web Services, including the Web Application

Firewall (AWS WAF) by Mathew (2006).

One of the key benefits of the AWS WAF is the opportunity to replace up-front

capital infrastructure expenses with low variable costs that scale with the business. With

the help of AWS WAF, businesses no longer need to plan for and procure servers and

other IT infrastructure weeks or months in advance. Instead, they can instantly spin up

hundreds or thousands of servers in minutes and deliver results faster.

Types of SQL Injection Attacks

There are different types of attacks depending upon the goal of an attacker which

are performed together or sequentially.

Tautologies

The tautology-based attack is basically injecting the code into one or more

conditional statements, so the statements always evaluate to true. The results of this

attack depend on how the queries are used within the application proposed by Anley,

(2002). The most common usages are to bypass authentication pages and extract data.

In this type of injection, an attacker exploits an injectable field that is used in a query’s

WHERE condition statement.

According to McDonald (2002), the database table gets targeted by the returned

query by transforming the conditional query. For a tautology-based attack to work, an

22

attacker must not only consider injecting the vulnerable parameters, but also the coding

which evaluates the query results. An attack is successful when the code either displays

all the returned records or performs some action if at least one record is returned.

Example: “In this example attack, an attacker submits “’ or 1=1 - - ” for the login input

field (the input submitted for the other fields is irrelevant).

The resulting query is:

SELECT accounts FROM users WHERE login=’’ or 1=1 -- AND pass=’’ AND pin=

The code injected in the conditional (OR 1=1) transforms the entire WHERE clause into

a tautology” by Halfond, Vieagas & Orso (2006).

The above condition is used as the base for evaluating each row and deciding

which ones should return to the application. Because the above condition is a tautology,

the query validates to be true for each row in the table and returns all the values related

to the query. In the above example, the returned set evaluates to a nonnull value, which

causes the application to conclude that the user authentication was successful by

Howard, LeBlanc, (2003). Therefore, all the application would invoke method

displayAccounts() and show all of the accounts in the set returned by the database.

Illegal or Logically Incorrect Queries

The attacker gathers important information about the type and structure of the

organization’s back-end database of a Web application. This attack is considered a

preliminary, information gathering step for other attacks. Because of the vulnerability

caused by this attack, the default error page is returned by the application servers and

often are very detailed. In fact, according to Anley, (2002), injectable parameters can be

23

generated by an attacker from the simple error messages that are displayed using any

web application. While, additional error information, is used for debugging the

applications by the programmers, will adversely help the attackers to gain information

about the functioning queries of the back-end database.

As proposed by Litchfield (2002), while performing this attack, the statements

that cause a syntax, type conversion, or logical error are manipulated by the attackers

into the database. Injectable parameters can be identified by syntax errors. Type errors

are used to deduce the data types of certain columns or to extract data. Logical errors

can reveal the names of the tables and columns from the database that causes an

error.

Example: In this example, the attacker’s goal is to cause a type conversion error that

can reveal relevant data. To do this, the attacker injects the following text into input field

pin: “convert (int,(select top 1 name from sysobjects where xtype=’u’))”.

The resulting query is:

SELECT accounts FROM users WHERE login=’’ AND pass=’’ AND pin= convert

(int,(select top 1 name from sysobjects where xtype=’u’))

In the above example, the select query injected into the attack string attempts to extract

the first user table (xtype=’u’) from the database’s metadata table (assume the

application is using Microsoft SQL Server, for which the metadata table is called

sysobjects). The query then tries to convert the specified table name into an integer and

as this type of conversion is not legal in Microsoft SQL Server, the database throws an

24

error stating Microsoft OLE DB Provider (0x80040E07) Error converting varchar value

’CreditCards’ to a column of data type int. Halfond, Vieagas & Orso (2006).

There are two useful pieces of information which help an attacker according to

Halfond, Vieagas & Orso (2006).

• “First the attacker can see that the database is a SQL Server database, as the

error message explicitly states this fact.

• Second, the error message reveals the value of the string that caused the type of

conversion to occur.” Halfond, Vieagas & Orso (2006).

 In the above scenario, the table that is been attacked first is a user-defined table

in the database called “CreditCards”. Each column in the database can be extracted by

using the similar strategy. More threats can be created to the database by an attacker

using the same information about the schema of the database, which targets specific

pieces of information in the database.

Union Query

 For a given Query the attacker exploits a vulnerable parameter and changes the

dataset returned in this type of attack. According to Anley, (2002) the application can be

tricked into returning data from a different table that was not intended by the developer

to be returned for the respective query. The most commonly injected statement used by

the attackers is of the form: UNION SELECT. The information of the table can be

retrieved by the attackers as they have complete control over the second/injected query

which aids in accessing the permission rights to the database. Because of this attack,

25

the final database will be a combination of the original query which was created by the

developer and the modified second query injected by an attacker.

Example: Referring to the running example, an attacker could inject the text

“’ UNION SELECT cardNo from CreditCards where acctNo=10032 - -” into the login

field, which produces the following query:

SELECT accounts FROM users WHERE login=’’ UNION SELECT cardNo from

CreditCards where acctNo=10032 -- AND pass=’’ AND pin=

The first query (Original) will return with a result of null set considering there is no login

equal to “”, whereas the second query (Injected) returns data from the “CreditCards”

table. The column “cardNo” for account “10032” will be returned by the database.

Because of these two queries, the database will return the union of them to the

application. Because of the union of these two queries, the cardNo would show up with

the account information in the application by Halfond, Vieagas & Orso (2006).

Piggy-Backed Queries

Original query is injected with the additional queries in this attack type. This is

distinguished typed from others as here the attacker modifies the original query instead

of a new one. This includes the “piggy-back” queries on the original query. Numerous

SQL queries are returned from the database because of this query. First the intended

query is executed then the subsequent queries that are entered are the injected ones,

and they are in addition to the previous one. According to Anley, (2002) this type of

attacks are very vulnerable and if it is successful, any SQL command can be injected by

the attackers virtually. The original query is injected and executed along with the stored

26

procedure as an example into the additional queries. This type of attacks usually

happens to a database where the configuration allows multiple statements to be

contained in a single string, they are very vulnerable to the structured database.

McDonald, (2002).

Example: If the attacker inputs “’; drop table users - -” into the pass field, the application

generates the query:

SELECT accounts FROM users WHERE login=’doe’ AND pass=’’; drop table users -- ’

AND pin=123 by Halfond, Vieagas & Orso (2006).

After the completion of the first query, the database will inject the second query

after recognizing the query parameter (“;”) and the injected second query will be

executed. Valuable information will be destroyed from the database if the injected

second query is executed and the tables are dropped. Other types of queries could

insert new users into the database or execute stored procedures Howard & LeBlanc,

(2003). Simply scanning for a query separator will not be a good idea to detect the

injected queries as the databases do not require special characters to separate and

identify distinct queries.

Stored Procedures

According to Halfond, Vieagas & Orso (2006), stored procedures are routines

stored in the database and run by the database engine. These procedures can either be

user-defined procedures or procedures provided by the database by default. SQLIAs of

this type try to execute stored procedures present in the database. The database

interaction with the operating system is limited now a day to an extent with the help of

27

stored procedures, as they set a standard functionality and most of the vendors provide

that set by default while delivering the database. The SQLIAs can be used to execute

the stored procedures in that database, once the attacker knows which type of database

is used in the backend. Stored procedures also interact with the operating system.

Using the stored procedures while coding the Web applications renders them

invulnerable to SQLIAs. The stored procedures are not much dependent from the

developer side as these procedures are most vulnerable to the attacks on the

applications Howard & LeBlanc, (2003). The attackers get the access to run the

arbitrary codes on the server or to escalate the privileges as the stored procedures are

often written in special scripting languages and additionally they can contain other types

of vulnerabilities, such as buffer overflows. Labs, (2002).

CREATE PROCEDURE DBO.isAuthenticated @userName varchar2, @pass varchar2,

@pin int AS EXEC("SELECT accounts FROM users WHERE login=’" +@userName+ "’

and pass=’" +@password+ "’ and pin=" +@pin); GO

Example: The SQLIA can be used to exploit the parameterized stored procedure in the

above example. In the example, a stored procedure has been placed as an alternative

for the constructed query string. To rightly authenticate the user credentials, the stored

procedure returns a true/false statement. The attacker simply injects “ ’ ; SHUTDOWN; -

-” into either the userName or password fields to inject the SQLIA attack. Due to this the

injection the following query is generated through the stored procedure:

SELECT accounts FROM users WHERE login=’doe’ AND pass=’ ’; SHUTDOWN; --

AND pin= Halfond, Vieagas & Orso (2006)

28

 This attack is called a “piggy-bank” type attack. The injected or the malicious

query is injected second into the database after the execution of the first normal query,

due to which the database shuts down. In the above example, it illustrates that the

stored procedures are as vulnerable to the same range of attacks as the traditional

application code.

Inference

In this attack, the query is modified in such a way that any action executed will

depend on the true or false answer values for the data which is altered in the database.

In this type of injection, attackers generally attack a site that has enough security so

that, whenever there is a successful injection, there should not be any usable feedback

through database error messages. As the database error messages are unavailable or

not sufficient for the attacker as no feedback is provided an alternate method should be

used by the attackers for obtaining a response from the database by Anley, (2002).

According to Spett, (2003) by using an alternate method malicious commands

will be injected by the attacker into the website and is studied for any functional changes

on the website. After completely studying the effects caused by the injected commands

like what changes the commands are making to the website interface and functioning

the attacker can deduce the accurate commands to see what parameters are vulnerable

to the change in the behavior of the. Most commonly there are two important attack

techniques based on an inference which allows an attacker to extract data from a

database and detect vulnerable parameters.

29

Blind Injection

According to Halfond, Vieagas & Orso (2006) the developers hide the error

details during programming which ends up showing a generic page instead of an error

message because of which the attacker gets the information of the tables related to the

database structure by asking the true/false type of questions through SQL statements.

SELECT accounts FROM users WHERE login= 'doe' and 1 =0 -- AND pass = AND

pin=O

SELECT accounts FROM users WHERE login= 'doe' and 1 = 1 -- AND pass = AND

pin=O

If there is no input validation the query will execute.

Timing Attacks

According to Halfond, Vieagas & Orso (2006), this attack particularly depends on

the time lapses or delays. This time delays aid an attacker in gaining information of the

database. The timing attack is pretty much like the blind injection except it uses a

different inference method. For performing a timing attack, if/then statements are used

as an injected query by the attacker which relates to the content of the database. The

WAITFOR keyword which is used to delay the time response for a specified time uses

the SQL Queries to construct the amount of time to execute each branch among all the

other branches. A specific branch is picked by the attacker which either increases or

decreases in response to the time of the database which gives the solution of the

injected question to the attacker.

30

Example: A specific code is used in two different ways in which the attacks are

explained by using the inference-based techniques. The parameters are identified using

the blind injection technique in the first form while filling up two possible injections in the

login field.

The first being “legalUser’ and 1=0 - -” and the second, “legalUser’ and 1=1 - -”. These

injections result in the following two queries:

SELECT accounts FROM users WHERE login=’legalUser’ and 1=0 -- ’ AND pass=’’

AND pin=0

SELECT accounts FROM users WHERE login=’legalUser’ and 1=1 -- ’ AND pass=’’

AND pin=0

Considering two scenarios in which assuming the first scenario as a secure

application which has a validated login input. As the SQL queries injected by the

attacker will return with login error messages because of the incorrect login parameters

making the query not vulnerable. In the second scenario, there will be two attempts by

the attacker for the injection one with always a true statement and one with always false

statement as we have an insecure application and the login parameter is vulnerable to

injection. The first statement which will be false is injected by the attacker and as an

expected result the application will return with a login error message.

There might be two reasons for an error message during login, one being the

attack attempt validated correctly by the application and second, the injected attack

itself caused the login error. Now the second statement which is always true is injected

31

by the attacker and there won’t be any login error message which concludes to the

attacker that the login parameter is vulnerable to the injection.

Data extraction can be carried out using the inference-based techniques by

injecting a timing-based inference attack and extracting the table name from the

database. In this attack, the following query is injected into the login parameter:

‘‘legalUser’ and ASCII(SUBSTRING((select top 1 name from sysobjects),1,1)) > X

WAITFOR 5 --’’.

This produces the following query:

SELECT accounts FROM users WHERE login=’legalUser’ and

ASCII(SUBSTRING((select top 1 name from sysobjects),1,1)) > X WAITFOR 5 -- ’ AND

pass=’’ AND pin=0

In this attack, the attacker asks a series of questions about the first character of

the first table’s name (SUBSTRING) using a binary search strategy and if the value of X

is greater-than or less-than-or-equal-to the value of ASCII value there is an additional 5

second delay in the response of the database, by which the attacker knows that the

value injected is greater and then the value of the first character. Therefore, the value of

X is adjusted by the attacker accordingly.

Alternate Encodings

This attack is used in combination with other attacks by injecting a modified

query altered by defensive coding practices to avoid detection of the automated

prevention techniques. In other words, as explained by Anley, (2002) alternate

encodings are used as an aid by the attacker for evading the detection and prevention

32

techniques which might be exploitable and can carry vulnerabilities in the application.

These evasion techniques are useful in scanning certain “bad characters,” such as

single quotes and comment operators commonly used in the coding practices.

The common techniques are not enough capable of determining and scanning

the specially encoded strings which use hexadecimal, ASCII, and Unicode characters

which allows the SQL injection attacks go undetected. The alternate Encoding

technique provides different layers in an application to evaluate all the specially

encoded strings by scanning for certain escape characters that represent alternate

encodings in its language domain and may even use different methods of encoding by

Howard & LeBlanc, (2003).

A perfect code-based defense is practically very much difficult to build and

implement in work environment as it requires the developers to consider all the possible

scenarios which could affect a query string in different layers of an application through

SQL injection. For example, “a database could use the expression char(120) to

represent an alternately-encoded character “x”, but char(120) has no special meaning in

the application language’s context Halfond, Vieagas & Orso (2006).” Therefore, the

attackers are very much successful in injecting a coded query in the application code

string.

Example: An alternately encoded attack is provided in the example in which the

following text is injected into the login field: “legalUser’; exec(0x73687574646f776e) -- ”.

The resulting query generated by the application is:

33

SELECT accounts FROM users WHERE login=’legalUser’;

exec(char(0x73687574646f776e)) -- AND pass=’’ AND pin=

In this example char() function is used with the ASCII hexadecimal encoding. The char()

function returns the instance of that character and is considered as a parameter an

integer or hexadecimal encoding of the particular character. The second line in the

example is the ASCII hexadecimal encoding of the string “SHUTDOWN.” Therefore, a

SHUTDOWN command is executed whenever a code or string is interpreted by the

database.

Main Causes of SQL Injection

In this section, various causes of SQL injection are presented:

Invalidated input. Any SQL query consists of some parameters such as

INSERT, UPDATE, ALTER and some SQL control characters such as a semicolon and

quotation mark. If there is no checking for these, web applications can potentially be

abused in a SQL injection attack.

Generous privileges. Privileges are some rules for accessing some database

for an object. SELECT, INSERT, and DELETE are actions of executing SQL queries

that include typical privileges. Typically, a web application is used for accessing any

specific information from the database.

Uncontrollable variable size: If any variable is used for the storage of a large

amount of data there might be a chance of SQL injection of faked input values from the

attacker.

34

Error message. An error message is generated when the wrong input values are

inserted in web applications. Attackers may get the script structure or information about

the database so that the attacker may create its own attack.

Client-side only controls. If input validation is implemented in client side-scripts

only, then by using cross-site scripting security functions of a script at the client side it

can be overridden, and an attacker can invalidate input for accessing the database.

Stored procedure. Stored Procedures are a small program with some functions

which are called multiple times in execution. When these functions become calls so that

stored procedures become calls in place of that function. These stored procedures

become stored in the database. The problem with stored procedures is that an attacker

can execute and damage the database.

Into out file support. A text file containing SQL query results may be gotten by

manipulating a SQL query. This can be possible by using the condition of INTO

OUTFILE clause that is beneficial for some relational databases.

Sub-select. When a SQL query is inserted in the WHERE clause of another SQL

query this shows one of the weaknesses for a database. This weakness also makes the

web application more vulnerable.

The challenge with detection. The goal of any security technology is to provide

a robust threat detection for the database which is very easy to setup or which doesn’t

require any setup or configuration. Further, if that technology relies on learning or

training to improve its ability to detect threats, those learning periods must be short and

well-defined. The longer the time period, for learning the higher are the chances that

35

attacks may occur so there is a need to expedite the installation and minimize the risk of

attacks.

Detection and Prevention Techniques

Researchers have proposed a range of techniques to assist developers and

compensate for the shortcomings in the application of defensive coding.

Black box testing. A black-box technique called WAVES, was designed by

Huang, Lin & Tsai (2003) for testing Web applications for SQL injection vulnerabilities.

The technique uses a Web crawler to identify all points in a Web application that can be

used to inject SQLIAs. It then builds attacks that target such points based on a specified

list of patterns and attack techniques. The time response of the attacks over the

application improves in the WAVES technique as it uses the machine learning

approaches to guide the testing. This technique is safer compared to the other testing’s

but still cannot guarantee concerning complete security.

Static code checkers. JDBC-Checker technique is also known as Static code

checker technique which is used to prevent the type of SQL injection attacks that occur

due to the mismatch of the practically generated query string proposed by Gould, Su &

Devanbu, (2004). This technique detects SQLIA code vulnerabilities, typo’s in the code

input. As this technique was not developed for detection and prevention of the SQL

injection attacks is still used for the same purpose of finding the root vulnerabilities in

the dynamically generated query string. Even after the combination of the static analysis

with the automated reasoning, it was unable to detect different types of SQL injection

attacks other than Tautologies.

36

Combined static and dynamic analysis. AMNESIA is a model-based technique

designed by Halfond & Osro, (2005) that combines static analysis and runtime

monitoring. There are two phases in this type of analysis static phase and dynamic

phase. Static analysis is used to generate legal queries for an application at each point

of access to the database by building models of different types of queries through a

process called AMNESIA. Whereas Dynamic analysis validates all the unwanted

queries before they are sent to the database for the statically built models through the

same process. Queries which does not pass through the validation of AMNESIA are

considered as SQLIAs which will be terminated from executing into the database. The

primary limitation of this technique is the accuracy of the static analysis which is used

for building the query models.

There are two more approaches related to the combined static and dynamic

analysis. In the first approach runtime for the queries is verified to confirm the model for

the expected queries should pass only the accepted queries. Whereas the SQLGuard

model deduces the runtime by adding an additional user input known as SQLCheck -by

the developer. Both the approaches share a secret key which is used to insert user

input during parsing by the runtime checker. The developer must rewrite the use of

special characters or markers in the code to develop a dynamically generated query so

as the to avoid the attackers in finding out the secret key proposed by SQLGuard by

Buehrer, Weide & Sivilotti, (2005) and SQLCheck by Wasserman & Su, (2004).

Taint-based approaches. The Taint Based approach uses a method called

WebSSARI which is used to check the taint flows for sensitive functions which detect

37

the precondition points in which the filters and sanitization functions can automatically

be added to satisfy the precondition parameters. It uses the predefined set of filters to

sanitize the input. The primary drawback of this technique is that the sensitive functions

in an injected code can be accurately expressed using the typing system through a

certain type of filters which are not tainted stated by Huang, Yu, Hang, Lee & Kuo,

(2004).

Livshits and Lam, (2005) proposed that using information flow techniques for

detecting the tainted input using static analysis vulnerabilities in software can also be

detected. A SQL query can be constructed with this technique to avoid the flagged as

SQLIA vulnerabilities. Another approach made by Pietraszek and Berghe, (2005) used

a context-sensitive analysis which used a PHP interpreter to track precise per-character

taint information. The SQL injections would be validated depending on the false positive

statements which intercept any untrusted query or code injected by an attacker. Only

known patterns of SQLIAs can be detected by these two approaches which cause the

common drawback for both the methods as they require modifications to the runtime

environment, which affects portability.

Another technique is by using SecuriFly which validates the query strings

generated by the tainted inputs, unlike the above two approaches which use a context-

sensitive analysis and track the taint information depending on the per-string basis

stated by Haldar, Chandra & Franz, (2005) and Martin, Livshits & Lam, (2005). But as

there is no taint-based approach related to this method it does not give enough

sanitization to regulate the injection in the numeric fields of the code. The main

38

drawback of this technique is identifying all the sources of tainted user input in web

applications and accurately validating them.

New query development paradigms. A combination of two approaches, SQL

DOM by McClure & Krugre, (2005) and Safe Query Objects proposed by Cook & Rai,

(2005) offers an effective technique by changing the query building process using

encapsulation of database queries in combination with the API string concatenation.

This approach provides a safe and reliable way to access the databases and avoids the

unwanted SQL injections. This technique needs a new development environment as it is

a combination of the latest and the legacy approaches which creates a paradigm in

which the SQL queries are developed. As it is a new environment the only drawback is

the developers must learn a new programming language and there won’t be any

protection for the existing legacy systems.

Intrusion detection systems. IDS system builds models based on a machine

learning technique which consists of typical queries and monitors the runtime of the

application in real time that is being trained using a set of typical application queries. As

the training set is required to monitor the application, a poor training set will generate

many false positives and false negatives which is the only limitation of IDS stated by

Valeur, Mutz and, Vigna, (2005).

Proxy filters. These filters have security gateways which provide the developer

with a Security Policy Descriptor Language (SPDL), which has specified constraints and

helps in filtering the unwanted injected codes coming from untrusted proxies to the web

application. SPDL provides defensive programming which requires the developers to

39

know which data needs to be filtered and which proxies should be blocked and

considered as untrusted and what patterns and filters should be applied to the existing

database to suspend unwanted SQL injection attacks Scott & Sharp, (2002).

Instruction set randomization. SQLrand is based on the framework which

helps the developers in creating the queries based on instruction-set randomization.

Instruction-set randomization uses a proxy filter which intercepts the normal SQL

keywords and pushes the randomized queries to the database. As the code injected by

the attacker might not be constructed using the randomized instruction set the injected

SQL query will fail in attacking the application. Like other techniques, SQLrand has a

drawback that the code uses a secret key to modify the instructions which result in

integration of a proxy with the tables present in the database of a system

Injection Detection at the Web Tier

There is a large variation in the pattern of SQL attacks, which makes it even

more challenging for the detection of the initial point from where the attack is initiating in

the Web server. Furthermore, the SQL requests sent to the database has special

characters which may not be expected in a typical form sent by the attacker. There are

URL’s, cookies, and form inputs (POSTs and GETs) to inspect and retrieve and

inspecting each set of input values, makes it more difficult for a WAF. The SQL injection

attacks are caused by coding the application using simple coding techniques and words

such as “like” and “or” to catch every possible attack which practically is not possible.

Alternatively, as mentioned earlier, much more complex patterns that are clearly

indicative of an attack can be used. Unfortunately, as discussed, the different types of

40

SQL injection attack the number and variation of possible attacks are so large that it is

impossible to effectively cover all possible attack patterns. Creating the initial pattern

set, being updated about the evolving attacks, and verifying that they are sufficiently

unique so as not to show up in some fields is an almost impossible task. And now,

considering that the applications are also changing and evolving over time, it requires

more time so as more learning and hands-on skills for proper security of the databases

without any breaches.

The Database Firewall is much more secure and effective than the previously

used Web Application Firewall as it follows the structured analysis to build the SQL

statements instead of the rudimentary input pattern validation used in WAF. It is more

effective and secure because it monitors the networks between the application servers

and databases with a much smaller set of SQL build statements. This database firewall

is not that easy to build and maintain so we opt for different services such as Oracle but

the latest most efficient and economical service to store and to secure the integrity of

the data is provided through Amazon Web Services AWS.

Summary

The Background and Literature review helps in completely understanding about

the SQL Injection attacks. Different types of SQL injection attacks are explained with the

main causes and some of the detection and prevention techniques. The most efficient

method of detecting and preventing the web applications from the SQL Injection attacks

(Injection Detection at Web-Tier) is also explained.

41

Chapter III. Methodology

Introduction

 Amazon Web Services Web Application Firewall (AWS WAF) helps to protect

web applications from common web exploits like SQL injection attacks that could affect

application availability, compromise security, or consume excessive resources.

AWS WAF gives control over the traffic which allows or blocks the web applications by

defining customizable web security rules. To create custom rules that block common

attack patterns, such as SQL injection or cross-site scripting and to respond quickly for

the change of patterns in the traffic, new rules can be deployed within minutes through

AWS WAF. Also, AWS WAF includes a full-featured API that can be used to automate

the creation, deployment, and maintenance of web security rules.

The strategy of configuring a web application firewall can be challenging and

burdensome to large and small organizations alike, especially for those who do not

have dedicated security teams. To simplify this process, AWS offers a solution that uses

AWS Cloud Formation to automatically deploy a set of AWS WAF rules designed to

filter common web-based SQL injection attacks. With AWS WAF we pay only for what

we use. AWS WAF pricing is based on how many rules are being deployed and how

many web requests the web application receives. These rules can be deployed by AWS

WAF on either Amazon Cloud Front as part of the CDN solution or the Application Load

Balancer (ALB) that fronts the web servers or origin servers running on EC2.

42

Design of the Study

Thus, far we have discussed different types of SQL injection attacks, the main

causes of SQL injection and the method of detecting SQL injection attacks at the Web

tier interface by a simple WAF system. A more effective and efficient method proposed

in this paper to defend against SQL injection attacks is by using AWS WAF. This web

application firewall allows us to monitor the HTTP and HTTPS requests which are

forwarded to Amazon Cloud Front or an Application Load Balancer and allows us to

control and access the content.

Based on conditions specified by the user, such as the IP addresses that the

requests originate from or by the query string values, the Cloud Front or an Application

Load Balancer responds to requests either with the requested content or with an HTTP

403 status code (Forbidden). The Cloud Front or an Application load balancer can also

be configured in such a way that it returns with a custom error page when a request is

blocked to analyze the actual SQL generated by the application as presented to the

database by a firewall.

43

Figure 3.1 AWS WAF Architecture. Amazon Web Services Architecture, by Mathew, M.,
2006, White Paper, Amazon Web Services, Inc., 2006.
https://aws.amazon.com/security/documents/WhitepaperAWSWAF.pdf.

The AWS WAF allows us to choose only the requests specified and block all the

other unwanted requests such as SQL injections. It gives several other potential

benefits such as providing rules which can be reused for multiple web applications,

automated administration using AWS WAF API, real-time metrics and sampled web

requests. A qualitative approach will be best suited for the proposed plan as it does not

require any numerical data analysis. The following are the steps used for building an

AWS WAF which will be discussed in detail in the next part of the paper.

44

• Step 1: Set Up for AWS WAF

• Step 2: Start the Wizard

• Step 3: Create an IP Match Condition

• Step 4: Create a String Match Condition

• Step 5: Create a SQL Injection Match Condition

• Step 6: Create Additional Conditions

• Step 7: Create a Rule and Add Conditions

• Step 8: Add the Rule to a Web ACL

• Step 9: Clean Up Your Resources

Data Analysis

Hardware and software requirements.

• Four virtual processors assigned to the VM.

• 12 GB of RAM assigned to the VM

• 80 GB of disk space for installation of VM image and system data

• General purpose instance family—m3 and m4 instance types

• Storage-optimized instance family—i2 and d2 instance types

• Compute-optimized instance family—c3 and c4 instance types

• Memory-optimized instance family—r3 instance types

http://docs.aws.amazon.com/waf/latest/developerguide/getting-started.html#getting-started-aws-account
http://docs.aws.amazon.com/waf/latest/developerguide/getting-started.html#getting-started-wizard-create-web-acl
http://docs.aws.amazon.com/waf/latest/developerguide/getting-started.html#getting-started-wizard-create-ip-condition
http://docs.aws.amazon.com/waf/latest/developerguide/getting-started.html#getting-started-wizard-create-string-condition
http://docs.aws.amazon.com/waf/latest/developerguide/getting-started.html#getting-started-wizard-create-sql-condition
http://docs.aws.amazon.com/waf/latest/developerguide/getting-started.html#getting-started-wizard-create-optional-conditions
http://docs.aws.amazon.com/waf/latest/developerguide/getting-started.html#getting-started-wizard-create-rule
http://docs.aws.amazon.com/waf/latest/developerguide/getting-started.html#getting-started-wizard-add-rule
http://docs.aws.amazon.com/waf/latest/developerguide/getting-started.html#getting-started-wizard-clean-up

45

Summary

 An effective and efficient approach towards the protection of web applications is

explained in the methodology. The technique AWS provides better security, no

infrastructure, less capital, on-demand upgrade of processing speed, storage services

and many computing clouds and subnets. The design and steps of building an Amazon

Web Services Web Application Firewall are explained briefly.

46

Chapter IV: Analysis of Results

Introduction

Amazon Web Services was born out of the idea to provide multiple layers of

security to avoid SQL injection attacks and to transfer the data from small scale to large

scale. Amazon web services are available at any capacity on a moment’s notice and

without necessarily forecasting demand. Amazon meets this expectation in both of its

key AWS products. Amazon’s Elastic Cloud Computing (EC2) platform allows

applications to run on an instantly scalable number of processors on demand, while

Amazon’s Simple Storage System (S3) allows access to a practically infinite allocation

of disk space on demand. The Amazon EC2 platform allows applications to use as

much processing power as they need at any given time, scaling up and down parallel to

the demand. Similarly, S3 allows applications to scale storage needs exactly in parallel

with demand.

Amazon began AWS by charging directly in proportion to usage (Amazon EC2

charges anywhere from $0.10 to $0.80 per processor hour while S3 charges up to $0.14

per GB per month of storage, with bandwidth costs of $0.10 to $0.15 per GB of

bandwidth downloaded or uploaded. This inexpensive, pay-as-you-go price scheme

eliminates the risk associated with investing in technologies never tested, encouraging

system administrators and curious programmers to play with the service at extremely

low costs.

47

Data Presentation

Amazon web services cloud platform. AWS consists of many cloud services

and to access these services the AWS Management Console, and the AWS Command

Line Interface is used.

AWS management console. Access and manage Amazon Web Services

through the AWS Management Console, a simple and intuitive user interface.

AWS Command Line Interface

The AWS Command Line Interface (CLI) is a unified tool to manage the AWS

services. With just one tool to download and configure, multiple AWS services can be

controlled from the command line and automate them through scripts.

Compute

Amazon EC2. Amazon Elastic Compute Cloud (Amazon EC2) is a web service

which provides secure, resizable compute capacity in the cloud. It is designed to make

web-scale computing easier for developers and to reduce the time required to obtain

and boot new server instances (called Amazon EC2 instances) to minutes, allowing to

quickly scale capacity, both up and down, as the computing requirements change time

to time.

Benefits.

Elastic web-scale computing. Amazon EC2 enables to increase or decrease

the capacity within minutes. Hundreds of thousands of server’s instances can be

controlled simultaneously. Because the instances are controlled by web service APIs,

the application can automatically scale itself up and down depending on its needs.

48

Completely controlled. There is a complete control of the Amazon EC2

instances having root access to each instance. While retaining the data on the boot

partition, the Amazon EC2 instances can be stopped and then can be restarted

subsequently using web service APIs. Instances can be rebooted remotely using web

service APIs.

Flexible cloud hosting services. There are multiple options for the instance

types, operating systems, and software packages to choose from. Amazon EC2 allows

the users to select the memory configuration, CPU, instance storage, and boot partition

size.

Integrated

Amazon EC2 is integrated with most AWS services, such as Amazon Simple

Storage Service (Amazon S3), Amazon Relational Database Service (Amazon RDS),

and Amazon Virtual Private Cloud (Amazon VPC) to provide a complete, secure

solution for computing, query processing, and cloud storage across a wide range of

applications.

Reliable. Amazon EC2 offers a highly reliable environment where replacement

instances can be rapidly and predictably commissioned.

Secure. Amazon EC2 works in conjunction with Amazon VPC to provide security

and robust networking functionality. The compute instances are in a VPC with an IP

address range specified by the user which are exposed to the internet either to remain

private or public. Security groups and network access control lists (ACLs) allows the

user to control inbound and outbound network access to and from the instances. The

49

users can connect their existing IT infrastructure to resources in the VPC using industry-

standard encrypted IPsec virtual private network (VPN) connections.

Inexpensive. Amazon EC2 instances can be used at a very low rate for the

compute capacity consumed by the users.

On-Demand Instances

With On-Demand instances, the users pay for computing capacity by the hour

with no long-term commitments. The users can increase or decrease the compute

capacity depending on the demands of the application and only pay the specified hourly

rate for the instances used. The use of On-Demand instances frees the users from the

costs and complexities of planning, purchasing, and maintaining hardware and

transforms the large fixed costs into much smaller variable costs.

Storage

Amazon S3. Amazon Simple Storage Service (Amazon S3) is object storage

with a simple web service interface to store and retrieve any amount of data from

anywhere on the web. It is designed to deliver 99.999999999% durability and scales

past trillions of objects worldwide. It's simple to move large volumes of data into or out

of Amazon S3 with Amazon's cloud data migration options. Once data is stored in

Amazon S3, it can be automatically tiered into lower cost, longer-term cloud storage

classes like Amazon S3 Standard - Infrequent Access and Amazon Glacier for

archiving.

Amazon S3 features. Amazon S3 provides the most feature-rich object storage

platform available in the cloud today, the following are a list of the Amazon S3 features:

50

Simple. Amazon S3 is simple to use with a web-based management console

and mobile app. Amazon S3 also provides full REST APIs and SDKs for easy

integration with third-party technologies.

Durable. Amazon S3 provides durable infrastructure to store important data and

is designed for durability of 99.999999999% of objects. The data is stored in multiple

facilities and multiple devices in each facility.

Scalable. With Amazon S3, the users can store as much data as they want and

access it when needed. The future storage needs can be scaled up and down as

required, dramatically increasing business agility.

Secure. Amazon S3 supports data transfer over SSL and automatic encryption

of the data once it is uploaded. Bucket policies can also be configured to manage object

permissions and to control access the data using Identity Access Management (IAM).

Low Cost. Amazon S3 allows the user to store large amounts of data at a very

low cost. Using lifecycle policies, the users can set policies to automatically migrate the

data to Standard - Infrequent Access and Amazon Glacier as it ages to further reduce

costs.

Simple data transfer. Amazon provides multiple options for cloud data migration

and makes it simple and cost-effective for the user to move large volumes of data into

or out of Amazon S3. It can be selected from network-optimized, physical disk-based, or

third-party connector methods for import to or export from Amazon S3.

Integrated. Amazon S3 is deeply integrated with other AWS services to make it

easier to build solutions that use a range of AWS services. Integrations include Amazon

51

Cloud Front, Amazon Cloud Watch, Amazon Kinesis, Amazon RDS, Amazon Glacier,

Amazon EBS, Amazon DynamoDB, Amazon Redshift, Amazon Route 53, Amazon

EMR, Amazon VPC, Amazon Key Management Service (KMS), and AWS Lambda.

Security

AWS security. Cloud security at AWS is the highest priority because there are

no physical servers or datacenters needed for processing and providing security to the

database. All the migration, security and processing of the database is provided through

software tools which cost far more less time, money and infrastructure for maintenance

compared to the physical servers and storage devices.

An advantage of the AWS Cloud is that it allows the user to scale and innovate

while maintaining a secure environment and paying only for the services they use. This

means that they can have the security at a lower cost than in an on-premises

environment.

Benefits of AWS security.

Keep data safe. The AWS infrastructure puts strong safeguards in place to help

protect the user privacy. All data is stored in highly secure AWS data centers.

Meet Compliance Requirements: AWS manages dozens of compliance programs in its

infrastructure. This means that segments of the compliance have already been

completed.

Save money. Cut costs by using AWS data centers. Maintain the highest

standard of security without having to manage your own facility.

52

Scale Quickly: Security scales with the AWS Cloud usage. No matter the size of the

business, the AWS infrastructure is designed to keep the user’s data safe.

Networking

Amazon VPC. Amazon Virtual Private Cloud (Amazon VPC) allows the user to

create a logically isolated section of the AWS Cloud where they can launch AWS

resources in a virtual network as defined. The user has complete control over the virtual

networking environment, including the selection of their own IP address range, the

creation of subnets, and configuration of routing tables and network gateways. Both

IPv4 and IPv6 in the VPC can be used for secure and easy access to resources and

applications.

The network configuration for the VPC can easily be customized. There are

basically two subnets for the web servers to access the database. The private subnet

comprises of all the sensitive database and backend system which does not have

access to internet whereas the public subnets have the web servers which have

complete access to the internet.

Data Analysis

Create and launch EC2 instance.

Step 1: To launch the EC2 instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Launch Instance.

3. Choose an Amazon Machine Image (AMI), find the Amazon Linux AMI at the top of

the list and choose Select.

https://console.aws.amazon.com/ec2/

53

Figure 4.1 Configure Instance Details. Amazon Web Services Architecture, by Mathew,
M., 2006, White Paper, Amazon Web Services, Inc., 2006.
https://aws.amazon.com/security/documents/WhitepaperAWSWAF.pdf.

• Type: SSH

• Protocol: TCP

• Port Range: 22

• Source: Anywhere 0.0.0.0/0

54

4. Choose an Instance Type, choose Next: Configure Instance Details.

a. Configure Instance Details, choose Network, and then choose the entry

for the default VPC. It will look something like vpc-xxxxxxx (172.31.0.0/16)

(default).

b. Choose Subnet, and then choose a subnet in any Availability Zone.

c. Choose Next: Add Storage.

5. Choose Next: Tag Instance.

6. Name your instance and choose Next: Configure Security Group.

Configure Security Group, review the contents of this page, ensure that Assign a

security group is set to Create a new security group, and verify that the inbound rule

being created has the following default values.

Figure 4.2 Configure Security Group. Amazon Web Services Architecture, by Mathew,
M., 2006, White Paper, Amazon Web Services, Inc., 2006.
https://aws.amazon.com/security/documents/WhitepaperAWSWAF.pdf.

55

7. Choose Review and Launch.

8. Choose Launch.

9. Select the checkbox for the key pair that is created, and then choose Launch

Instances.

10. Choose View Instances.

11. Choose the name of the instance just created from the list, and then choose Actions.

12. From the menu that opens, choose Networking and then choose Change Security

Groups.

Figure 4.3 Launch an Instance. Amazon Web Services Architecture, by Mathew, M.,
2006, White Paper, Amazon Web Services, Inc., 2006.
https://aws.amazon.com/security/documents/WhitepaperAWSWAF.pdf.

56

13. Select the checkbox next to the security group with the description default VPC

security group.

14. Choose Assign Security Groups.

Figure 4.4 Change Security Groups. Amazon Web Services Architecture, by Mathew,
M., 2006, White Paper, Amazon Web Services, Inc., 2006.
https://aws.amazon.com/security/documents/WhitepaperAWSWAF.pdf.

57

Overview for IPv4

The configuration for this scenario includes the following:

1. A virtual private cloud (VPC) with a size /16 IPv4 CIDR block (example: 10.0.0.0/16).

This provides 65,536 private IPv4 addresses.

2. A subnet with a size /24 IPv4 CIDR block (example: 10.0.0.0/24). This provides 256

private IPv4 addresses.

3. An Internet gateway which connects the VPC to the Internet and to other AWS

services.

4. An instance with a private IPv4 address in the subnet range (example: 10.0.0.6),

which enables the instance to communicate with other instances in the VPC, and an

Elastic IPv4 address (example: 198.51.100.2), which is a public IPv4 address that

enables the instance to be reached from the Internet.

5. A custom route table associated with the subnet. The route table entries enable

instances in the subnet to use IPv4 to communicate with other instances in the VPC and

to communicate directly over the Internet. A subnet that's associated with a routing table

that has a route to an Internet gateway is known as a public subnet.

58

Figure 4.5 Overview for IPv4. Amazon Web Services Architecture, by Mathew, M.,
2006, White Paper, Amazon Web Services, Inc., 2006.
https://aws.amazon.com/security/documents/WhitepaperAWSWAF.pdf.

Overview for IPv6

1. For the scenario, IPv6 can be enabled optionally. In addition to the components

listed above, the configuration includes the following:

2. A size /56 IPv6 CIDR block associated with the VPC (example:

2001:db8:1234:1a00::/56). Amazon automatically assigns the CIDR

59

3. A size /64 IPv6 CIDR block associated with the public subnet (example:

2001:db8:1234:1a00::/64). You can choose the range for your subnet from the range

allocated to the VPC. You cannot choose the size of the subnet IPv6 CIDR block.

4. An IPv6 address assigned to the instance from the subnet range (example:

2001:db8:1234:1a00::123).

5. Route table entries in the custom route table that enable instances in the VPC to use

IPv6 to communicate with each other, and directly over the Internet.

Figure 4.6 Overview for IPv6. Amazon Web Services Architecture, by Mathew, M.,
2006, White Paper, Amazon Web Services, Inc., 2006.
https://aws.amazon.com/security/documents/WhitepaperAWSWAF.pdf.

60

Routing for IPv4. The VPC has an implied router (shown in the configuration

diagram above, in Figure 10). In this scenario, the VPC wizard creates a custom route

table that routes all traffic destined for an address outside the VPC to the Internet

gateway and associates this route table with the subnet.

The following Table 1 shows the route table for the example in Figure 10 above.

The first entry is the default entry for local IPv4 routing in the VPC; this entry enables

the instances in this VPC to communicate with each other. The second entry routes all

other IPv4 subnet traffic to the Internet gateway (for example, igw-1a2b3c4d).

Table 4.1 Routing for IPv4

Destination Target

10.0.0.0/16 local

0.0.0.0/0 igw-id

Routing for IPv6. If an IPv6 CIDR block is associated with the VPC and subnet,

the route table must include separate routes for IPv6 traffic. The following table shows

the custom route table for this scenario if IPv6 communication is enabled in the VPC.

The second entry is the default route that's automatically added for local routing in the

VPC over IPv6. The fourth entry routes all other IPv6 subnet traffic to the Internet

gateway.

61

Table 4.2 Routing for IPv6

Destination Target

10.0.0.0/16 local

2001:db8:1234:1a00::/56 local

0.0.0.0/0 igw-id

::/0 igw-id

Security for IPv4. AWS provides two features that can be used to increase the

security in the VPC: security groups and network ACLs. Security groups control inbound

and outbound traffic for the instances while network ACLs control inbound and

outbound traffic for the subnets. In most cases, security groups can meet the needs to

avoid SQL injection attacks. However, network ACLs can also be used as an additional

layer of security for the VPCs.

For this scenario, a security group is used but not a network ACL. VPC comes

with a default security group. An instance that's launched into the VPC is automatically

associated with the default security group if a different security group is not specified

during the launch. Rules can be added to the default security group, but the rules may

not be suitable for other instances that may be launched into the VPC. Instead, creating

a custom security group for the web server is recommended.

For this scenario, create a security group named WebServerSG. When a security

group is created, it has a single outbound rule that allows all traffic to leave the

instances. Rules must be modified to enable inbound traffic and restrict the outbound

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html#DefaultSecurityGroup

62

traffic as needed. This security group is specified when instances are launched into the

VPC. The following are the inbound and outbound rules for IPv4 traffic for the

WebServerSG security group.

Table 4.3 Security for IPv4

Inbound

Source Protocol Port

Range

Comments

0.0.0.0/0 TCP 80 Allow inbound HTTP access to the web servers

from any IPv4 address.

0.0.0.0/0 TCP 443 Allow inbound HTTPS access to the web servers

from any IPv4 address

Public IPv4

address

range of your

network

TCP 22 (Linux instances) Allow inbound SSH access from

your network over IPv4. You can get the public

IPv4 address of your local computer using a

service such as http://checkip.amazonaws.com. If

you are connecting through an ISP or from behind

your firewall without a static IP address, you need

to find out the range of IP addresses used by client

computers.

Public IPv4

address

range of your

network

TCP 3389 (Windows instances) Allow inbound RDP access

from your network over IPv4.

The security

group ID (sg-

xxxxxxxx)

All All (Optional) Allow inbound traffic from other

instances associated with this security group. This

rule is automatically added to the default security

group for the VPC; for any custom security group

you create, you must manually add the rule to allow

this type of communication.

http://checkip.amazonaws.com/

63

Outbound (Optional)

Destination Protocol Port

Range

Comments

0.0.0.0/0 All All Default rule to allow all outbound access to any

IPv4 address. If you want your web server to

initiate outbound traffic, for example, to get

software updates, you can leave the default

outbound rule. Otherwise, you can remove this

rule.

Security for IPv6. If an IPv6 CIDR block is associated with the VPC and subnet,

separate rules must be added to the security group to control inbound and outbound

IPv6 traffic for the web server instance. In this scenario, the web server will be able to

receive all Internet traffic over IPv6, and SSH or RDP traffic from the local network over

IPv6. The following are the IPv6-specific rules for the WebServerSG security group

(which are in addition to the rules listed above).

64

Table 4.4 Security for IPv6

Inbound

Source Protocol Port

Range

Comments

::/0 TCP 80 Allow inbound HTTP access to the web servers

from any IPv6 address.

::/0 TCP 443 Allow inbound HTTPS access to the web servers

from any IPv6 address.

IPv6 address

range of your

network

TCP 22 (Linux instances) Allow inbound SSH access

over IPv6 from your network.

IPv6 address

range of your

network

TCP 3389 (Windows instances) Allow inbound RDP access

over IPv6 from your network

Outbound (Optional)

Destination Protocol Port

Range

Comments

::/0 All All Default rule to allow all outbound access to any

IPv6 address. If you want your web server to

initiate outbound traffic, for example, to get

software updates, you can leave the default

outbound rule. Otherwise, you can remove this

rule.

Create a VPC

Step 2: To create an AWS VPC

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the dashboard, choose Start VPC Wizard.

https://console.aws.amazon.com/vpc/

65

3. Select the first option, VPC with a Single Public Subnet, and then

choose Select.

4. For VPC name and Subnet name, you can name your VPC and subnet to

help you to identify them later in the console. You can specify your own IPv4

CIDR block range for the VPC and subnet, or you can leave the default

values (10.0.0.0/16 and 10.0.0.0/24 respectively).

5. (Optional, IPv6-only) For IPv6 CIDR block, choose Amazon-provided IPv6

CIDR block. For Public subnet's IPv6 CIDR, choose to Specify a custom

IPv6 CIDR and specify the hexadecimal pair value for your subnet, or leave

the default value (00).

6. You can leave the rest of the default settings, and choose to Create VPC.

2.1 To create a VPC and subnets using the AWS CLI

1. Create a VPC with a 10.0.0.0/16 CIDR block and associate an IPv6 CIDR

block with the VPC.

2. aws ec2 create-vpc --cidr-block 10.0.0.0/16 --amazon-provided-ipv6-cidr-

block

3. In the output that's returned, take note of the VPC ID.

4. Describe your VPC to get the IPv6 CIDR block that's associated with the

VPC.

5. aws ec2 describe-vpcs --vpc-id vpc-2f09a348 v6-cidr-block

66

6. Create a subnet with a 10.0.0.0/24 IPv4 CIDR block and

a 2001:db8:1234:1a00::/64 IPv6 CIDR block (from the ranges that were

returned in the previous step).

7. Create a second subnet in your VPC with a 10.0.1.0/24 IPv4 CIDR block and

a 2001:db8:1234:1a01::/64 IPv6 CIDR block.]\

2.2 Configure a Public Subnet

1. Create an Internet gateway.

2. In the output that's returned, take note of the Internet gateway ID.

3. Using the ID from the previous step, attach the Internet gateway to your VPC.

4. Create a custom route table for your VPC.

5. In the output that's returned, take note of the route table ID.

6. Create a route in the route table that points all IPv6 traffic (::/0) to the Internet

gateway.

7. To confirm that your route has been created and is active, you can describe

the route table and view the results.

8. The route table is not currently associated with any subnet. Associate it with a

subnet in your VPC so that traffic from that subnet is routed to the Internet

gateway. First, describe your subnets to get their IDs. You can use the --

filter option to return the subnets for your new VPC only, and the --

query option to return only the subnet IDs and their IPv4 and IPv6 CIDR

blocks.

67

9. You can choose which subnet to associate with the custom route table, for

example, subnet-b46032ec. This subnet will be your public subnet.

2.3 To launch and connect to an instance in your public subnet

1. Create a key pair and use the --query option and the --output text option to

pipe your private key directly into a file with the.pem extension.

2. In this example, launch an Amazon Linux instance. If you use an SSH client

on a Linux or OS X operating system to connect to your instance, use the

following command to set the permissions of your private key file so that only

you can read it.

3. Create a security group for your VPC, and add a rule that allows SSH access

from any IPv6 address.

4. Launch an instance into your public subnet, using the security group and key

pair that you've created. In the output, take note of the instance ID for your

instance.

5. Your instance must be in the running state to connect to the database.

Describe your instance and confirm its state, and take note of its IPv6

address.

6. When your instance is in the running state, you can connect to it using an

SSH client on a Linux or OS X computer by using the following command.

Your local computer must have an IPv6 address configured.

68

2.4 Launch an Instance into Your Private Subnet

1. Create a security group in your VPC, and add a rule that allows inbound SSH

access from the IPv6 address of the instance in your public subnet, and a rule

that allows all ICMPv6 traffic:

2. Launch an instance into your private subnet, using the security group you've

created and the same key pair you used to launch the instance in the public

subnet.

3. Configure SSH agent forwarding on your local machine, and then connect to

your instance in the public subnet. For Linux, use the following commands:

4. From your instance in the public subnet (the bastion instance), connect to

your instance in the private subnet by using its IPv6 address:

5. From your private instance, a test that you can connect to the Internet by

running the ping6 command for a website that has ICMP enabled, for

example:

6. To test that hosts on the Internet cannot reach your instance in the private

subnet, use the ping6 command from a computer that's enabled for IPv6. You

should get a timeout response. If you get a valid response, then your instance

is accessible from the Internet—check the route table that's associated with

your private subnet and verify that it does not have a route for IPv6 traffic to

an Internet gateway.

69

2.5 Clean Up

1. Delete your security groups

2. Delete your subnets

3. Delete your custom route tables

4. Detach your Internet gateway from your VPC

5. Delete your Internet gateway

6. Delete your egress-only Internet gateway

7. Delete your VPC.

Template 1

{

 "InternetGateway": {

 ...

 "InternetGatewayId": "igw-1ff7a07b",

 ...

 }

}

{

 "RouteTable": {

 ...

 "RouteTableId": "rtb-c1c8faa6",

 ...

 }

70

}

{

 "RouteTables": [

 {

 "Associations": [],

 "RouteTableId": "rtb-c1c8faa6",

 "VpcId": "vpc-2f09a348",

 "PropagatingVgws": [],

 "Tags": [],

 "Routes": [

 {

 "GatewayId": "local",

 "DestinationCidrBlock": "10.0.0.0/16",

 "State": "active",

 "Origin": "CreateRouteTable"

 },

 {

 "GatewayId": "local",

 "Origin": "CreateRouteTable",

 "State": "active",

 "DestinationIpv6CidrBlock": "::/0"

 }

71

]

 }

]

}

[

 {

 "IPv6CIDR": [

 "2001:db8:1234:1a00::/64"

],

 "ID": "subnet-b46032ec",

 "IPv4CIDR": "10.0.0.0/24"

 },

 {

 "IPv6CIDR": [

 "2001:db8:1234:1a01::/64"

],

 "ID": "subnet-a46032fc",

 "IPv4CIDR": "10.0.1.0/24"

 }

]

{

 "EgressOnlyInternetGateway": {

72

 "EgressOnlyInternetGatewayId": "eigw-015e0e244e24dfe8a",

 "Attachments": [

 {

 "State": "attached",

 "VpcId": "vpc-2f09a348"

 }

]

 }

}

{

 "GroupId": "sg-e1fb8c9a"

}

{

 "Reservations": [

 {

 ...

 "Instances": [

 {

 ...

 "State": {

 "Code": 16,

 "Name": "running"

73

 },

 ...

 "NetworkInterfaces": {

 "Ipv6Addresses": {

 "Ipv6Address": "2001:db8:1234:1a00::123"

 }

 ...

 }

]

 }

]

}

{

 "GroupId": "sg-aabb1122"

}

2.6 To create the WebServerSG security group

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation panel, choose Security Groups.

3. Choose Create Security Group.

4. Provide a name and description for the security group. In this topic, the

name WebServerSG is used as an example. Select the ID of the VPC from

the VPC menu, and then choose Yes, Create.

https://console.aws.amazon.com/vpc/

74

5. Select the WebServerSG security group that has just been created. The details

panel include a tab for information about the security group, plus tabs for working

with its inbound rules and outbound rules.

6. On the Inbound Rules tab, choose Edit, and then do the following:

a) Select HTTP from the Type list, and enter 0.0.0.0/0 in the Source field.

b) Choose Add another rule, then select HTTPS from the Type list and

enter 0.0.0.0/0 in the Source field.

c) Choose Add another rule, then select SSH (for Linux) or RDP (for Windows)

from the Type list. Enter the network's public IP address range in

the Source field.

d) (Optional) Choose Add another rule, then select ALL traffic from the Type list.

In the Source field, enter the ID of the WebServerSG security group.

e) (Optional, IPv6-only) Choose Add another rule, select HTTP from the Type list,

and enter ::/0 in the Source field.

f) (Optional, IPv6-only) Choose Add another rule, select HTTPS from

the Type list, and enter ::/0 in the Source field.

g) (Optional, IPv6-only) Choose Add another rule, select SSH (for Linux)

or RDP (for Windows) from the Typelist. Enter the network's IPv6 address range

in the Source field.

7. Choose Save.

8. (Optional) On the Outbound Rules tab, choose Edit. Locate the default rule that

enables all outbound traffic, choose Remove, and then choose Save.

75

9. To launch an instance into the VPC

10. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

11. From the dashboard, choose Launch Instance.

12. Follow the directions in the wizard. Choose an AMI, choose an instance type, and

then choose Next: Configure Instance Details.

13. On the Configure Instance Details page, select the VPC that was created in step 1

from the Network list, and then specify a subnet.

14. (Optional) By default, instances launched into a nondefault VPC are not assigned as

public IPv4 address. To be able to connect to the instance, assign a public IPv4

address, or allocate an Elastic IP address and assign it to the instance after it's

launched. To assign a public IPv4 address, ensure that Enable should be selected

from the Auto-assign Public IP list.

15. (Optional, IPv6-only) Auto-assign an IPv6 address to the instance from the subnet

range. For Auto-assign IPv6 IP, choose Enable.

16. On the next two pages of the wizard, configuration for the storage of the instance,

and addition of tags can be done. On the Configure Security Group page, select

the Select an existing security group option, and select

the WebServerSG security group which was created in step 2. Choose Review and

Launch.

17. Review the settings and then choose Launch to choose a key pair and launch the

instance.

https://console.aws.amazon.com/ec2/

76

18. If a public IPv4 address is not assigned to the instance in step 5, you will not be able

to connect to it over IPv4. Assign an Elastic IP address to the instance:

19. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

20. In the navigation pane, choose Elastic IPs.

21. Choose Allocate new address.

22. Choose Allocate.

• Select the Elastic IP address from the list, choose Actions, and then choose an

Associate address.

• Select the instance to associate the address with, and then choose Associate.

Create an Amazon S3 Bucket

Step 3: To create an Amazon S3 Bucket

To create an Amazon S3 bucket use the Amazon S3 console. But a simpler way

to create resources is often to use an AWS Cloud Formation template. The following

template creates an Amazon S3 bucket for this example and sets up instance

profile with an IAM role that grants unrestricted access to the bucket.

Template 2

{

 "AWSTemplateFormatVersion" : "2010-09-09",

 "Resources" : {

 "AppServerRootRole": {

 "Type": "AWS::IAM::Role",

 "Properties": {

https://console.aws.amazon.com/vpc/
http://docs.aws.amazon.com/IAM/latest/UserGuide/instance-profiles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/instance-profiles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html

77

 "AssumeRolePolicyDocument": {

 "Statement": [{

 "Effect": "Allow",

 "Principal": {

 "Service": ["ec2.amazonaws.com"]

 },

 "Action": ["sts:AssumeRole"]

 }]

 },

 "Path": "/"

 }

 },

 "AppServerRolePolicies": {

 "Type": "AWS::IAM::Policy",

 "Properties": {

 "PolicyName": "AppServerS3Perms",

 "PolicyDocument": {

 "Statement": [{

 "Effect": "Allow",

 "Action": "s3:*",

 "Resource": { "Fn::Join" : ["", ["arn:aws:s3:::", { "Ref" : "AppBucket" } , "/*"]

] }

78

 }]

 },

 "Roles": [{ "Ref": "AppServerRootRole" }]

 }

 },

 "AppServerInstanceProfile": {

 "Type": "AWS::IAM::InstanceProfile",

 "Properties": {

 "Path": "/",

 "Roles": [{ "Ref": "AppServerRootRole" }]

 }

 },

 "AppBucket" : {

 "Type" : "AWS::S3::Bucket"

 }

 },

 "Outputs" : {

 "BucketName" : {

 "Value" : { "Ref" : "AppBucket" }

 },

 "InstanceProfileName" : {

 "Value" : { "Ref" : "AppServerInstanceProfile" }

79

 }

 }

}

To create the Amazon S3 bucket:

1. Copy the example template to a text file on the system.

This example assumes that the file is named appserver.template.

2. Open the AWS Cloud Formation console and click Create Stack.

3.In the Stack Name box, enter the stack name.

This example assumes that the name is AppServer.

4. Click Upload template file, click Browse, select the Appserver.template file that was

created in Step 1, and click Next Step.

5. On the Specify Parameters page, select I acknowledge that this template may

create IAM resources, then click Next Step on each page of the wizard until you reach

the end. Click Create.

6. After the AppServer stack reaches CREATE_COMPLETE status, select it and click

its Outputs tab.

7. On the Outputs tab, record the BucketName and InstanceProfileName values for

later use.

https://console.aws.amazon.com/cloudformation/

80

Summary

 AWS consists of some major key components like EC2 instances, Storage

Services, VPN, public and private subnets which are explained in analyzing the results.

Steps in creating the Ec2 instances, coding the IPv4 and IPv6 instances

and creating the public and private subnets with steps in creating the amazon s3

buckets both in IPv4 and IPv6 have been explained. Steps for creating the

WebserverSG security group is also been discussed.

81

Chapter V: Conclusions and Future Work

Results

Amazon Web Services Web Application Firewall (AWS WAF) helps to protect

web applications from common web exploits like SQL injection attacks that could affect

application availability, compromise security, or consume excessive resources.

Amazon’s Elastic Cloud Computing (EC2) platform allows applications to run on an

instantly scalable number of processors on demand, while Amazon’s Simple Storage

System (S3) allows access to a practically infinite allocation of disk space on demand

with multiple layers of security.

1) Does the AWS firewall provide better security than the WAF?

A) Yes, it does provide multiple layers of security at every stage of process to avoid

SQL injection attacks as it provides complete control to the user over the virtual

networking environment, including selection of the own IP address range, creation of

subnets, and configuration of route tables and network gateways as well as creating

public and private subnets.

2) Does AWS provide high performance databases?

A) Amazon S3 provides the most durable, cost effective and highly secured databases.

S3 buckets can be configured to control the access of the data through IAM.

3) Is AWS feasible for any organization?

A) Yes because of the cost-effective system and the users have to pay for what they

use it is very convenient for any scale of organization.

82

Conclusion

 As the WAF was not completely capable of defending the SQL injection attacks,

AWS is being used because of the multiple layers of security and access, it provides for

the databases either by providing a private VPN with gateway authorities or by creating

multiple subnets or by providing access to ports for the databases.

 AWS provides required number of processors on demand as well as a scalable

number of databases on demand with multiple layers of security in the form of VPN’s,

gateways, portals, public and private subnets avoiding the hardware requirements for

the organizations.

 As the subnets can be created public and private the data and the permissions

can be secured and authenticated at different role levels which protect the integrity and

security of the data as the critical information will not be available to all the users.

The storage services particularly Amazon S3 is provided with the gateway services

which blocks the unwanted IP addresses and allows access to the databases only for

the IP addresses registered on S3.

Future Work

 In-depth study of the AWS management console should be carried out like

studying about the glacier, snowball which is an advanced level of data storage services

in AWS. Similarly, creating multiple subnets in IPv4, IPv6 and route 53 privacy.

83

References

Anley, C., “Advanced SQL Injection in SQL Server Applications,” White paper, Next

Generation Security Software Ltd, 2002.

Boyd, S. W., Keromytis, A. D., “SQLrand: Preventing SQL Injection Attacks,” In

Proceedings of the 2nd Applied Cryptography and Network Security (ACNS)

Conference, v. 3089, pp. 292–302, June 2004.

Buehrer, G., Weide, B. W., & Sivilotti, P. A. G. “Using parse tree validation to prevent

SQL injection attacks.” Proceedings of the 5th International Workshop on

Software Engineering and Middleware, Lisbon, Portugal, pp. 106-113.

doi:10.1145/1108473.1108496, 2005.

Cook, W. R., & Rai, S. “Safe query objects: Statically typed objects as remotely

executable queries.” Proceedings of the 27th International Conference on

Software Engineering, St. Louis, MO, USA, pp. 97-106.

doi:10.1145/1062455.1062488, 2005.

Dharam, R.; Shiva, S.G., "Runtime monitors for tautology-based SQL injection attacks,"

Cyber Security, International conference on Cyber Warfare and Digital Forensic

(CyberSec), pp. 26-28, June 2012.

Elia, I. A., Fonseca, J., & Vieira, M., “Comparing SQL injection detection tools using

attack injection” An experimental study Software Reliability Engineering (ISSRE),

IEEE 21st International Symposium on Software Reliability Engineering, pp. 289-

298. doi:10.1109/ISSRE.2010.32, 2010.

84

Gould, C., Su, Z., & Devanbu, P., “JDBC checker: A static analysis tool for SQL/JDBC

applications,” In Proceedings of the 26th International Conference on Software

Engineering, pp. 697-698. doi:10.1109/ICSE.2004.1317494, 2004.

Gould, C., Su, Z., & Devanbu, P., “Static Checking of Dynamically Generated Queries in

Database Applications,” In Proceedings of the 26th International Conference on

Software Engineering, pp. 645–654, doi:10.1109/ICSE.2004.1317494, 2004.

Haldar, V., Chandra, D., & Franz, M., “Dynamic taint propagation for java,” In

Proceedings of the 21st Annual Computer Security Applications Conference

(ACSAC'05), pp. 309-311. doi:10.1109/CSAC.2005.21, Dec 2005.

Halfond, W. G., Viegas, J., & Orso, A. “AMNESIA: Analysis and monitoring for

Neutralizing SQL-injection attacks,” Proceedings of the 20th IEEE/ACM

International Conference on Automated Software Engineering, Long Beach, CA,

USA, pp. 174-183, doi:10.1145/1101908.1101935, Nov 2005.

Halfond, W. G., Viegas, J., & Orso, A. “Combining Static Analysis and Runtime

Monitoring to Counter SQL-Injection Attacks,” In Proceedings of the Third

International ICSE Workshop on Dynamic Analysis (WODA 2005), St. Louis, MO,

USA, pp. 22–28, doi:10.1145/1101908.1101935, May 2005.

Halfond, W. G., Viegas, J., & Orso, A. (2006, March). A classification of SQL-injection

attacks and countermeasures. In Proceedings of the IEEE International

Symposium on Secure Software Engineering (Vol. 1, pp. 13-15). IEEE.

Howard, M., & Leblanc, D. E., “Writing secure code,” (2nd ed.). Redmond, WA, USA:

Microsoft Press, 2003.

85

Huang, Y., Huang, S., Lin, T., & Tsai, C., “Web application security assessment by fault

injection and behavior monitoring,” Proceedings of the 12th International

Conference on World Wide Web, Budapest, Hungary, pp. 148-159.

doi:10.1145/775152.775174, 2003.

Huang, Y., Yu, F., Hang, C., Tsai, C., Lee, D., & Kuo, S., “Securing web application

code by static analysis and runtime protection,” Proceedings of the 13th

International Conference on World Wide Web, New York, NY, USA, pp. 40-52.

doi:10.1145/988672.988679, 2004.

Kar, D., Panigrahi, S., & Sundararajan, S. (2016). SQLiGoT: Detecting SQL injection

attacks using graph of tokens and SVM. Computers & Security, 60, 206-225.

Kiani, M., Clark, A., & Mohay, G., “Evaluation of anomaly-based character distribution

models in the detection of SQL injection attacks.” Third International Conference

on Availability, Reliability and Security, pp. 47-55. doi:10.1109/ARES.2008.123,

2008.

Litchfield, D., “Web Application Disassembly with ODBC Error Messages,” Technical

document, @Stake, Inc., 2002.

Livshits, V. B., & Lam, M. S., “Finding security vulnerabilities in java applications with

static analysis.” Proceedings of the 14th Conference on USENIX Security

Symposium, Baltimore, MD. Volume 14, pp. 271–286, Aug. 2005.

Labs, S., “SQL Injection,” White paper, SPI Dynamics, Inc., 2002.

http://www.spidynamics.com/assets/documents/ WhitepaperSQLInjection.pdf.

86

Mathew, M., “Amazon Web Services Architecture,” White Paper, Amazon Web

Services, Inc., 2006.

https://aws.amazon.com/security/documents/WhitepaperAWSWAF.pdf.

Martin, M., Livshits, B., & Lam, M. S., “Finding application errors and security flaws

using PQL: A program query language.” In Proceedings of the 20th annual ACM

SIGPLAN conference on Object oriented programming systems languages and

applications (OOPSLA 2005), v. 40(10), pp. 365-383.

doi:10.1145/1103845.1094840, 2005.

McClure, R. A., & Kruger, I. H., “SQL DOM: Compile time checking of dynamic SQL

statements.” Proceedings of 27th International Conference on Software

Engineering. ICSE 2005. pp. 88-96, doi:10.1109/ICSE.2005.1553551, 2005.

McDonald, S., “SQL Injection: Modes of attack, defense, and why it matters,” White

paper, GovernmentSecurity.org, April 2002.

Pietraszek, T., & Berghe, C. V., “Defending against injection attacks through context-

sensitive string evaluation.” Proceedings of the 8th International Conference on

Recent Advances in Intrusion Detection, Seattle, WA. pp. 124-145.

doi:10.1007/11663812_7, 2006.

Pinzón, C., Paz, J. F. D., Bajo, J., Herrero, Á., & Corchado, E., “AIIDA-SQL: An

adaptive intelligent intrusion detector agent for detecting SQL injection attacks.”

2010 10th International Conference on Hybrid Intelligent Systems, pp. 73-78.

doi:10.1109/HIS.2010.5600026, Aug 2010.

87

Sadeghian, A., Zamani, M., & Ibrahim, S., “SQL injection is still alive: A study on SQL

injection signature evasion techniques.” 2013 International Conference on

Informatics and Creative Multimedia, pp. 265-268. doi:10.1109/ICICM.2013.52,

2013.

Sadeghian, A., Zamani, M., & Manaf, A. A., “A taxonomy of SQL injection detection and

prevention techniques.” 2013 International Conference on Informatics and

Creative Multimedia, pp. 53-56. doi:10.1109/ICICM.2013.18, Sept 2013.

Sadeghian, A., Zamani, M., & Manaf, A. A., “A taxonomy of SQL injection detection and

prevention techniques.” 2013 International Conference on Informatics and

Creative Multimedia, pp. 53-56. doi:10.1109/ICICM.2013.18 Sept 2013.

Spett, K., “Blind SQL injection,” White paper, SPI Dynamics, Inc., 2003.

http://www.spidynamics.com/whitepapers/ Blind SQLInjection.pdf.

Scott, D., & Sharp, R., “Abstracting application-level web security.” Proceedings of the

11th International Conference on World Wide Web, Honolulu, Hawaii, USA, pp.

396-407. doi:10.1145/511446.511498, 2002.

Su, Z., & Wassermann, G., “The essence of command injection attacks in web

applications.” In The 33rd Annual Symposium on Principles of Programming

Languages (POPL 2006) SIGPLAN Not., 41(1), pp. 372-382.

doi:10.1145/1111320.1111070, Jan 2006.

Tajpour, A., & Shooshtari, M. J. z., “Evaluation of SQL injection detection and

prevention techniques.” 2010 2nd International Conference on Computational

88

Intelligence, Communication Systems and Networks, pp. 216-221.

doi:10.1109/CICSyN.2010.55, July 2010.

Valeur, F., Mutz, D., & Vigna, G., “A learning-based approach to the detection of SQL

attacks.” Proceedings of the Second International Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment, Vienna, Austria. pp. 123-

140. doi:10.1007/11506881_8, July 2005.

Wan, M., & Liu, K., “An improved eliminating SQL injection attacks based regular

expressions matching.” 2012 International Conference on Control Engineering

and Communication Technology, pp. 210-212. doi:10.1109/ICCECT.2012.235,

Dec 2012.

Wassermann, G., & Su, Z., “An Analysis Framework for Security in Web Applications,”

In Proceedings of the FSE Workshop on Specification and Verification of

Component-Based Systems (SAVCBS 2004), pp. 70–78, 2004.

Wei, K., Muthuprasanna, M., & Kothari, S., “Preventing SQL injection attacks in stored

procedures.” Australian Software Engineering Conference (ASWEC'06), v.8, pp.

18-21. doi:10.1109/ASWEC.2006.40, April 2006.

Wu, X., & Chan, P. P. K., “SQL injection attacks detection in adversarial environments

by k-centers.” 2012 International Conference on Machine Learning and

Cybernetics, pp. 406-410. doi:10.1109/ICMLC.2012.6358948, July 2012.

Zhang, K. X., Lin, C. J., Chen, S. J., Hwang, Y., Huang, H. L., & Hsu, F. H., “TransSQL:

A translation and validation-based solution for SQL-injection attacks.” 2011 First

89

International Conference on Robot, Vision and Signal Processing, pp. 248-251.

doi:10.1109/RVSP.2011.59, Nov 2011.

	St. Cloud State University
	theRepository at St. Cloud State
	5-2018

	Prevention of SQL Injection Attacks using AWS WAF
	Mohammed Kareem
	Recommended Citation

	tmp.1525887969.pdf.OhInQ

