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Abstract 

The purpose of this paper is trying to use air monitoring data of Particulate Matter (PM 

2.5) from 19 monitoring sites in Minnesota, to determine the correlations between PM 2.5 and 

the influencing factors, such as road traffic, tree space area, and rainfall. The study will be based 

on pollutant data which were from Environment Protection Agency (EPA) and Minnesota 

Pollution Control Agency (MPCA), then through regression analysis and Pearson correlation 

analysis to determine the correlations of all variables. The correlation analysis results between 

PM 2.5 concentration and three variables (tree space area, traffic volume, and rainfall) showed 

that tree space area ratio had a negative, traffic volume had a positive and rainfall had a negative, 

correlation with PM 2.5 in Minnesota urban. The air traffic volume had a positive correlation 

with PM 2.5 in airport areas. 

 

In this study, GIS system is a useful tool for geostatistical analysis. It can be used for 

Normalized Difference Vegetation Index (NDVI) analysis, raster data geoprocessing, and kriging 

spatial analysis. 
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Chapter I: Introduction 

Background 

 Air pollution is a major problem worldwide and is having a seriously deleterious effect 

on human health. The common manifestations of air pollution effects include hard breathing and 

aggravation of existing respiratory diseases (Burnett et al., 2000). Even low levels of air 

pollution have bad influences on human health when people stay in this environment over long 

periods of time (Olmo et al., 2011). A high number of people are being exposed to low levels of 

air pollution; it will still cause a relatively high risk to public health. 

 At the same time, McCarty, Hafner, and Montzka (2006) studied the background 

concentrations of 18 air toxins in North America, and found that the background concentration of 

benzene, chloroform, formaldehyde, and fine particulate was higher than cancer benchmark 

values in the region, and these four also were higher than the cancer benchmarks recommended 

by the Environmental Protection Agency (EPA). Therefore, even in low traffic areas, the 

pollution from man-made sources could also raise the level of total air pollution concentration 

limits and cause hazardous illnesses to human health.  

 Based on the kinds of vehicle pollution exhaust on the road, the EPA and MPCA 

(Minnesota Pollution Control Agency) have rigid environmental-based criteria for some 

pollutants, such as ozone (O3), particulate matter (PM), carbon monoxide (CO), and nitrogen 

oxides (NOX). EPA and MPCA both use National Ambient Air Quality Standards (NAAQS) 

(Environmental Protection Agency, n.d.) as the standards. The purpose of these criteria is to 

avoid overexposure to humans, keep the high air quality level and protect people's health. This is 

because some results from medical studies have found associations between traffic-related 

pollution and health. For example, long-term exposure of the human body to combustion-related 
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fine particulate air pollution has become a significant risk factor for lung cancer or lung disease 

mortality (Cordioli et al., 2014).  

 It is because air quality is so closely related to people's lives that a lot of scientists and 

country governments work on solving the air pollution problem. After the Great Smog of 

London in 1952, the main solution to the air pollution is reducing the sources of pollutant. It 

means reducing pollutant emissions from the source. With science and technology developing, 

many heavy air polluting industries have disappeared. But another pollution source is still here, 

and it is the vehicles (Adedeji, Oluwafunmilayo, & Oluwaseun, 2016). Therefore, when source 

control is not feasible, how to reduce pollution become important. Scientists started to focus on 

the green vegetation as one way of reducing non-point pollution.  

 Some studies have suggested that green vegetation could absorb or settle air pollutants, 

such as gas pollutants and particulate matters. The particulate matter pollution of urban areas is 

currently the major problem in air quality management (Huang et al., 2014). A lot of Chinese 

and developing countries’ news show the fact. Especially in China, atmospheric particulate 

matter pollution has affected people's daily lives (Chen et al., 2016). Although the USA is not 

commonly experiencing a lot of particulate matter pollution, it has a good environment to study 

the relationship between particulate matter pollution and traffic and vegetation without industrial 

pollutant effect. 

 In the study of the urban haze (serious particulate air pollution), PM 2.5 is the major part. 

PM 2.5 means fine particles with a diameter of 2.5μm or less. They usually have the complex 

chemical composition, small particle size, and long-term stay in the atmosphere (Seo et al., 

2016). Those properties make the PM 2.5 more stable in air, so they can impact the environment 

significantly. PM 2.5 has the abilities to reduce visibility and changing cloud formation 
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processes. PM 2.5 contains harmful compounds such as acids and heavy metals. Those can 

directly impair human health - especially respiratory functions (Grigg, 2011). Because PM 2.5 is 

directly related to human health, research on PM 2.5 reduction is necessary. Ji et al. (2013) 

pointed that green plants were natural enemies of PM 2.5 fine particles. 

 The study area here is in the state of Minnesota. The total area of Minnesota is 

approximately 225,163 km2. According to the United States Census Bureau, the estimated 

population of Minnesota is 5,519,952 in 2016. The main source (80 %) of PM 2.5 in Minnesota 

monitoring site areas are vehicle emissions and road dust, which is also caused by vehicles. 

According to the Bureau of Transportation Statistics (2016), there were a total of 4.82 million 

registered vehicles in Minnesota. Most PM 2.5 monitoring sites are away from industrial 

pollution sources. Therefore, the study can focus on the vehicle pollutant in Minnesota. 

 This study was undertaken to analyze the green space ratio, traffic flow, and their impact 

on PM 2.5 concentrations in Minnesota using ArcGIS as a tool. The following analysis discusses 

their relationship and how their impact on PM 2.5 can be quantified. 

Purpose 

 As people have known about the health and environmental risk of air pollution for a long 

time, a large number of air pollution models have been developed. The use of air pollution 

models is common in studies of public health. However, all have one major limitation: the use of 

fixed measuring stations or at EPA and MPCA established locations that approximate only part 

of the total daily information. If the subject under study spends most of his/her time in areas that 

are far from the point where the pollution is detected, the air pollution data are neither available 

nor reliable. 
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 The aim of this paper is to address this limitation and study the relationship between 

urban vegetation, road pollution, and particulate contamination in Minnesota and determine if a 

model of PM 2.5 concentration and tree space ratio and road pollution can be produced. This 

model should be able to provide a snapshot of the level of pollution on a daily basis and at any 

place in Minnesota without relying on existing pollution monitoring stations. 

Objectives 

 To address research aim, the specific research objectives are presented as follows: 

 (1) To gather the data of the particulate concentration in selected counties or cities; 

 (2) To calculate or gather the data of the tree space ratio of the selected county or city; 

 (3) To calculate or gather the data about traffic flow in selected counties, cities or 

selected area; 

 (4) To analyze the data and figure out the association; 

 (5) To apply GIS for the visualization of the association's effect on the particulate 

concentration in Minnesota. 
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Chapter II: Literature Review 

 The major particulate matter pollution is resulting from the burning of fossil fuels by 

transportation and industrial sources. The effect tends to appear in densely populated 

metropolitan areas in developing countries and industrial areas in both developed and developing 

countries. For example, developing countries: some cities in China and Mongolia (World Bank, 

2009); developed counties: coal mining areas in Australia (Milman, 2015). Lee, Olsen, 

Wuebbles, and Youn (2013) studied the PM 2.5 distribution in Europe and found the airport 

average was a little bit higher than the surrounding area without industrial pollution. And they 

thought aviation emissions would be sources of PM 2.5. 

The Relationship between Vegetation and PM 

 In these studies, the major particulate matter is PM 10 and PM 2.5. PM 10 is fine 

particles with a diameter of 10μm or less; PM 2.5 is fine particles with a diameter of 2.5μm or 

less. There are several types of association between particulate matter and vegetation. 

 Vegetation structure effect on PM. Vos, Maiheu, Vankerkom, and Janssen (2013) 

studied the impact of the urban street vegetation structure on air pollution. In their study, they 

use ENVI-met model simulation urban structure and assessed the effectiveness of 19 different 

real-life urban street vegetation designs. This study did not show that urban street vegetation can 

reduce air pollution. Some models even show that urban vegetation structure actually impacts the 

flow of urban air, and makes air pollution worse. Therefore, they proposed vegetation structure 

may have a negative impact on the environment and build the model to point out vegetation 

species that can negatively affect air quality: “Low green barriers do have a negative effect on air 

quality at the leeward side of the canyon. Higher hedges do not increase concentrations on the 

windward side of the canyon.” The results also indicate that if decreasing tall vegetation such as 



16 

 

having fewer trees, the pollutant concentrations would be lower. In conclusion, the distinct air 

quality improvement model is only one design. In almost all other designs, roadside urban trees 

have a detrimental effect on the local air quality. The value of the deposition speed is hardly 

affecting the air quality impact of trees in a street canyon. This shows that for urban vegetation 

along inner city roads, it is mainly the aerodynamic effect that determines the effect on the air 

quality and not the pollutant removal capacity (Gromke, 2011). 

 Vegetation effect on PM. According to Setälä et al. (2012), in northern conditions 

(Helsinki in Finland), there was no evidence that urban vegetation can remove significant 

amounts of common gaseous pollution (NO2 and VOCs). On the other hand, two of five 

common air contaminants or airborne particles show the passive effect (20% - 40% PM 2.5 and 

PM 10 removal) in tree-covered areas. But other parts of the sample don't show a significant 

difference between open area and tree-covered area. Alaviippola and Pietarila (2011) have the 

similar idea, and they also show air quality in tree-covered areas improved a little (15% - 20%) 

when compared to treeless areas. This result did not show a significant difference due to seasonal 

change. Owing to lack of enough measure time, Setälä et al. (2012) did not have enough results 

to show the effective influence of vegetation structure on air pollutant concentrations and 

influences of season and local wind conditions on pollution concentrations. They focused on the 

deciduous trees. The measurements were made during summer and winter; therefore, the big 

problem was the seasonality effect. However, in their study, they did not manage to analyze the 

difference between seasons. 

 Also, the grasses are affected by the season. According to Weber, Kowarik, and Säumel 

(2014), vegetation can well absorb particulate matter when it is close to the pollutant source and 

has large contact areas. Hence, roadside vegetation is expected to have a considerable effect on 
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reducing environmental particulate pollution. They agree that “urban roadside vegetation 

consists of a variety of vegetative structures beyond trees, including lawns and other types of 

herbaceous vegetation which could contribute to the immobilization of PM (Litschke & Kuttler, 

2008).” However, they focus on herbaceous roadside vegetation and assess the role of species 

traits. The authors analyzed randomly sampled wild herbaceous plant leaves on three sites in 

Berlin with low, medium, and high traffic densities. Site selection was based on results of vehicle 

counts by local authorities. In total, they sampled 16 species of plants and used a microscope 

with magnification x200 to determine number and size of particles and type of particles. The 

authors analyzed 16 kinds of plants. These plants have different sizes, different shapes and leaf 

areas, and different leaf roughness. They also analyzed the difference between a single plant and 

mixing plants for PM deposition. They found that with higher traffic density, there was more 

deposited particulate matter. The plants, which have rough leaves, can adsorb more PM. 

Although they point out that many plants do not show differences in PM deposition, mixed 

plants can increase the immobilization of a wide range of PM. Furthermore, tall-growing herbs 

with leaves can accumulate PM more significantly than low-growing species. They also found 

planting trees and grasses together can enhance air filtration capacity of roadside vegetation 

beyond trees. However, if there is only grass, the PM value is not significantly different. 

 In addition, there is another type of urban vegetation, like evergreen trees. They are not 

affected by the seasonality of climate (Freer-Smith, El-Khatib, & Taylor, 2004). The evergreen 

species’ effects on PM accumulation have been studied (Freer-Smith, Beckett, & Taylor, 2005; 

Cavanagh, Zawar-Reza, & Wilson, 2009; Sæbø et al., 2012). However, in most of these studies, 

the time was limited and usually near the end of the growing season. Przybysz, Sæbø, Hanslin, 

and Gawroński (2014) studied three evergreen plants, which were Taxus baccata, Pinus 
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sylvestris, and Hedera helix. They pointed out that evergreen plants may have better ability to 

deal with the problem because their leaves will not fall down in winter. They also agreed that 

deciduous plants had better results when the leaves were present because they had bigger leaf 

surfaces. At the same time, Armbrust (1986) pointed out that the rainfall can wash off 30% - 

40% PM pollutant. It can help plants to have more area to absorb PM and it does not form 

secondary pollution. 

 PM effect on vegetation. There are a lot of air-pollutants coming from road traffic in the 

urban environment, and many of these pollutants can be absorbed by urban vegetation. However, 

at the same time, these pollutants can also affect the plant's growth, phenology and leaf surface 

characteristics. Przybysz et al. (2014) and Honour et al. (2008) found that particulate matter can 

affect vegetation negatively. For instance, Honour et al. (2008) built fumigation system to 

simulate the real environment exhaust, such as vehicles and industries. In the experiment, they 

monitored the reproduction and growth of plants and found PM 2.5 would increase plants leaves 

aging and death when the leaves surface was covered too much PM 2.5 because PM 2.5 would 

hinder the respiration of leaves. However, they found that particulate matter is water-soluble, and 

the bad effect will disappear after rainfall wash off the pollutant. 

Temperature Effect on PM 2.5 

 Lai (2018) studied the influence of the urban heat island (UHI) effect on particulate 

matter (PM; including PM 2.5 and PM 10). In his study, he found that PM accumulation was 

associated with anthropogenic emissions. For example, there was more evident during the peak 

period of anthropogenic emissions than during the trough period of anthropogenic emissions. 

And some UHI area, which is caused by increasing temperature, will have the little PM value 

decrease than surrounding area. However, he did not find an obvious direct relationship between 
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the temperature or heat island effect and PM. Wang and Ogawa (2015) found a negative 

correlation between temperature and PM 2.5 value. However, Chen et al. (2017) found a Positive 

association between temperature and PM 2.5 value. 

Pollution Model 

 Model for PM measurement. Jeanjean, Leigh, and Monks (2016) suggested that green 

infrastructure can reduce PM2.5 traffic emissions on a city scale, by a combination of dispersion 

by trees and deposition on buildings, trees, and grass. They used a CFD model to simulations of 

PM 2.5 concentrations and validated the effect. At the same time, Jeanjean, Leigh, and Monks 

(2016) found that wind speed can affect the reduction in PM 2.5 level’s effect. When wind speed 

is over 4.6 m/s, PM 2.5 will show an increasing trend in road area, and a decreasing trend in the 

open area. When wind speed is around 1.0 m/s, PM 2.5 will show no significant change. 

However, Chen et al. (2017) found a negative correlation between wind speed and PM 2.5 value. 

Wang and Ogawa (2015) did find the significant relation between wind and PM 2.5 in Japan. 

Based on Armbrust (1986), Beckett, Freer-Smith, and Taylor (2000) and Van Heerden, Krüger, 

and Kilbourn Louw (2007) figured out both the effects of tree aerodynamics and the deposition 

capabilities of trees and grass. “The results display that the aerodynamic dispersive effect of trees 

on PM 2.5 concentrations results in a 9.0% reduction” (Brantley, Hagler, Baldauf, & Deshmukh, 

2014). “In contrast, a decrease of PM 2.5, by 2.8% owing to deposition on trees (11.8 ton per 

year) and 0.6% owing to deposition on grass (2.5 ton per year), was also observed (Jeanjean, 

Leigh, & Monks, 2016)”. In the CFD model, the air flow is a steady flow. Therefore, the 

measurement of PM 2.5 will think about time-dependent effects such as fluctuations in wind 

speed or direction. They also mentioned that PM 2.5 will not change when the atmosphere height 

is over 500 meters. 
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 GIS model for pollutants (PM et al.) 

 First model. Seo et al. (2016) studied associations between the level of PM 10 and 

allergic diseases to evaluate whether PM 10 have the impact on allergic diseases or not. They 

used GIS to visualize the relationship and built a geographically weighted regression model 

(GWR). In their measurement, there are not enough monitoring stations for 424 sub-districts, 

hence they used spatial interpolation technique to deal with air data, and keep them correspond 

with the disease prevalence data. In data analysis, they used multiple regression models to assess 

the impact of PM 10 on the prevalence of each allergic disease. At the same, they also compared 

them with the average values of temperature, wind speed, and precipitation to make sure all 

effect factors existed. Upon dealing with allergic disease prevalence, they use an ordinary least 

square (OLS) regression analysis to compare with pollutants data. In spatial heterogeneity 

analysis, they performed geographically weighted regression (GWR) analysis. According to the 

statistics of data and spatial correlations, they found that “only the prevalence of atopic 

dermatitis was significantly associated with the level of PM 10 interpolated at the sub-district 

level”, but “the prevalence of asthma [and] allergic rhinitis had the relatively small associations 

of air pollution (Seo et al., 2016).” 

 Second model. Tashayo and Alimohammadi (2016) set 17 air pollution monitoring 

stations and use hierarchical fuzzy inference system (HFIS) to develop optimized their own 

system based on the pollutants test data (daily PM 2.5, annual mean PM 2.5, daily nitrogen 

dioxide (NO2), and annual mean NO2) and the modeling parameters (transportation, land use, 

and meteorological conditions). According to the authors, the article uses a three steps procedure 

to build HFIS. The first step is “Preprocessing techniques are used for sample extraction” 

(Tashayo & Alimohammadi, 2016). They divide the data into two groups: one is meteorological 



21 

 

data used for probabilistic preprocessing, and another is used for land use and traffic data used to 

geographic analysis preprocessing in GIS. Around the air pollution monitoring stations, they use 

buffer analysis to prepare the traffic and land use data. Each buffer was the PM 2.5 and NO2 

emission sources. The second step is initializing HFIS. They used HFIS with hybrid distribution 

to overcome exponential rule explosion and a loss of accuracy. Firstly: to set domains of 

variables as fuzzy regions. Secondly: to use data pairs to generate fuzzy rules. Thirdly, to assign 

each rule a degree. And then, to select the highest degree rule based on the same premises and 

different conclusions. The third step is that “A multiple objective particle swarm optimization 

(MOPSO) is applied for simultaneous optimization of the accuracy and complexity of the system 

built in step 2” (Tashayo & Alimohammadi, 2016). In this step, they use the “Wang-Mendel” 

method to get the initial knowledge base. They needed not only the number of rules and root-

mean-square error but also specific objective function to calculate the data. According to the 

measurement and analysis results, their model indicates the capability of modeling non-linear 

relationships between influence parameters and air pollution. This study built an optimized HFIS 

to give us “a flexible framework for combining qualitative, quantitative, and non-homogeneous 

data” (Tashayo & Alimohammadi, 2016). 

 Third model. Holford et al. (2010) built a framework by using generalized linear models 

(GLMs) and generalized linear mixed models (GLMMs) to define the association between traffic 

densities and health response variable. Through Geographic Information Systems (GIS), they 

show the model with a pattern of highways, and the model also includes pollutant levels, wind 

direction, meteorology, and topography. This model is similar to a distance-weighted approach. 

They separate their pollutants sources into three types. The first is point sources of exposure. 

They regard the pollutant source as a single point and plot its longitude/latitude coordinates onto 
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a plane in GIS. The coordinate system they used is UTM or universal transverse Mercator 

projection. The second is line sources of exposure. They considered traffic-related air pollution is 

from a locus of points on lines representing roadways. It shows a line for highway segments. The 

third is area sources of exposure. It means that “Area sources of environmental exposure can 

arise from the spreading of a potential pollutant over a region. (Holford et al., 2010)” In order to 

estimate their dispersion function in general linear model (GLM), they introduce the regresses, 

specify function type, and introduce the intensity and other covariates and then transfer the data 

into GIS. In their study, they used two examples to show and explain their model. One is 

estimating the distribution of traffic-related pollution, and another is effects of traffic on 

respiratory symptoms. Based on these examples, they have enough supporting data, information, 

analysis, and discussion to effectively support the modeling. They successfully built a model to 

estimate effects of exposure to traffic-related pollution using publicly available data. 

 Fourth model. Cordioli et al. (2014) used self-reported and GIS-derived residential area, 

which is exposed to environmental pollution, to set case-control and study lung. In their research, 

there were 649 objects of inquiry from the Province of Modena. They give the information about 

their residential history and perceived exposure. And then, the authors used GIS to evaluate land 

use patterns for each residence. Most of the residences were proximal to major roads and 

exposed to industrial pollution. The cancer data were from the Mirandola Health District, 2009 - 

2010. In GIS, the coordinate system is UTM 32, datum ED 50. The GIS data visualization is 

working on ArcGIS (v.9.3), and the post-elaboration is used by Stata (SE v.12 and R v.2.13.1). 

For the road traffic, it separated three parts: major, secondary, and minor. The statistical result 

shows that most residences reported being on a “quiet road”. Land use is based on the 

neighborhood with three concentric buffers within a radius of 250, 500 and 1000 m. The Chi-
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square test is highly significant. It shows that the zone of residence is predominantly: rural and 

residential. The pollution data (total suspended particles and volatile organic compounds) were 

from the Regional (Italian) Environmental Protection Agency. The industrial has the higher 

pollution. According to the authors, “the results of their work showed moderate to good 

agreements between GIS-derived proxies of exposure to environmental risks and self-reported 

evaluation from a questionnaire. Nevertheless, it is important to provide evidence of the validity 

of these new tools with respect to ‘classical’ epidemiological methods (Cordioli et al., 2014).” 

 Fifth model. Chen et al. (2012) used a two-stage approach to build a spatiotemporal 

model. Before building the model, they assumed that pollutant levels of a metropolitan area, 

spatial and temporal variations in concentrations may be decomposed separately. Based on this 

assumption, they get the following two stages. Stage one is modeling for daily mean temporal 

trend. Use their formula to get the average of the K monitoring station. Stage two is using spatial 

interpolation for land-use regression. Based on their model, they get the average daily PM 2.5 

concentrations are 28.35µg/m3. Then they use simple LUR and kriging method for site-specific 

annual-average PM 2.5 predictions. They compared for their performance in daily PM 2.5 

concentration predictions. After analysis and discussion of the result, they prove that “the 

proposed method successfully divides the dates of the study period into approximately temporal-

invariant homogeneous subgroups with separate LUR models for daily PM 2.5 concentration 

predictions, which had in general better performance in comparison with a single LUR model 

(Chen et al., 2012).” 

 Sixth model. Pantaleoni (2013) has a useful model which could be used to study for the 

association between traffic flow and PM 2.5. In the study, the pollutant is carbon monoxide 
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(CO); however, the method to build a model with using GIS to compare pollutants to traffic flow 

can be used for any other pollutant. The following is the method: 

 The study location is selected at Nashville, Knoxville, Memphis, and Chattanooga in 

Tennessee. The reason they choose Carbon Monoxide as the pollutants test data is that 60% of 

emission sources are vehicles in the USA. Using Baker’s method, she calculated the 

concentrations of CO. Also, she chose climatic data such as wind speed and temperature as 

dependent data. The data were from the National Climatic Data Center (2000 - 2008) for 10 

stations. Traffic data are the annual average daily traffic (AADT) data, which were from the 

Tennessee Department of Transportation (TNDOT). These data were collected at 5,710 locations 

for each year, from 2000 to 2008 about 3,288 days. Also, the traffic count data rely on the daily 

traffic flow patterns for seven days per week. Software: ArcGIS. Use ArcGIS software to convert 

the coordinates to points, and plot on a Tennessee map. The validated data: daily CO records by 

Environment Protection Agency (EPA) sites from 2000 to 2008. There were 10 stations 

separated at study location. In this paper, the author “build the model on traffic flow data and 

combine it with climatic factors using a GIS interface” to “present an air pollution model capable 

of determining the level of carbon monoxide on a day to day basis” (Pantaleoni, 2013). Through 

linear regressions, Pearson correlation coefficients, and interval analysis, she got a relationship 

between elements. After analysis data, she uses ArcGIS to map the air pollution. In this research, 

she “builds the model on traffic flow data and combines it with climatic factors using a GIS 

interface” to “present an air pollution model capable of determining the level of carbon 

monoxide on a day to day basis.” (Pantaleoni, 2013) 
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GIS Application in Air Pollution Study 

 GIS technology is often used in air pollution research. For instance, GIS technology is 

suitable for the dynamic monitoring and analysis of the atmospheric environment, the use of GIS 

technology and database management techniques to collect and sort out the main pollutants, the 

scope of the proliferation of pollutants, the surrounding terrain and the presence of air pollution 

risks of plant enterprises and their location information, the establishment of a geographic 

information database, and then obtain the concentration distribution of pollutants in the 

atmosphere by GIS spatial analysis and data display, and finally get the spatial distribution of 

pollutants and the situation of exceeding the standard. Seo et al. (2016) used GIS to analyze 

spatial correlations, visualize the relationship and built the normal model between PM10 and 

allergic diseases. 

 Sargazi et al. (2011) focused on the application of GIS for the modeling of the spatial 

distribution of air pollutants. In their research, the study area was around the city of Tehran in the 

northern part of Iran with the total area of 18,909 square kilometers. In 2008, they set 16 air 

pollution monitoring stations in Tehran to measure the hourly CO concentration. Then they 

average the hourly data of a day as the mean daily CO concentration. At the same time, they 

measure the 3-hourly wind speed and direction data of the five meteorological stations to 

decrease the error. They used four geostatistical methods to analyze the data in GIS. The four 

geostatistical methods were inverse distance weighting (IDW), thin plate splines (TPS), kriging 

and cokriging methods. Inverse distance weighting method estimates the value of an attribute at 

non sampled points. Thin plate splines calculate the observed value of the studied parameter. 

Using kriging o inset the value of a random field at an unobserved location from observations of 

its value at nearby locations. Cokriging is an extension of kriging. They also build their 
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algorithm to solve their problem. They put the 3-hourly wind speed and direction data and daily 

into ArcGIS software, and use IDW, TPS, kriging, and cokriging to implement all data. Then 

they determine the optimum values of the parameters of interpolation methods through cross-

validation technique. After the optimum values are determined, they determine the best method 

for hourly and daily interpolation. Then show the spatial distribution maps of carbon monoxide 

concentration in Tehran. Finally, the wind speed and direction data layer are overlaid on the 

spatial distribution map of carbon monoxide concentration in the GIS environment. 

NDVI and Green Space Ratio 

 According to Oštir (2006), the remote sensing is the detection, recognition, or evaluation 

of objects by means of distant sensing or recording devices. From the history of remote sensing 

developed, digital remote sensing developed rapidly from aerial photography and photo 

interpretation in the past 30 years. Information, which extracted visually from remote sensing, is 

widely used in forestry, urban planning and Vegetation Disease Research (Franklin, 2001). 

Remote sensing can give the information which is to prove the importance and complexity of 

forest preservation and sustainable forest management (Pagiola, Landell-Mills, & Bishop, 2002). 

One of the methods is to evaluate a normalized difference vegetation index (NDVI) in local 

forest management (Weier & Herring, 2000). 

 “NDVI is actually a simple graphic indicator that can be used to analyze remote sensing 

measurements, whether the target observed contains live green vegetation or not” (Jovanović, 

Milanović, & Zorn, 2018). NDVI could simply and quickly identify vegetated areas and their 

condition, and it is the best-known and most-used index for detecting live green plant canopies 

by using multispectral remote sensing data (Jovanović, Milanović, & Zorn, 2018). NDVI 

allowed comparisons between images acquired at different times.  
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 According to Kriegler, Malila, Nalepka, and Richardson (1969), they were the earliest 

persons, who formulated the normalized difference spectral index, and the NDVI is calculated 

from these individual measurements as follows: 

NDVI =
NIR − Red

NIR + Red
 

 NIR is the color infrared band of imagery. 

 Red is the red band of color imagery. 

 In the formula, red stands for the spectral reflectance measurements acquired in the red 

(visible) regions, and NIR stands for the spectral reflectance measurements acquired in the near-

infrared regions. By design, the NDVI itself thus varies between -1.0 and +1.0. It should be 

noted that NDVI is functionally, but not linearly, equivalent to the simple infrared/red ratio 

(NIR/VIS). The advantage of NDVI over a simple infrared/red ratio is therefore generally limited 

to any possible linearity of its functional relationship with vegetation properties. In general, the 

urban area NDVI is from 0 to 0.3 and with vegetation the range is from 0.3 to 1.  

 According to Jovanović, Milanović, and Zorn (2018), NDVI of dense vegetation canopy 

tends to have positive values which are from 0.3 to 0.8. In detail, water, clouds, and snowfields 

show as negative values of this index or very low positive. Soils generally tend to generate rather 

small positive NDVI values from 0.1 to 0.2. When soils and sands are dry or rocky, they tend to 

have very low values of NDVI, less than 0.1. Shrub and grasslands have values from 0.2 to 0.3. 

Temperate and tropical rainforests generally have higher values from 0.6 to 0.8. In their research, 

the difference between NDVI and the official forest area estimates is from 0.2 % to 4.7%. When 

compared with official forest area estimates, the NDVI results show a mere +0.12 km2 (+0.2%) 

difference. In their opinion, the ± 5% margin of error is allowed for this method, “but they also 
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allow room for further analysis and investigation (Jovanović, Milanović, & Zorn, 2018).” The 

reason is that the aerial photos were generally taken during spring and summer time; however, 

official forest area estimates are made at the end of the year. By contrast, NDVI values may be 

expected to be higher than the real. At the same time, they compared between NDVI and 

CORINE land cover classes. They found the NDVI data were more similar to the real forest area 

estimates. 
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Chapter III: Methodology 

Study Area 

 The study area for this project is the state of Minnesota, located in the north of the United 

States of America (Figure 1). The state is located between 43 - 50°N latitudes and 89 - 98°W 

longitudes. The total area of Minnesota is approximately 225,163 km2. According to Minnesota 

Pollution Control Agency (MPCA), there are 24 air monitoring sites located in 19 cities of MN 

in 2016. Among them, Minneapolis and Duluth have two monitoring points each, while St Paul 

has three monitoring sites. All monitoring sites belong to Minnesota Pollution Control Agency. 

At each site, there were no surrounding buildings over 20 meters higher than the monitors, and 

there was less industrial facilities pollutant effect to ensure getting an effective relationship 

between PM concentrate and traffic condition. In Minnesota, all selected sites do not have much 

industrial pollution surrounding them. The tables 1 and 2 listed the details for each monitoring 

site. According to the coordinates from MPCA 2018 Annual Air Monitoring Network Plan, the 

monitoring site locations can be plotted in Figure 1. 
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Figure 1: Monitoring sites and a location map for Minnesota within the United States 
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Table 1 

Monitoring site locations and ID 

County City MPCA Site ID Latitude Longitude Setting 

ANOKA Blaine 6010 45.1407 -93.2220 Suburban 

BECKER Detroit Lakes 2013 46.8499 -95.8463 Rural 

BELTRAMI Red Lake 2304 47.8782 -95.0292 Rural 

CARLTON Cloquet 7417 46.1737 -92.5117 Rural 

COOK Grand Portage 7810 47.9701 -89.6910 Rural 

CROW WING Brainerd 3204 46.3921 -94.1444 Rural 

DAKOTA 
Apple Valley 470 44.7387 -93.2373 Suburban 

Lakeville 480 44.7061 -93.2858 Suburban 

HENNEPIN 

St. Louis Park 250 44.9481 -93.3429 Suburban 

Minneapolis 962 44.9652 -93.2548 Urban 

Minneapolis 963 44.9535 -93.2583 Urban 

LAKE Ely 7001 47.9466 -91.4956 Rural 

LYON Marshall 4210 44.4559 -95.8363 Rural 

OLMSTED Rochester 5008 43.9949 -92.4504 Suburban 

RAMSEY 
Saint Paul 868 44.9507 -93.0985 Urban 

Saint Paul 871 44.9593 -93.0359 Urban 

ST LOUIS 

International Falls NA 48.4128 -92.8292 NP 

Virginia 1300 47.5212 -92.5363 Urban 

Duluth 7550 46.8182 -92.0894 Suburban 

Duluth 7554 46.7437 -92.1660 Suburban 

SCOTT Shakopee 505 44.7894 -93.5125 Suburban 

SHERBURNE Saint Cloud 3052 45.5497 -94.1335 Suburban 

WINONA Winona NA 43.9373 -91.4052 Rural 

WRIGHT St. Michael 3201 45.2092 -93.6690 Suburban 

NP is National Park. 
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Table 2 

Monitoring Sites (for PM 2.5) in Minnesota, sampling frequency, and duration 

MPCA 

Site ID 

Collection 

Frequency 

Measurement 

Scale 
Monitor Objective Type Sample 

Duration 

250 Every 3rd Day Neighborhood Population Exposure 24 hours 

470 Every Day Neighborhood Population Exposure 1 hour 

Every 3rd Day Neighborhood Population Exposure 24 hours 

480 Every Day Middle Scale Source Oriented 1 hour 

505 Every 3rd Day Neighborhood Population Exposure 24 hours 

868 Every 3rd Day Neighborhood Population Exposure 24 hours 

871 

Every Day Neighborhood Population Exposure 1 hour 

Every Day Neighborhood Population Exposure 1 hour 

Every 3rd Day Neighborhood Population Exposure 24 hours 

Every 6th Day Neighborhood Population Exposure 24 hours 

962 Every Day Middle Scale Source Oriented 1 hour 

963 Every Day Neighborhood Population Exposure 1 hour 

Every 3rd Day Neighborhood Population Exposure 24 hours 

1300 Every Day Neighborhood Population Exposure 1 hour 

2013 Every Day Urban Scale Population Exposure 1 hour 

2304 Every Day Neighborhood Population Exposure 1 hour 

3052 Every Day Neighborhood Population Exposure 1 hour 

3201 Every Day Neighborhood Population Exposure 1 hour 

3204 Every Day Urban Scale Population Exposure 1 hour 

4210 Every Day Urban Scale Population Exposure/  

Regional Transport 
1 hour 

5008 Every Day Neighborhood Population Exposure 1 hour 

Every 3rd Day Neighborhood Population Exposure 24 hours 

6010 Every Day Urban Scale Population Exposure 1 hour 

Every 3rd Day Urban Scale Population Exposure 24 hours 

7001 Every Day Regional General / Background 1 hour 

7417 Every Day Neighborhood Population Exposure 1 hour 

7550 Every 3rd Day Neighborhood Population Exposure 24 hours 

Every 6th Day Neighborhood Population Exposure 24 hours 

7554 Every Day Neighborhood Population Exposure 1 hour 

Every 3rd Day Neighborhood Population Exposure 24 hours 

7810 Every Day Neighborhood Population Exposure 1 hour 

Note: the measurement scale information is explained below. Middle Scale (100 - 1,000 m) defines the 

concentration typical of areas up to several city blocks in size, with dimensions ranging from about 100 to 

1,000 meters. Neighborhood Scale (1 - 4 km) defines concentrations within some extended area of the 

city that has relatively uniform land use with dimensions in the one to four kilometers range. Generally, 

these stations represent areas with moderate to high population densities. Urban Scale (4 - 50 km) defines 
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the overall, citywide conditions with dimensions on the order of four to 50 kilometers. This scale 

represents conditions over an entire metropolitan area and is useful in assessing city-wide trends in air 

quality. Regional Scale/Background (50 - 1,000 km) usually represents a rural area of reasonably 

homogeneous geography and extends from tens to hundreds of kilometers. 

Data 

 The PM 2.5 daily data were from the United States Environmental Protection Agency 

(EPA) and the PM 2.5 monitoring sites 2016 information was from Minnesota Pollution Control 

Agency (MPCA). The Minnesota daily and annual summaries in MN come directly from the 

AQS (Air Quality System) Data Mart which contains ambient air pollution data collected by 

MPCA and reported by EPA and MPCA. AQS is updated practically every day as reporting 

agencies have data ready to submit. The data from AQS will be output in to “.csv” format, and 

they can be downloaded in https://www.epa.gov/outdoor-air-quality-data/download-daily-data. 

The study is using data on PM 2.5. There are three reasons why I chose this pollutant. First, the 

main source of PM 2.5 in Minnesota is vehicle emissions. Second, PM 2.5 is not only a health 

hazard, but it also would increase plants’ aging and death (Honour et al., 2008). Third, the 

association is related to traffic count data. According to the Bureau of Transportation Statistics, 

there were a total of 4.82 million registered vehicles in Minnesota in 2016. For PM 2.5; the 24 

sites complete daily data 2016 will be used, but there are some daily data missing. Generally, 

they have 330 data points per year. 

 The traffic data come from Minnesota Department of Transportation (MNDOT). The data 

are from 2016. The following methods were used to gather the traffic data by MNDOT: “More 

than 2600 total Short Duration Counts sites that collect traffic volume; make up the majority of 

all count locations, ATR (Continuous) devices with loops in the pavement that collect traffic 

volume and sometimes vehicle classification and/or speed data. More than 15 weigh in Motion 

System, WIM (Continuous) sites that collect vehicle weight, type, speed, and volume.” The 
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Figure 2 and Figure 3 display all traffic segments and traffic counting sites. However, there were 

only about 9000 traffic segment and 8000 traffic counting sites used in 2016 and around each 

1000 traffic segments and counting sites were used in the selected area. 

 

Figure 2: 2016 Minnesota traffic counting sites 
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Figure 3: 2016 Minnesota traffic segments 
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 Rainfall data is from Minnesota Department of Natural Resources (MNDNR), and the 

time frame of data is 2016. All their daily climate data are collected and reported by National 

Weather Service Reporting Stations. 

 One of tree area ratio data is from Multi-Resolution Land Characteristics (MRLC) 

consortium which belongs to Earth Resources Observation and Science (EROS) Center. They 

have NLCD 2011 Land Cover data and NLCD 2011 USFS Tree Canopy analytical data. I use 

them to calculate the tree area ratio. From 2011 to 2016, land use may have a lot of changing, 

therefore this data it is not a perfect match. The best way is to use 4 bands orthorectified aerial 

image to calculate NDVI, and then to analyze the tree area. The useful aerial images are from 

2017, and they are more closed to 2016 than 2011. There are two selected areas NAIP (National 

Agriculture Imagery Program) four bands aerial images from MNGEO (Minnesota Geospatial 

Information Office). (MNGEO sent the data to Dr. Richason, and I got the data from him.) 

 There are reasons for choosing 2016 data in this study. Firstly, there are six PM 2.5 

monitoring sites added after 2012. Two of them were built in the summer of 2013 and started 

recording in the August of 2013. Four of them started recording in the summer of 2015. 

Secondly, MNDOT had changed their data management system in 2015, so there were no data 

available for 2015. The ATR data and the WIM data were available at 2013, 2014 and 2016, but 

there were eight selected areas which did not have data in 2013 and 2014. 

Selection of the Surrounding Area in Monitoring Sites 

 For the surrounding areas near each site, according to MPCA Air Monitoring Unit 

Supervisor, MPCA’s target would be “neighborhood scale” for all PM 2.5 monitors in their 

network (R. Strassman, personal communication, August 28, 2017). The monitoring objective 

was to assess population exposure at the neighborhood scale or urban scale. Neighborhood 
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means the data from a single monitor should be representative of an area from 1-4 kilometers, 

and urban scale is from 4-50 kilometers. To meet these scales in 1998 they selected sites in 

residential areas with uniform land use to meet EPA’s siting criteria. For example, the monitor in 

St. Cloud is located on the roof of the Talahi Community School (neighborhood scale). PM 2.5 

concentrations do not vary greatly over larger spatial areas and reflect the air mass that is over 

the region. But he’s confident the monitor at Talahi provides representative data for the city of 

St. Cloud. Also, other neighborhoods can comprise the entire urban or suburban area for smaller 

cities. For the Twin Cities Metro area, multiple PM 2.5 monitors rise and fall in unison to reflect 

diurnal traffic patterns and the air mass over the region. Therefore, Rick Strassman said it is 

possible to compare these data to show the entire Metro area. Also, other neighborhoods can 

display the entire urban or suburban area. Table 1 shows the study counties and cities. Table 2 

shows the selected measurement scale for each site. 

Outline of the Methodology  

 The following steps are taken for the analysis of data. These steps are further analyzed as 

follows (Figure 4):  

1. Traffic count data are collected at 1,000 locations for the selected areas in 2016, and 

then using Kriging in ArcGIS to estimate the other sites’ AADT data.  

2. The traffic count data are weighted based on the daily Automatic Traffic Recorder 

(ATR) for each day.  

3. Using ArcGIS to select the study area in NLCD 2011, then to analyze and calculate 

the tree space area. And to use NDVI 2017 to compare to the result. 

4. Using regression and Pearson correlation to determine the relationship between PM 

2.5, tree space area, traffic value, and rainfall. 
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Figure 4: The procedure for data analysis 

PM Data Preprocessing 

According to MPCA, PM 2.5 value data can be downloaded as Excel spreadsheets. Some 

monitoring sites have two or three kinds of methods to gather data, so data reports were 

separated as three duration (as blow list) so there were two or three “.csv” for one monitoring 
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sites. Therefore, PM 2.5 data need to be combined and averaged when they used two or three 

different reports on the same site and same date. 

1. The data were recorded every day for most monitoring sites; 

2. The data were recorded once in every 3rd-day for some monitoring sites: Winona site, 

Minneapolis-963 site, Duluth-7554 site, Duluth-7550 site, St. Paul-871 site, St. Paul-

868 site, St. Louis Park site, Apple Valley site, Blaine site;  

3. The data were recorded once in every 6th-data for few monitoring sites: Ely site, 

International Fall site, Rochester site; 

There was a measurement change in Shakopee site. This site had changed their 

measurement from federal reference model to federal equivalent model.  

Traffic Data Processing 

The Minnesota Department of Transportation (MNDOT) has data on the annual average 

daily traffic (AADT) flow along Minnesota’s road network. Over 2,600 traffic count stations are 

available for the year 2016. The data are saved in Excel table format. Each station presents the 

number of vehicles and their positions' coordinates such as latitude and longitude. Then through 

the ArcGIS® software, the coordinates are converted to points and shown on a Minnesota map 

(Figure 2). However, the available stations were not covered all counting sites and segments; 

therefore, it needs to be estimated the other sites’ data. Through the ArcGIS® software, using 

geostatistical analysis method kriging to predict other sites values (Figure 5). 
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Figure 5: 2016 Minnesota Traffic Values (AADT) Kriging Analysis Map 
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 The traffic data are from MNDOT, and they assume that there are not any differences 

from Monday to Sunday; however, the data shows that the workdays from Monday to Friday 

have busier streets traffic than the weekends (Pantaleoni, 2013). In this research, the selected 

areas need to use the daily data to compare with the PM 2.5 data. Thus, I need to sum the daily 

data of the selected buffer area. Unfortunately, MNDOT does not report the daily count of traffic 

flow for any specific day of the week for any station; they only have several tens of stations 

owning daily data. Therefore, to estimate the selected daily data, the AADT data can be modified 

to account for variation of traffic volume through the week and to calculate daily traffic value. 

To create the selected area daily traffic data, I use the Minnesota daily Automatic Traffic 

Recorder (ATR) data to estimate them. The ATR data are “.txt” files showing the average 

number of vehicles per day of the week for 86 recording station in Minnesota. These records are 

used to generate the weights of date in selected sites and applied to the AADT count locations. 

The number of vehicles per day (N) of is calculated as follows equation: N = AADT x R 

 Where R = the ratio of the number of the daily vehicles divided by the annual average. 

According to the Minnesota Seven Day Summary, the number of vehicles on Saturday and 

Sunday is lower than average, while it is higher than average from Monday to Friday. 

 About the velocity of the vehicles, it is hard to assess it. Although there are speed limit 

regulations on each road, drivers may move at lower or higher speeds depending on their 

individual preferences or the real traffic conditions at the time (such as traffic jams). There are a 

lot of factors influencing the velocity of vehicles, which are hard to control. Therefore, the 

velocity of vehicles was assumed to equal the posted speed limit at each AADT location. In 

Minnesota, the speed limits are shown below: 

 16 km/h in alleys 
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 48 km/h on streets in urban districts 

 89 km/h on other roads 

 105 km/h on expressways 

 105 km/h on urban interstate highways 

 113 km/h on rural interstate highways 

 On the other side, the vehicle miles traveled (VMT) will be used in this research. VMT 

can be calculated as the AADT multiplied by the length of the road segment. Average Vehicle 

miles traveled per unit (AVMTU) is calculated as the average daily miles of vehicle travel 

divided by the total area in the selected monitoring site measurement zone. In order to determine 

the amount of traffic a state may have, the VMT can be summed for all road segments (Figure 3). 

Tree Space Area and GIS 

 As monitoring sites were selected, their locations were recorded using a global 

positioning system (GPS) device by MPCA. Those sites' locations were then plotted in a GIS. 

Using GIS, a selected buffer was created around each site location. Areas in the vicinities of 

monitoring sites were digitized using the aerial imagery (which is from MNGEO). This allowed 

for calculations of how much area within the selected area of each site was covered by 

measurement scale. General selected buffer of all sites are as follows (Table 3 & Appendix). 

 The tree space area can be calculated by NLCD (2011). The NLCD is a raster dataset 

which is able to be imported in a geodatabase. According to the Multi-Resolution Land 

Characteristics (MRLC) Consortium, each individual value represents the area or proportion of 

that 30m cell covered by tree canopy. Therefore, when there are trees in a cell, it will show 

green. Also, each cell has the pixel value to show the percentage of the tree canopy. The file 

pixel values range is from 0 to 100 percent. 0 is that there is not tree covered in a cell area, and it 
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is a non-tree area. 100 is that the cell area is filled full of trees. The Appendices Figures shows 

the tree canopy area which is analyzed, calculated and plotted by ArcGIS. Also, the 4 bands air 

photos were used to calculate NDVI in ArcGIS, to compare to the NLCD 2011. There are two air 

photos of two monitoring sites area covered in this study: Apple Valley - Westview School and 

Voyageurs National Park. 

Table 3 

Monitoring sites buffer radius 

County  City AQS Site ID Buffer Radius(km) setting 

ANOKA Blaine 270031002 10 Suburban 

BECKER Detroit Lakes 270052013 10 Rural 

BELTRAMI Red Lake 270072304 4 Rural 

CARLTON Cloquet 270177417 4 Rural 

COOK Grand Portage 270317810 2 Rural 

CROW WING Brainerd 270353204 10 Rural 

DAKOTA Apple Valley 270370470 4 Suburban 

Lakeville 270370480 1 Suburban 

HENNEPIN 
St. Louis Park 270532006 2 Suburban 

Minneapolis 270530962 1 Urban 

Minneapolis 270530963 2 Urban 

LAKE Ely 270750005 10 Rural 

LYON Marshall 270834210 10 Rural 

OLMSTED Rochester 271095008 4 Suburban 

RAMSEY Saint Paul 271230868 2 Urban 

Saint Paul 271230871 2 Urban 

ST. LOUIS 

International Falls 271370034 4 NP 

Virginia 271377001 4 Urban 

Duluth 271377550 4 Suburban 

Duluth 271377554 4 Suburban 

SCOTT Shakopee 271390505 4 Suburban 

SHERBURNE Saint Cloud 271453052 4 Suburban 

WINONA Winona 271699000 10 Rural 

WRIGHT St. Michael  271713201 4 Suburban 
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Chapter IV: Results 

Mean PM 2.5 Value 

 The average PM 2.5 from all of the monitoring sites taken over the entire study area was 

4.29 micrograms per cubic meter of air (µg/m3). The highest average PM 2.5 for any individual 

site was 6.65µg/m3 recorded by the Brainerd Lakes Regional Airport (270353204) monitoring 

site. That was 2.36µg/m3 above the mean. The Detroit Lakes (270052013) monitoring site 

recorded the lowest average PM 2.5 of 2.44µg/m3. That site was 1.85µg/m3 below the overall 

mean. Therefore, the difference between the average PM 2.5 recorded by the highest and the 

lowest sites was 4.21µg/m3. 

 Figure 6 shows the value map created using the mean PM 2.5 from each site. There is a 

noticeable pattern of higher PM 2.5 along the urban, suburban and roadside areas. These areas of 

high value coincide with high traffic value, specifically urban centers, and roadside locations, 

which are found mainly in those areas. The highest mean PM value is found at Brainerd Lakes 

Regional Airport’s open area. It is a rural site, but it is also a roadside site. It is less than one mile 

away from the Highway 210 and is about three miles’ distance from the city of Brainerd business 

district. The areas with lower pollution were found in more rural areas where large expanses are 

tree covered and with less traffic flow. The range between the lowest and highest mean PM 2.5 

values of 4.21µg/m3 is shown on the map (Figure 6). 
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Figure 6: PM 2.5 pattern created by the exact mean PM 2.5 values provided by the monitoring 

sites 
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 The average PM 2.5 from all urban and suburban monitoring sites which were taken over 

the entire duration of the study area was 5.68µg/m3. That was 1.39µg/m3 above the mean. The 

average PM 2.5 from all rural and national park monitoring sites which were taken over the 

entire duration of the study area was 3.74µg/m3, which is 0.55µg/m3 below the overall mean. 

Temperature and Wind Speed 

 According to the literature review, the different places have different effects on 

temperature and wind speed.   

 Temperature. There is no significant relationship between temperature and PM 2.5 in 

Minnesota (Table 4 and Figure 7). The results of Pearson correlation coefficient test (r²=0.004, r 

= - 0.064, p= 0.706 > 0.05) indicated that no correlation exists between temperature and PM 2.5. 

Table 4 

Pearson correlation between temperature and PM 2.5 

Correlations 

 PM 2.5  Temperature 

PM 2.5 Pearson Correlation 1 -.064 

Sig. (2-tailed)  .706 

Temperature Pearson Correlation -.064 1 

Sig. (2-tailed) .706  
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Figure 7: A scatter plot is showing the mean PM 2.5 against the temperature surrounding the 

monitoring site locations. The Pearson’s r correlation coefficient was - 0.064, and the significant 

value p was over than 0.05. Those were considered no correlation, and the data were randomly 

separated on the plot. 

 

 Wind speed. There is no significant relation between wind speed and PM 2.5 in 

Minnesota (Table 5 and Figure 8). The results of Pearson correlation coefficient test (r²=0.0014, r 

= - 0.038, p= 0.681 > 0.05) indicated that no correlation exists between wind speed and PM 2.5. 
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Table 5 

Pearson correlation between wind speed and PM 2.5 

Correlations 

 PM 2.5 Wind Speed  

PM 2.5 Pearson Correlation 1 -.038 

Sig. (2-tailed)  .681 

Wind Speed Pearson Correlation -.038 1 

Sig. (2-tailed) .681  

 

 

Figure 8: A scatter plot is showing the mean PM 2.5 against the wind speed surrounding the 

monitoring site locations. The Pearson’s r correlation coefficient was - 0.038, and the significant 

value p was over than 0.05. Those were considered no correlation, and the data were randomly 

separated on the plot. 
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Tree Space Area Ratio 

 The mean Tree Covered Pixel Ratio (TCPR) from all monitoring sites buffer of the study 

was 31.74%. The highest TCPR for any individual site was 76.07%, which is belonging to Grand 

Portage Band (270317810) monitoring site. That was 44.33% above the mean. This monitoring 

site is located at the Grand Portage Band offices in Grand Portage, and the land use of the 

surrounding community is an undeveloped forest. The Minneapolis - Near Road I-35/ I-94 

(270530962) monitoring site buffer had the lowest TCPR, which was 2.71%. That site was 

29.03% below the overall mean. This monitoring site is a near-road monitoring site, and it is 

closed to the I-35/I-94 commons near downtown Minneapolis. Therefore, the difference of the 

TCPR from the highest site to the lowest site was 73.36%.  

 According to 2011 Minnesota Tree Canopy raster data, the ArcGIS can be used to 

calculate the Tree Covered Pixel Ratio (TCPR). Table 6 shows the Tree Covered Pixel Ratio for 

each monitoring site.) 
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Table 6 

Tree Covered Pixel Ratio (TCPR), & Setting. (NP is a national park.) 

County  City AQS Site ID TCPR Setting 

ANOKA Blaine 270031002 25.66% Suburban 

BECKER Detroit Lakes 270052013 30.20% Rural 

BELTRAMI Red Lake 270072304 37.75% Rural 

CARLTON Cloquet 270177417 69.59% Rural 

COOK Grand Portage 270317810 76.07% Rural 

CROW 

WING 

Brainerd 270353204 46.09% Rural 

DAKOTA Apple Valley 270370470 23.04% Suburban 

Lakeville 270370480 25.30% Suburban 

HENNEPIN 
St. Louis Park 270532006 20.71% Suburban 

Minneapolis 270530962 2.71% Urban 

Minneapolis 270530963 4.375% Urban 

LAKE Ely 270750005 53.15% Rural 

LYON Marshall 270834210 4.56% Rural 

OLMSTED Rochester 271095008 48.96% Suburban 

RAMSEY Saint Paul 271230868 3.92% Urban 

Saint Paul 271230871 18.96% Urban 

ST LOUIS 

International Falls 271370034 69.07% NP 

Virginia 271377001 30.01% Urban 

Duluth 271377550 40.29% Suburban 

Duluth 271377554 33.86% Suburban 

SCOTT Shakopee 271390505 16.49% Suburban 

SHERBURNE Saint Cloud 271453052 13.15% Suburban 

WINONA Winona 271699000 56.62% Rural 

WRIGHT St. Michael  271713201 11.32% Suburban 

 

 Figure 9 shows the TCPR value map, which is created by using the TCPR from each site. 

There is a noticeable pattern of lower ratio along the urban, suburban and roadside area. The 

lowest ratio is found at Minneapolis - Near Road I-35/ I-94. It is a near-road site. The higher 

ratio areas were found in more rural areas, park areas, and national park areas where there are 
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more trees covered pixels. The range between the lowest and highest ratio value of 73.36% is on 

the map. 

 

Figure 9: Tree Covered Pixel Ratio of each monitoring site 
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 Tree Space Area Ratio (TSAR) is different from the Tree Covered Pixel Ratio. Each 

pixel is a 30 meters x 30 meters area, and it has a tree covered percentage value. After 

calculating, the result of the Tree Space Area Ratio is shown in Table 7. 

Table 7 

Tree Space Area Ratio (TSAR), & Setting. (NP is a national park.) 

County  City AQS Site ID TSAR Setting 

ANOKA Blaine 270031002 12.45% Suburban 

BECKER Detroit Lakes 270052013 14.41% Rural 

BELTRAMI Red Lake 270072304 16.47% Rural 

CARLTON Cloquet 270177417 34.60% Rural 

COOK Grand Portage 270317810 40.31% Rural 

CROW WING Brainerd 270353204 21.56% Rural 

DAKOTA Apple Valley 270370470 10.66% Suburban 

Lakeville 270370480 10.54% Suburban 

HENNEPIN 
St. Louis Park 270532006 8.14% Suburban 

Minneapolis 270530962 0.80% Urban 

Minneapolis 270530963 1.35% Urban 

LAKE Ely 270750005 25.92% Rural 

LYON Marshall 270834210 0.99% Rural 

OLMSTED Rochester 271095008 14.97% Suburban 

RAMSEY Saint Paul 271230868 1.30% Urban 

Saint Paul 271230871 7.60% Urban 

ST LOUIS 

International Falls 271370034 34.71% NP 

Virginia 271377001 11.61% Urban 

Duluth 271377550 18.46% Suburban 

Duluth 271377554 16.04% Suburban 

SCOTT Shakopee 271390505 8.26% Suburban 

SHERBURNE Saint Cloud 271453052 6.58% Suburban 

WINONA Winona 271699000 35.35% Rural 

WRIGHT St. Michael  271713201 5.93% Suburban 
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 Figure 10 shows the TSAR value map, which is created by using the TSAR from each 

site. There is a noticeable pattern which is very similar to the TCPR, and the lower ratio is along 

the urban, suburban and roadside area. The lowest ratio is found at Minneapolis - Near Road I-

35/ I-94. The highest ratio is found at Grand Portage Band. The higher ratio areas were found in 

more rural areas, park areas, and national park areas where there are more trees covered. The 

range between the lowest and highest ratio value of 39.51% is on the map. 

 The average Tree Space Area Ratio (TSAR) from all monitoring sites buffer of the study 

was 14.96%. The highest TSAR for any individual site was 40.31%, which is belonging to the 

Grand Portage Band of Lake (270317810) monitoring site. That was 25.35% above the mean. 

This monitoring site is located at the Grand Portage Band offices in Grand Portage, and the land 

use of the surrounding community is an undeveloped forest. The Minneapolis - Near Road I-35/ 

I-94 (270530962) monitoring site buffer had the lowest TSAR, which was 0.8%. That site was 

14.16% below the overall mean. This monitoring site is a near-road monitoring site, and it is 

closed to the I-35/I-94 commons near downtown Minneapolis. Therefore, the difference of the 

TCPR from the highest site to the lowest site was 39.51%.  

 According to the 2017 NDVI calculation, the tree space area ratio of the Apple Valley 

monitoring site is 10.86%, and the NLCD 2011 result is 10.66%. The tree space area ratio of the 

Voyageurs National Park (from NDVI) is 34.11%, and the NLCD 2011 result is 34.71%. The 

figure 11 and figure 12 show the results. 
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Figure 10: Tree Space Area Ratio of each monitoring site 
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Figure 11: Apple Valley: 2011 NLCD, 2017 NDVI, Air Photo 2010 & Air Photo 2017 
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Figure 12: Voyageurs: 2011 NLCD, 2017 NDVI, Air Photo 2010 & Air Photo 2017 
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PM 2.5 Values and Tree Space Area Ratio 

 The mean PM 2.5 data were plotted and analyzed to determine if there was a relationship 

between the percentage of the tree space area covered the monitoring site and the mean PM 2.5 

over the study period. A Pearson correlation coefficient was computed to assess the strength and 

direction of that relationship. The results of that test (r²=0.164, r = - 0.406, n= 24, p= 0.049) 

indicated that a medium negative correlation exists between those variables (r= - 0.406). The r² 

value of 0.164 means that there is only about 16% of the variation in the mean temperatures can 

be explained by differences in the percentage of tree space cover near the monitoring sites. There 

were 24 samples used in the calculation (n). The p-value of less than 0.05 indicates that 

correlation is significant in this finding. Table 8, Table 8, Table 10, and Figure 13 summarize 

those results. 

Table 8 

Pearson Correlations (PM 2.5 & TSAR) 

 

 Mean PM 2.5 TSAR 

Mean PM 2.5 Pearson Correlation 1 -.406* 

Sig. (2-tailed)  .049 

TSAR a Pearson Correlation -.406* 1 

Sig. (2-tailed) .049  

*. Correlation is significant at the 0.05 level (2-tailed). 

a. TSAR is tree space area ratio.  
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Table 9 

Regression Linear Model Summary (PM 2.5 & TSAR) 

 

Model R R Square 

Adjusted R 

Square 

Std. The error 

of the Estimate 

1 .406a .164 .153 .92249 

a. Predictors: (Constant), TSAR b 

b. TSAR is tree space area ratio. 

 

 This table provides the r and r2 values. The r value represents the simple correlation and 

is 0.406, which indicates a medium degree of correlation. The r2 value indicates how much of the 

total variation in the dependent variable, mean PM 2.5, can be explained by the independent 

variable, tree space area ratio. In this case, 16.4% can be explained, which is small. Although the 

p-value of less than 0.05 indicates that correlation is significant in this finding, statistical 

significance does not imply practical significance. 

Table 10 

Regression Linear Model Coefficients (PM 2.5 & TSAR) 

 

Model a 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 5.087 .310  16.399 .000 

TSAR b -.045 .016 -.406 -2.747 .012 

a. Dependent Variable: Mean PM 2.5 

b. TSAR is tree space area ratio. 

 

 Also, based on the coefficients table, it provides us with the necessary information to 

predict PM 2.5 value from the relationship between PM 2.5 values and tree space area ratio, as 

well as determine whether TSAR (tree space area ratio (%)) contributes significantly to the 
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model. Furthermore, we can use the values in the “B” column under the “Unstandardized 

Coefficients” column to present the regression equation as below: 

 Mean PM 2.5 = 5.087 - 0.045 x TSAR + error 

 TSAR is tree space area ratio. 

 When holding constant mean PM 2.5 value of 5.087µg/m3, one percentage of tree space 

area ratio increase produces a 0.045µg/m3 decrease in mean PM 2.5.  

 

 

Figure 13: A scatter plot is showing the mean PM 2.5 against the tree space ratio surrounding the 

monitoring site locations. The Pearson’s r correlation coefficient was - 0.406, which is 

considered a medium negative correlation. 
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 According to Figure 13, there are two mean PM 2.5 values that are possible outliers in the 

data. They are the Brainerd Lakes Regional Airport (270353204) monitoring site, and the Detroit 

Lakes - FWS Wetland Management District (270052013) monitoring site. 

 Brainerd Lakes Regional Airport (270353204) monitoring site: mean PM 2.5 was 

6.65µg/m3, and tree space area ratio is 21.56%. 

 Detroit Lakes - FWS Wetland Management District (270052013) monitoring site: mean 

PM 2.5 was 2.44µg/m3, and tree space area ratio is 14.41%. 

 After removing the outlier data, a Pearson correlation coefficient was computed to assess 

the strength and direction of that relationship. The results of that test (r²=0.497, r = - 0.705, n= 

22, p= 0.000) indicated that a strong negative correlation exists between those variables (r= - 

0.705). 49.7% of the variation in the mean PM 2.5 value can be explained by differences in the 

percentage of tree space cover near the monitoring sites. There were 22 samples used in the 

calculation (n). The p-value of less than 0.001 indicates a high confidence level in this finding. 

Table 11, Table 12, Table 13, and Figure 14 summarize those results. 

Table 11 

Pearson correlation without outlier (PM 2.5 & TSAR) 

 Mean PM 2.5 TSAR a 

Mean PM 2.5 Pearson Correlation 1 -.705** 

Sig. (2-tailed)  .000 

TSAR Pearson Correlation -.705** 1 

Sig. (2-tailed) .000  

**. Correlation is significant at the 0.01 level (2-tailed). 

a. TSAR is tree space area ratio. 
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Table 12 

Regression Linear Model Summary without outlier (PM 2.5 & TSAR) 

Model R R Square 

Adjusted R 

Square 

Std. The error of 

the Estimate 

1 .705a .497 .471 .63945 

a. Predictors: (Constant), TSAR b 

b. TSAR is tree space area ratio. 

 

 Table 12 provides the r and r2 values. The r value represents the simple correlation and is 

0.705, which indicates a high degree of correlation. The r2 value indicates how much of the total 

variation in the dependent variable, mean PM 2.5, can be explained by the independent variable, 

tree space area ratio. In this case, 49.7% can be explained, which is a stronger relationship than 

that with outlier data. The p-value of less than 0.001 indicates that correlation is significant in 

this finding. 

Table 13 

Regression Linear Model Coefficients without outlier (PM 2.5 & TSAR) 

Model a 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 5.148 .217  23.712 .000 

TSAR b -.051 .012 -.705 -4.441 .000 

a. Dependent Variable: Mean PM 2.5 

b. TSAR is tree space area ratio 

 

 The coefficients in the table 13 provide us with the necessary information of the relations 

between mean PM 2.5 and tree space area ratio. Furthermore, we can use the values in the “B” 

column under the “Unstandardized Coefficients” column to present the regression equation as: 

 Mean PM 2.5 = 5.148 - 0.051 x TSAR + error 
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 TSAR is tree space area ratio. 

 When holding constant mean PM 2.5 value of 5.148µg/m3, one percentage of tree space 

area ratio increase produces a 0.051µg/m3 decrease in mean PM 2.5.  

 

Figure 14: A scatter plot is showing the mean PM 2.5 without outlier site against the tree space 

ratio in the monitoring sites’ locations. The Pearson’s r correlation coefficient was -0.705, which 

is considered a strong negative correlation. 
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Traffic Value and Mean PM 2.5 

 The vehicle miles traveled (VMT) is the number of miles traveled by vehicles in the 

study area. The average daily vehicle miles traveled per unit (miles per square mile) indicates 

that the average daily number of miles traveled by vehicles per square mile in the study area. The 

average daily vehicle miles traveled per unit (miles per square mile) (AVMTU) for the study 

area of each monitoring site is shown in Table 14. 

 Based on the average vehicles miles per square mile, the data can be classified into two 

groups: 

 Group A: over 10,000 miles per square mile is belonging to the urban and suburban area. 

 Group B: less than 10,000 miles per square mile is belonging to the rural and national 

park area. 
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Table 14 

The Average Vehicle Miles Traveled per Unit 

Setting Site Name Mean PM 2.5 
(µg/m3) 

AVMTU 
(miles/mile2) 

Rural & 
National 

Park 

Ely - Fernberg Road 2.76 30 

Voyageurs NP 3.03 66 

Grand Portage Band 3.02 1168 

Red Lake Nation 3.48 1404 

Fond du Lac Band 4.13 1696 

Great River Bluffs State Park 4.2 2214 

Marshall - Southwest Minnesota 
Regional Airport 

4.4 2498 

Detroit Lakes - FWS Wetland 
Management District 

2.44 3336 

Brainerd Lakes Regional Airport 6.65 5282 

Urban & 
Suburban 

Virginia City Hall 3.37 10265 

St. Michael Elementary School 4.9 21116 

Duluth - Laura MacArthur School 4.45 21537 

Saint Cloud - Talahi School 3.86 26472 

Duluth - U of M 4 26568 

Shakopee - B.F. Pearson School 5.35 28052 

Rochester - Ben Franklin School 4.31 37778 

Blaine - Anoka County Airport 
(National Core) 

4.97 52019 

Apple Valley - Westview School 4.89 64684 

Saint Paul - Harding High School 5.07 92518 

St. Louis Park - City Hall 5.4 107242 

Lakeville - Near Road I-35 4.55 121128 

St. Paul - Ramsey Health Center 5.93 220242 

Minneapolis - Andersen School 5.41 248038 

Minneapolis - Near Road I-35/I-94 5.26 382763 
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 The highest AMVTU for any individual site was 382,763 miles/mile2, which belongs to 

Minneapolis - near the Road I-35/I-94 monitoring site. This monitoring site is located along the 

I-35/I-94 W commons near downtown Minneapolis. The Ely - Fernberg Road monitoring site 

and Voyageurs NP monitoring site had the lowest AMVTU, which was both less than 100 

miles/mile2. The Ely - Fernberg Road monitoring site is located on a remote hilltop about 19 

miles east of Ely, and it is close to the Boundary Waters Canoe Area Wilderness. The Voyageurs 

NP monitoring site is located on a rocky outcrop near the Ash River Interpretive Center on the 

southeast side of the Voyageurs National Park. 

 The average vehicles mile traffic per unit data were plotted and analyzed to determine if 

there was a relationship between AMVTU around monitoring sites and the mean PM 2.5 over the 

study period (Figure 15). According to the Figure 15, there is a monitoring site data considering 

as an obvious outlier (The outlier data is the upper left point). This site is the Brainerd Lakes 

Regional Airport (270353204) monitoring site. After removing this site (which is shown in 

Figure 16), a Pearson correlation coefficient was computed to assess the strength and direction of 

that relationship. The results of that test (r = 0.644, n= 23, p= 0.001) indicated that a strong 

positive correlation exists between those variables (r= 0.644). Table 15 summarizes those results. 
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Figure 15: A scatter plot is showing the Average Vehicle Miles Traveled per Unit against the 

mean PM 2.5 surrounding the monitoring site locations. 

 

Table 15 

Pearson correlation without outlier (PM 2.5 & AMVTU) 

 AVMTU (Miles/km2) Mean PM 2.5 

AVMTU 

(Miles/ km2) 

Pearson Correlation 1 .644** 

Sig. (2-tailed)  .001 

Mean PM 2.5 Pearson Correlation .644** 1 

Sig. (2-tailed) .001  

**. Correlation is significant at the 0.01 level (2-tailed). 
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Figure 16: A scatter plot is showing the Average Vehicle Miles Traveled per Unit against the 

mean PM 2.5 surrounding the monitoring site locations. The Pearson’s r correlation coefficient 

was 0.644, which is considered a strong positive correlation. 

 

Table 16 

Regression non-linear Model Coefficients without outlier (PM 2.5 & AVMTU) 

Model Summary and Parameter Estimates (Dependent Variable: Mean PM 2.5) 

Equation 

Model Summary Parameter Estimates 

R 

Square F df1 df2 Sig. Constant b1 

Logarithmic .664 41.539 1 21 .000 1.144 .328 

 The independent variable is AVMTU (miles/mile2). 
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 Table 16 provides the r2 values. The r2 value indicates how much of the total variation in 

the dependent variable, mean PM 2.5, can be explained by the independent variable, tree space 

area ratio. In this case, 66.4% can be explained. The p-value of less than 0.001 indicates that 

correlation is significant in this finding. 

 Also, the coefficients (table 16) provide us with the necessary information of the relations 

between mean PM 2.5 and AVMTU. Furthermore, we can use the values in the “Parameter 

Estimates” data to present the regression equation as: 

 Mean PM 2.5 = 1.144 + 0.328 x ln (AMVTU) + error 

 AMVTU is average vehicle miles traveled per unit. 

 When AMVTU is increasing, it produces a logarithmic growth in mean PM 2.5. 

Rainfall and Mean PM 2.5 

 The average non-rainy day PM 2.5 from all of the monitoring sites taken over the entire 

duration of the study area was 4.59 micrograms per cubic meter of air (µg/m3). That was 

0.3µg/m3 above the mean value (4.29µg/m3). The average rainy day PM 2.5 from all rural and 

national park monitoring sites which were taken over the entire duration of the study area was 

4.04µg/m3. That was 0.25µg/m3 below the overall mean. 

 Out of 24 monitoring sites, 23 sites showed the decrease. general PM 2.5 value after 

rainfall. Only one site showed the increase general PM 2.5 value after rainfall. However, this site 

(St. Louis Park - City Hall) is an outlier datum because the PM 2.5 data are recorded by every 

third-day duration and not every day. There is lack of data on some days. Figure 17 shows those 

results about 24 monitoring sites, and it also shows that rainfall can reduce PM 2.5 value. There 

is a correlation between rainfall and PM 2.5 value change shown in Table 17. 
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Figure 17: A bar chart is showing the rainy day PM 2.5 value and non-rainy day PM 2.5 value 

surrounding each monitoring site location.  
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Table 17 

Pearson correlation between Rainfall and PM 2.5 Value Reduce 

 Mean PM 2.5 Reduce Mean Rainfall 

Mean PM 2.5 

Reduce 

Pearson Correlation 1 .622** 

Sig. (2-tailed)  .006 

Mean Rainfall Pearson Correlation .622** 1 

Sig. (2-tailed) .006  

**. Correlation is significant at the 0.01 level (2-tailed). 

Note: mean PM 2.5 change with rainfall is also called mean PM 2.5 reduction. Mean PM 2.5 

change has two calculation forms. One indicates PM 2.5 on the day before the rainy day minus 

the PM 2.5 during the rainy day when the previous day is not a rainy day, and another indicates 

PM 2.5 on a rainy day minus the PM 2.5 during the second rainy day when the two days are both 

rainy days. 

 

 The results of that test (r²=0.387, r = 0.622, n= 24, p= 0.006) indicated that a medium 

positive correlation exists between those variables (r= 0.622).  

 The Pearson Correlation, r = 0.622, indicated that a strong positive correlation exists 

between those variables. The r² value of 0.387 means that there is 38.7% of the variation in the 

mean PM 2.5 reduction which can be explained by differences in the total rainfall near the 

monitoring sites. There were 24 samples used in the calculation (n). The p-value of less than 0.01 

indicates that correlation is significant in this finding. Table 17, Table 18, and Figure 18 

summarizes the results. 
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Table 18 

Regression model summary and Coefficients (PM 2.5 & Rainfall) 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. The error 

of the 

Estimate 

1 .622a .387 .358 .2284494837 

a. Predictors: (Constant), Mean Rainfall 

 

Coefficients a 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -.005 .173  .286 .778 

Mean Rainfall 1.031 .335 .577 3.080 .006 

a. Dependent Variable: Mean PM 2.5 reduce 



72 

 

 

Figure 18: Rainfall and mean PM 2.5 reduction in rainfall 

 The Coefficients table 18 provides us with the necessary information to predict mean PM 

2.5 value from total rainfall. The output p-value (0.000) for total rainfall is less than 0.050 so it 

can be assumed that the regression coefficient is significant. The output p-value (0.778) for the 

constant is greater than 0.050 so it can be assumed that the regression coefficient is not 

significant. The reason is that the real constant number should be greater than zero. 
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Mean PM 2.5, TSAR, AVMTU, and Rainfall  

 According to the previous separate correlation analysis between elements, the mean PM 

2.5 has an association with TSAR and AVMTU. There is a negative correlation linear 

relationship between PM 2.5 and TSAR, and a positive correlation natural logarithmic 

relationship between PM 2.5 and AVMTU. In each correlation test, the Brainerd Lakes Regional 

Airport (270353204) monitoring site is shown as an outlier datum, so it is still out of the data 

when using multiple regression analysis. Table 19 and 20 show the results of linear regression 

analysis of three sets of correlations. 
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Table 19 

Regression model summary and ANOVA analysis (three variables) 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. The error of 

the Estimate 

1 .843a .710 .665 .55079 

a. Predictors: (Constant), TSAR, ln(AVMTU) , Rainfall 

 

ANOVA a 

Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression 14.143 3 4.714 15.540 .000b 

Residual 5.764 19 .303   

Total 19.907 22    

a. Dependent Variable: Mean PM 2.5 

b. Predictors: (Constant), TSAR, ln(AVMTU), Rainfall 

c. TSAR is tree space area ratio. 

d. AVMTU is Average Vehicle Miles Traveled per Unit. 

 

The model (table 19) provides the r and adjusted r2 values. The r value represents the 

simple correlation and is 0.843, which indicates a high degree of correlation. The adjusted r2 

value indicates how much of the total variation in the dependent variable, mean PM 2.5, which 

can be explained by the independent variable, TSAR, AVMTU, and rainfall. In this case, about 

66.5% can be explained, which is large. 

 The ANOVA analysis (table 19) indicates that the regression model predicts the 

dependent variable significantly well. Here, F (3, 22) = 15.540, p = 0.000, which is less than 

0.05, and indicates that, overall, the regression model significantly predicts the outcome variable. 
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Table 20 

Regression Linear Model Coefficients (three variables) 

Model a 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 2.179 .862  2.529 .020 

Rainfall -.035 .019 -.248 -1.873 .077 

TSAR -.010 .015 -.129 -.710 .486 

Ln(AVMTU) .305 .070 .799 4.347 .000 

a. Dependent Variable: Mean PM 2.5 

b. TSAR is tree space area ratio. 

c. VMTU is Average Vehicle Miles Traveled per Unit. 

 

 The Coefficients (table 20) provides us with the necessary information to predict mean 

PM 2.5 value from two variables. The output p-value for total rainfall is greater than 0.050 so it 

can be assumed that the regression coefficient is not significant. The output p-value for TSAR is 

greater than 0.050 so it can be assumed that the regression coefficient is not significant. The 

output p-value (p= 0.000) for ln (AVMTU) is less than 0.050 so it can be assumed that the 

regression coefficient is significant. Although it could not build the bicorrelation with those three 

variables based on the p-value to predict PM value, it still can give the general idea of the 

relationship. Also, the p-values show the three variables had different level correlations: 

AMVTU > total rainfall > tree space area ratio. Figure 19 shows the difference between 

regression analysis result and EPA data.  
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Figure 19: Regression analysis result and EPA mean PM 2.5 
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Airport Effect 

 The average PM 2.5 from the monitoring sites, which are close to an airport, taken over 

the entire duration of the study area was 5.34 micrograms per cubic meter of air (µg/m3). It is 

higher than average PM 2.5 (4.29µg/m3) from all sites. The result shows in Figure 20. 

Brainerd Lakes Regional Airport (270353204) monitoring site: 6.65µg/m3. 

Blaine - Anoka County Airport (National Core) (270031002) monitoring site: 4.97µg/m3.  

Marshall - Southwest Minnesota Regional Airport (270834210) monitoring site: 4.40µg/m3. 

Figure 21 - 23, which were from 2015 Minnesota Geospatial Image Service, showed the 

surrounding environment of the three monitoring sites locations. 

 

Figure 20: Airport PM 2.5 Value against Mean PM 2.5 Value 
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Figure 21: Brainerd Lakes Regional Airport 

 

Figure 22: Marshall - Southwest Minnesota Regional Airport 



79 

 

 

Figure 23: Blaine – Anoka County Airport (NCore) 

 In this study, one Local aircraft operation, which aircraft operates in the local traffic 

pattern or within sight of the airport, was used in air traffic statistical analysis. According to the 

Federal Aviation Administration (FAA), the average daily air traffic data (2016) of those three 

airports were shown below. 

 Brainerd Lakes Regional Airport: average 104 aircraft /day. 

 Blaine - Anoka County Airport (National Core): average 79 aircraft /day.  

 Marshall - Southwest Minnesota Regional Airport: average 63 aircraft /day. 

Table 21 

Pearson correlation coefficient (PM 2.5 & air traffic) 

 

 Mean PM 2.5 Air traffic 

Mean PM 2.5 Pearson Correlation 1 .989 

Sig. (2-tailed)  .096 

Air traffic Pearson Correlation .989 1 

Sig. (2-tailed) .096  
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 The Pearson’s r correlation coefficient was 0.989, which is considered as a very strong 

positive correlation. However, there were only three samples. Therefore, the Pearson correlation 

was not significant (Table 21). 

 
Figure 24: Mean PM 2.5 value and average daily air traffic (airport area) 

 The figure 24 shows that the mean PM 2.5 value increases when the average daily air 

traffic increases. However, the correlation is not a simple linear. Through the non-linear 

regression (curve estimation), it indicates a significantly quadratic relation (p (Sig.) = 0.000 < 

0.01). The result is shown in Table 22 and Figure 25. 
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Table 22 

Regression non-linear Model Coefficients (PM 2.5 & air traffic) 

Model Summary and Parameter Estimates 

Dependent Variable:   Mean PM 2.5   

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. Constant b1 b2 

Quadratic 1.000 .000 2 0 .000 5.989 -.074 .001 

The independent variable is Air traffic (aircrafts per day). 

 
Figure 25: The non-linear relation between mean PM 2.5 value and average daily air traffic 
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Urban and Rural 

 According to AMVTU, the data can be classified into two groups, and the classification 

in AMVTU is similar to the classification in population by the U.S. Census Bureau. The U.S. 

Census Bureau identifies as an urban place, which has populations of 2,500 or more. A rural 

place has the population of less 2,500. 

 Group A: over 10,000 miles per square mile is belonging to the urban and suburban area. 

 Group B: less than 10,000 miles per square mile is belonging to the rural and national 

park area. 

 Urban PM 2.5 with three variables. The average PM 2.5 from all of the urban 

monitoring sites was 5.68µg/m3, which was greater than the total average PM 2.5 (4.29µg/m3). 

The results of Pearson correlation between PM 2.5 and three variables were shown in Table 23.  

Table 23 

Pearson correlations between Mean PM 2.5 and three variables for urban 

 Mean PM 2.5 TSAR Ln(AVMTU) 

Mean PM 2.5 Pearson Correlation 1 -.863** .617* 

Sig. (2-tailed)  .000 .025 

TSAR Pearson Correlation -.863** 1  

Sig. (2-tailed) .000   

Ln (AVMTU) Pearson Correlation .617*  1 

Sig. (2-tailed) .025   

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

 Mean PM 2.5 Change Mean Rainfall 

Mean PM 2.5 

Change 

Pearson Correlation 1 .759** 

Sig. (2-tailed)  .001 

Mean Rainfall Pearson Correlation .759** 1 

Sig. (2-tailed) .001  

**. Correlation is significant at the 0.01 level (2-tailed). 
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Mean PM 2.5 and TSAR. The Pearson correlations between Mean PM 2.5 and TSAR (r² 

= 0.754, r = - 0.863, p= 0.000) indicated that a strong negative correlation. The absolute r-value 

of 0.863 was greater than 0.705, which was all sites correlation. The r² value of 0.754 shows 75.4% 

of the variation in the mean PM 2.5 can be explained by differences in the percentage of tree 

space cover near the monitoring sites. Table 24 and Figure 26 summarize the results (PM 2.5 & 

TSAR). 

Table 24 

Regression coefficients between Mean PM 2.5 and TSAR for urban 

Coefficients a 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 5.680 .149  38.165 .000 

TSAR -.080 .014 -.863 -5.666 .000 

a. Dependent Variable: Mean PM 2.5 
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Figure 26: Mean PM 2.5 value and urban TSAR for urban 

 Mean PM 2.5 and traffic data. The Pearson correlations between Mean PM 2.5 and ln 

(AMVTU) (r²=0.381, r = 0.617, p= 0.025) indicated that a strong positive correlation. The 

absolute r-value of 0.617 was less than 0.0.664, which was all sites correlation. The r² value of 

0.0.381 shows 38.1% of the variation in the mean PM 2.5. Table 25 and Figure 27 summarize the 

results (PM 2.5 & ln (AMVTU)). 
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Table 25 

Regression coefficients between Mean PM 2.5 and ln (AMVTU) for urban 

Coefficients a 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 1.217 1.443  .844 .041 

Ln (AMVTU) .335 .129 .617 2.603 .025 

a. Dependent Variable: Mean PM 2.5 

 

 
Figure 27: Mean PM 2.5 value and ln (AMVTU) for urban 
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Mean PM 2.5 change and rainfall. The Pearson correlations between Mean PM 2.5 and 

ln (AMVTU) (r²= 0.577, r = 0.759, p= 0.001) indicated that a strong positive correlation. The r-

value of 0.759 was greater than 0.622, which was all sites correlation. The r² value of 0.577 

shows 57.7% of the variation in the mean PM 2.5 change with rainfall. Table 26 and Figure 28 

summarize the results (PM 2.5 & rainfall). 

Table 26 

Regression coefficients between PM 2.5 change and rainfall for urban 

Coefficients a 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .070 .199  .353 .730 

Mean 

Rainfall 
1.426 .362 .658 3.025 .001 

a. Dependent Variable: PM 2.5 Change with Rainfall 

 

 
Figure 28: Mean PM 2.5 change with rainfall and rainfall for urban 
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Mean PM 2.5 and three variables. The r value represents the simple correlation and is 

0.788, which indicates a high degree of correlation. However, the r value is less than 0.843, 

which is all sites correlation.  The adjusted r2 value indicates how much of the total variation in 

the dependent variable, mean PM 2.5, which can be explained by the independent variable, 

TSAR, AVMTU, and rainfall. In this case, about 51.8% can be explained, which is large. The 

ANOVA table indicates the model is significant because the significant value, 0.011, is less than 

0.05. The coefficients table shows that there is only traffic value is significant, which is similar 

to the results of all sites coefficients. (Table 27) 

Table 27 

Regression model summary, ANOVA, and coefficients (PM 2.5 & three variables) 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. The error 

of the Estimate 

1 .788a .621 .518 .47796 

 

ANOVA a 

Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression 4.118 3 1.373 6.009 .011b 

Residual 2.513 11 .228   

Total 6.631 14    

 

Coefficients a 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .186 2.146  .087 .932 

TSAR -.020 .034 -.153 -.574 .577 

Traffic .393 .165 .602 2.381 .036 

Rainfall .908 .801 .227 1.134 .281 

a. Dependent Variable: Mean PM 2.5 

b. Predictors: (Constant), rainfall, traffic [ln(AMVTU)], TSAR 
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Rural PM 2.5 with three variables. The average PM 2.5 from all of the rural monitoring 

sites was 3.74µg/m3, which was less than the total average PM 2.5 (4.29µg/m3). In this study of 

rural sites, the two airport site had been removed as outliers: Marshall - Southwest Minnesota 

Regional Airport and Brainerd Lakes Regional Airport. The results of Pearson correlation 

between PM 2.5 and three variables were shown in Table 28. 

Table 28 

Pearson correlations between Mean PM 2.5 and three variables for rural 

 Mean PM 2.5 TSAR Ln(AVMTU) 

Mean PM 2.5 Pearson Correlation 1 .432 .366 

Sig. (2-tailed)  .333 .419 

TSAR Pearson Correlation .432 1  

Sig. (2-tailed) .333   

Ln (AVMTU) Pearson Correlation .366  1 

Sig. (2-tailed) .419   

   

 Mean PM 2.5 Change Mean Rainfall 

Mean PM 2.5 

Change 

Pearson Correlation 1 -.119 

Sig. (2-tailed)  .800 

Mean Rainfall Pearson Correlation -.119 1 

Sig. (2-tailed) .800  
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Mean PM 2.5 and TSAR. The Pearson correlations between Mean PM 2.5 and TSAR (r 

= 0.432, p= 0.333 > 0.05) indicated that the correlation is not significant. Table 28 and Figure 29 

summarize the results (PM 2.5 & TSAR). 

 
Figure 29: Mean PM 2.5 value and rural TSAR 
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 Mean PM 2.5 and traffic data. The Pearson correlations between Mean PM 2.5 and ln 

(AMVTU) (r = 0.366, p= 0.415 > 0.05) indicated that the correlation is not significant. Table 28 

and Figure 30 summarize the results (PM 2.5 & ln (AMVTU)). 

 
Figure 30: Mean PM 2.5 value and ln (AMVTU) for rural 
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 Mean PM 2.5 change and rainfall. The Pearson correlations between Mean PM 2.5 and 

ln (AMVTU) (r = - 0.119, p= 0.800 > 0.05) indicated the correlation is not significant. Table 28 

and Figure 31 summarize the results (PM 2.5 & rainfall). 

 
Figure 31: Mean PM 2.5 change with rainfall and rainfall for rural 
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Chapter V: Discussion 

 The results of this study show that there is an association between PM 2.5 and tree space 

area ratio, traffic volume, and rainfall in Minnesota urban areas. PM 2.5 values from the selected 

areas are negatively associated with increased percentages of tree space area; conversely, they 

are positively associated with increased traffic volume. PM 2.5 values from the selected areas 

decrease during periods of rainfall. 

Tree Space Area Ratio Effects on PM 2.5 

 Setälä et al. (2012), Alaviippola and Pietarila (2011) found the tree-covered areas had 

about 20% less PM 2.5 than non-tree-covered areas. However, they did not delve into the 

correlations between them. According to Weber, Kowarik, and Säumela (2014), PM values are 

not significantly different if there are only grass-cover and no tree. In accordance with their 

findings, the results of this study show that PM 2.5 values from the selected areas are moderately 

negatively correlated with increased percentages of tree space area. The average PM 2.5 values 

for urban/ suburban areas were higher than the average PM 2.5 values for rural areas. This 

negative correlation indicates that tree-covered areas can reduce PM 2.5. While there are some 

rural monitoring sites with PM 2.5 values greater than or equal to some suburban area 

monitoring sites, it is reasonable to attribute these phenomena to near airport and industrial 

zones.  

Traffic Volume Effects on PM 2.5 

 As the traffic volume (average vehicle miles traveled per unit) increases, the mean PM 

2.5 increases logarithmically. Pantaleoni (2013) developed a model showing the relationship 

between traffic flow and carbon monoxide emissions in Tennessee. She found that there was a 

positive correlation between traffic volume and this vehicle pollutant. Although, Minnesota has a 
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different traffic pattern from Tennessee, and the current study used a different vehicle pollutant 

(PM 2.5), the relationship between PM 2.5 and traffic volume is similar to the CO air pollution 

model described in Pantaleoni’s research. It should be noted, however, that road dust could also 

be a contributing factor for the PM 2.5 values recorded in this study. Edvardsson and Magnusson 

(2009) found that PM 2.5 was positively correlated with road dust. Also, there was one 

monitoring site with especially higher PM 2.5 values than other sites due to the aforementioned 

airport effect. 

Rainfall Effects on PM 2.5 

 Przybysz et al. (2014) and Honour et al. (2008) found that particulate matter is water-

soluble, and rainfall can reduce the effect of particulate matter on vegetation. Therefore, it is 

assumed that rainfall can directly reduce PM 2.5 from the atmosphere before it is absorbed or 

settled by vegetation. The results of the current study support these findings as PM 2.5 values 

from the selected areas decreased during periods of rainfall. In fact, only one monitoring site 

produced the opposite consequence. The reason is that PM 2.5 data from this site (St. Louis Park 

- City Hall) were recorded every three days rather than every day. Since a lot of rainfall data 

were missing, it is hypothesized that this was the reason for the conflicting results. 

 In this study, 14 out of the 24 monitoring sites had a mean PM 2.5 value that matched 

EPA data. 14 out of the 24 monitoring sites were urban sites. However, regression analysis did 

not show bicorrelation between PM 2.5, tree space area, traffic value, and rainfall data (two of 

the p-values were greater than 0.05). When analyzing urban and rural separately, the urban area 

had a similar result buy the rural area did not show the relation. The data of rural area were 

random. The data of rural area did not show a direct relationship between PM 2.5 and three 

variables. 
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Airport Effect 

 There are two rural monitoring sites located in the airport area: the Brainerd Lakes 

Regional Airport monitoring site (6.65µg/m3) and the Marshall - Southwest Minnesota Reginal 

Airport monitoring site (4.4µg/m3). The Brainerd Lakes Regional Airport monitoring site is 

located between the airport terminal and the airport takeoff runway. The Marshall - Southwest 

Minnesota Reginal Airport monitoring site is located at the open field on the edge of the airport 

runway. There is another suburban monitoring site, Blaine - Anoka County Airport (NCore), that 

is also located in the airport area, but it is situated at the edge and closed to the commercial area. 

The aviation fuel is a possible reason for the higher measured PM 2.5 values. According to the 

analysis of the relationship between PM 2.5 and air traffic, the strong positive correlation was 

found in the airport. PM 2.5 values increase with increasing aircrafts number. 

Industrial Effect 

 There is one monitoring site in the rural area, but the surrounding area has several large 

wood products industries. It is the Fond du Lac Band monitoring site (4.13µg/m3). However, the 

industrial pollution and higher truck ratio of the traffic flow can explain the higher PM 2.5 value. 

Outliers 

 When the PM 2.5 values were analyzed by the daily average, some contained value 

beyond two standard deviations from the mean. One outlier data occurs at the Brainerd Lakes 

Regional Airport monitoring site. When analyzing PM 2.5 and tree space area, or PM 2.5 and 

traffic value, the PM 2.5 standard deviation was 1.04. The Brainerd Lakes Regional Airport 

monitoring site average PM 2.5 was 6.65µg/m3 higher than all other monitoring sites (mean PM 

2.5 = 4.29µg/m3). This monitoring site was located in a rural area, which had a higher tree space 

area ratio (21.56%) and had a lower traffic value (5282 miles/mile2). The mean PM 2.5 value for 
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this site should be less than 4.29µg/m3. However, the PM 2.5 value of this site was 6.65µg/m3 

higher than 4.29µg/m3. Since it was located in an airport area, the airport effect present at that 

location may explain why data were not included in this study. Another outlier occurs at the 

Detroit Lakes - FWS Wetland Management District monitoring site. According to the PM 2.5 

data from 2010 to 2015, and the 2017 summer section, the average PM 2.5 for this site was 

4.40µg/m3. 2016 summer data (2.44µg/m3) were much lower than 4.40µg/m3.  According to EPA, 

the Lower Detection Limit (LDL) in the PM 2.5 Federal Reference Method is 0.80µg/m3. The 

2016 summer section had 18% of PM 2.5 data, which were lower than the LDL. Therefore, this 

site was not used in current study. 

Limitations 

 In addition to the limitations, which arose upon the outlier data, there are numerous other 

factors which must be addressed. The first limitation is in regard to the location of the 

monitoring sites and traffic recording equipment. Although the traffic volume of all selected 

monitoring site areas can be calculated by using MNDOT traffic data, the MNDOT traffic data 

are not well matched with the MPCA monitoring sites. Therefore, some data are estimated by 

using the nearby automatic traffic recorder and average annual daily traffic data. Data collection 

duration was another limitation. The collection frequency of most data in this study is daily. It is 

acceptable for studying the relation between PM 2.5 and traffic volume data. However, it is not 

good enough for the relation between PM 2.5 and rainfall data. The best duration should be 

hourly. The hourly data can identify the PM 2.5 change before, during, and after rainfall. The 

hourly data will be useful to determine the relationship between PM 2.5 and rainfall. For 

instance, it was estimated that there was no rain on the 9th of July 2016 but rain on the next day. 

The rain duration was from 5 a.m. to 8 a.m. Then, the PM 2.5 value showed a downward trend in 
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these three hours. However, PM 2.5 would begin to slowly rise to normal levels after the rain. 

Since the frequency of the data is daily, it is only possible to compare the difference between 

July 9th and 10th. Therefore, the recorded data of PM 2.5 reduction with rain obtained here 

should be less than the actual situation. If the data record was hourly, relatively accurate changes 

in PM 2.5 data could be obtained. The time frame of tree canopy data is the third limitation. In 

this study, the time frame of PM 2.5 data, traffic data, and rainfall data is from May 2016 to 

October 2016, but the time frame of the National Land Cover Database (NLCD) from Multi-

Resolution Land Characteristics (MRLC) Consortium is from May 2011 to October 2011. 2011 

NLCD may not completely match the real land use of 2016. 2016 NLCD is not available. 

According to the MRLC Consortium, NLCD is made by Landsat imagery (which is used to 

calculate NDVI) and it has a higher accuracy in the context of 2011. In this study, 2017 NDVI 

imageries of two monitoring site areas were compared with 2011 NLCD, and the differences of 

two areas between 2017 and 2011 are respectively 1.7% and 1.8%, which are less than 5% 

difference requirement. According to Jovanović, Milanović, and Zorn (2018), 2011 NLCD is 

acceptable. Therefore, the 2011 NLCD can be used in 2016, but the best choice is to use the 

entire 2017 NDVI or 2016 NLCD to replace the 2011 NLCD. The last limitation is traffic type. 

MNDOT did not have separate data for different vehicle types, such as passenger vehicles, 

trucks, and commercial vehicles. Different vehicles had different emissions, and they would also 

cause different road dust (Edvardsson & Magnusson, 2009). If the vehicle types can be 

identified, it will help to determine the correlation between PM 2.5 and traffic volume 

accurately. 
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Future Studies 

 This study attempted to examine the relationships between PM 2.5 and tree space area, 

traffic volume, and rainfall in Minnesota. There are still many uncertainties in our 

understandings of some of these very complicated relationships. Future studies could expand on 

this in several ways. One way would be to utilize the same data and incorporate more variables 

into the calculations to see whether other correlations appeared. For example, if I can identify the 

tree area change between summer and winter, it is possible to determine the PM 2.5 changes in 

the similar traffic pattern.  Another way would be to change the size of the buffered area 

surrounding the monitoring site to determine whether the correlations identified remain. In this 

study, the buffer selected is based on the monitoring site measurement scale from MPCA, and it 

is acceptable for daily data. However, it would have a better choice of buffer size for this study 

when hourly data is used in this research. To build our associated monitoring equipment based 

on MPCA monitoring sites in the same selected areas is another way to compare with the 

existing data to search for patterns which this study overlooked. For instance, MPCA has a 

roadside site; I can build the tree-covered site in the same selected area. This new research may 

provide useful information. 
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Chapter VI: Conclusion 

 The study had not been able to successfully build a multivariate model to match 

Minnesota PM 2.5 pollution. However, results from this study show that PM 2.5 has the 

correlations with tree space area, traffic volume, and rainfall. The correlation analysis results 

between PM2.5 concentration and three variables (tree space area, traffic volume, and rainfall) 

showed that tree space area ratio had a negative, traffic volume had a positive and rainfall had a 

negative, correlation with PM2.5.

 According to the results, several conceptual assumptions can be made: 

 In general, urban areas have higher mean PM 2.5 values than rural areas because of the 

lower tree covered area and higher traffic volume. 

 Areas with more tree coverage have lower PM 2.5 values in urban. 

 A higher traffic volume causes a higher PM 2.5 value. 

 Rainfall can reduce PM 2.5 in the air. The PM 2.5 value will decrease during rainfall. 

 The correlations between PM 2.5 and tree space area, traffic volume, and rainfall are 

significant in urban, but not in rural. 

 A higher air traffic volume causes a higher PM 2.5 value in airport areas. 
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Appendix 

 
 

Figure I: 2011 Voyageurs National Park site: tree canopy, buffer size and monitoring site 

location  
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Figure II: 2011 St. Louis Park - City Hall site: tree canopy, buffer size and monitoring site 

location 
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Figure III: 2011 Apple Valley - Westview School site: tree canopy, buffer size and monitoring 

site location 
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Figure IV: 2011 Lakeview - Near Road I-35 site: tree canopy, buffer size and monitoring site 

location 
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Figure V: 2011 Shakopee - B.F. Pearson School site: tree canopy, buffer size and monitoring site 

location 
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Figure VI: 2011 St. Paul - Ramsey Health Center site: tree canopy, buffer size and monitoring 

site location 
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Figure VII: 2011 St. Paul - Harding High School site: tree canopy, buffer size and monitoring 

site location 
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Figure VIII: 2011 Minneapolis - Near Road I-35/I-94 site: tree canopy, buffer size and 

monitoring site location 
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Figure IX: 2011 Minneapolis - Andersen School site: tree canopy, buffer size and monitoring site 

location 
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Figure X: 2011 Virginia - City Hall site: tree canopy, buffer size and monitoring site location 
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Figure XI: 2011 Detroit Lakes - FWS Wetland Management District site: tree canopy, buffer size 

and monitoring site location 
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Figure XII: 2011 Red Lake Nation site: tree canopy, buffer size and monitoring site location 
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Figure XIII: 2011 St. Cloud - Talahi School site: tree canopy, buffer size and monitoring site 

location 
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Figure XIV: 2011 St. Michael Elementary School site: tree canopy, buffer size and monitoring 

site location 
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Figure XV: 2011 Brainerd Lakes Regional Airport site: tree canopy, buffer size and monitoring 

site location 
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Figure XVI: 2011 Marshall - Southwest Minnesota Regional Airport site: tree canopy, buffer 

size and monitoring site location 
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Figure XVII: 2011 Rochester - Ben Franklin School site: tree canopy, buffer size and monitoring 

site location 
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Figure XVIII: 2011 Blaine - Anoka County Airport site: tree canopy, buffer size and monitoring 

site location 



124 

 

 
 

Figure XIX: 2011 Ely - Fernberg Road site: tree canopy, buffer size and monitoring site location 
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Figure XX: 2011 Fond du Lac Band site: tree canopy, buffer size and monitoring site location 
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Figure XXI: 2011 Duluth U of M site: tree canopy, buffer size and monitoring site location 
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Figure XXII: 2011 Duluth - Laura MacArthur School site: tree canopy, buffer size and 

monitoring site location 
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Figure XXIII: 2011 Grand Portage Band site: tree canopy, buffer size and monitoring site 

location 
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Figure XXIV: 2011 Great River Bluffs State Park site: tree canopy, buffer size and monitoring 

site location 
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