
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

5-2015

Using Hadoop to Support Big Data Analysis:
Design and Performance Characteristics
Afreen Sultana
St Cloud State University, asultana@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Sultana, Afreen, "Using Hadoop to Support Big Data Analysis: Design and Performance Characteristics" (2015). Culminating Projects
in Information Assurance. 27.
https://repository.stcloudstate.edu/msia_etds/27

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/27?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Using Hadoop to Support Big Data Analysis: Design and Performance Characteristics

by

Afreen Sultana

A Starred Paper

Submitted to the Graduate Faculty

of

St. Cloud State University

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science in Information Assurance

May, 2017

Starred Paper Committee:

Dr. Dennis Guster, Chairperson

Dr. Susantha Herath

Dr. David Robinson

2

Abstract

 Today, the amount of data generated is extremely large and is growing faster than

computational speeds can keep up with. Therefore, using the traditional ways or we can say using

a single machine to store or process data can no longer be beneficial and can take a huge amount

of time. As a result, we need a different and better way to process data such as having data

distributed over large computing clusters.

Hadoop is a framework that allows the distributed processing of large data sets. Hadoop is

an open source application available under the Apache License. It is designed to scale up from a

single server to thousands of machines, where each machine can perform computations locally

and store them.

The literature indicates that processing Big Data in a reasonable time frame can be a

challenging task. One of the most promising platforms is a concept of Exascale computing. This

paper created a testbed based on recommendations for Big Data within the Exascale architecture.

This testbed featured three nodes, Hadoop distributed file system. Data from Twitter logs was

stored in both the Hadoop file system as well as a traditional MySQL database. The Hadoop file

system consistently outperformed the MySQL database. The further research uses larger data sets

and more complex queries to truly assess the capabilities of distributed file systems. This research

also addresses optimizing the number of processing nodes and the intercommunication paths in

the underlying infrastructure of the distributed file system.

 HIVE.apache.org states that the Apache HIVE data warehouse software facilitates

reading, writing, and managing large datasets residing in distributes storage using SQL. At the

3

end, there is an explanation of how to install and launch Hadoop and HIVE, how to configure the

rules in a Hadoop ecosystem and the few use cases to check the performance.

Keywords

MapReduce, Computation, optimization, Java

4

Acknowledgement

I would first like to thank my starred Paper Advisor Dr. Dennis Guster of the Department

of Information Systems at Saint Cloud State University. The door to Prof. Guster’s Office was

always open whenever I ran into a trouble spot or had a question about my research. He

consistently allowed this paper to be my own work but steered me in the right direction whenever

he thought I needed it.

I would also like to show my gratitude to Dr. Susantha Herath, Chair Department of

Information Systems and Dr. David H. Robinson, Prof. Statistics Department for sharing their

pearls of wisdom with me during this research. I am immensely grateful for their comments on an

earlier version of the manuscript, although any errors are my own and should not tarnish the

reputations of these esteemed persons.

5

Table of Contents

 Page

 List of Tables ...7

 List of Tables ...8

 Chapter 1: Introduction ..11

 Introduction ..11

 Problem Statement ...17

 Nature and Significance of the Problem ..18

 Objective of the Research ..18

 Research Questions and/or Hypotheses ...19

 Definition of Terms..20

 Chapter 2: Background and Literature Review ...22

 Introduction ..22

 Challenges of working with Big Data ..22

 Need for Distributed File Systems ...23

 Architectures to Support Big Data ...24

 Performance Issues with Big Data ...25

 Advantages of Hadoop and MapReduce ..26

 Architecture and Performance Issues...27

Chapter 3: Methodology ..30

 Introduction ..30

 Design of the Study ..30

6

 Page

 Data Collection ..32

 Tools & Techniques ...35

 Hardware and Software Environment ..38

 Chapter 4: Implementation ..40

 Introduction ..40

 Data Presentation ...40

 Chapter 5: Analysis and Results ..73

 Introduction ..73

 Results and Analysis ..73

 Summary ..78

Chapter 6: Conclusion and Future Work ...79

 Conclusion ...79

 Future Work ...80

 References ..82

7

List of Tables

Table Page

1. Definition of Terms..20

2. Virtual Machine Details ...38

3. TwitterData table in MySQL and HIVE ..74

4. Comparison Results of HIVE and MySQL ...75

8

List of Figures

Figure Page

1. Components of Hadoop ...14

2. File.txt input splits ...14

3. Procedure for storing Data in HDFS ..15

 4. MapReduce Process ...16

 5. Architecture Diagram...31

 6. Twitter Application Management ..32

 7. The Template of creating and application ...33

 8. Twitter Application ..33

 9. Twitter Application key and access token management ..34

 10. HDFS daemons and Hadoop Core Components ..37

 11. Java Installation ...41

 12. Extracting Java Jar Files ..41

 13. Java Version ...42

 14. SSH and SSHD verification ...43

 15. Installing MySQL ..44

 16. Assigning credentials for MySQL ...44

 17. Configuring Machines IP address to MySQL ..45

 18. Restarting MySQL ...46

 19. MySQL Installation ...46

 20. Downloading Installation ...47

9

Page

 21. SQOOP Installation and Extraction ...48

 22. Configuring bashrc for SQOOP ...49

 23. Appending commands for bashrc configurations ..50

 24. Redirecting to SQOOP configuration directory ...51

 25. Configuring SQOOP-env.sh ..51

 26. Configuring MySQL-Connector-Java ...52

 27. Adding MySQL-Connector-Jar to SQOOP Libraries ..53

 28. Verifying SQOOP ..53

 29. Downloading HIVE ...54

 30. Configuring bashrc in HIVE ..55

 31. Configuring HIVE ...56

 32. Configuration Commands in HIVE-config.sh ...57

 33. Configure MySQL-Connector-Java ...57

 34. Adding MySQL-Connector-Java.Jar to HIVE Libraries58

 35. Configuring Metastore of HIVE ..60

 36. Appending commands for HIVE-site.xml ...61

 37. Restarting MySQL ...61

 38. Configure metastore_db in MySQL...62

 39. Granting privileges to user ...63

 40. Verifying HIVE Installation ..63

10

 Page

 41. Importing Data from MySQL to HDFS ...64

 42. Successfully Installed Hadoop and HIVE..65

 43. Appending commands in bashrc for Hadoop configuration67

 44. This shows the time taken to perform this query for 0.629 seconds....................73

 45. The time taken to perform this Query in HIVE in 0.4 seconds74

 46. MySQL performance for counting the TweetData is shown which is 2min 76

 47. The same Query (count) number of TweetData is shown here77

 48. This shows the time which is 79.062 seconds ...77

11

Chapter 1: Introduction

Introduction

 In this chapter, an overview of Hadoop and HIVE is explained. The nature and

significance of the problem are discussed which will help in understanding the significance of

Hadoop over traditional database MySQL when dealing with large datasets. The better

understanding of different components of Hadoop ecosystem is explained.

Overview

Hadoop is the most popular open-source implementation of a single computing node or on

clusters (Apache Hadoop, Wiki). Hadoop and MapReduce programs are used in dealing with a

huge amount of data. Hadoop can be used for storing large data and for processing data such as

data mining, report generation, file analysis, web indexing, and bioinformatics research.

As the name implies “Big Data” presents several challenges to Information System

professionals. Most DBMSs are designed for efficient transaction processing: adding, updating,

searching for, and retrieving small amounts of information in a large database.

It appears that platforms have been created to deal with the mass and structure of Big

Data. Further, as one might expect they utilize distributed processing as well as software

optimization techniques. An excellent summary of this work is presented by Singh and Reddy,

2014. In this work, they discuss both horizontal distributed file systems such as Hadoop (and its

successor Spark) and vertical systems that rely on high-performance solutions which leverage

multiple cores. This paper will focus on horizontal system Hadoop. The Hadoop file system and

its associated components create a complex, but efficient architecture that can be used to support

Big Data analysis.

12

 In addition, this work explains in detail all the components in the Hadoop architecture

including the map-reduce optimization software. Of special interest to this paper is the

explanation of HIVE which is a MapReduce wrapper developed by Facebook, Thusoo et al.,

2009. This wrapper provides a more efficient development environment due to its macro nature

and makes the coding easier because programmers don’t need to directly address the complexities

of MapReduce code.

In sum, this paper will use a Hadoop-based data analytics ecosystem to support a Big Data

application and compare its performance with a traditional DBMS. Special attention will be paid

to the MapReduce function and the programming strategy associated with each solution.

Big Data

We are living in the data world. How to store and process data is the question. The data

which is beyond the storage capacity and beyond processing power is called Big Data. Big Data is

generated with different platforms and devices, for example, Facebook, sensors, networks, online

shopping’s, airlines, hospital data etc. These are data generated factors. In the year 1990’s hard

disk capacity was 130MB and gradually increased to 240MB and RAM was 65-120 MB

approximately (Schmid, 2006). In 2017, hard disk capacity is minimum 500 GB -1 TB, RAM 4-

16 GB. Hence, the data needs to be stored and not discarded. As a result, Hadoop has been

introduced as the best solution for Big Data.

13

History of Hadoop

In 1990’s Google had to come up with more data and to get the proper solution it has

taken 13 years. In 2003, they had introduced GFS (Google File System) which is a technique to

store huge data. In 2004, they have introduced MapReduce which is the best processing

technique. They have published a “white paper” which has a description of GFS and MapReduce.

Later, Yahoo which is the next best search engine after Google introduced HDFS in the year

2006-2007 and MapReduce was introduced in 2007-2008. They have taken the white paper which

was given by Google and started implementing and came up with HDFS (Hadoop Distributed File

System) and MapReduce. These are the two core components of Hadoop. Hadoop was then

introduced by Doug Cutting in 2005.

Components of Hadoop

Figure 1 shows the components of Hadoop which are HDFS and MapReduce. Hadoop is

an open source framework given by apache software foundation for storing and processing huge

data sets with the cluster of commodity hardware which is done by these components.

HDFS. HDFS is a specially designed File System for storing huge data sets with cluster of

commodity hardware with streaming access pattern which means “Write Once Read Many

Times”. The block size of each file is 64MB or 128MB. Shvachko, Kuang, and Radia (2010)

stated that “in a large cluster, thousands of servers both host directly attached storage and execute

user application tasks. By distributing storage and computation across many servers, the resource

can grow in demand while remaining at every size.”

14

Figure 1. Components of Hadoop

Working of HDFS

❖ Suppose a client is willing to put 150MB of data in a cluster and sends a request to

the NameNode cluster as metadata. Metadata stores the data about the data given

by the Client.

❖ 150MB of data is stored in a file with the file name as file.txt as shown in Figure2.

❖ The file is divided into 3 input splits a.txt, b.txt, c.txt of each 64MB block size

(150MB / 64MB).

a.txt – 64MB

b.txt – 64MB

c.txt – 22MB

Figure 2. File.txt input splits

❖ NameNode responds to the client and requests to store 150MB data in the nodes

which has space.

❖ Client store all the txt files in different DataNodes. However, all the files need not

be in sequence order.

15

❖ DataNodes are commodity hardware which means if the system goes down the

data doesn’t lose since HDFS has been given 3 replications by default. Hence it

has 2 more backup files for each text files stored in different DataNodes. Hence,

the a.txt file occupies 450 MB (150 MB * 3) of files in the whole cluster because

of the replication. The same way other text files are also allocated to DataNodes

with their corresponding replications. All the DataNodes which are SlaveNodes for

that NameNode give proper block report and heartbeat to the NameNode. This

acknowledgment gives the information of the condition of the DataNodes. Block

report shows the DataNodes are still allocated with some size of block and

heartbeat gives the status of the nodes. This is how the data is stored in HDFS.

Figure 3. Procedure for storing Data in HDFS

❖ If the NameNode is lost then it’s called “single point of failure” and nothing can be

accessed in the system. (Borthakur, 2007)

16

❖ On the other hand, the JobTracker sends requests to NameNode when the client

requests to process a file from those DataNodes. Then the NameNode checks for

the file and sends the metadata to JobTracker. JobTracker assigns tasks to

TaskTracker which process the files and gives the results to the client. Now the

data is stored, the next step is processing of the stored data which is done by

MapReduce.’

MapReduce. Counting number of occurrences of words is the basic concept in

MapReduce. Suppose we have a file of 200MB which is divided into 4 splits of 64MB block size

as shown in figure 4.

s

Figure 4. MapReduce process

Every input split has its own mapper. Hadoop can only run with MapReduce in the form

of (key, value) pairs. Mappers and Reducers work with the (key, value) pairs. For every

Mapper Mapper

Mapper

Mapper

Input Split Input Split

Input Split

Input Split

Record reader Record reader

Record reader

Reducer

200MB

Reducer

Reducer

Reducer

Record reader

17

Mapper/Reducer, a Record Reader is assigned which converts a text message in (key, value)

pairs.

Record Reader is a predefined interface which converts the input file to (key, value) pairs.

It takes the input file and converts the message in (byte offset, entire line) format where the byte

offset is the address of the line. For instance, we have input splits as:

“Hi how are you” “How is your job”

The record reader takes the text input split and converts into (key, value) pair as follows:

Hi how are you - - - > (0, hi how are you)

Where 0 is, the byte offset and the text “hi how are you” is the entire line.

Next will be (16, how is your job). It counts the number of letters with the spaces between words

from “Hi how are you” “How is your job”?

Mappers run for every (key, value) pair. Since we are distributing the same job in multiple

systems this concept is called parallel processing.

Problem statement

According to WorldWideWebSize.com, until April 2017, the web consists of

approximately 4.5 billion web pages, a conservative number of web pages is approximately 30KB

that translates to about a petabyte of data. The volume of the data generated every day is too fast

and the traditional methods are not built to process this data in an organized meaningful manner.

There is a need to conduct performance related research. Further, parallel processing is required to

deal with huge data.

Therefore, this paper uses Hadoop with live data to test the performance of huge data after

deploying in both traditional MySQL database and Hadoop.

“How is your job”

18

Nature and Significance of the Problem

As the data is increasing with large velocity and in different forms, it is important to get

the results quicker. Today’s average disk speed reads about 120 MB/Sec (Michael, 2011). So, a

single machine needs about three months to read the entire data and then MySQL Cluster is a

famous clustered database that is used to store and manipulate data. “The problem with MySQL

Cluster is that as the data grows larger, the time required to process the data increases and

additional resources may be needed. With Hadoop and HIVE, processing time can be faster than

MySQL Cluster” (Fuad, Erwin, & lpung, 2014). In this study, two data testers with the same data

will run simple queries to compare the performance results.

Objective of the Research

The objective of this study is to compare the performance results of the traditional

MySQL database with HIVE when dealing with huge amount of data. A recent study by Pol

(2016) concluded that the drawback to using HIVE is that Hadoop developers must compromise

on optimizing the queries as it depends on the HIVE optimizer and Hadoop developers need to

train the HIVE optimizer on efficient optimization of queries. HIVE is generally used for

processing structured data in the form of tables. In one article, it is explained that HIVE

eliminates tricky coding and lots of boilerplate that would otherwise be an overhead if they were

following MapReduce coding approach Refer dezyre.com for more details.

Research Questions and/or Hypotheses

 Some of the questions that could be think about as going through this study are as follows

❖ Does HIVE provide better performance than MySQL when dealing with large amount of

data?

19

o Yes, HIVE provides better performance for large data sets. However, MySQL still

performs better results when dealing with small data sets. This can be seen in this

study below.

❖ Does HIVE provide faster results with multiple DataNodes?

o HIVE provides faster results with multiple DataNodes. The study done by Thusoo

et al. (2009) provides an excellent study on this question. It states that HIVE

includes a system catalog- Metastore- that contains schemas and statistics, which

are useful in data exploration, query optimization, and compilation.

❖ What was the role of MapReduce in this study?

o MapReduce feature is highlighted in the study for efficient, scalable processing of

data by distributing the data in different DataNodes and doing the processing in

parallel.

❖ How much time difference was between MySQL and HIVE when dealing with large data

and small data?

o Refer Figure 44 and 45.

❖ Will block size of DataNodes be occupied or used by another task or is it left empty once

the small amount of task less than 64MB is placed in it?

o As explained above in the working of HDFS the block size is occupied and used

by another task and is not left empty.

20

Limitations of the Study

❖ Apache HIVE is very like MySQL and knows SQL clauses like FROM, WHERE,

GROUP BY, ORDER BY. The drawback to using HIVE is useful only when the data

is structured. With the unstructured, it is not a good tool. However, MapReduce can

work on any type of datasets. In a study Kumar, Gupta, Charu, Bansal and Yadav

(2014) explains some of the limitations of HIVE such as HIVE doesn’t support for

UPDATE & DELETE. It does not support singleton INSERT. Moreover, the study of

(Rao, Sridevi, Reddy, & Reddy, 2012) found that Hadoop lacks performance in

heterogeneous clusters where nodes have different computing capacity.

Definition of Terms

Table 1

 Definition of terms.

Hadoop Framework for distributed storage and processing of huge data

MapReduce A programming model for large scale data processing.

HIVE Used for performing queries

YARN Used for scheduling jobs

DBMS Database management system

HDFS Hadoop Distributed File System

JSP Java Server Pages

21

Summary

This study presents the processing time of HIVE and MySQL cluster on a simple data

model with simple queries while the data is growing. Chapter 2 discusses the performance issues;

background and literature review about Big Data and discusses the advantages of using Hadoop.

Chapter 3 explains the methodology used in doing this research and provides the timeline and the

future work which is to be done.

22

Chapter 2: Background and Literature Review

Introduction

This section provides the importance and need of using Hadoop. Also, the challenges of

working with Big Data and briefly examined the architecture and performance issues related to

the study. Further, research papers related to Big Data has also been discussed to better state the

importance of Hadoop when compared to traditional database.

Challenges of working with Big Data

The literature indicates that there are many challenges when working in Big Data.

Jagadish, Gehrke, Labrinidis, Papakonstantinou, Patel, Ramakrishnan, and Shahabi (2014) state

that working in Big Data is a multi-step process and it is important not to ignore any of the steps.

Specifically, they have identified the following required steps: acquisition, information extraction,

data cleansing, data integration, modeling/analysis, interpretation, and reporting. Too often one or

more of the steps are ignored and too much focus is placed on the reporting phase and the

“visualization of the results” which often can result in erroneous reporting.

According to Fan, Han, and Liu (2014) “the massive size of big data leads to different

challenges such as unique computational and statistical challenge, scalability, noise accumulation

etc. Different areas of studies including the field of genomics, neuroscience, economics and

finance face many challenges due to the high volume of data generated every day. This

developing more adaptive and robust procedures”. Hence, big data has drawn massive attention

from researchers in Information Technology and other areas.

With Big Data, it is crucial to be able to scale up and down on-demand. Many

organizations fail to consider how easily the Big Data project can grow and evolve. Constantly

23

pausing a project to add additional resources will cut into times for data analytics. Refer

https://www.qubole.com/resources/solution/big-data-challenges/ for more Information.

Need for Distributed File Systems

As one would expect the increased volume of data that results from a Big Data concept

complicates analytic endeavors. Because HDFS typically used for low-commodity hardware

which means organizations need not spend a lot of money on purchasing hardware of high

quality. Distributing data into multiple machines not only saves time but makes the job easier to

process. In this study, HDFS is used for performing distributed processing of data which is a

Hadoop-based component. If helps in ETL process and gives the processing result of large data in

seconds. In an Independent study performed with Punith Etikala (Sultana & Etikala ,2015) we

found that when we are dealing with traditional database with relatively large amount of

information MySQL system was crashed. However, Hadoop with the help of distributed file

system performed analysis in a few minutes. Levy and Silberschatz (1990) stated that the purpose

of distributed file system is to allow the computers share the same data and resources by using a

common file system. It can also provide high – throughput and suitable for applications with large

data sets.

Distributed file systems also help multiple users on different machines to share files in the

share resources. It differs in many ways from traditional database systems. Some of the

differences are performance, handling of nodes, handling of temporary or permanent loss of data

storage or resources.

Distributed storage is relatively very easy to understand when compared to traditional way

of storing the data. However, it has complex configurations and management. According to

https://www.qubole.com/resources/solution/big-data-challenges/

24

(Microsoft, wiki) “DFS provides location transparency (via namespace content) and redundancy

(via the file replication component) to improve data availability in the face of failure or heavy

load by allowing shares in multiple different locations to be logically grouped under one folder, or

DFS root.”

 Also, as we discussed earlier the traditional MySQL requires high RAM and disk space

but the work in Distributed file system is done in parallel.

 Architectures to Support Big Data

There appears to be a consensus that the concept of a distributed file system offers an

excellent platform to support Big Data. While there may be other viable options in terms of

design or functionality, but distributed file systems by far offer the most cost effective solution

(Jarr, 2014). A prime example of this is Hadoop, which is designed to deploy a distributed file

system on cheap commodity machines (Reed & Dongarra, 2015).

It also is interesting to note that the architecture to capture the Big Data in the first place is

expanding as well. This environment is personified by the Internet of Things (IoT) concept. IoT

relies on interconnected physical objects which effectively creates a mesh of sensor devices

capable of producing a mass of stored information. These sensor-based networks pervade our

environment (e.g., cars, buildings, and smartphones) and continuously collect data about our lives

(Cecchinel, Jimenez, Mosser & Riveill, 2014). Thus, the use of IoT will further propagate the

legacy of Big Data.

25

Performance Issues with Big Data

Big data is defined as a large amount of data which needs to be processed by using

different technologies and architectures. It is expected to have performance issues when working

with big data. However, Big Data due to its various properties results in many challenges. Jewell

et al. (2014) have identified four dimensions:

1. volume (Big Data applications must manage and process large amounts of data),

2. velocity (Big Data applications must process data that is arriving more rapidly),

3. variety (Big Data applications must process many kinds of data, both structured and

 Unstructured) and

4. Veracity (Big Data applications must include a mechanism to assess the correctness of

the large amount data of rapidly).

It eliminates the need of extensive expensive hardware and storage space. When the data

is stored in different modules like a public cloud, private cloud, Cloud computing needs to be

introduced which the most powerful technology to perform complex is computing on the datasets.

In the study Hashem, Yaqoob, Anuar, Mokhtar, Gani, and Khan (2014) addressed the issues on

the rise of big data in cloud computing and explained “Addressing big data is a challenging and

time-demanding task that requires a large computational infrastructure to ensure successful data

processing and analysis”.

 Jacobs (2009) pointed out that “just as maintaining locality of reference via sequential

access is crucial to processes that rely on disk I/O (because disk seeks are expensive), so too, in

distributed analysis, processing must include a significant component that is local in the data—

that is, does not require simultaneous processing of many disparate parts of the dataset because

26

communication between the different processing domains is expensive)”. Just as it is easy to

extract the data from the systems it should be easy to store the data as well. So, one can

understand that it is easy to get the data in parallel processing instead of storing in databases and

performing analysis with the traditional databases. Surely, the whole concept of distributed

parallel processing of data seems to be easier but it has lots of limitations including the

management of the file system. Hence the future systems and configurations need to enhance

more beyond the present state.

 Jacobs (2009) also stated that the business applications, at least, a data warehouse is

regarded as the solution for the database problems. The normal way used in this data ware-

housing is extracting the data from one database and transferring and loading the data in another

database for performing queries to get the analysis which is so-called ETL process. To understand

ways to avoid the pathologies of big data in any context it is important to consider what makes it

big. Hence how big the data is it is more difficult to maintain multiple copies of the data.

Advantages of Hadoop and MapReduce

 On a basic level, the advantage of Hadoop is that it provides an efficient and cost-effective

platform for distributed data stores. MapReduce then provides the means to connect the

distributed data segments in a meaningful way. MapReduce with Hadoop helps analyze data in

more efficient and timely manner. In that sense, MapReduce can also be used with parallel

DBMS. Along with this Hadoop offers support of multiple languages that is used for processing

and storing of data. Time manner is used to connect in a distributed structure. A pertinent research

project utilized an open-source MapReduce implementation in conjunction with two parallel

DBMSs, (Stonebraker, Abadi, DeWitt, Madden, Paulson, Pavlo, & Rasin, 2010). They

27

determined that DBMSs are much faster than MapReduce open source systems at the point that

data is loaded. However, loading the data requires much longer to load in the database systems.

Dean and Ghemawat (2010) clarified the inter-relationship between MapReduce and parallel

databases. Specifically, they determined that MapReduce provides many significant advantages

over parallel databases. First and most important, MapReduce introduces fine-grain fault

tolerance within large jobs. This check-pointing logic allows for easier recovery when a failure

occurs in the middle of a multi-hour job. Second, MapReduce is more versatile in facilitating data

processing and data loading in a heterogeneous system containing different storage architectures.

Third, MapReduce provides an excellent schema in managing the execution of complex functions

which are not directly supported by the SQL language. Last, MapReduce besides having

performance advantages provides an effective way of linking complex data parts together within

any architecture but shines when linked with Hadoop (Reed & Dongarra, 2015).

Architecture and Performance Issues

 It has been established that the volume of processing within Big Data requires a well-

designed architecture if reasonable performance is to be obtained. The volume of processing

within Big Data necessitates a well-designed architecture if reasonable performance is to be

realized. As stated earlier a study by of Reed and Dongarra (2015) provides an excellent overview

of Exascale computing. The prime feature of this architecture revolves around a distributed

storage system which permits the data to be extracted from multiple devices simultaneously

(Chang et al., 2008). As one would expect the Hadoop file system adheres to this logic. A cost

benefit of Hadoop is that it can be considered a data-analytics cluster based on commodity

Ethernet networking technology and numerous PC nodes (even a generation or two old)

28

containing local storage. This design had received excellent reviews in providing a cost-effective

solution for large scale data analytics (Lucas et al., 2014). Given this architecture on could then

view Hadoop as the logic to bind the components together. This situation facilitated the creation

of a test-bed environment for this paper. The fact that cloud computing was being used made the

resources available to rapidly configure it in the author’s private cloud using virtualization

software.

 A prime part of the Hadoop system implementation strategy is the Map Reduce model

(Dean & Ghemawat, 2004). Specifically, Map Reduce is designed to support the parallel

processing function within Hadoop applications. To fit well in cloud computing it is designed to

utilize multi-core as well as processors distributed across multiple computing nodes. Of course,

the foundation of the Map Reduce system is a distributed file system. Its major function is based

on the simple concept: Large files are reorganized into equal size blocks, which are then

distributed across a cluster and stored. In this paper, the storage occurred within a private cloud.

To ensure reliability fault tolerance was implemented which means that each block is stored

several times (at least three times) across computers nodes.

 A challenge with undertaking a performance analysis of this type is dealing with new

technology and learning new things. The authors’ primary background in dealing with large data

sources was a traditional relational database structure. Fortunately, a couple of tools are available

to assist in extracting data from the Hadoop file system. First, there is “PIG” which was devised

by Yahoo! to streamline the process of analyzing large data sets by reducing the time required to

write mapper and reducer programs. According to IBM 2015B, the pig analogy stems from actual

pigs, who eat almost anything, hence, the PIG programming language is designed to handle any

29

kind of data! While it boasts a powerful programming language it is basically new syntax and

requires time to master. Another option HIVE uses an SQL derivative called HIVE Query

Language (HQL) so that the developer is not starting from scratch and has a much shorter

learning curve. While HQL does not have the full capabilities of SQL it is still useful (IBM,

2015A). It completes its primary purpose quite well which is to serve as a front end to simplify

MapReduce jobs that are executed across a Hadoop cluster.

 Because the goal of this paper is to assess the performance using similar data sets stored

under two different structures it is important to be able to transfer the exact data between two

different data structures. A tool called SQOOP was used to solve this problem.

 According to (Sqoop.apache.org), SQOOP is a tool designed for efficiently transferring

bulk data between Apache Hadoop and structured datastores such as relational databases. Its use

is critical for this project because the original data being utilized is stored in a MySQL database.

Specifically, this data came from the twitter logs and consisted approximately 400,000 records.

By using Java and MySQL, the number of records of TweetData table is regenerated. Currently,

the number of records are approximately 250 million.

Summary

 The study of different papers related to the work of this paper is discussed and some

important issues and challenges of Hadoop have been discussed in detail. The next chapter gives

the brief description of the methodology used in this study and the hardware and software

environment required for proceeding forward in the work.

30

Chapter 3: Methodology

Introduction

This section provides the design and architecture of Hadoop, the detailed information of

what tools have been used and the total number of data collected from different resources. The

data used in this paper is in a structured format and contains millions of records which are in the

form of HIVE table and in MySQL tables. Hadoop runs with the help of different tools and

techniques which are also discussed in detailed. To perform the analysis the hardware and

software requirements are required, the amount of space and memory required for each of the

Virtual Machines is collected.

Design of the Study

 The following diagram explains the architecture of Hadoop used for this project. “It is

centered on the HDFS file system which is used to store the data. To achieve the desired

parallelism MapReduce and YARN framework is used to process HDFS data and provide

resource management. Apache HIVE is built on top of Hadoop to provide a data summarization

and analysis on HDFS data. Apache SQOOP is used to transfer data between relational databases

and the HDFS system. Finally, when the data is stored in both MySQL and HIVE databases

analysis is performed on the data and the results are compared.” (Etikala, 2016).

A drawing that depicts the process that was followed to undertake the experimental

comparison appears below. Both the MySQL database and the HDFS were run on similar

hardware within the same cloud. However, the HDFS system was distributed across several

nodes. As would be expected the HDFS system performed better in all the experimental trials.

31

Figure 5. Architecture Diagram

The main idea of the project is to compare the performance of MySQL and HIVE and to

prove that with large data sets, HIVE gives better performance that the traditional database

(MySQL). The architecture diagram explains the process which will be followed in this project.

The huge data collected Twitter is transformed into MYSQL in a structured format. Using

SQOOP, which is a data transfer tool, the data from MySQL is loaded into Hadoop distributed

file system. The data is then moved to HIVE in the form of structured tables.

Using HIVE Query Language (HQL), some queries are performed on the data and on the

other side, using MYSQL the same queries are performed.

HDFS

(File System for Hadoop)

YARN (MapReduce 2.0)

(Cluster Resource Management & data

processing)

HIVE

(HIVEQL Query) SQOOP

(Data Exchange)

RDBMS

(MySQL)

32

Yarn framework is used for job scheduling and cluster resource management. MapReduce

framework is used to split data into small pieces and execute the related jobs on nodes. The

results will be collected from nodes, integrated and then return to users. In this way, MapReduce

transforms a single-node processing job to a parallel processing job to improve the execution

efficiency.

Data Collection

The data used in this project is taken from Twitter App for the performance analysis. The

number of records is approximately 250 million. By using Java and MySQL, the number of

records of TweetsData table is regenerated.

This allows downloading real-time data available from Twitter company server. The

website “https://apps.twitter.com/” allows creating a Twitter App.

In the Application Management window, “Create New App” allows to create an application.

Figure 6. Twitter Application Management

Once the application is created successfully, In the Application Management screen, the newly

created Twitter App appears.

https://mail.stcloudstate.edu/owa/redir.aspx?SURL=UcEDrLi0IgWsZ63LDAj5BZhjuuq4_3HOozmK9J5zVYZxAxhbjezSCGgAdAB0AHAAcwA6AC8ALwBhAHAAcABzAC4AdAB3AGkAdAB0AGUAcgAuAGMAbwBtAC8A&URL=https%3a%2f%2fapps.twitter.com%2f

33

Figure 7. The template of creating an application

Figure 8. Twitter Application

Open the newly created Twitter Application, and navigate to “Keys and Access Tokens”

tab, where Consumer Key (API Key), Consumer Secret (API Secret), Access Token and Access

34

Token Secret are the 4 secret keys, which allows Java program to connect to Twitter App to

retrieve the data from Twitter company server.

Figure 9. Twitter Application Key and Access Tokens Management

To perform analysis with Hadoop, 20GB of data gathered from the Twitter server.

TwitterData.java is used to download raw data, which is in JSON format. Converter.java is used

to parse the JSON data and gather the required data to perform analysis with Hadoop. There are

four main “objects” that will be encountered in the API: Tweets, Users, and Entities (see

also Entities in Objects), and Places in the feeds. A similar study is done by (Etikala, 2016).

https://mail.stcloudstate.edu/owa/redir.aspx?SURL=vAEB-qr9CCazLNJYI24jM5iQtvOuWGqQc8VBMqslWphxAxhbjezSCGgAdAB0AHAAcwA6AC8ALwBkAGUAdgAuAHQAdwBpAHQAdABlAHIALgBjAG8AbQAvAG8AdgBlAHIAdgBpAGUAdwAvAGEAcABpAC8AdAB3AGUAZQB0AHMA&URL=https%3a%2f%2fdev.twitter.com%2foverview%2fapi%2ftweets

35

Tools and Techniques

Hadoop is the most popular platform for Big Data analysis. It is huge and involves many

supporting frameworks and tools to effectively run and manage it. Since Hadoop runs on Java,

there are some required pre-requisites that need to start Hadoop. Below are the tools and

techniques used in this project are SQOOP, HIVE, MySQL, MAPREDUCE and Hadoop

Daemons.

HIVE. It is a data warehouse built on top of Hadoop and is used for analyzing,

summarizing and querying of data using HIVE Query Language (HQL) (Apache Hadoop, Wiki).

These queries are compiled into map-reduce jobs which are executed by Hadoop. “HIVE was

open sourced in August 2008 and since then has been used and explored by several Hadoop users

for their data processing needs (Thusoo et al., 2009). Generally, HIVE runs on our workstations

and converts SQL queries into a series of MapReduce jobs for execution on Hadoop cluster

(White, 2012). The data is organized in the form of tables using HIVE”. It is the module that

allows the extraction logic of the data to be formulated using an SQL-like language.

SQOOP. It is a tool to transfer data from one database to the other. In this paper, SQOOP

is mainly used to transfer data from MySQL to HIVE. It splits each table into four parts by default

and it uses the mapper of MapReduce framework to store data in clusters via JDBC driver during

data migration (Sqoop User Guide, v1.4.5). Data from the tables is then stored in the Virtual

Machines where Hadoop executes the Mappers randomly. The data is therefore distributed in the

VM clusters. Microsoft uses SQOOP based connector to help transfer data from Microsoft SQL

server database to Hadoop. SQOOP uses MySQL dump to fetch the data stored in MySQL.

36

MYSQL. It is the open source relational database management system and it is widely

used in web applications. It is a central component of the widely-used LAMP open source

application software. LAMP includes Linux, Apache, MySQL, and Perl/Python/PHP (MySQL,

wiki). It is useful for managing MySQL database and managing data using various SQL

statements such as INSERT, UPDATE, and REVOKE, SELECT, DELETE as well as JOINS.

It plays a very important role in many Big Data platforms, including those implemented by

Facebook and Twitter. MySQL is beneficial to the developers because of its speed, reliability,

data integrity and scalability. It can successfully process huge amounts of data (terabytes of data)

but as the data increases, the time required to process the results increases as well and additional

resources are required as well.

MAPREDUCE. Google invented MapReduce and it has been used to analyze the entire

internet. Analyzing real weather data and E- Commerce data can also be performed (Fang, Sheng,

Wen, & Pan, 2014). MapReduce is the heart of Hadoop. It is a programming model that allows

large scalability across thousands of clusters. “The term MapReduce refers to two separate

distinct tasks that Hadoop programs perform” (Quintero et al., 2015). The first is the map job,

which takes input data and processes it to produce key/value pairs. The reduce jobs take the

key/value pairs and then combines and aggregates them to produce a result. As the name

MapReduce implies, the reduce job is always performed after the map job. It offers network load

reduction and faster computation.

37

HADOOP DAEMONS:

According to the Apache Hadoop, Wiki “A small Hadoop cluster includes a single master

and multiple worker nodes. The master node consists of a JobTracker, TaskTracker, NameNode,

and DataNode.”

Hadoop consists of five daemons. They are divided between the master node and

SlaveNodes. Master daemons consist of three Hadoop daemons such as the NameNode,

SecondaryNameNode and a JobTracker. Whereas, the slave daemons are the DataNodes and the

TaskTracker. Daemon is a background process. Every master service can talk to each other and

all slave daemons can interact with each other. If NameNode is a Masternode its corresponding

SlaveNode is DataNode. JobTracker talk to TaskTracker. If the NameNode is JobTracker its

corresponding SlaveNode is TaskTracker as shown in the figure below.

Figure 10. HDFS daemons and Hadoop Core Components

38

NameNode. It stores and maintains the metadata of HDFS and tracks where the data file

is kept across the cluster. It is a single point failure for HDFS which means when the NameNode

goes down, the file system goes offline.

Secondary NameNode: It is used to perform the housekeeping functions for the

NameNode. It can be hosted on a separate machine and acts as a backup.

JobTracker. It manages the MapReduce jobs and distributes individual tasks to the

machines running the TaskTracker.

DataNode. It stores actual HDFS data blocks

TaskTracker. It is mainly responsible for instantiating and monitoring individual map

and reduce tasks. A heartbeat is sent from the TaskTracker to the JobTracker every few minutes

to check its status (Apache Hadoop, wiki)

One important thing to keep in mind is that Hadoop master nodes don’t talk to the

SlaveNodes. However, all the DataNodes can talk amongst themselves. The metadata is stored in

the namespace of the NameNode which keeps track of all the tasks that’s being done.

Hardware and Software Environments

❖ 3 Virtual Machines with Ubuntu 14.04.3 Operating System

 Table 2

Virtual Machine Details

 IP Address Number of Cores RAM CPU Clock Speed

10.31.10.102 8 25GB 2200Mz

10.31.10.103 2 4GB 2200Mz

10.31.10.104 2 4GB 2200Mz

39

❖ Java 1.6.0_40

❖ OpenSSH 6.6.1

❖ MySQL Server 5.5

❖ Apache Hadoop 2.6.2

❖ Apache HIVE 1.2.1

❖ Apache SQOOP 1.4.6 – For Hadoop 2.x

Summary

The main idea and concept of this project are discussed along with the architecture

required for it. Data used in this project is discussed and the tools required to start Hadoop and its

services are discussed in detail. Some of the core components of Hadoop are NameNode,

DataNodes, Secondary NameNode, JobTracker, and TaskTracker. The next section gives the brief

description of how the data is provided and analyzed to see the performance of the traditional

database and HIVE database.

40

Chapter 4: Implementation

Introduction

This section provides the detailed information of how the data is presented and used for

processing and analysis. The installation steps of the pre-requisites discussed above are shown

clearly which helped in Hadoop setup.

Data Presentation

Below is the program listing and step by step procedure to execute it.

Installation of Java:

Follow the following commands to update package index and install Java Runtime Environment:

sudo apt-get update

sudo apt-get install openjdk-default-jre

The openjdk-default-jre package contains just the Java Runtime Environment. If you want

to develop Java programs, then install the openjdk-default-jdk package.

41

Figure 11. Java Installation

Figure 12. Extracting Java Jar files

42

The following command is used to verify that java installed.

 java -version.

 The project used Java version 1.6.0.

Figure 13. Java Version

Installing SSH:

There are two components of SSH:

SSH: This command is used to connect to remote client machines, generally done by the

client.

SSHD: Daemon, which runs on the server, allows the clients to connect to the server.

Install SSH by using the following command.

 sudo apt-get install ssh

To locate the pathname which would run if SSH or SSHD commands were executed.

Installation of SSH can be verified by 'which' command.

 which ssh

 /usr/bin/ssh

43

 which sshd

 /usr/sbin/sshd

Figure 14. SSH and SSHD verification

MySQL Installation:

MySQL is a widely-deployed database management system used for organizing and

retrieving data.

* Install MySQL server

To install MySQL, open terminal and type in these commands:

sudo apt-get install MySQL-server-5.5

44

Figure 15. Installing MySQL

During the installation, MySQL will ask you to set a root password (new password & re-type

password), which allows users to connect to MySQL as root.

Figure 16. Assigning credentials for MySQL

45

- Know machine your IP Address

hostname -

- Configuring Machine IP to MySQL

sudo nano /etc/MySQL/my.cnf

bind-address = 10.31.10.102

Figure 17. Configuring Machines IP address to MySQL

Restart MySQL service, which allows MySQL to use the configured IP address.

sudo /etc/init.d/MySQL restart

46

Figure 18. Restarting MySQL

- Verifying MySQL

MySQL-u root -p

Enter password: root

Figure 19. MySQLInstallation

MySQL> show databases;

47

 MySQL> exit;

 MSQL Installation is complete

SQOOP Installation:

SQOOP is mainly used to transport data from RDBMS to HDFS & HDFS to RDBMS.

- Downloading SQOOP

Download SQOOP binary distribution by following command:

wget http://download.nextag.com/apache/SQOOP/1.4.6/SQOOP-

1.4.6.bin__hadoop-2.0.4-alpha.tar.gz

Figure 20. Downloading Installation

- Installing SQOOP

The following commands are used to extract the SQOOP tar ball and move it to

“/home/bcrl/SQOOP” directory.

tar xvzf SQOOP-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz

http://download.nextag.com/apache/sqoop/1.4.6/sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz
http://download.nextag.com/apache/sqoop/1.4.6/sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz

48

Figure 21. SQOOP Installation and Extraction

sudo mkdir SQOOP

 cd SQOOP-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz/

sudo mv * /home/bcrl/SQOOP/.

- Changing owner and group for SQOOP installation directory to Hadoop dedicated user

sudo chown -R bcrl:bcrl; /home/bcrl/SQOOP

- Configuring bashrc

nano ~/. bashrc

49

Figure 22. configuring bashrc for SQOOP

In bashrc file append the following statements:

#SQOOP VARIABLES START

export SQOOP_HOME=/home/bcrl/SQOOP

export PATH=$PATH: $SQOOP_HOME/bin

#SQOOP VARIABLES END

source ~/. bashrc

50

Figure 23. Appending commands for bashrc configurations

- Configuring SQOOP (optional if HADOOP_COMMON_HOME and

HADOOP_MAPRED_HOME configured in hadoop-env.sh in Hadoop configurations

directory)

To configure SQOOP with Hadoop, you need to edit the SQOOP-env.sh file, which is

placed in the $SQOOP_HOME/conf directory. First of all, Redirect to SQOOP config

directory and copy the template file using the following command.

cd $SQOOP_HOME/conf

mv SQOOP-env-template.sh SQOOP-env.sh

51

Figure 24. Redirecting to SQOOP configuration directory

Open SQOOP-env.sh and edit the following lines:

 nano SQOOP-env.sh

export HADOOP_COMMON_HOME=/home/bcrl/hadoop-2.7.0

export HADOOP_MAPRED_HOME=/home/bcrl/hadoop-2.7.0

Figure 25. Configuring SQOOP-env.sh

52

- Configure MySQL-connector-java

Adding MySQL-connector-java.jar to SQOOP libraries.

sudo apt-get install libMySQL-java

Figure 26. Configuring MySQL–connector-java

ln -s /usr/share/java/MySQL-connector-java.jar $SQOOP_HOME/lib/MySQL-

connector-java.jar

53

Figure 27. Adding MySQL-connector jar to SQOOP libraries

Verifying SQOOP

The following command is used to verify the SQOOP version.

SQOOP-version

Figure 28. Verifying SQOOP

SQOOP installation is complete.

54

HIVE Installation:

Apache HIVE is a data warehouse infrastructure built on top of Hadoop for providing data

summarization, query, and analysis.

- Downloading HIVE

Download HIVE binary distribution by following command:

wget http://ftp.wayne.edu/apache/HIVE/stable/apache-HIVE-1.2.1-bin.tar.gz

tar xvzf apache-HIVE-1.2.1-bin.tar.gz

Figure 29. Downloading HIVE

- Installing HIVE

The following commands are used to extract the HIVE tar ball and move it to

“/home/bcrl/HIVE” directory.

sudo mkdir /home/bcrl/HIVE

cd apache-HIVE-1.2.1-bin/

http://ftp.wayne.edu/apache/hive/stable/apache-hive-1.2.1-bin.tar.gz

55

sudo mv * /home/bcrl/HIVE/.

- Changing owner and group for HIVE installation directory to Hadoop dedicated user

sudo chown -R bcrl:bcrl /home/bcrl/HIVE

- Configuring bashrc

Figure 30. Configuring bashrc in HIVE

nano ~/.bashrc

In bashrc file append the following statements:

#HIVE VARIABLES START

export HIVE_HOME=/home/bcrl/HIVE

export PATH=$PATH: $HIVE_HOME/bin

#HIVE VARIABLES END

56

source ~/. bashrc

- Configuring HIVE

Open HIVE-config.sh and configure Hadoop home directory path.

nano /home/bcrl/HIVE/bin/HIVE-config.sh

Figure 31. Configuring HIVE

export HADOOP_HOME=/home/bcrl/hadoop-2.0.7

57

Figure 32. Configuration Commands in HIVE-config.sh

- Configure MySQL-connector-java

Adding MySQL-connector-java.jar to HIVE libraries.

sudo apt-get install lib MySQL-java

Figure 33. Configure MySQL-connector-java

58

ln –s /usr/share/java/MySQL-connector-java.jar $HIVE_HOME/lib/MySQL-

connector-java.jar

Figure 34. Adding MySQL-connector-java.jar to HIVE libraries

- Configuring Metastore of HIVE

Configuring Metastore means specifying to HIVE where the database is stored. You can

do this by editing the HIVE-site.xml file, which is in the $HIVE_HOME/conf directory.

First of all, copy the template file using the following command:

sudo mkdir /home/bcrl/HIVE/iotmp

sudo mkdir /home/bcrl/HIVE/iotmp/HIVEjobs

cp /home/bcrl/HIVE/conf/HIVE-default.xml.template

 /home/bcrl/HIVE/conf/HIVE-site.xml

Edit HIVE-site.xml and append the following lines between the <configuration> and

</configuration> tags:

nano /usr/local/HIVE/conf/HIVE-site.xml

59

<property>

 <name>HIVE.exec. local.scratchdir</name>

 <value>/home/bcrl/HIVE/iotmp/HIVEjobs</value>

 <description>Local scratch space for HIVE jobs</description>

 </property>

<property>

 <name>HIVE.downloaded.resources.dir</name>

 <value>/home/bcrl/HIVE/iotmp/${HIVE.session.id} _resources</value>

<description>Temporary local directory for added resources in the remote file

system. </description>

 </property>

 <property>

<name>javax.jdo.option.ConnectionURL</name>

 <value>jdbc:

MySQL://10.31.10.102/metastore_db?createDatabaseIfNotExist=true</value>

 <description>metadata is stored in a MySQLserver</description>

 </property>

 <property>

 <name>javax.jdo.option.ConnectionDriverName</name>

 <value>com.MySQL.jdbc.Driver</value>

<description>MySQLJDBC driver class</description>

 </property>

60

 <property>

 <name>javax.jdo.option.ConnectionUserName</name>

 <value>HIVEuser</value>

 <description>user name for connecting to MySQLserver</description>

 </property>

 <property>

 <name>javax.jdo.option.ConnectionPassword</name>

 <value>HIVEpassword</value>

 <description>password for connecting to MySQLserver</description>

 </property>

Figure 35. Configuring Metastore of HIVE

61

Figure 36. Appending commands for HIVE-site.xml

Configure metastore_db in MySQL

MySQL-u root -p

Enter password: root

Figure 37. Restarting MySQL

62

MySQL> create database metastore_db;

MySQL> use metastore_db;

MySQL> SOURCE /usr/local/HIVE/scripts/metastore/upgrade/MySQL/HIVE-

schema-0.14.0.MySQL.SQL;

Figure 38. Configure metastore_db in MySQL

MySQL> CREATE USER 'HIVEuser'@'%' IDENTIFIED BY 'HIVEpassword';

MySQL> GRANT all on *. * to 'HIVEuser'@10.31.10.102 identified by

'HIVEpassword';

MySQL> flush privileges;

MySQL> exit;

63

Figure 39. Granting privileges to user

The following command is used to verify the HIVE installation

HIVE

Figure 40. Verifying HIVE installation

Configuring hostname and mapping ip addresses to hostnames

sudo nano /etc/hostname

masternode

sudo nano /etc/hosts

64

10.31.10.102 masternode localhost

10.31.10.103 DataNode1

10.31.10.104 DataNode2

To check virtual machine hostname

Loading Twitter data from .text file to MySQL

bcrl@masternode: ~$ MySQLimport --user=root --password=root --fields-terminated-by='|' --

lines-terminated-by='\n' --local hadoopanalysis TweetData

Importing data from MySQL to HDFS

bcrl@masternode: ~$ SQOOP import --connect jdbc:MySQL://10.31.10.102:3306/

hadoopanalysis --table TwitterAnalysis --username HIVEuser --password HIVEpassword

Figure 41. Importing Data from MySQL to HDFS

http://10.59.7.90:3306/hadoopanalysis
http://10.59.7.90:3306/hadoopanalysis

65

Figure 42. Successfully Installed Hadoop and HIVE

The following command is used to verify the HIVE installation

HIVE>

bcrl@masternode: ~$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa

bcrl @masternode: ~$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

bcrl @masternode: ~$ ssh-copy-id -i ~/.ssh/id_dsa.pub bcrl@namemode

bcrl @masternode: ~$ ssh-copy-id -i ~/.ssh/id_dsa.pub bcrl@DataNode1

bcrl @masternode: ~$ ssh-copy-id -i ~/.ssh/id_dsa.pub bcrl@DataNode2

66

Installing and Configuring Apache Hadoop

Hadoop is downloaded from the open source Hadoop source repository by using the

following command:

Wget http://www-us.apache.org/dist/hadoop/commom/hadoop-2.6.1/hadoop-

2.6.1.tar.gz

After installing the taz.gz file, extract it using

tar xvzf hadoop-2.6.1.tar.gz

 Now since Hadoop is installed and extracted, the user needs to be assigned which will be

an owner and also change the group for Hadoop installation directory using the following

comman

 Sudo chown –R bcrl:bcrl /home/bcrl/SQOOP

Finally, Hadoop needs to be configured. There are lots of files that need to be configured in

order to configure Hadoop. Some of the configurations are:

1. ~/. bashrc

67

Figure 43. Appending commands in bashrc for Hadoop configuration

#Hadoop variables start

export JAVA_HOME=/usr/lib/jvm/java-6.1-openjdk-amd64

export HADOOP_INSTALL=<Hadoop home directory>

export HADOOP_HOME=$HADOOP_INSTALL

export PATH=$PATH: $HADOOP_HOME/bin

export PATH=$PATH: $HADOOP_HOME/sbin

export HADOOP_MAPRED_HOME=$HADOOP_HOME

export HADOOP_COMMON_HOME=$HADOOP_HOME

export HADOOP_HDFS_HOME=$HADOOP_HOME

export YARN_HOME=$HADOOP_HOME

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

68

exportHADOOP_OPTS="$HADOOP_OPTS -

Djava.library.path=$HADOOP_HOME/lib/native"

export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

#Hadoop variables end

Some of the important configurations that need to be done to work with Hadoop are described

below with the configuration name and their properties.

1. HDFS-site.xml

<configuration>

 <property>

 <name>dfs.replication</name>

 <value>2</value>

 </property>

 <property>

 <name>dfs.NameNode.name.dir</name>

 <value>file:/bcrl/bcrl/hadoop-2.6.1/hadoop_store/HDFS/NameNode</value>

 </property>

 <property>

 <name>dfs.NameNode.http-address</name>

 <value>masternode:51070</value>

 </property>

</configuration>

2. yarn-site.xml

69

<configuration>

<property>

 <name>yarn.nodemanager.aux-services</name>

 <value>MapReduce_shuffle</value>

 </property>

 <property>

 <name>yarn.nodemanager.aux-services. MapReduce.shuffle.class</name>

 <value> org.apache.hadoop.mapred.ShuffleHandler</value>

 </property>

 <property>

 <name>yarn.resourcemanager.resource-tracker.address</name>

 <value>masternode:8026</value>

 </property>

 <property>

 <name>yarn.resourcemanager.scheduler.address</name>

 <value>masternode:8031</value>

 </property>

 <property>

 <name>yarn.resourcemanager.address</name>

 <value>masternode:8051</value>

 </property>

</configuration>

70

3. mapred-site.xml

<configuration>

<property>

 <name>MapReduce.framework.name</name>

 <value>yarn</value>

 </property>

 <property>

 <name>mapred.local.dir</name>

 <value>file:/bcrl/bcrl/hadoop-2.6.1/hadoop_store/mapred/local</value>

 <description>Determines where temporary MapReduce data is written. It also

may be a list of directories. </description>

 </property>

 <property>

 <name>mapred.map.tasks</name>

 <value>20</value>

 <description>As a rule of thumb, use 10x the number of slaves (i.e., number of

TaskTrackers).</description>

 </property>

 <property>

 <name>mapred.reduce.tasks</name>

 <value>4</value>

71

 <description>As a rule of thumb, use 2x the number of slave processors (i.e.,

number of TaskTrackers).</description>

 </property>

</configuration>

4. core-site.xml

<configuration>

<property>

<name>hadoop.tmp.dir</name>

<value>/bcrl/bcrl/hadoop-2.6.1/tmp</value>

<description>A base for other temporary directories. </description>

</property>

<property>

<name>fs. default.name</name>

<value>HDFS://masternode:54310</value>

<description>The name of the default file system. A URI whose

scheme and authority determine the FileSystem implementation. The

uri's scheme determines the config property (fs.SCHEME.impl) naming

the FileSystem implementation class. The uri's authority is used to

determine the host, port, etc. for a filesystem. </description>

</property>

</configuration>

72

5. masters

bcrl@masternode

6. slaves

bcrl@DataNode1

bcrl@DataNode2

Format Hadoop NameNode by following command

 hadoop NameNode –format

To start Hadoop daemons, this is the following command

 start-all.sh

To stop Hadoop daemons, the following command is used

 stop-all.sh

73

Chapter 5: Analysis and Results

Introduction

This section provides the comparison of the results by performing analysis on both

MYSQL and HIVE Query language. This gives a clear result of how the huge amounts of data

can be stored in Hadoop HDFS and processed using HIVE with the help of MapReduce and

generates results in far less time when compared to the traditional MYSQL database.

Results and Analysis

-Creating Tables in HIVE

HIVE> create table TwitterData(UniqueID BIGINT,TweetID BIGINT, Time_stamp

VARCHAR(255), Tweet VARCHAR(255),FavouriteCount BIGINT, ReTweetCount BIGINT,

lang VARCHAR(255), UserID BIGINT, UserName VARCHAR(255), ScreenName

VARCHAR(255),Location VARCHAR(255), FollowersCount BIGINT, FriendsCount BIGINT,

Statuses BIGINT, Timezone VARCHAR(255));

Figure 44. This shows the time taken to perform this query for 0.629 seconds.

74

Figure 45. The time taken to perform this Query in HIVE is 0.4 seconds

Table 3

TwitterData table in MySQL and HIVE

Field Type

UniqueID Bigint

TweetID Bigint

CreatedAt Varchar

Tweet Varchar

FavouriteCount Bigint

ReTweetCount Bigint

Lang Varchar

75

UserID Bigint

UserName varchar

ScreenName varchar

Location varchar

FollowersCount Bigint

FriendsCount Bigint

Statuses Bigint

Timezone Varchar

Loading data from HDFS to HIVE tables:

HIVE> load data inpath '/user/bcrl/TweetData' into table TweetData;

A table of results for the experimental trials appears below. In both cases SQL like code

was used to define the query. In the MySQL database, basic SQL was used in the Hadoop file

system HIVE was used as a front-end and therefore, the HIVE version of SQL was utilized.

Table 4

Comparison Results of HIVE and MySQL

Query HIVE Computation

Time

MySQLComputation Time

Select * from TweetData; 7min 32sec 11min 53sec

76

Select count(*) from TweetData; 1min 53sec 2min 35sec

Select count(Distinct UniqueId) from

TweetData;

123.279 sec 2 min 32 sec

HIVE QUERIES VS MYSQL

Figure 46. MySQL performance for counting the TweetData is shown which is 2 min 53.11 sec

77

Figure 47. The same query (count) number of TweetData is shown here

Figure 48. This shows the time which is 79.062 seconds.

This clearly proves the objective of the paper.

❖ In this paper, the data is first generated from a Twitter API and then loaded into MySQL.

Also, the SSH keys are authenticated and configured by using the DSA algorithm to ensure

78

security between virtual machines while transferring data. Second, Apache Hadoop was

installed and configured in all three virtual machines. In which two virtual machines acts as

DataNodes and one virtual machine acts as the NameNode.

❖ Then the data is exported into HDFS using the tool SQOOP and HIVE is installed on top of

Hadoop and created tables in HIVE data warehouse and then transfers data into HIVE tables.

❖ Finally, performance is tested in the tables using both the databases (MYSQL, HIVE) and

could show which gives the better performance.

Summary

This section explains how the data is used and analyzed. It also presents the

implementation of parallel processing of data with the Twitter data set. The next section

concludes the paper along with the future work that can be done.

79

Chapter 6: Conclusion and Future Work

Conclusion

The literature indicates that processing Big Data in a reasonable time frame can be a

challenging task. One of the most promising platforms is the concept of Exascale computing. This

study created a testbed based on recommendations for Big Data within the Exascale architecture.

First, this was easily accomplished within the private cloud using VMware across a cluster of

devices. Second, because regular commodity components could be used this was a cost-effective

solution. Third, because the HIVE front end was SQL-based and I had a background in SQL the

learning curve to take advantage of this system was minimal. Last, HIVE integrates directly to the

MapReduce function so implementing the parallel processing within Hadoop was easily

accomplished.

The literature also indicated that traditional databases were designed for transactional

processing and work well in instances where a single record needs to be read, written or updated.

Hence, a database may grow over time, but slowly. So, therefore, it is easier to get data in a

traditional database than out. The experimental trials carried out herein confirmed that fact and

illustrated the advantages of distributed file system when large amounts of data need to be

accessed.

Accessing all the records in TweetData logs illustrated that a distributed file system could

be about 30% faster. It would be expected that the underlying hardware used for the Hadoop file

system could be expanded and tuned for better performance because the test-bed only included

three nodes. The additional resources within a distributed file system not only would allow faster

processing but solve problems not possible in the traditional architecture.

80

As the field of Big Data matures and grows the need to process larger and larger amounts

of data in a timely manner will continue to be a concern. The Exascale computing architecture

offers a promising and cost-effective platform to address that concern. Distributed file systems

such as Hadoop offer a relatively simple means of taking advantage of the parallel processing

required within distributed file systems.

Future Work

I found Hadoop easy to configure, use and adapt in solving their Big Data needs.

However, further research is needed that uses larger data sets and more complex queries to truly

assess the capabilities of distributed file systems. Accordingly, research related to optimizing the

number of nodes and the intercommunication paths in the underlying infrastructure will be needed

as well.

The problem with a MySQL database is that as the data grows larger, the time required to

process the data increases and additional resources may be required. With Hadoop, HIVE, and Pig

processing time can be faster than MySQL. The data model in this paper is taken from Twitter

showed that HIVE is more appropriate for this data model in a low-cost environment. Now, when

big organizations use the same technique for analysis there will be other issues to be considered

as well. As the data increases and network traffic increases, network and system administrators

can face serious problems around Big Data network traffic. Network traffic data can be stored in

structured or unstructured format. However, RDBMS were not designed to store and process

unstructured data. HIVE stores the data in tables like relational database management systems.

However, there needs to be some traffic querying and analyzing systems that handle TCP and

UDP analysis of big network traffic data and reduce the false positive detection rate with accuracy

81

detention rate of the attacks to the network security system. Hence the performance of Big Data

technologies on Big Data network traffic system can be done in the future.

 Etikala, Sultana, Mark, Beche, and Guster (2015) described the security challenges in Big

Data which supports my thoughts. While Big Data appears to be an established field it is still

emerging. It can be expected that a means of improving the storage solutions, access times,

security and optimizing software will be topics explored by data scientists (Najafabadi et al.,

2015). While Big Data provides a wealth of decision-making power because of the massive

volume of data it uses its original security design was overly simple. In other words, the data was

protected only by the fact that data gathering on that scale was difficult and can now be easily

violated (Weber, 2012). In part, security within Big Data is becoming more important due to

emerging technologies such as Cloud Computing, analytics engines, and social networks. This

environment creates a complex research challenge which necessitates the development of secure

big data models. Several techniques and algorithms have been proposed recently, mostly

adhering to algorithmic paradigms or model-oriented paradigms (Cuzzocrea, 2014).

82

References

Apache Hadoop Wiki, n.d. Hadoop.Apache.org

Apache SQOOP, http://sqoop.apache.org/

Borthakur, D. (2007). The Hadoop Distributes File System: Architecture and Design taken from

https://svn.apache.org/repos/asf/hadoop/common/tags/release-0.16.4/docs/hdfs_design.pdf

Cecchinel, C., Jimenez, M., Mosser, S., & Riveill, M. (2014).

An Architecture to Support the Collection of Big Data in the Internet of Things. IEEE

World Congress on Sercices, pp.442-449.

Cuzzocrea, A. (2014). Privacy and Security of Big Data: Current Challenges and Future Research

Perspectives. Proceedings of the First International Workshop on Privacy and Security of

Big Data, ACM, pp. 45-47.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach., D. A., Burrows, M., Chandra, T., . . .

Gruber, R. E. (2008). Bigtable: A distributed storage system for structured data. ACM

Transactions on Computer Systems 26, 2, 4:1-4:26.

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large Clusters. “In:

OSDI ’04: 6TH Symposium on Operating Systems Design and Implementation (USENIX

and ACM SIGOPS), pp.137-150.

Dean, J., & Ghemawat. S. (2010). MapReduce: A flexible Data Processing Tool.Communications

of the ACM, Vol.53 No.1, Pages 72-77.

Etikala, P., Sultana, A., Schmidt, M., Beche, G. D., & Guster, D. (2015).

Using Hadoop to Support Big Data Analysis: Security Concerns and Ramifications.

ttps://svn.apache.org/repos/asf/hadoop/common/tags/release-0

83

Etikala, P. (2016). Designing & implementing a java web application to interact with data stored

in a distributed file system, Department of Information Assurance, SCSU

Fang, W., Sheng, V. S., Wen, X., & Pan, W. (2014). Meteorological Data Analysis Using

mapreduce. The Scientific World Journal, Volume 2014 (2014), Article ID 646497,

10 pages, http://dx.doi.org/10.1155/2014/646497

Fan, J., Han, F., & Liu, H. (2014), Challenges of Big Data Analysis

Natl Sci Rev (2014) 1 (2): 293-314

Fuad, A., Erwin, A., & lpung, H. P. (2014). Processing Performance on Apache Pig, HIVE and

MySQL from

 http://ieeexplore.ieee.org/document/7010600/

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2014), The rise

of “big data” on cloud computing: Review and open research issues

 Volume 47, January 2015, Pages 98–115

IBM. (2015A). The four v’s of Big Data. Retrieved March 11, 2016 from

 https://www-01.ibm.com/software/data/infosphere/hadoop/HIVE/

IBM. (2015B). Why speed matters for big data and analytics. Retrieved Feburary 12, 2016 from

http://www-01.ibm.com/software/data/infosphere/hadoop/pig/.

Jewell, D., Barros, R. D., Diederichs, S., Duijvestijn, L. M., Hammersley, M., HazrA, A., . . . &

Zolotow, C. (2014). Performance and Capacity Implications for Big Data.

Redpaper, ibm.com/redbooks.

Jacobs., A. (2009). The Pathologies of Big Data.

 Queue – Data. Vol. 7 Issue 6

http://dx.doi.org/10.1155/2014/646497
http://ieeexplore.ieee.org/document/7010600/
http://www.sciencedirect.com/science/journal/03064379/47/supp/C
https://www-01.ibm.com/software/data/infosphere/hadoop/HIVE/
http://www-01.ibm.com/software/data/infosphere/hadoop/pig/

84

Jagadish, H. V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J. M., Ramakrishnan, R.,

& Shahabi, C. (2014).

Big Data and Its TechnicalChallenges. Communications of the ACM, Vol. 57 No. 7,

Pages 86-94.

Jarr, Scott (2014). Part Three: Designing a Data Architecture to Support Both Fast and Big Data.

https://voltdb.com/blog/part-three-designing-data-architecture-support-both-fast-and-big-

data-0

Kumar, R., Gupta, N., Charu, S., Bansal, S., & Yadav, K. (2014). Comparison of SQL &HIVEQL

 International Journal for Research in Technological Studies| Vol. 1, Issue 9, August 2014.

Levy, E., & Silberschatz, A. (1990), Distributed File Systems: Concepts and Examples.

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Lucas, R., Ang, J., Bergman, K., Borkar, S., Karlson, W., Carrington, L., . . . & Stevens, R.

(2014). Top Exascale Research Challenges. Office of Science, U.S Department of Energy,

Washingtion, D.C.

Michael, O. (2011). When Slower is actually faster.

 https://blog.macsales.com/11825-when-slower-is-actually-faster

MySQL Wiki, https://en.wikipedia.org/wiki/MySQL

Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. N., Seliya, N., Wald, R., &

Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics,

Journal of Big Data, 2:1.

https://voltdb.com/blog/part-three-designing-data-architecture-support-both-fast-and-big-data-0
https://voltdb.com/blog/part-three-designing-data-architecture-support-both-fast-and-big-data-0
https://blog.macsales.com/11825-when-slower-is-actually-faster
https://en.wikipedia.org/wiki/MySQL

85

Pol, U. R. (2016). Big Data Analysis: Comparison of Hadoop, Map Reduce, Pig and HIVE.

International Journal of Innovative Research in Science, Engineering and Technology (An

ISO 3297: 2007 Certified Organization) Vol. 5, Issue 6, June 2016.

Quintero, D., Navarro, E. A., Garro, P. B., Castro, R. C. F. D., Huertas, L. C. C., Jiang, P., . . .&, J.

(2015). Implementing an IBM InfoSphere BigInsights Cluster Using Linux or Power.

In IBM Redbooks,Pg. 28.

Rao, B. T., Sridevi, N. V., Reddy, V. K., & Reddy, L. S. S. (2012). Performance Issues of

Heterogeneous Hadoop clusters in Cloud Computing.

 Global Journal of Computer Science and Technology, Volume XI Issue VIII May 2011

Reed, D. A., & Dongarra, J. (2015).

Exascale Computing and Big Data, Communications of the ACM, Vol. 58 No. 7, Pages

56-68.

Sqoop User Guide, (v1.4.5)

 https://sqoop.apache.org/docs/1.4.5/SqoopUserGuide.html

Schmid, P. (2006) Capacity Outrage performance taken from

 http://www.tomshardware.com/reviews/15-years-of-hard-drive-history,1368-2.html

Stonebraker, M., Abadi, D., DeWitt, D. J., Madden, S., Paulson, E., Pavlo, A., & Rasin, A.

(2010). MapReduce and Parallel DBMSs: Friends or Foes? Communications of the

ACM, Vol. 53 No. 1, Pages 64-71.

Sultana, A., & Etikala, P. (2015). Independent Study for class IA 659, Big Data Analysis.

Shvachko, K., Kuang, H., & Radia, S. (2010). The Hadoop Distributing File System from

 http://ieeexplore.ieee.org/abstract/document/5496972/authors

http://www.tomshardware.com/reviews/15-years-of-hard-drive-history,1368-2.html
http://ieeexplore.ieee.org/abstract/document/5496972/authors

86

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony, S., . . .& Murthy, R. (2009).

HIVE: a warehousing solution over a map-reduce framework. Proceedings of the VLDB

Endowment, 2(2), 1626-1629.

White, T. (2012). Hadoop: The Definitive Guide (Third Edition), Sebastopol CA.

Weber, S. (2012). Big Data Privacy and Security Challenges.

Proceedings of the 2012 ACM Workshop on Building analysis datasets and gathering

experience returns for security, ACM pp. 1-2.

	St. Cloud State University
	theRepository at St. Cloud State
	5-2015

	Using Hadoop to Support Big Data Analysis: Design and Performance Characteristics
	Afreen Sultana
	Recommended Citation

	tmp.1495651532.pdf.bqSH9

