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Abstract 

The purpose of this project is to show how new technologies help the banking and 

financial industries to process and retrieve data for users. The primary goal of this project is to 

demonstrate the new technologies Angular JS, RESTful Web Services, and the Cassandra 

database which are faster than the other conventional software frameworks. This has been 

achieved by creating two software applications; one is an online banking application with the 

latest technologies and the other with traditional frameworks. After examining the time taken by 

the techniques to render the web page to the user, and the availability and scalability of the 

software, we will understand the need for the new technologies in the banking and financial 

sectors. The application that is developed should help the users, guide them and should perform 

user requested transactions with zero fault tolerance; it should give precise data without losing or 

showing error data. It should also provide security to the transaction. Unauthorized transactions 

should be prohibited from entering the server either from UI (User Interface) or from a mid-tier 

connection. The proposed application uses the Cassandra database which has high scalability and 

availability. It also uses Service Oriented Architecture (SOA) for better service and performance 

of the application. In the UI we use Angular JS which is fast and can handle the REST 

(Representational State Transfer) Application Programming Interface CRUD(Create, Read, 

Update & Delete) operations. 
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Chapter I: Introduction 

Introduction 

 The Online Banking Applications help the bankers and customers to connect and also 

helps in saving time and money of the customers by avoiding a trip to banks to perform any 

banking transactions. Banks collect huge amounts of data such as daily transactions, calculating 

interest, tracking loan, and also in portfolio management. The bank customers can keep track of 

their funds and manage their funds whenever they want to so long as they are authorized. It 

should be fast enough to maintain and retrieve this huge amount of data. The application should 

be smart enough to restrict the access to users who are not permitted to perform such actions. In 

this application, we are using Spring Security, which performs specific actions when the user has 

roles assigned and which are allowed to carry out an action. If the user does not have permission, 

the application prohibits the action by giving an error message to the user. This application was 

developed using Service Oriented Architecture (SOA).  It can have one or more services 

associated with each request. Here we use spring security to add security to the service. 

Moreover, this service contacts mid-tier architecture to fetch data from the database.  

Problem Statement 

In the current scenario, the database availability and scalability is a big problem. Some 

banks restrict their user’s transaction statement to a particular period instead of allowing them to 

view the entire report. For example, they may be limited to a period of 5 years. Sometimes the 

availability of the database service is also a big problem. 
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Nature and Significance of the Problem 

 The importance of this problem is availability and scalability of the database. At the same 

time, it should provide maximum security to the data and application without any malicious 

activities or unauthorized data entering into the server.  

Objective of the Study 

 The objective of the study is to increase the efficient use of technology in improving the 

Online Banking Application. 

Study Questions/Hypotheses 

Before implementing this project, there were also questions like: 

1. Does Cassandra help in data availability for large amounts of data? 

2. Will Angular JS be quicker than present UI technologies? 

3. Does the REST service help in multipart requests? 

Summary 

 In short, this paper develops a web application that uses Cassandra, Angular JS, and 

Restful Web services which help in storing, retrieving, and displaying data without much time 

delay or user wait time. 
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Chapter II: Background and Review of Literature  

 

Introduction  

The online banking system has changed a lot over the years, helping bankers and 

customers by reducing their effort, time, and cost. But at the same time, it should be reliable, 

efficient, and secure. The Online Banking Application should be efficient and reliable allowing 

zero fault tolerance.  

Background Related to the Problem 

Banks have many operations such as loans, fixed deposits, portfolio management, mutual 

funds, etc. After the growth of computers, the bookkeeping or recording of every transaction is 

now done by computers (DeCandia et al., 2007). After the Internet emerged, they slowly moved 

to a centralized environment followed by a move to a more distributed environment. Banks are 

currently using a distributed environment. However, the problem is the Clusters (a group of 

servers) they are using which are not sufficient and they may need to keep adding servers to their 

data centers. There is a saturation point for the Relational Database Systems (RDBMS) Park, 

Nguyen, & Won, 2015). Even if it is scalable for a large amount of data, it takes a lot of time to 

process the request, and it is difficult to maintain copies in case you need to protect or backup the 

data. 

Current System Problems 

The current system problems are (a) data unavailability, (b) less scalable, and (c) a 

heavyweight process. 

Proposed System 

In the proposed system, these are the following advantages: 
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1. Using the Cassandra database, it helps in database scalability and processes high 

volumes of data in a small amount of time (Ramanathan, Goel, & Alagumalai, 2011).  

2. The data has multiple copies, so there is no problem of losing data.  

3. If the data center fails, it automatically fetches the data from another data center. 

4. Using SOA helps in improvised data flow and also adds flexibility to the application. 

5. Using Angular JS in the UI helps in processing the REST API and it can perform 

create, read, update, and delete (CRUD) operations without moving to another page. 

About the Technologies 

Apache Cassandra. Apache Cassandra is an open source distributed database 

management system, which is used to store large amounts of data on different servers. It 

provides high availability with no single point of failure. It allows asynchronous master-less 

replication (DataStax Academy, n.d.). It was developed by Facebook in 2008.  

Cassandra Query Language (CQL) is used to interact with the Cassandra database. The 

most common way to connect to the Cassandra database is using a shell (cqlsh).  

Following are some of the key points about the Cassandra database: 

• It stores in key value pairs. 

• It is a distributed design and is inspired by the Amazon Dynamo database and    

Google’s Big Table (Chang et al., 2008). 

• It is not a relational database. 

• It is highly scalable, consistent, and zero fault tolerant. 

• It is Cloud-enabled. 

• It has high performance. 
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Cassandra architecture. Cassandra handles a lot of workload across multiple nodes. 

Cassandra addresses the issue of failures by utilizing a shared peer-to-peer framework crosswise 

over homogeneous nodes where information is disseminated among all nodes in the cluster. 

Every node often trades state data about itself and the other nodes over the group by utilizing a 

peer-to-peer gossip communication protocol (Lakshman, 2008). A consecutively composed 

submit of every sign on, every node catches write activity to guarantee information durability. 

The data is then written into the commit log first and then to the mem table—it is like cache 

memory when it is full the data is flushed to the SS table (Sorted String). 

Gossip protocol. Gossip protocol helps to communicate between each node each second 

it transfers state messages between the nodes. The gossip procedure runs each second and trades 

state messages up to the other nodes in the cluster. A Gossip Protocol has a form connected with 

it so that amid a gossip business, older data is overwritten with the most recent and flow state for 

a particular node. As a matter of course, a node recollects different nodes it has gossiped with 

between consequent restarts. 

Failure detection. Failure detection is a technique for locally deciding from the gossip 

state and history if another node in the framework is down or has returned back up. Cassandra 

utilizes this data to abstain from routing client solicitations to remote nodes at whatever point 

possible. The gossip procedure tracks the state from different nodes both specifically and by 

implication. Cassandra utilizes a gathering recognition instrument to figure for each node the 

limit that considers system execution, workload, and historical conditions. Amid the gossip 

exchange, each node keeps up a sliding window of between entry times of gossip messages from 

different nodes in the group. 
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Configuring the phi_convict_threshold property modifies the affectability of the failure 

detector. Lower values improve the probability that a lethargic node will be set apart as down, 

while higher qualities diminish the likelihood that transient failures are bringing on a node 

failure. Node failures can come about because of different causes; for example, equipment 

failure and system blackouts. Node blackouts are regularly transient yet can keep going for 

broadened periods. At the point when a node returns online after an outage, it might have missed 

writes for the replica information it maintains. A repair mechanism exists to recover the lost 

information for example: indicated handoffs and manual repair with node tool repair. 

Data distribution and replication. Data distribution and replication goes hand-in-hand 

within Cassandra. Information is sorted out by a table and recognized by a primary key, which 

figures out which node the information is stored on. Replicas are duplicates of rows. At the point 

when information is first composed, it is additionally alluded to as a replica. Snitch is the crucial 

feature, it checks the health of all the clusters and reads the best available model. Replica 

placement strategy is where the data should be stored in different groups to avoid single point 

failure to make the data available. Replication factor decides how many copies of data you want 

to store in different nodes. Partitioner determines how and where your data should be stored; it 

decides where the first copy of data goes. 

Virtual nodes. Virtual nodes, known as Vnodes, appropriate information across nodes at 

a better granularity than can be efficiently accomplished if figured tokens are utilized. Vnodes 

simplify many errands in Cassandra. Tokens are consequently computed and allocated to every 

node. Rebalancing a cluster is, therefore, important when including or evacuating nodes. At the 

point when a node joins the cluster, it accepts its obligation regarding an even partition of 
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information from other nodes in the cluster. On the off chance that a node comes up short, the 

heap is spread uniformly across different nodes in the cluster. Rebuilding a dead node is quicker 

because it includes each other node in the cluster. The extent of nodes allocated to every machine 

in a cluster can be relegated, so smaller and bigger PCs can be utilized as a part of building 

clusters. 

Data replication. Data Replication is another important feature in Cassandra. Cassandra 

stores replicas on various nodes to guarantee consistent quality and adaptation to internal failure. 

A replication strategy decides the nodes where replicas are placed. The aggregate number of 

copies over the bunch is alluded to as the replication variable. A reproduction component of 1 

implies that there is one copy of every column and the only duplicate of every column in the 

cluster. A replication factor of 2 means two copies of every column, where every duplicate is on 

an alternate node. 

• Simple Strategy: Utilize just for a single data server and one rack. On the off chance 

that you ever expect more than one server farm, utilize the 

NetworkTopologyStrategy. 

• NetworkTopologyStrategy: Highly prescribed for maximum deployments since it is 

much less demanding to grow to different server farms when required by future 

development. 

Partitioner. Partitioner decides how information is distributed over the nodes in the 

clusters. A partitioner is a capacity for inferring a token speaking to a column from its partition 

key, commonly by hashing. Every line of information is then circulated over the cluster by the 

value of the symbol The Murmur3Partitioner, which gives quick hashing and great execution 
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• The RandomPartitioner conveys information uniformly over the nodes utilizing an 

MD5 hash estimation of the row key. 

• Cassandra gives this partitioner to requested apportioning, it is incorporated for 

backward compatibly. 

Write Operation in Cassandra is little different than in a normal relational database. When 

the write operation takes place, it is stored in the commit log permanently; the data is written to 

the mem table. The mem table has a threshold limit that is predefined. When the predefined limit 

is exceeded it flushes the data to the SS Table (Sorted String). 

 

Figure 1. Write Operation 

Compaction is another important feature used to maintain the SS tables. Whenever there 

is an update, it does not over-write by deleting the existing row; it creates the new row with the 

updated timestamp, and the old version of the data is marked as a tombstone, which is eligible 

for deletion. There is a process, which regularly runs, which looks for tombstones and deletes 

them from the database. Each data will be inserted with the timestamp; this helps the read 

process to select the most recent time-stamped data, and the old data will be marked for deletion. 
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When the data is marked for deletion, it gives an update to the other nodes, to maintain parity. To 

Read/Write Cassandra uses the Chubby Protocol to interact with the nodes. The Protocol selects 

the master node. The master node is then responsible for sending or receiving the data from all 

other nodes (Hakka Labs, 2014).  

 

Figure 2. Chubby Protocol Architecture 

The chubby protocol uses the Paxos algorithm to select the master node. The Paxos 

algorithm has a client which proposes the data to one of the nodes which are responsible for 

creating the replicas. This node is called Proposed. When the Proposer offers a data value, the 

acceptor should accept the value. 
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Figure 3. Paxos Algorithm 

 When the majority of nodes accept the value, the proposer becomes the master node, and 

the data will be adopted by all of the other acceptor nodes. 

Java 

Introduction to Java. Java is a programming language invented at Sun Microsystems 

Inc. by Bill Joy, James Gosling, Mike Sheridan, and Patrick Naughton. Java’s first version 1.0 

was released on January 21, 1996. And the latest version is Java SE 8 which was issued on 

March 18, 2014. Sun MicroSystems Inc. released the Java based web browser in 1995 which can 

run applets in the browser. Later, many web browsers incorporated the use of Java. 
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Features of Java. 

1.  Simple: Java is simple because it uses mostly C++ syntax for coding. It avoids 

complex structures and pointers and also avoids redundancy inside the code. Java has 

a garbage collector which reduces the developer’s responsibility to clear memory. 

2. Object Oriented: Java is an Object-Oriented Programming language which means it 

creates objects. All the code or set of instructions is written in a class. We can say a 

class is a block which has the collection of instructions and these classes act as a 

blueprint to create objects. Each object has characteristics of the class. These objects 

maintain the data inside the defined variables. Each object created from the same 

class has different references.  

3. Distributed: Java can be used in a distributed environment because it supports 

protocols like TCP/IP and UDP. It can transfer the information from one machine to 

another; this helps the programmers to communicate and execute different operations 

on different computers. 

4. Interpreted: After a developer writes the code, he compiles the code using the Java 

compiler, which generates bytecode. This binary code is neutral and can be executed 

on any machine which has the Java runtime environment. In this way, it avoids the 

distribution of source code. 

5. Robust: Java is strong when compared to many other programming languages. It has 

good exception handling techniques during runtimes which does not allow the 

application to crash so it helps the programmers to create highly reliable applications. 
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6. Security: Java provides security by avoiding attacks like tampering with the data, and 

impersonation. Java programs run only on the Java runtime environment and interact 

very little with the operating system. Java does not provide pointers, hence the ability 

to access the objects requires the proper security role. 

7.  System Independent: When the Java code is compiled, it creates files with the “class” 

extension. These files contain byte format code, which can be run on any platform. It 

may be run on Linux, Windows, or Macintosh operating systems. These “class” files 

need the Java runtime environment for the execution process. 

8. Portability: In Java, when the program is executed, the result is the same on any given 

machine. For instance, the Java programming language has the primitive data type 

which is 32 bits in size, which is consistent across all other platforms. Hence, we can 

say it is very portable in nature. 

9. High Performance: Java has an interpreter inside its Java Virtual Machine (JVM) 

which is slow. To eliminate this problem, Java Soft introduced the Just-In-Time (JIT) 

compiler.  Whenever a Java method is called while executing the program, this JIT 

compiler converts the byte to native machine code instead of converting all the code 

to machine code. JIT helps in implementing the programs faster. 

10. Multi-Threaded: A thread can be referred to as a process executing a set of 

instructions. It can run multiple such threads simultaneously.  

11. Scalability: Due to Java’s compact and platform-independent nature, it can be 

installed on any machine such as mainframes or mobile devices. It can run on many 
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processors simultaneously. As it supports multi-threading and even the JVM supports 

multi-threading, this helps in scheduling and memory management. 

12. Dynamic: Java is a dynamic language because it can solve the operations which can 

change dynamically, that means, it can take different inputs and produce the results 

accordingly.  

Java virtual machine. Java Virtual Machine is the critical component in the Java runtime 

environment. It can be considered as the heart of Java. It provides the runtime environment for 

the Java code. Whenever any Java command is executed, a JVM instance is created. It provides 

various functionalities like loading, verifying and executing the code. It provides memory area, 

method area, and garbage collection. 

Internal architecture of JVM. 

 

Figure 4. Java Architecture (Java Virtual Machine, n.d.) 
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1. ClassLoader: When the Java code is scheduled to execute, it creates a JVM instance 

and the JVM instance loads the “class” files. It searches the Method area location 

related to the program.  

2. Method Area: JVM store the information of loaded class types in a logical memory 

area called the Method Area. The JVM looks in the method area as it executes the 

application. For each method, it has a specified information like a method name, the 

return type of method, and input parameters and access modifiers of that particular 

method.  

3. Heap: Heap memory is created whenever the class instance is created by running the 

Java application. It stores the objects of the application. This is shared by each thread 

in Java. There is a separate heap built for each running application. So no two 

applications can access the same collection. The Java code can only create memory 

inside the heap, but it cannot destroy or release the memory it is using. 

4. Stack: When the program starts executing, JVM creates a thread. This thread invokes 

the methods and stores its instances in the stack frame. This is new stack frame and 

then cited as a current frame. This stores the information about the parameters, local 

variables, and results. It is destroyed whenever the invocation is completed. 

5. Program Counter: It stores the information/address of the instruction that is currently 

being executed. 

6. Native Method Stack: Native method refers to that code which JVM does not control 

the access rights. It is typically written in C/C++. We can call the native method 
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which is written in C from JVM so it goes back and forth from JVM for executing the 

native method. 

7. Execution Engine: The byte code loaded into the runtime environment is executed 

instruction by instruction. It is like a virtual processor and uses JIT Compiler or 

Interpreter depending upon the need of code execution.  

Object Oriented Programming (OOPs) in Java. 

Classes. Class is a block of statements which is responsible for performing operations.  

The structure of a Java Class includes (a) package, (b) import statements [consuming libraries]. 

(c) comments [description about the class], (d) class, (e) variables, (f) constructors, and (g) 

methods. 

Package. A package is a perspicuous container of the set of classes. In other words, we 

can call it a folder which maintains classes. It is always defined at the top of every class, defining 

which package the class belongs to. It cannot be mentioned inside the class or after the class. 

In Figure 5, we can see the package name and the class defined after the mentioning the 

package name. 

 

Figure 5. Package Name and Class Defined 
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 In Figure 6, we can see the folder structure and how the classes reside inside a package. 

 

Figure 6. Folder Structure 

Import. Import statement is nothing but invoking the library functions and classes. This 

library can be termed as different packages. In Java, to avoid redundant code, we incorporate the 

same functionality which is defined in other packages to the current class. This helps to avoid 

writing the same code multiple times. 

Comments. Comments are part of classes which are not compiled or executed by the Java. 

Those are plain texts which describe the functionality of class for future reference. This acts as a 

documentation of the class.  

1. Classes: A class is a block of statements which has variables and set of instructions in 

it. In Figure 7, we can see the Class declared with Access modifier (Public), which 

means who can access the class, the key name class should be defined before the 

name of the class. 

 

Figure 7. Class Declared with Access Modifier 
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• Variables. Variables can be considered as the reference or name of the memory 

locations, where the data of the classes is stored. Each variable has a particular type, 

which stores either numbers or strings or just Boolean values.  

• Constructors. Constructors are the instance methods. Whenever the class is 

instantiated the constructor sets the values of the objects to the variables or members 

of the class. 

• Methods. A Method can be considered as a subprogram which can be executed only 

when it is called by its method name. Each method has its name and implementation. 

In Figure 8 you can see the method defined inside the class. It is first determined by 

the access modifier Public and then followed by the return type, that means what type 

of value it is going to return after executing this method, then the method name 

should be given. Inside the parenthesis, we can specify the parameters that we are 

passing to the method as an input. 

 

 

Figure 8. Method Defined Inside the Class. 

2. Object: Object is the actual behavior of the class. We can say that the class acts as a 

blue print, and the object is the real-time existence of the instance of the class. It has 

the same behavior of the class. Whenever an object is created, there is separate 



26 

 

 

memory allocated to that object and its variables in the heap memory of JVM. The 

Syntax to create an object is as follows: 

ClassName object= new ClassName(); 

“new” key is used to create objects. 

3.  Inheritance: The process of acquiring the properties of the parent class into the child 

class is called inheritance. This helps in reusing the classes instead of creating a new 

one.  As an analogy, we can say that a Honda car is a parent class and it has 

properties such as tires, engine, doors, and steering wheel which are standard 

components. This class can be inherited to the child class of an Acura TL. Does the 

Acura have the same properties like tires, doors, engine, and steering wheel? Acura 

uses many of the same parts as Honda; that means many of the same properties of the 

parent class can be reused in the child class. This reduces the developer’s efforts to 

create the same piece of code twice and also helps in reducing the redundant code. 

4. Polymorphism: Polymorphism means having multiple forms. In Java, polymorphism 

means having the same method name with different parameters and return type. It has 

two types of polymorphisms: 

 OverLoading: The process of having different signatures is called overloading.  

Class ClassName{ 

void draw(double d){ 

// method signature 

} 

void draw(int i){ 
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// method signatures 

} 

} 

Depending upon the parameters passed, compiler selects the method. 

Overriding: When we import the parent class and use the same method name of the 

parent class method and changing its implementation in the child class. 

Class A{ 

Void method1(){ 

} 

} 

class B extends A 

{ 

void method(){ 

} 

} 

5. Abstraction:  Abstraction is hiding the method or details of the class. It exposes the 

features of classes. The abstract classes start with the keyword Abstract before the 

class. The abstract class should contain at least one abstract method inside it. The 

abstract methods are method declarations but not definitions. It may contain normal 

methods as well. 
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6. Encapsulation: Encapsulation is a process of binding the data inside the class or a 

method and helps it work as a single unit of data. It contributes to protecting the data 

from unnecessary modification. We call these classes as wrapper classes as it wraps 

the data inside it.  

Java Database Connectivity (JDBC). JDBC is an interface which allows programmers 

to connect to the database and helps in performing database transactions. JDBC needs drivers 

that allow it to connect to the database. There are different JDBC drivers available: 

• Type 1 Driver/JDBC-ODBC driver: This type of connection depends on the client 

side libraries. This means the operating system should have required libraries of the 

file which support the connectivity to the database. Here, we create Data Source 

Name (DSN) which represents the database. When creating the DSN we specify the 

name and location of the database. This is only used for experimental procedures on a 

single machine. 

• Type 2 JDBC Native API: This type of connection depends on upon the client side 

libraries, but these drivers are provided by the database provider. These libraries are 

unique to each database. The advantage of this type of driver is, it is considerably 

faster than the type 1 driver 

• Type 3 Network Protocol Driver: This kind of driver does not require any libraries 

installed on the client side. It uses the middleware application servers for the database 

transactions. By this approach, we can connect to any database. The user requests are 

then converted into database specific commands and retrieve the data and send it back 

to the user. 
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• Type 4 Database Java Driver: This is also called a Direct to Database Java Driver. 

This helps in converting the database call from Java to database provider specific 

protocols. It is purely platform independent and is also better than Type 1 or 2 

drivers. 

Java new features. Java lambda expressions are important components incorporated into 

Java SE 8. A lambda expression gives an approach to speak to one technique interface utilizing 

an expression. A lambda expression resembles a strategy; it gives a rundown of formal 

parameters and a body (which can be an expression or a piece of code) communicated as far as 

those parameters. A lambda expression can be comprehended as a brief representation of a 

mysterious capacity that can be passed around. We do not need to specify any name to the 

anonymous class that we create. 

For example, let us say we have an interface with the name Calculate and we want to 

implement this in a Multiply class. Until Java 7, the following was the implementation: 

interface Calculate{ 

int operation(int x, int y); 

} 

 This interface is implemented in the following class 

    Class Multiply implements Calculate 

 { 

@override 

public int operation(int x,int y){ 

return x*y; 
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} 

  public static void main(String args[]){ 

int x=5,y=10; 

int s=operation(x,y); 

} 

} 

 We are overriding the method of interface in the base class and passing the parameters to 

it. But in Java 8, using the lamda expressions, we can eliminate the long verbose code. Below is 

the example of the class implementing the same interface Calculate. 

Class Multiply implements Calculate 

 { 

  public static void main(String args[]){ 

int x=5,y=10; 

int s=(x,y)->{ return x*y; } 

} 

} 

In the above example, we can see the we (x,y) are the input parameters that are being 

passed, the System will infer the type of the parameters and prints the x and y values. 

The code between ‘{……}’ is the code that is going the be executed after ‘->‘ sign. 

It makes sorting even easier with very little code. Let’s see how sorting can be done in 

Java 7: 
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Collections.sort(list,new Comparator<String>(){ 

@Override 

public int compare(String s1,String s2){ 

return s1.compareTo(s2); 

} 

}) 

 But we can implement this even easier in Java 8: 

But we can implement this even easier in Java 8: 

 Collections.sort(list,(String s1,String s2)->s1.compareTo(S2))); 

 After comparing both of the Sort codes we can understand how much code can be 

eliminated. If the user wants to use the same interface, but with different implementation, he can 

use these lamda expressions whenever he wants. 

Default methods. Java 8 added Default methods to the interfaces. This helps to use the 

lambda expressions extensively. It helps to enable the features of the interface without breaking 

the class implementation. Let us look at an example of interfaces with the default method: 

Interface Calculate{ 

 default void display(){ 

System.out.println(a+b) 

} 

  } 
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 The following class shows how the default method is being invoked or executed. 

class Hello implements Calculate. 

{ 

 public static void main(String args[]){ 

Calculate.display(); 

} 

} 

An interface can have more than one default method in it.  

Streams. The stream is another conceptual layer presented in Java 8. Utilizing stream, 

you can prepare information decisively. It corresponds to an arrangement of objects from a 

source, which bolsters the total operations. A stream gives an arrangement of components of a 

particular sort in a sequential way. A stream registers components upon request, though it never 

stores the elements. The vast majority of the stream operations return the stream itself so that 

their outcome can be pipelined. These transactions are called transitional operations, and their 

capacity is to take the center, handle them, and return yield to the objective. Gather() strategy is 

the last service which is ordinarily present toward the finish of the pipelining operation to stamp 

the finish of the stream. Its operations do the iterations inside over the source components given, 

as opposed to Collections where unequivocal emphasis is required. Let us look at the following 

example. 

Example:  List<String> someList=Array.asList(“hello”,”how are you”); 

List<String> result = someList.stream() 

  .filter(e -> e.equals(“hello”)) 
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  .map(e -> e.toUpperCase()) 

  .collect(toList()); 

In the above example, we will take the list and pass it to the stream object, filter, 

manipulate the object and send back the result. Below are the Important operations of Stream: 

• Map the stream components into something else; it acknowledges a capacity to apply 

to every last part of the stream and returns a surge of the qualities the parameter work 

created. This is the bread and margarine of the streams API; delineate you to play out 

a calculation on the information inside a stream.  

• Reduce plays out of a diminishment of the stream to a solitary component. You need 

to total all the whole number values in the stream–you need to utilize the lesser work. 

You need to locate the most extreme in the stream–diminish is your companion. 

• Filter gives back another stream that contains a portion of the components of the first. 

It acknowledges the predicate to computes which components ought to be returned in 

the new stream and removes the rest. In the imperative code, we would utilize the 

contingent rationale to determine what ought to happen if a component fulfills the 

condition. In the practical style, we do not trouble with uncertainties, we channel the 

stream and work just on the qualities we require. 

• Collect is the best approach to escape the streams world and acquire a solid 

accumulation of qualities, similar to a rundown in the case above. 

Nashorn. Nashorn, a tremendously enhanced javascript motor is presented, to supplant 

the current Rhino. Nashorn gives better execution, as it straightforwardly accumulates the code 
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in memory and passes the bytecode to JVM. Nashorn utilizes summon active component, 

acquainted in Java 7 with enhancing execution. 

REST service. Rest Service is a stateless Web Service. It means the service itself handles 

the request using the query string or header. Whenever there is a request to the service, it 

is considered as a new application, and it is processed. Each application might have the 

same headers, body, or query strings and when we make a call to the rest service it 

always considers the request as a new claim (Jersey.java.net, n.d.). Rest Service works on 

code on demand, a request always points to the specific method which executes specific 

functionality. Depending upon the request and parameters, we will handle the request. 

For instance, let us see the below URL: 

www.localhost:8080/restservice/myMethod/params 

In the above URL, the rest service refers to the rest service project and my method refers 

to the specific method and parameters. 

The code would be as follows: 

@Path(“/”) 

Class RestService{ 

@GET 

@Path(“myMethod/[params]”) 

public String myMethod(@PathParam(“params”) String params){ 

return “response”; 

} 

} 

http://www.localhost:8080/restservice/myMethod/params


35 

 

 

You can see in the above function, when the service is requested, depending upon the 

URL, it directly points to the particular method along with requested parameters. 

There are primarily four types of request which can be made using REST Service: (a) 

GET, (b) POST, (c) PUT, and (d) DELETE. 

GET. GET is used to retrieve the information. Whenever the request is made, it sends the 

response depending upon the user passed parameters, it passes the response either in JSON or 

XML format or just any string. 

Example: 

GET http://www.example.com/resource/123456 

5.6.2. POST 

POST. POST is used to create a new resource. It is also used to create subordinate 

resources. The main advantage of a POST call is that we can send the request in headers and 

bind the data. 

Example: 

POST http://www.example.com/resource/123456 

But in the header there will be data that needs to be POSTed. On successful creation, it 

will return the 200-status code. 

5.6.3. PUT 

PUT. PUT is used to update any resource rather than creating any resource. It contains 

the data of the resource which is going to be updated. 

Example: 

PUT  http://www.example.com/resource/123456 

http://www.example.com/resource/123456
http://www.example.com/resource/123456
http://www.example.com/resource/123456
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DELETE. Delete is used to delete any resource or record. It is pretty straight forward, we 

will pass the resource id which needs to be deleted. 

GET http://www.example.com/resource/123456 

Advantages of RESTful WebService 

• You can have scalability without effecting the other modules  

• It is a light weight 

• Easy to build 

• It has high performance when compared to conventional web services 

• By using REST we can perform CRUD  

Spring Security 

Spring Security is a Security framework for Java EE framework which was introduced in 

the year 2004. This is mainly used for authentication and authorization activities. This helps to 

provide login and logout functionality to the application. It controls and restricts the user action 

on the application depending the security role of a particular user. It also helps to intercept the 

service requests and authenticate. Advantages of Spring Security 

• Helps in Authentication and Authorization 

• IT is Open Source Security Framework 

• Easy to maintain  

• Helps in developing loosely coupled Applications 

• Easy to develop 

There are two types of Authorizations—Method Level Authorization and URL Level 

Authorization. 

http://www.example.com/resource/123456
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Method Level Authorization is used to secure the methods. Following is an example to 

illustrate the method level Security: 

public interface SecuredInterface{ 

@PreAuthorize(“hasRole(‘user_role’)”) 

public String method(); 

} 

public SecuredClass implements SecuredInterface 

{ 

public String method(){ 

return “you are authorized”; 

} 

} 

PreAuthorize is the method used to authenticate the user before accessing the method. It 

uses “hasPermission” to check for the user role. The user roles are passed as in the header of the 

request along with the user id, matches the user id and roles in the header with the user id and 

roles in the database. If they are matched. the request is authenticated and the method will be 

executed. Similarly, we can use “PostFilter.” 

In PostFilter, when we want to filter the results after executing the method, for example if 

the user has access to the method and does not have access to the records, then the PostFilter will 

remove the records for which the user does not have access to. 

URL Level Authorization is used to authenticate the user when he tries to access the 

URL. For this we use SiteMinder. SiteMinder is another concept in Spring Security. It is used to 
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intercept incoming requests and authenticate the URL whether the request is passed through the 

preferred or authorized client. It looks for the headers in the request which has security tokens. 

The tokens are encrypted information. Then the SiteMinder decrypts the token and checks the 

authorized roles with the user id and authenticates the request and then the request is passed to 

the specified method for further processing. Following is the security xml file which is inherited 

into the web.xml file. 

<http auto-config=‘true’ > 

      <intercept-url pattern=“/**” access=“ROLE_USER” /> 

       

      <custom-filter ref=“siteMinderFilter” position=“PRE_AUTH_FILTER”/> 

    </http> 

     <beans:bean id=“siteMinderFilter” 

class=“org.springframework.security.web.authentication.preauth.RequestHeaderAuthent

icationFilter”> 

        <beans:property name=“principalRequestHeader” value=“SM_USER”/> 

        <beans:property name=“exceptionIfHeaderMissing” value=“true”/> 

        <beans:property name=“authenticationManager” ref=“authenticationManager” /> 

  </beans:bean> 

    <authentication-manager alias=“authenticationManager”> 

    <authentication-provider ref=“preAuthenticationProvider”/> 

    </authentication-manager> 
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      <beans:bean id=“preAuthenticationProvider” 

class=“org.springframework.security.web.authentication.preauth.PreAuthenticatedAuthe

nticationProvider”> 

        <beans:property name=“preAuthenticatedUserDetailsService”> 

            <beans:bean id=“userDetailsServiceWrapper”  

class=“org.springframework.security.core.userdetails.UserDetailsByNameServiceWrapp

er”> 

                <beans:property name=“userDetailsService” ref=“customUserService”/> 

            </beans:bean> 

        </beans:property> 

    </beans:bean>  

    <beans:bean id=“customUserService” 

class=“com.sandeep.singh.CustomUserService”/> 

</beans:beans> 

From the above xml file, we are expecting the SM_USER header in the url. Now, if the 

url has the header SM_USER, it checks for the value in it and then it passes the value to the 

CustomUserService class. The CustomUserService class checks the value in the SM_USER and 

authenticates if it matches predefined security roles of the particular user.  If it does not match, it 

will then throw a 403 authentication failure status code as a response to the request.  

Angular JS 

Angular JS is a web application framework, currently maintained by Google. It is used to 

build the dynamic web application in a Model View Controller way. Angular JS helps in data 
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binding and dependency injection which is used to eliminate much of the code required. It is a 

powerful Java script which helps in building rich Internet applications (Angular JS, n.d.-a). 

Features of Angular JS: 

• Scope is the technique of gluing the objects between a controller and a view. 

• Data Binding is a concept of automatically synchronizing the data between a model 

and the view. 

• Angular expression is another important feature, which helps to print or calculate the 

data from the model in the view. 

• Angular JS has many directives such as ngModel, ngBind and in a similar way it also 

helps us to create new directives. 

• $route is another important feature, which helps in navigating the view.  

• Filters in Angular JS helps us to filter the records depending on the user selection. 

Provider in Angular JS is similar to the classes in Java. They are responsible for making 

the various components work. We primarily use Factory and Service. This helps to connect to 

web services and fetch the data and this data is modeled and bound to the view. Figure 9 shows 

the work flow of the Angular JS network. 

 

Figure 9. Angular JS Work Flow 
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To consume a REST service in Angular JS, we use Factory method or http method. 

Following is the example to demonstrate how $resource method consumes a REST Service. We 

need to remember that the REST Service can return either JSON (Java Script Object Notation) or 

XML format data. 

Function getData(){ 

var user=$resource(‘myrest/api’,{parameters:@value}); 

var data=user.get({parameter: paramValue},function(){ 

$scope.value=data.jsonData; 

}); 

} 

In the above example, the $resource fetches the data from the REST Service and stores in 

the data object and from the data object we retrieve the data and store it in some other variable 

and format accordingly.  

Data Binding: Data Binding in Angular applications is the programmed synchronization 

of information between the model and view parts. The way that Angular executes information 

restricting gives you a chance to regard the design as the single-wellspring of-truth in your 

application (Angular JS, n.d.-b). The view is a projection of the model at all times. At the point 

when the model changes, the view mirrors the change and the other way around. 

Most templating frameworks tie information in stand-out heading—they consolidate 

layout and model segments together into a view. After the merge happens, changes to the design 

or related areas of the view are not consequently reflected in the view. More problematic, any 

progressions that the client makes to the light are not reflected in the model. This implies the 
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designer needs to compose code that continually adjusts the view with the model and the model 

with the view. The model is the single-source of truth for the application state, significantly 

disentangling the programming model for the engineer. You can think about the view as a 

momentary projection of your model. Because the view is only a projection of the model, the 

controller is entirely isolated from the view and ignorant of it. This makes testing a snap since it 

is anything but difficult to test your controller in seclusion without the view and the related 

DOM/program reliance.  

Example: 

Inside the HTML page or view, we need to follow the following syntax. 

  <div ng-bind=“hello”></div> 

And inside the controller, 

var app=angular.module(‘myApp’,[]); 

app.controller(‘myCtrl’, function($scope){ 

$scope.hello=“Say Hello!!” 

}); 

Component: A component is fundamentally a directive that uses a less complex 

arrangement, and that is reasonable for a segment based architecture, which is the thing that 

Angular 2 is about. Think about a component as a widget: A bit of HTML code that you can 

reuse in a few better places in your web application. 

Example: 

angular.module(“myApp”, []) .component(“hello”,{ template: ‘Hello!’ }); 

in the view we define, 
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<hello></hello>  

 Routing Angular JS is a single page application. When we need to redirect to the different 

page, the page should not get refreshed and it should not update the page. Instead, it should 

include the HTML page inside the current view. $routeProvider helps in doing this, as we can 

see in the below example, we use the config component to route the page. When we click on the 

link instead of redirecting to the new HTML page, the routeProvider renders the HTML page, 

and the end user cannot see any page refresh or reload. However, he can see the required output. 

 Example: First we need to add <ng-app></ng-app> 

 Following to that create hyperlinks or any URLs where you want to redirect the page. 

Inside the controller, write adds the following script. 

var app = angular.module(myapp, []); 

 app.config([‘$routeProvider’, 

  function($routeProvider) { 

    $routeProvider. 

      when(‘/order’, { 

        templateUrl: ‘/order.html’, 

        controller: ‘OrderController’ 

      }). 

      when(‘/cart, { 

        templateUrl: /carthtml’, 

        controller: ‘cartController’ 

      }). 
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      otherwise({ 

        redirectTo: ‘/home 

      }); 

  }]); 

 Services: Services are javascript functions and are dependable to do particular tasks as it 

were. Services make them an individual substance which is viable and testable. Controllers, 

channels can call them as they are required. Administrations are regularly infused utilizing the 

reliance infusion system of Angular JS. Angular JS gives numerous prebuilt administrations to 

illustration, $http, $route, $window, $location and so on. Every administration is in charge of a 

particular assignment for instance; $http is utilized to make an ajax call to get the server 

information. The $route is employed to characterize the steering data. Inbuilt administrations are 

regularly prefixed with the $ image. 

Example: 

mainApp.service(additionService, function(){ 

   this.square = function(a) { 

      return a+a; 

   } 

}); 

 Custom Directives: Custom directives are utilized as a part of Angular JS to develop the 

usefulness of HTML. Custom directives are characterized using the “directive” function. A 

custom directive essentially replaces the component for which it is enacted. An Angular JS 

application amid bootstrap finds the coordinating components and do one-time action utilizing its 
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gather() strategy for the custom mandate then processes the component using the join() technique 

for the custom order in light of the extent of the decree. Angular JS gives support to make 

custom orders for taking after the sorting of components. 

Example: 

 angular.module(‘myDirective’, []) 

.directive(‘order’, function() { 

 return { 

 restrict: ‘E’, 

 scope: { 

 data: ‘=‘ 

 }, 

 templateUrl: ‘templates/order.html’ 

 } 

}) 

In the above directive order is the custom directive and ‘E’ represents element. It defines 

how the directive should be used. There are four different types of custom directives. 

• E-element

• C- Class

• A-Attribute

• M-Comment
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Using E (Element) as restriction, we can create our own element using the angular js 

directive. Example: 

app.directive(“order”, function() { 

 return { 

 restrict: ‘E’, 

 link: function(scope, element, attrs) { 

 scope.item = attrs.item; 

 }, 

 template: ‘<div>item: {{item}}</div>‘ 

 } 

}) 

inside html, 

<order item=“phone”></order> 

Now it displays the phone in the browser, we can add the styles to the div tag to make it 

more attractive. 

Using C (Class) as a restriction, we can create our own element using the angular js 

directive. Example: 

<div class=“order” ></div> 

Using A (Attribute) as restriction, we can create our own element using the angular js 

directive. Example: 

app.directive(“add”, function() { 

 return { 
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        restrict: ‘A’, 

        link: function(scope, element, attrs) { 

            var price = checkAuthorization(attrs.item); 

                scope.totalCost=price*attrs.items; 

            } 

        } 

    } 

}) 

 Using  M (Comment ) as restriction, we can create our own element using the angular js 

directive. Example:   

app.directive(“order”, function() { 

    return { 

        restrict: ‘M’, 

        }, 

        template: ‘<div>item: {{item}}</div>‘ 

    } 

}) 

We need to add the following content in html file, 

<!—directiveorder --> 

 The Directive Scopes main advantage is creating a reusable component and some extra 

attributes. By using them, we can implement two-way data binding. 
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“@” Scope: This sort of extension is utilized for passing the value to the directive scope. 

Suppose that you need to make a gadget for a notice message. 

app.controller(“myCtrl”, function() { 

    $scope.itemName = “Phone”; 

}) 

app.directive(“cart”, function() { 

    return { 

        restrict: ‘E’, 

        scope: { 

            message: ‘@’ 

        }, 

        template: ‘<div class=“alert”>{{itemName}}</div>‘ 

    } 

}); 

 And in the html page, we can use the directive as:  

 <cart itemName=“{{itemName}}” ></cart. 

  “=“ Scope: Here the variable value is directly passed inside the directive. This helps in 

two-way binding of the data between the controller and view. 

.directive(“cart”, function() { 

    return { 

        restrict: ‘E’, 

        scope: { 
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            item: ‘=‘ 

        }, 

        template: ‘<input type=“text” ng-model=“text”/>‘ 

    } 

}) 

<book-comment item=“phone”></book-comment> 

 Dependency Injection: Dependency Injection (DI) is a product plan design that arranges 

how segments get hold of their dependencies. The Angular injector subsystem is responsible for 

making parts, determining their conditions, and giving them to different segments as asked for 

them. DI is unavoidable all throughout Angular. You can utilize it when characterizing parts or 

when giving a run and config pieces to a module. Components, for example, administrations, 

orders, channels, and liveliness are described by an injectable industrial facility technique or 

constructor work. These segments can be infused with “management” and “esteem” parts as 

dependencies. Controllers are characterized by a builder capacity, which can be introduced with 

any of the “administration” and “respect” segments as conditions. However, they can likewise be 

furnished with unique conditions. See Controllers underneath for a rundown of these 

extraordinary dependencies. The run strategy acknowledges a capacity, which can be infused 

with “administration,” “esteem” and “consistent” segments as conditions. Take note of the fact 

that you cannot introduce “suppliers” into run squares. The config strategy acknowledges a 

capacity, which can be infused with “supplier” and “consistent” segments as conditions. Also, 

take note of the fact that you cannot inspire “administration” or “esteem” segments into the 

setup. 
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Forms: Form and controls give approval administrations so that the client can be advised 

of invalid contribution before presenting a frame. This provides a superior customer encounter 

than server-side approval alone because the customer gets moment input on the most proficient 

method to amend any error. Remember that while the customer side support assumes an essential 

part in giving an excellent client encounter, it can without much of a stretch be evaded and 

subsequently cannot be trusted. Server-side support is still vital for a safe application. 

Example: 

  <form>    <input type=“checkbox” ng-model=“val”> 

<input type=“radio” ng-model=“radioVal” value=“dogs”> 

<input type=“radio” ng-model=“radioVal2” value=“dogs”></form> 

Summary  

 Thus, using all the advanced technologies available in industry to develop the banking 

application will improve the performance of the application. As being the Single Page 

Application, it does not take much time to render the web components and as well as it processes 

the request in the client side and it just contacts the server to retrieve the data. 
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Chapter III: Methodology 

 

Introduction  

 As this paper mainly deals with an Online Banking Application, the current problems 

faced by the users should be addressed. To do that we should gather the information or conduct 

surveys this is qualitative study and at the same the new proposed should show the better 

performance this can be quantitative study. So, the following mixed methodology is used to 

address the issues discussed. 

Design of the Study 

 The mixed methodology helps in finding both the problems with the current system and 

also helps in finding what the issues are and how the proposed system will solve the existing 

problem. 

Testing the Hypothesis 

Create two applications one with Angular JS, Cassandra and using RESTful Web 

services and using Spring Jdbc for connecting to database. And, second, another application with 

a relational database like My Sql and JSP (Java Server Pages).  

We test both the applications using Http Watch. Http Watch is a browser plugin, which 

calculates the time, by it we can know how much time the page is taking to load a single page. 

We can then compare the time of both of the applications and compare them. 

Tools and Techniques  

1. Eclipse (STS) 

2. Chrome Debugger tool/FireBug 
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Hardware and Software Environment 

 Hardware requirements: 

• Intel Pentium 4 or above 

• RAM 4 GB 

• 20 GB Hard Disk 

Software requirements: 

• Windows/linux/mac OS 

• Cassandra  

• JDK 1.6 or above 

• Angular JS 

• Tomcat WebServer 

• My Sql database 

• JAX-RS 

• Springs 

• Maven  

• Tomcat Server 

• Html, CSS 

Advantages of Approach 

The advantages of the proposed approach are mainly as follow: 

• The data availability 

• Zero fault tolerance 
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• High Performance 

• High Security 

• Data or the architecture can be updated any time without effecting the User Interface 

• Highly modular 

Project Explanation  

To start the application, we need to start the UI, Midtier, and the database. First, we will 

need to start the database.  

To start, on the database go to the installation directory of Cassandra and type cqlsh. 

After starting the database, it creates a database and adds the tables shown in Figure 10. 

 

Figure 10. Folder Structure 

Here we need the Spring Tool Suite (STS) and Eclipse. STS is a flavor of Eclipse. Here 

we are using two instances because we need one instance for the User Interface (UI) and another 

for the Midtier, which is used to connect to the database. 

First, we need to setup the UI, to set it up open the STS and create a new dynamic web 

project with any appropriate name. After that, we see the project in the Project Explorer with the 

following folder structure. 

 Expand the Web Content folder; we will find the WEB-INF folder and an index.JSP file. 

If you open the WEB-INF file, we will find one web.xml. This file is the deployment descriptor 
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file. When a request comes to this web application first, it reaches web.xml file and searches for 

the requested web page and maps to the appropriate page and processes the request and sends it 

back the response. When we start this web application, it automatically starts the index.JSP file 

as it is a default landing page for the application, this need not be in every application, we can 

change the default landing web page according to the requirement, but here we are using the 

default landing index.JSP file. 

  As we are using this application for UI, which is developed using Angular JS, first we 

need to add the Angular JS libraries. Following is the list of libraries we need to download for 

this application: 

• angular.JS 

• angular-resource.js 

• angular-cookies.js 

• ui-bootstrap-tpls-1.3.2.min.js 

All Angular JS libraries are 1.4.7 version. 

To import the libraries, we need to use the following code:  

  <script src=“http://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js”></script>  

It directly downloads the libraries from the Internet. We can also download the libraries 

manually and specify the location of the file. Either way, it works the same. After importing all 

the libraries to make the angular content work, we need to add the angular tags to the DOM 

elements. First, we begin with ng-app that is the angular directive, which initiates the angular 

framework. It is usually placed in either HTML tag or inside the body tag, for instance:  

<html ng-app=“rootApp”>. 
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After this is done, we need to add the controller—a controller is a function which controls 

the data using a $scope. We add this in the similar way as we have added ng-app, but this 

controller should be after ng-app; for example: 

<html ng-app=“rootApp”> 

<body ng-controller=“rootController”> 

</body> 

</html> 

Now we navigate to the login page that has the login form and design using Bootstrap 

and CSS. After entering the allowed credentials in the login form, we need to click on the Submit 

button. 

 

Figure 11. Application Login Screen 

 The request goes to the controller and from the controller it makes a REST API call. This 

REST API tries to match the entered data with the database to authenticate the request.  If they 

match, it sends the approved response back to the controller, and the controller navigates to the 

home screen. However, if the credentials do not match with any of the database records, it sends 

the rejected response and the controller asks the user to enter the valid credentials. That is the big 

picture of the login process.  
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To explain in detail, when the user enters the credentials and submits the form, it reaches 

the controller (starModuleController.js). There is a click function associated with the Submit 

button which is triggered when it is clicked. Even before this click function is triggered, there is 

a layer of security called validation to check the valid input. If it passes the validation, then the 

request comes to the click function. Here, in the Click function, we use $http service. This 

service is used to request the data from the remote servers or make REST API calls. As we are 

seeking for information, we are making a GET call to the REST API. The following is the syntax 

to make the REST API call: 

 $http.get(‘http://localhost:8080/SpringRest2/hello’, { 

         headers: {‘SM_USER’:id}} 

     ).then(function(response){ 

      $cookieStore.put(‘user’, user.email); 

      $cookieStore.put(‘token’, id); 

      $window.location=“home.html”; 

      }); 

In the above function, the REST API location URL is provided, If the function gets a 

successful response it sets the cookies with the user email address and id and navigates to the 

home page. We can also see the headers attached to the request. These headers are used by the 

Spring Security to authenticate the request. In this application, we used site minder approach to 

authenticate the request. 

I used Spring Security to authenticate each and every request that comes from the UI to 

the REST service. As the REST service is also built on the dynamic web application project, it 
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also has the web.xml file, where all the request processing starts. Inside this application, we write 

Spring Security FILTERS. These filters help us to authenticate the request and forward the 

request to the REST API. We need to Specify these filters in the web.XML file. When the 

request comes to the application, these filters first respond to the request. They first check for the 

headers in the request and, then, if it does not have any headers, it rejects the request and sends 

back a 500 Internal error message to the user. When the request enters the filter, it forwards it to 

the CustomUserService.java class which has loadUserByUsername function and accepts the 

header value and validates it with the database and pulls all the roles associated with that header 

value and stores the data inside UserDetails object and passes it to SecurityContext. This 

SecurityContext is unique for each request; that means it creates a new thread with a new id for 

each request, and it will be active until the request is processed and the response is sent back to 

the client. After the client receives the response thread, the Java Virtual Machine (JVM) will kill 

it. If the response successful, we add the user id and a token to the cookies and navigate to the 

home page. These cookies are stored in the browser.  If the response is a failure, it remains on the 

login page until the user enters the valid credentials. After login into the user account, the 

application uses the cookie data for the authentication. It adds these cookie values to headers of 

the REST API call and the Spring Security at the REST services checks for the headers and 

validates the headers and processes the request. Then open the Chrome browser and open the 

debugger tool. After that, enter into the home page, we can then find the menu on the left, click 

on the account info and you can see the REST API call and the response. 
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Figure 12. The Network Tab of Debugger Tool 

The other application is built completely using Spring MVC and MySQl database. This 

Application is built using Spring MVC framework. The database is a MySql relational database, 

which is the conventional form of database. To create a Spring MVC application we need to 

create a maven web app. It generates a file POM.xml along with other folders. Inside the pom, 

we have to specify the dependencies for the Spring MVC. If we add dependencies inside 

pom.Xml, Maven automatically downloads the required Java archives (jar) and adds to the 

project, these files have various class files which are required. This reduces the programmer’s 

effort to download and add the jar files and even makes it easier to move the application from 

one environment to another environment as Maven handles the required dependencies and the 

programmer doesn’t have to worry about downloading and mapping the jar files to the 

application. After adding all the required dependencies for the spring application, web.xml 

should be configured such that it supports Model View Controller (MVC) style for the 

application. We need to create another XML file called spring dispatcher servlet.xml. This file 

handles the request made by the user and sends the request to the appropriate controller and 
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processes the request and sends back the model along with the view. In Figure 13, we can see 

how the process works. 

 

Figure 13. Spring MVC Architecture 

When a request is placed, the dispatcher servlet handles the request and passes it to the 

internal view resolver class. There it selects the controller depending upon the endpoint of the 

request, it then passes that to the control and processes the request and creates a view along with 

the data attached to it. It then passes it to the dispatcher servlet and the output will be passed to 

the browser to display the view.  

Results 

Following is the application built using the REST service, Cassandra database and 

Angular JS. 
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Figure 14. Star Paper Application Home Screen 

 

 

Figure 15. Star Paper Application Account Tab Screen 
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Figure 16. Network Tab in Debugger Tool to Display Elapsed Time 

Here, in the above application, I am pulling 100 records. The application uses Spring 

JDBC to connect to a Cassandra database, REST Service is used to format the data and Angular 

JS to display the data.  

In Figure 16 we can see the green colored bar which represents the time taken to display 

the data, which is 343.20 milliseconds. 

Below is the application built using the Spring MVC and My Sql database. 

 

Figure 17. Home Screen of Application Developed in Spring MVC 
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Figure 18. Spring MVC Application Accounts Tab Screen 

 

 

Figure 19. Spring MVC Application Accounts Tab Elapsed Time 

From viewing Table 1 we can understand that the application developed using the new 

technologies retrieved the records faster than the application using the conventional technologies. 

In the first attempt, with 100 records, there is not much of a considerable difference between the 

elapsed time. But, while increasing the number of the records, in the third attempt with 

considerably high volume or records, we see a noticeable amount of difference in time. Hence, 

we can say that it is always a better choice to opt for new technologies for not just banking and 

finance, but also for every other industry that deals which huge amounts of sensitive data. But 
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there is a problem in opting for new technologies.  There is always a budget constraint and also 

the technologies need to get updated regularly. So, it is necessary to choose the right technology 

depending upon the requirements. As the technologies get updated, choosing a technology to 

develop an application involves much research and vision for the application. After 

implementing the application, it should be useful for at least a few years as developing a new 

application whenever a new and better technology comes to the market will require a large 

amount of work. 

Table 1 

Results 

 Number of  

Records 

Elapsed Time for 

Application with New 

Technologies 

Elapsed Time for 

Application with 

Conventional 

Technologies 

First Attempt 100 records 343.38 milli seconds 926 milli Seconds 

Second Attempt 10000 records 1018.12 milli seconds 1548 milli seconds 

Third Attempt 70000 records 3.48 seconds 6.5 seconds 
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Chapter IV: Design and Installations 

Java Installation (for mac osX) 

You can download the jdk 8 from the oracle website download page and double click on 

it. Follow the instructions from the installation window and install the jdk into the machine. The 

Next step is to set the path variable and export it to the hardrive. 

 
Figure 20.  Test the JDK Class Path 

 

 

Figure 21. Testing Java from the Console 



65 

 

 

Installing Cassandra 

Download Apache Cassandra from http://cassandra.apache.org. After downloading it, 

extract Cassandra into a folder of your choice. Then create two folders as shown in the screen 

shot in Figure 22. 

 

 

Figure 22. Apache Cassandra in Local File System 

After extracting, we need to create a lib folder and log folder and give permissions to 

those two folders (Figure 23). 

 

 

Figure 23. Create Cassandra Log Files 

 Assign the permissions as shown above and go to the bin folder and start the database by 

typing./cqlsh. It will let you into the Cassandra database. 
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Chapter V: Conclusion and Future Work 

 By using the new technologies, we can improve the performance of the application. 

Angular JS, REST Services, and the Cassandra database help to perform the application faster 

and also keep the application modular. The technologies that are discussed are quick enough for 

the time being. There is a new version of Angular JS released in September 2016, Angular JS 

2.0. It helps in component based developing which supports reusability in java script. So, it is 

always helpful to keep the applications up to date and safe from bugs and malware attacks. 
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