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Abstract 

Mechanisms of speciation in the deep-sea, an environment with few physical isolating 
barriers, are relatively understudied in deep-sea fishes. This research focuses on the lanternfishes 
(Myctophiformes ~250 species) as a study system to investigate speciation in deep-sea 
environments and to test new phylogenomic approaches at resolving contested phylogenetic 
relationships. Previous phylogenetic hypotheses of lanternfishes identify two monophyletic 
families (Myctophidae and Neoscopelidae) and two monophyletic subfamilies within 
Myctophidae (Myctophine and Lampanyctinae), based on morphological and molecular data. 
Although subfamily relationships have generally remained the same, hypotheses of higher order 
(tribe, genus, species) relationships lack resolution. This study is the first to infer the 
evolutionary relationships of lanternfishes with a genome scale target-enrichment approach with 
ultraconserved elements (UCEs), which are noncoding areas of the genome that are highly 
conserved across distantly related taxa. Our results infer a phylogeny of lanternfishes that 
includes a monophyletic Neoscopelidae, a monophyletic Myctophinae, and a paraphyletic 
Lampanyctinae. We elevate two tribes to subfamilies (Gymnoscopelinae and Diaphinae both 
previously within Lampanyctinae) in addition to Lampanyctinae and Myctophinae. 
Gymnoscopelinae was resolved as the stem myctophid group and Diaphinae as sister to 
Myctophinae. Little is known regarding how lanternfish achieved such high species richness in 
the deep sea, and many studies have focused on their bioluminescence. This study also focuses 
on the evolution of feeding structures in lanternfishes and the potential for niche differentiation 
in this group. Geometric morphometrics were performed on 955 lanternfish specimens, and an 
ancestral character-state reconstruction was used to examine patterns of evolution in mouth size 
in lanternfishes. We identify that mouth size in lanternfishes is highly variable, with general 
trends towards larger mouths in Lampanyctinae and Gymnoscopelinae and shorter mouths in 
Myctophinae. Of particular note, Diaphinae was found to occupy a large range of morphospace, 
with broad plasticity in mouth size among the examined species. To further investigate the 
evolution of feeding structures, we examined 229 lanternfish specimens within Myctophiformes, 
assessing variation in tooth anatomy, presence on tooth bearing bones, and presence of 
heterodonty. An ancestral character-state reconstruction was also used to examine the evolution 
of heterodonty in this group. Our results support at least four separate evolutions of heterodonty 
in lanternfishes. Once in the common ancestor of the tribe Lampanyctini, once in Diogenichthys, 
once in Centrobranchus, and possible multiple evolutions in Diaphus. Heterodonty tooth types 
are expressed by four different anatomical variations around a global ‘hook’ shape, which have 
allowed for specialization in feeding. 
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CHAPTER I: EVOLUTIONARY RELATIONSHIPS OF LANTERNFISHES 

(TELEOSTEI: MYCTOPHIFORMES) USING ULTRACONSERVED ELEMENTS 

Introduction 

 Lanternfishes are among the most species-rich groups of fishes endemic to open-ocean 

environments, containing approximately 257 species in 36 genera (Eschmeyer, Fricke, & Van der 

Laan, 2017). They include six species in the family Neoscopelidae (blackchins) and 251 species 

in the family Myctophidae (lanternfishes). Lanternfishes reside in the mesopelagic and 

bathypelagic zones between 200–3,000 m deep and are common worldwide, accounting for more 

than half of all midwater-fish biomass (Paxton, 1972; Sutton, Wiebe, Madin, & Bucklin, 2010). 

They move from the mesopelagic and bathypelagic zones during the day into the shallower 

epipelagic zone at night following their prey (e.g. copepods, ostracods; Paxton, 1967; Holton, 

1969; Gaskett, Bulman, He, & Goldsworthy, 2001), and their vertical migration plays a major 

role in the oceanic ecosystem by transferring energy from shallower to deeper oceanic levels 

(Paxton, 1972; Springer, Piatt, & Vliet, 1996; Collins et al., 2008; Davis, 2015). 

 Lanternfishes possess bioluminescent photophores and light organs located in various 

positions on the body, that produce light endogenously (Davis, Sparks, & Smith, 2016). 

Photophores situated in lateral rows along the ventral surface of the body are thought to counter 

illuminate and provide camouflage by mimicking the limited downwelling light from above 

(Lawry, 1974; Case, Warner, Barnes, & Lowenstine, 1977; Haddock, Moline, & Case, 2010). In 
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contrast to ventral photophores, Davis, Holcroft, Wiley, Sparks, and Smith (2014) demonstrated 

that lateral photophores are species specific and are potentially involved in species recognition. 

Lanternfishes illustrate extensive variation in sexually dimorphic bioluminescent light organs, 

including the presence and/or size of specialized light organs at the base of the tail, known as 

supracaudal and infracaudal light organs, and those located on the head (Herring, 2007). 

Bioluminescent marine fishes that display sexually dimorphic light organ systems are thought to 

undergo sexual selection and increased rates of diversification (Davis et al., 2014; Davis et al., 

2016), and the increased diversity of lanternfishes may have been aided by selective pressures on 

their bioluminescent systems (Davis et al., 2014; Davis et al., 2016) in combination with niche 

differentiation (Martin & Davis, 2016).  

 Previously, the myctophiform fishes have been hypothesized to be closely related to 

aulopiform fishes (lizardfishes; Gosline, Marshall, & Mead, 1966). Rosen (1973) separated the 

Myctophiformes from the Aulopiformes based on the presence of an uncinate process on the 

second epibranchial in lizardfishes to the exclusion of myctophiforms, and the presence of 

ctenoid scales that lanternfishes share with members of the Acanthomorpha (spiny-rayed fishes). 

Taxonomically robust phylogenetic studies on the evolutionary relationships of ray-finned fishes 

have consistently inferred the monophyly of the lanternfishes based on molecular sequence data 

(e.g., Near et al., 2012; Betancur-R. et al., 2013; Davis et al., 2014; Davis et al., 2016; Smith, 

Stern, Girard, & Davis, 2016). 

The two families within Myctophiformes (Figure 1.1) include Neoscopelidae 

(blackchins) and Myctophidae (lanternfishes). Neoscopelidae is comprised of six species in three 

genera, whereas, Myctophidae includes 251 species and 33 genera (Eschmeyer et al., 2017). 
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Figure 1.1. Previous and current phylogenetic hypotheses of Myctophiformes. Myctophinae is 
represented by red lines and Lampanyctinae is represented by blue lines. Previous hypotheses 
include Paxton (1972), osteology and photophores; Paxton et al. (1984), synapomorphy based 
reconstruction using osteology, photophore, and larval characters; Stiassny (1996), a maximum 
parsimony strict consensus analysis of Paxton et al. (1984) character matrix plus four new 
characters; Yamaguchi (2000), a maximum parsimony strict consensus reanalysis of Stiassny 
(1996) with polymorphic characters coded as “?”; Poulsen et al. (2013), mitogenomic gene 
sequences; Denton (2014), six nuclear and one mitochondrial genes; Davis et al. (2014), two 
nuclear and one mitochondrial genes. Taxa in bold were recovered as non-monophyletic in their 
respective studies.
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Previous phylogenetic analyses have of lanternfishes have repeatedly hypothesized two 

monophyletic subfamilies within the family Myctophidae (Figure 1.1): Lampanyctinae and 

Myctophinae. The recognition of these subfamilies is based on adult and larval morphological 

features (Paxton, 1972; Paxton, Ahlstrom, & Moser, 1984; Stiassny, 1996; Yamaguchi, 2000) and 

molecular characters (Poulsen et al., 2013; Davis et al., 2014; Denton, 2014, Davis et al., 2016). 

Within Myctophidae there are currently seven recognized tribes, including three in the 

subfamily Myctophinae (Myctophini, Gonichthyini, and Electronini) and four in the subfamily 

Lampanyctinae (Gymnoscopelini, Diaphini, Lampanyctini, and Notolychnini) as seen in Table 

1.1. Paxton (1972) recognized six tribes (Figure 1.1), excluding the tribe Electronini due to it 

having only one distinguishing character, the location of the PLO photophore being below or 

near the ventral margin of the pectoral base. This is in comparison to the rest of the taxa in the 

tribe Myctophini, where the PLO is distinctly above the pectoral base. The tribe Electronini was 

later recognized by Paxton et al. (1984), and all seven tribes have been recognized and used in 

subsequent studies on the evolutionary relationships of lanternfishes (Table 1.1; Paxton et al. 

1984; Yamaguchi, 2000; Poulsen et al., 2013; Davis et al., 2014; Denton, 2014). The monophyly 

of the subfamilies within Myctophidae has remained constant with the exception of the 

phylogenetic placement of tribe Notolychnini, which includes a single species Notolynchnus 

valdiviae (Figure 1.1). The tribe Notolychnini has been placed as the stem tribe within 

Lampanyctinae (Paxton, 1972; Stiassny, 1996; Yamaguchi, 2000), nested within the tribe 

Lampanyctini (Davis et al., 2014; Denton, 2014) or in a polytomy with the subfamilies 

Myctophinae and Lampanyctinae (Figure 1.1; Paxton et al., 1984). Although historically both 

subfamilies have remained consistent in taxonomic composition (with the exception of 
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Order Myctophiformes
Family Neoscopelidae  
         Neoscopelus, Scopelengys,  
         Solivomer
Family Myctophidae

Subfamily Myctophinae
Tribe Myctophini: Fowler, 1925 

Benthosema, Diogenichthys, 
Hygophum, Myctophum, 
Symbolophorus

Tribe Gonichthyini: Paxton, 1972 
Centrobranchus, Gonichthys, 
Loweina, Tarletonbeania

Tribe Electronini: Wisner, 1963 
Electrona, Krefftichthys, 
Metelectrona, Protomyctophum

Subfamily Lampanyctinae
Tribe Gymnoscopelini: Paxton, 1972 

Gymnoscopelus, Hintonia, 
Lampanyctodes, Lampichthys, 
Notoscopelus, Scopelopsis

Tribe Diaphini: Paxton, 1972  
     Diaphus, Idiolychnus,  
     Lobianchia
Tribe Lampanyctini: Paxton, 1972 

Bolinichthys, Ceratoscopelus, 
Lampadena, Lampanyctus, 
Lepidophanes, Parvilux, 
Stenobrachius, Taaningichthys, 
Triphoturus

Tribe Notolychnini: Paxton, 1972 
Notolychnus

Table 1.1 Historical lanternfish subfamilies, tribes, and genera. 
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Notolychnini), the phylogenetic relationships among tribes and genera within each subfamily has 

been more fluid (Figure 1.1).  

 The aim of this study is to infer the relationships among lanternfishes using genome-scale 

approach with phylogenomic methods that involve sequence capture of nuclear regions that 

includes ultraconserved elements (UCEs). Ultraconserved elements are regions of the genome 

that are highly conserved among evolutionarily distant taxa, and sequence capture probes sets 

can pull out hundreds of UCE regions (~100-1500 bp each) from a sequenced specimen for use 

in phylogenetic analyses (Bejerano et al., 2004; Wang, Lee, Kodzius, Brenner, & Venkatesh, 

2009; Faircloth et al., 2012). This approach to estimating relationships has been successfully 

used on various vertebrate groups (e.g. mammals, McCormack et al., 2012; birds, Faircloth et al., 

2012; and fishes, Gilbert et al., 2015). In this study we use high-throughput phylogenomic 

methodology to create a UCE based phylogenomic tree. From this we infer the relationships of 

lanternfishes and test the monophyly of currently recognized families, subfamilies, and tribes. 

We compare this work to previous hypotheses of lanternfish relationships based on morphology, 

mitochondrial genomes, and nuclear and mitochondrial gene fragments (Sanger sequencing). We 

focus on addressing the following questions: (1) What is the hypothesis of relationships among 

lanternfishes using genome-scale data? (2) How does this hypothesis compare to previous 

hypotheses, and how does it differ from previous studies of lanternfish evolution and taxonomy? 
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Materials and Methods 

Taxon Sampling 

 We sequenced 25 lanternfish species representing 25 of 30 genera, and our analysis 

included six additional species representing closely related euteleosts and acanthomorphs as 

outgroups (Table 1.2). All analyses were rooted with Guentherus altivelis (Ateleopodiformes). 

All DNA was extracted from muscle or fin clips using a DNeasy Tissue Extraction Kit (Qiagen) 

following the manufacturer's protocol. The first and second elution from a Qiagen filter were 

combined and dried down with a DNA SpeedVac Concentrator (Thermo Fisher) to a 102 µL 

volume. Using 2µL, we quantified each template using a Qubit fluorometer (Life Technologies) 

using the dsDNA BR Assay Kit following the manufacturer's protocol. Quantified samples 

(100µL volume) were sent to MYcroarray (Ann Arbor MI) who performed library preparation 

(e.g., DNA shearing, size selection, cleanup), target capture (using the 500 UCE actinopterygian 

loci probe set; Faircloth, Sorenson, Santini, & Alfaro, 2013) and enrichment, sequencing using 

an Illumina HiSeq 2500, and demultiplexing of samples. Institutional abbreviations for museum 

and collection acronyms used for anatomical and tissue vouchers follow Sabaj (2016). 

UCE Assembly and Phylogenetic Analysis 

 We used software programs to analyze ultraconserved data received from MYcroarray in 

Fastq format, and to create a phylogenetic tree of lanternfishes using UCEs. Sequences were 

cleaned of indices and adapters using illumiprocessor (Faircloth, 2013) and trimmomatic 

(Bolger, Lohse, & Usadel, 2014). Reads were assembled, by species, into contigs using ABySS 

(Simpson et al., 2009), with the kmer value set to 60. After assembly, we used a software 

package that utilized LASTZ (Large-Scale Genome Alignment Tool; Harris, 2007), and the 
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Taxon Tissue/Voucher
Outgroup
Alepisaurus ferox SIO 96-3
Chloropthalmus nigromarginatus FMNH 121202
Guentherus altivelis USNM 386478
Hoplostethus mediterraneus A. Dettai Pers. Coll.
Polymixia berndti Uncat. AMNH 364
Synodus variegatus SIO 04-63

Ingroup
Benthosema glaciale KU 3058
Bolinichthys longipes SIO 10-164
Centrobranchus sp. Uncat. AMNH A23
Ceratoscopelus townsendi SIO 06-91
Dasyscopelus orientale KU T10933
Diaphus theta KU 2135
Diogenichthys atlanticus SIO 09-99
Hygophum reinhardti SIO 09-320
Krefftichthys andersoni CSIRO GT 390
Lampadena speculigera KU 5916
Lampanyctus macdonaldi KU 7446
Lepidophanes guentheri KU 3796
Lobianchia gemellari SIO 10-171
Loweina rara SIO 10-171
Myctophum auroleternatum SIO 06-295
Neoscopelus macrolepidotus KU 3291
Notolychnus valdiviae SIO 10-166
Notoscopelus caudispinosus KU 5301
Protomyctophum thompsoni KU 2133
Scopelengys tristis KU 3240
Scopelopsis multipunctatus CSIRO GT 3776
Stenobrachius leucopsarus Uncat.
Taaningichthys bathyphilus SIO 10-174
Tarletonbeania crenularis SIO 06-88
Triphoturus oculeum SIO 06-293

Table 1.2. Voucher specimens for new UCE sequences.
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Faircloth et al. (2013) fish probe set, to find reciprocally unique UCE matches and aligned them 

to the species-specific contigs. LASTZ was set at 80% for the minimum coverage and 80% for 

the minimum identity for identifying UCEs. This software package also contained a custom 

Python program (match_contigs_to_probes.py) that removed reciprocal and non-reciprocal 

duplicate hits from the data set, and created a relational database of matches to UCE loci by 

taxon. FASTA files of the UCE data identified across all taxa were constructed by PHYLUCE 

(Faircloth et al., 2012). Contigs were aligned using MAFFT (Katoh & Standley, 2013), and 

Python (seqcap_align_2.py) then trimmed the contigs representing UCEs, in parallel, across the 

selected taxa prior to phylogenetic analysis. A 65% data matrix was created and concatenated in 

MAFFT for RAxML. We performed 20 independent runs in RAxML (Randomized Axelerated 

Maximum Likelihood; Stamatakis, 2014) of the concatenated data utilizing a GTR+G 

substitution model and picked the best tree of 20. The rapid bootstrapping algorithm was set at 

1,000 and stopped at 250 bootstrap replicates based on MRE bootstrapping criterion. A total of 

445 UCE fragments were used for a final length of 335,071 bps. Sequence fragment lengths were 

~100–1,400 bps. Phylogenetic trees were created in FigTree (Rambaut, 2007). Additionally, we 

ran an independent likelihood analysis (RAxML) on each UCE and used Astral II (Mirarab & 

Warnow, 2015) to create a species tree from all the individual gene trees. The likelihood analysis 

on each UCE had the best tree of 5 replicates. A run of 100 bootstraps were done on each of the 

445 UCEs and were summarized in ASTRAL II. Bootstrap support of species-tree nodes were 

denoted on the concatenated tree (Figure 1.2). 
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Figure 1.2. Maximum likelihood phylogeny of lanternfish relationships based upon UCE 
sequences. All nodes except for two are supported by bootstrap proportions ≥ 0.90 in 
concatenated tree.
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Results 

 The results from our maximum likelihood analysis inferred a monophyletic 

Myctophiformes as the sister group to Acanthomorpha (Figure 1.2). These findings are consistent 

with previous morphological (e.g., Rosen, 1973; Mirande, 2016) and molecular (e.g., Near et al., 

2012; Davis et al., 2016; Smith et al., 2016) work (Figure 1.1). The two families within 

Myctophiformes, Neoscopelidae and Myctophidae, were recovered as monophyletic sister 

groups with strong bootstrap support (≥ 0.90; Figure 1.2). Within Myctophidae, taxa from the 

subfamily Lampanyctinae are recovered as paraphyletic with respect to Myctophinae with three 

distinct clades recognized herein as three subfamilies. The first clade includes fishes from the 

tribe Gymnoscopelini (bootstrap ≥ 0.90; Gymnoscopelus, Hintonia, Lampanyctodes, 

Lampichthys, Notoscopelus, and Scopelopsis) and requires the recognition of this clade as the 

subfamily Gymnoscopelinae (Figures 1.2, 1.3), a name first described by Paxton (1972). This 

Gymnoscopelinae is the stem myctophid lineage and was sister to a clade that includes the tribes 

Notolychnini, Lampanyctini, Diaphini, Myctophini, Electronini, and Gonichthyini (Figures 1.2, 

1.3). A second recovered clade includes the monophyletic group comprised of genera from the 

Lampanyctini (Bolinichthys, Ceratoscopelus, Lampadena, Lampanyctus, Lepidophanes, 

Parvilux, Stenobrachius, Taaningichthys, and Triphoturus) and Notolychnini (Notolychnus), with 

a bootstrap support of ≥ 0.90 (Figures 1.2, 1.3) and is recognized here as Lampanyctinae. 

Lampanyctinae was recovered as the sister group to a clade containing the tribes Diaphini, 

Myctophini, Electronini, and Gonichthyini. The Diaphini + Myctophini + Electronini + 

Gonichthyini clade contains a monophyletic group that includes the tribe Diaphini (Diaphus and 

Lobianchia; bootstrap ≥ 0.90) and requires the recognition of the Diaphinae, (Figures 1.2, 1.3). 
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Figure 1.3. Cladogram of maximum likelihood UCE phylogeny of lanternfishes presenting new 
proposed subfamilies and taxanomic revision of Myctophini. Lanternfish drawings based on 
work done by Nafpaktitis (1977) and Nafpaktitis et al. (1977).
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Diaphinae is the sister group to Myctophinae (bootstrap ≥ 0.90), which includes the tribes 

Myctophini, Gonichthyini, and Electronini (Figures 1.2, 1.3). 

Discussion 

Evolutionary Relationships of Myctophiformes 

 This work seeks to resolve the interrelationships of myctophid tribes and genera with the 

analysis of a genome-wide (UCE) dataset. Our results corroborate previous morphological and 

molecular studies (Paxton, 1972; Paxton et al., 1984; Stiassny, 1996; Yamaguchi, 2000; Poulsen 

et al., 2013; Davis et al. 2014; Davis et al., 2016) in recovering a monophyletic Myctophiformes, 

Myctophidae, and Neoscopelidae (Figures 1.2, 1.3). The monophyly of Myctophiformes is 

historically supported by seven anatomical synapomorphies (Wiley & Johnson, 2010), six are 

described from Stiassny (1996): a median dorsal keel present on mesethmoid, median maxillo-

premaxillary buccal ligaments (VIII) insert on contralateral buccal elements, large tooth plate 

fused to proximal face of fourth ceratobranchial, first external levator reduced or absent, first 

centrum with enlarged, cone-like parapophyses, and adipose fin support ventrally inserted into 

supracarinalis posterior muscle mass. Springer and Johnson (2004) identified an additional 

anatomical synapomorphy for Myctophiformes: possessing tranversus pharyngobranchials 2a 

and 2b.  

 Most previous studies have inferred a monophyletic Neoscopelidae (blackchins) based on 

molecular and morphological data (Figure 1.1), which is also recovered with our genome-wide 

study (Figures 1.2, 1.3). We also recover a monophyletic Myctophidae, consistent with all 

previous studies (Figure 1.1). The monophyly of Myctophidae is described by numerous 
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synapomorphic characters, some of which are described in Stiassny (1996), which include but 

are not limited to: reduction of the dorsal hypohyal element (HH1), first levator muscle 

subdivided into two heads independently inserted onto the second pharyngobranchial element, 

bony connection between the descending process of the third hypobranchial element with the 

urohyal, bony articulation between the urohyal and the second, or second and third, basibranchial 

element, and cylindrical median rostral cartilage firmly bound to mesethmoid, loosely bound to 

buccal jaws.    

 Our results inferred unique relationships within the lanternfishes (Myctophidae) wherein 

Lampanyctinae sensu Paxton (1972) was recovered as a paraphyletic grade with Myctophinae 

nested within it, as the sister group to the tribe Diaphini (Figures 1.2, 1.3). Previous studies using 

morphological (Paxton, 1972; Paxton et al., 1984; Stiassny, 1996; Yamaguchi, 2000) and 

molecular data (Poulsen et al., 2013; Davis et al., 2014; Denton, 2014;) inferred a monophyletic 

Lampanyctinae sensu Paxton (1972). There are two synapomorphies related to the brachial 

basket that supported the historical Lampanyctinae clade. They include the elongation of the 

second basibranchial element (3-4 times the length of the 1st basibranchial), and a urohyal with 

an elongate anterior process and reduced articulation facet (Stiassny, 1996; Yamaguchi, 2000).  

 The paraphyletic grade of lampanyctine myctophids is composed of three distinct clades 

that we herein recognize as the subfamilies: Gymnoscopelinae, Lampanyctinae, and Diaphinae 

(Figure 1.3). Gymnoscopelinae (Gymnoscopelini) was recovered as the sister group to all other 

myctophids. Subsequently, a restricted Lampanyctinae (Lampanyctini and Notolynchnini) was 

recovered as the sister group to Diaphinae+Myctophinae clade. The monophyly of 

Lampanyctinae+Diaphinae+Myctophinae is supported by the loss of the supramaxillae 
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(Yamaguchi, 2000: Character 6). Finally, Myctophinae was recovered as the sister group to 

Diaphinae, with the monophyly of these two subfamilies supported by the transition from zero to 

one or more ossified distal pectoral radials (Yamaguchi, 2000: Character 25). With the exception 

of tribes within the Myctophinae, historically recognized tribes (Figure 1.1, Table 1.1) are 

recovered as monophyletic with our genome-wide study (Figures 1.2, 1.3). The phylogenetic 

placement of myctophiform genera within tribes have been largely consistent among molecular 

studies (Figure 1.1), thus we will be placing the few genera that were not included in our analysis 

(noted with an asterisk) into our classification following their phylogenetic placement as 

presented in previous molecular studies (Poulsen et al., 2013; Davis et al., 2014; Denton, 2014). 

Relationships within Gymnoscopelinae  

 This study resolves Gymnoscopelinae (Gymnoscopelus*, Hintonia*, Lampanyctodes*, 

Lampichthys*, Notoscopelus, and Scopelopsis) as the stem clade of myctophids (Figure 1.3). 

Optimizing the characters from Yamaguchi (2000) on our hypothesis of evolutionary 

relationships (Figure 1.3) infers six unambiguous synapomorphies for the Gymnoscopeline: an 

increase in the number of procurrent ventral rays (Yamaguchi, 2000: Character 5); presence of 

slightly hooked teeth in posterior dentary (Yamaguchi, 2000: Character 11); presence of dorsal 

process of opercular head of hypomandibula (Yamaguchi, 2000: Character 16); presence of keel 

or ridge on fifth circumorbital (Yamaguchi, 2000: Character 26); accessory luminous tissue 

present (Yamaguchi, 2000: Character 48); larval photophores (except Br2) present (Yamaguchi, 

2000: Character 53; Figure 1.4).   

 This subfamily is atypical among myctophids in that it includes four monotypic genera 

(Hintonia, Lampanyctodes, Lampichthys, and Scopelopsis). Scopelopsis multipunctatus, unlike 
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Figure 1.4. Example of photophores located on a specimen Myctophum affine (FMNH 59974). 
Diagram exhibiting general placement of bioluminescent photophores and luminous glands on 
species within Myctophidae. Ant, antorbital organ; AOa, anterior anal organs; AOp, posterior 
anal organs; Br, branchiostegal organs; Bu, buccal organ; CP, cheek photophore; Dn, 
dorsonasal organ; INGL, infracaudal luminous gland; Op, opercular organs; PLO, 
suprapectoral organ; PO, pectoral organs; Pol, postero-lateral organ; Prc, precaudal organs; 
PVO, sub pectoral luminous glands; SAO, supraanal organs; So, suborbital organ; Suo, 
supraorbital organ; SUGL, supracaudal luminous gland; VLO, supraventral organ; Vn, 
ventronasal organ; VO, ventral organs.
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all other myctophids, possesses secondary photophores on every scale (Moser & Ahlstrom, 

1972). Most species in this subfamily are restricted to oceans in the southern hemisphere, with 

the exception of species in Notoscopelus, which are found in oceans globally (Paxton, 1972). 

Relationships within Lampanyctinae  

 Our revised Lampanyctinae includes the tribes Lampanyctini (Bolinichthys, 

Ceratoscopelus, Lampadena, Lampanyctus, Lepidophanes, Parvilux*, Stenobrachius, 

Taaningichthys, and Triphoturus) and the monotypic Notolychnini (Notolychnus). Our study 

indicates that the traditionally taxonomically difficult Notolychnini belongs within 

Lampanyctinae (Figures 1.2, 1.3). The problematic placement of Notolychnus in previous 

phylogenetic hypotheses based on morphological characters (Figure 1.1) is likely because 

Notolychnus exhibits “intermediate” states among species of Lampanyctinae and Myctophinae 

(Paxton, 1972). For example, Notolychnus lacks a postero-medial shelf similar to taxa in 

Myctophinae; whereas, this shelf is present in all other Lampanyctinae taxa (Paxton, 1972). 

Additionally, Notolychnus only has two Prc photophores on their caudal peduncle similar to the 

number observed in species within Myctophinae, where, in comparison, other lampanyctines 

(sensu stricto) have three to nine Prc photophores (Figure 1.4). Additionally, larval myctophine 

eyes are elliptical in outline; whereas, the eyes are round in lampanyctines. Notolychnus has 

intermediate semi-elliptical eyes (Moser & Ahlstrom, 1970). Most other characters exhibited by 

Notolychnus suggest a close affinity with lampanyctines (Paxton, 1972). Poulsen et al. (2013) 

placed Notolychnus as the stem myctophid lineage based on an analysis of mitochondrial 

genomic data. In contrast, recent studies utilizing three to seven mitochondrial or nuclear gene 

fragments derived from Sanger sequencing have inferred Notolychnus as nested within the 
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Lampanyctini (Davis et al., 2014; Denton, 2014). There are no unambiguous anatomical 

characters that unite the Lampanyctinae as recognized in this study. This is not surprising given 

the historically problematic placement of Notolychnus based on anatomy alone. However, the 

tribe Lampanyctini (i.e., all lampanyctines except Notolychnus) within Lampanyctinae is united 

by three unambiguous morphological characters: presence of moderately to strongly hooked 

teeth in posterior dentary (Yamaguchi, 2000: Character 4); presence of Dn photophore 

(Yamaguchi, 2000: Character 45); presence of sexual dimorphism in caudal luminous organs 

(Yamaguchi, 2000: Character 47). 

 This study finds that the relationships of genera within Lampanyctini grouped into three 

main lineages. Lampadena and Taaningichthys form a clade, which is sister to all remaining 

lampanyctine lineages distributed in two broader clades (Figure 1.3). The first clade includes the 

genera Stenobrachius, Lampanyctus, and Triphoturus, with these taxa identified as having a 

shared unique mitochondrial gene rearrangement (Poulsen et al., 2013). Davis et al. (2014) 

indicated that Lampanyctus exhibits exceptional species richness given the clade age. The other 

clade contains Bolinichthys, Lepidophanes, and Ceratoscopelus. The presence of these three 

clades within Lampanyctini (with the exception of the presence or absence of Notolychnus) is 

consistent throughout most historical myctophid phylogenies (e.g., Paxton, 1972; Paxton et al.,

1984; Poulsen et al., 2013; Denton, 2014; Davis et al., 2014), but the relationships of these clades 

to each other has lacked corroboration among studies (Figure 1.1).  

 As noted above, one synapomorphy of the Lampanyctini is the presence of anterior facing 

‘recurved’ teeth on the posterior portion of the dentary. These specialized teeth are hypothesized 

to inhibit the loss of prey items in the mouth cavity (Paxton, 1972). Many of the species in this 
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group display additional cheek and secondary photophores (Figure 1.4; Paxton 1972;). Denton 

(2014) called into question the monophyly of  Nannobrachium and suggested that the validity of 

the genus be revisited. Given the results of Poulsen et al. (2013), Davis et al. (2014), and Denton 

(2104), we consider Nannobrachium to be a synonym of Lampanyctus (type species 

Lampanyctus crocodilus; Risso, 1810).  

Relationships within Diaphinae 

 The subfamily Diaphinae (tribe Diaphini) is comprised of three genera, Lobianchia, 

Idiolychnus* and the species-rich genus Diaphus (~30% of myctophid diversity; Froese & Pauly, 

2016). Our results corroborate all previous hypotheses that recovered Diaphinae as a 

monophyletic group (Figure 1.1). Some previous studies using either morphological (Paxton, 

1972; Paxton et al., 1984; Stiassny, 1996; Yamaguchi, 2000) or molecular (Poulsen et al., 2013; 

Davis et al., 2014) data resolved Diaphini nested within Lampanyctinae sensu Paxton (1972) as 

seen in Figure 1. Denton (2014) resolved Diaphini as the stem lineage within Lampanyctinae 

sensu Paxton (1972). Our study infers a novel placement for the clade, resolving Diaphinae 

(Diaphini) as the sister group to Myctophinae (Figures 1.2, 1.3), separate from Lampanyctinae 

(sensu lato). Optimizing the characters from Yamaguchi (2000) on our resulting tree (Figure 1.3) 

recognizes five synapomorphes for the Diaphinae: presence of a wide pubic plate (Yamaguchi, 

2000: Character 7); a raised PO4 photophore (Yamaguchi, 2000: Character 32); a raised VO3 

photophore (Yamaguchi, 2000: Character 34); presence of larval photophores, except BR2 

(Yamaguchi, 2000: Character 53); lack of pigment on the head (Yamaguchi, 2000: Character 60; 

Figure 1.4). Poulsen et al. (2013) also found a unique mitochondrial gene rearrangement in 

Diaphinae taxa.  
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 Diaphus is the most species rich genus in the Myctophidae, containing 77 species (Froese 

& Pauly, 2016), and recent work has identified this clade as diversifying at an accelerated rate 

(Davis et al., 2014). Diaphus is one of the few genera that does not exhibit caudal light glands 

(Herring, 2007); alternatively, it has evolved a diverse system of anteriorly facing light organs on 

the head (Figure 1.4). These additional head light organs may be used to find or stun prey items, 

are often sexually dimorphic, and may play an important role in the radiation of this lineage 

(Paxton, 1972; Sparks, Dunlap, & Smith, 2005). Recent work looking at the evolution of mouth 

size in lanternfishes (Martin & Davis, 2016) identified Diaphus as being one of the few 

myctophid lineages to have species with both long and short upper jaws. The plasticity of upper-

jaw length in this group may be an indication that jaw length variation has enabled shifts in 

ecological specializations within this lineage (Martin & Davis, 2016). 

Relationships within Myctophinae 

 This study resolves a monophyletic Myctophinae including 14 genera (Benthosema, 

Centrobranchus, Dasyscopelus, Diogenichthys, Electrona*, Gonichthys*, Hygophum, 

Krefftichthys, Loweina, Metelectrona*, Myctophum, Protomyctophum, Symbolophorus*, 

Tarletonbeania). Our inference of a monophyletic Myctophinae corroborates all previous studies 

(e.g., Paxton, 1972; Stiassny, 1996; Poulsen et al., 2013; Davis et al., 2014) as seen in Figure 1.1. 

The Myctophinae are united by eight unambiguous morphological synapomorphies: presence of 

comparatively short jaw length (Yamaguchi, 2000: Character 1); loss of an extrascapular 

(Yamaguchi, 2000: Character 2); lack of a fused third epibranchial toothplate (Yamaguchi, 2000: 

Character 27); presence of an elongate second basibranchial (Yamaguchi, 2000: Character 28); 

absence of a urohyal with elongated anterior process and reduced articular facet (Yamaguchi, 
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2000: Character 29); absence of a dorsally projecting metapterygoid strut (Yamaguchi, 2000: 

Character 30); one Pre photophore (Yamaguchi, 2000: Character 31); narrow larval eyes 

(Yamaguchi, 2000: Character 50). The Myctophinae genera within the present study can be 

grouped into two major clades. The first clade contains Diogenichthys+Benthosema as sister to 

Kerfftichthys+Protomyctophum (Figure 1.3). The sister groups within this clade have high 

bootstrap support (≥ 0.90), but the clade itself was poorly supported (Figure 1.2). The second 

major clade resolves Hygophum as the stem genus, followed by Myctophum, which is then sister 

to a crown group containing Tarletonbeania+Loweina sister to Dasyscopelus+Centrobranchus 

(Figure 1.3). Species within Myctophinae have reduced their non-photophore luminous tissue to 

the supracaudal and infracaudal glands (Figure 1.4). Sexual dimorphism is exhibited in many 

species that posses these caudal light organs, which are found in most or all members within 

Myctophinae (Paxton, 1972; Herring, 2007).  

 Since the work of Paxton et al. (1984), there have been three recognized tribes within the 

Myctophinae: Myctophini, Gonichthyini, and Electronini. The phylogenetic hypothesis of 

lanternfishes presented by Paxton et al. (1984) used a diversity of morphological characters in a 

synapomorphic reconstruction using a parsimony criterion, to support the monophyly of these 

three tribes (Figure 1.1). More recent studies have utilized maximum parsimony (Stiassny, 1996; 

Yamaguchi, 2000) and maximum likelihood and bayesian computational analyses (Poulsen et al., 

2013; Davis et al., 2014; Denton, 2014, Davis et al., 2016). In these studies, the relationships of 

lanternfishes within Myctophini, Gonichthyini, and Electronini, have lacked consistent 

monophyletic composition (Figure 1.1). Stiassny (1996) resolved Myctophinae as a polytomy, 

and Gonichthyini as the only monophyletic tribe within the subfamily. Yamaguchi (2000), 
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building off of Paxton (1984) and Stiassny (1996), had similar results, resolving two clades 

within Myctophinae, a monophyletic Gonichthyini and a clade comprising a polytomy of 

Myctophini and Electronini (Figure 1.1). Poulsen et al. (2013) and Denton (2014) resolved a 

monophyletic Electronini and a paraphyletic Myctophini. Davis et al. (2014) had similar 

findings, with a monophyletic Electronini nested within a paraphyletic Myctophini (Figure 1.1). 

This study resolved a monophyletic Electronini nested within a paraphyletic Myctophini, and 

resolves a paraphyletic Gonichthyini (Figures 1.1, 1.2). These previous studies show a lack of 

consistent monophyly in the tribes Electronini, Myctophini, and Gonichthyini (Stiassny, 1996; 

Yamaguchi, 2000; Poulsen et al., 2013; Davis et al., 2014; Denton 2014.). Due to this 

inconsistency, the genera Centrobranchus, Electrona, Gonichthys, Krefftichthys, Loweina, 

Metelectrona, Protomyctophum, and Tarletonbeania were previously recognized as members of 

the tribes Gonichthyini and Electronini, are recognized here as belonging to the tribe Myctophini 

(Figure 1.3).  

 Within Myctophini, we resolved a paraphyletic Myctophum, with M. orientale nested 

within Gonychthyini, separate from M. aurolaternatum. This finding corroborates Paulson et al. 

(2013) who resolved M. asperum and M. orientale as separate from a clade containing M. affine, 

M. nitidulum, and M. punctatum. Poulsen et al. (2013) also found the M. affine+M. 

nitidulum+M. punctatum clade to have a unique mitochondrial gene rearrangement, whereas M. 

asperum+ M. orientale displayed the typical myctophid gene order. Denton (2014) resolved a 

clade of Myctophum that included M. asperum, M. brachygnathum, M. lychnobium, M. 

obtusirostre, M. orientale, M. selenops, and M. spinosum, as separate from M. affine, M. 

aurolaternatum, M. nitidulum, and M. punctatum (type species, Rafinesque, 1810). Based on our 
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work and these previous studies, the polyphyly of fishes traditionally recognized in the genus 

Myctophum requires the recognition of M. asperum, M. brachygnathum, M. lychnobium, M. 

obtusirostre, M. orientale, M. selenops, and M. spinosum in Dasyscopelus (Günther, 1864), type 

species Dasyscopelus asperum (Figure 1.3). 

Classification 

 We present a new classification of myctophiform families, subfamilies, tribes, and genera 

(Table 1.3). Asterisks indicate genera not included in analyses. Classification follows phyletic 

sequence, and reflects the results of both the maximum-likelihood and species-tree analyses. 

Conclusions 

 We recovered a well-supported phylogeny of lanternfishes using UCE data that includes 

a monophyletic subfamily Myctophinae, and a paraphyletic historical subfamily Lampanyctinae. 

We elevated the tribes Gymnoscopelini and Diaphini to subfamily level (Gymnoscopelinae and 

Diaphinae) in addition to a revised Lampanyctinae and the historical Myctophinae. We 

synonymized the tribes Electronini and Gonichthyini into Myctophini. We revised the genus 

Myctophum and reinstated the genus Dasyscopelus based on support from this study and 

previous studies (Paulson et al., 2013; Denton, 2014). Additionally, we synonymized the genus 

Nannobrachium into the genus Lampanytus. 
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Order Myctophiformes
Family Neoscopelidae  

Neoscopelus, Scopelengys, 
Solivomer*

Family Myctophidae
Subfamily Gymnoscopelinae

Tribe Gymnoscopelini  
Gymnoscopelus*, Hintonia*,  
Lampanyctodes*, Lampichthys*, 
Notoscopelus, Scopelopsis

Subfamily Lampanyctinae
Tribe Notolychnini  

Notolychnus
Tribe Lampanyctini  

Bolinichthys, Ceratoscopelus, 
Lampadena, Lampanyctus, 
Lepidophanes, Parvilux*, 
Stenobrachius, Taaningichthys, 
Triphoturus

Subfamily Diaphinae
Tribe Diaphini  
      Diaphus, Idiolychnus*,  
      Lobianchia

Subfamily Myctophinae
Tribe Myctophini 
     Benthosema, Centrobranchus, 

Dasyscopelus, Diogenichthys, 
Electrona*, Gonichthys*, 
Hygophum, Krefftichthys,  

     Loweina, Metelectrona*, 
Myctophum, Protomyctophum, 
Symbolophorus*, Tarletonbeania

Table 1.3. Revised classification of Myctophiformes.
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CHAPTER II: PATTERNS OF PHENOTYPIC VARIATION IN THE MOUTH SIZE OF 

LANTERNFISHES (TELEOSTEI: MYCTOPHIFORMES) 

Introduction 

 Lanternfishes (Teleostei: Myctophiformes) are one of the most species-rich groups of 

fishes endemic to deep-sea open-ocean environments, containing approximately 257 species in 

36 genera (Nelson, 2006; Eschmeyer et al., 2017). They include members from two families, 

Neoscopelidae (blackchins) and Myctophidae (lanternfishes). Lanternfishes are common 

worldwide and account for greater than 50% of all midwater-fish biomass (e.g., Paxton, 1972; 

Sutton et al., 2010; Olivar et al., 2012). They are predominantly found in the mesopelagic zone 

between 200–1000 m and make up a large percentage of the deep scattering layer. This layer was 

identified when sonar waves bounced off of the gas-filled swim bladders of millions of 

mesopelagic fishes and emulated a ‘false seafloor’ (Barham, 1966; Tont, 1976). Most 

lanternfishes perform diel vertical migrations, moving from the mesopelagic to the epipelagic 

zone at night to feed and retreating to the relative darkness of the mesopelagic during the day. 

Lanternfishes are prey for a variety of organisms (e.g., dragonfishes and lizardfishes), and this 

daily migration plays a major role in the oceanic ecosystem by transferring energy from 

shallower to deeper oceanic levels (Barham, 1966; Paxton, 1972; Collins et al., 2008; García-

Seoane, Dalpadado, & Vázquez, 2013; Davis, 2015).  

 Previous phylogenetic hypotheses of lanternfishes have identified two monophyletic 

subfamilies within the family Myctophidae, Lampanyctinae and Myctophinae, based on both 
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morphological (Paxton, 1972; Stiassny, 1996) and molecular data (Poulsen et al., 2013; Davis et 

al., 2014; Denton, 2014). Our recent study using phylogenomics identified two additional 

subfamilies (Gymnoscopelinae and Diaphinae) in addition to Lampanyctinae and Myctophinae. 

Lanternfishes are known for the species-specific bioluminescent photophores and organs that 

cover their bodies. These structures produce endogenously generated light and are situated along 

the ventral and lateral surfaces of their bodies.  

 The ventral photophores produce counter illumination (Lawry, 1974; Case et al., 1977). 

This type of camouflage involves the excitation of the bioluminescent photophores to match the 

intensity of downwelling light to hide the ventral profile from predators lurking below. 

Bioluminescent marine fishes that live in shallow-water marine environments with sexually 

dimorphic bioluminescent organs have been hypothesized to undergo sexual selection (Sparks et 

al., 2005; Chakrabarty, Davis, Smith, Baldwin, & Sparks, 2011a; Chakrabarty et al., 2011b). The 

bioluminescent photophores of lanternfishes located in lateral positions on the body may be 

involved with species recognition and sexual selection (Mensinger & Case, 1990; De 

Busserolles, Fitzpatrick, Paxton, Marshall, & Collin, 2013a; De Busserolles, Hart, Hunt, Davies, 

& Justin, 2013b; Davis et al., 2014; Davis et al., 2016). Additionally, the eyes of lanternfishes are 

attuned to see wavelengths that match the light given off by bioluminescent organisms (Turner, 

White, Collins, Partridge, & Douglas, 2009). Despite the common occurrence of this group in 

deep-sea environments, little is known currently about how lanternfishes have achieved such 

high species richness in the open ocean, which has few reproductive isolating barriers.  

 Many planktivorous fishes and fish larvae display size preferences for prey based on gape 

size (Arthur, 1976; Munk, 1997). Studies on the larvae of lanternfishes have indicated that gape 
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size is important to the ecological niches the larvae occupy (Conley & Hopkins, 2004; Tanimata, 

Yamamura, Sakurai, & Azumaya, 2008). Paxton (1972) suggested that adult lanternfishes have a 

high degree of variation in mouth size across their radiation, but currently no studies have 

investigated the degree of this variation, the pattern of its evolution across lanternfishes, or 

whether mouth size may be similarly important to feeding in adults. Additionally, studies have 

indicated that the jaw morphology of fishes plays a crucial role in determining the type of prey it 

consumes and how morphological variation can lead to changes in foraging ability and 

subsequently differential use of food resources (Karpouzi & Stergiou, 2003; Price, Friedman, & 

Wainright, 2015). Correlations between mouth size and prey size have been studied in many 

fishes (e.g., alewife, Janssen, 1976; roach, Prejs, Lewandowski, & Stańczykowska-Piotrowska, 

1990; largemouth bass, Hambright, 1991). The presence of variation in the mouth size of 

lanternfishes and subsequent selective feeding based on prey size, coupled with reproductive 

isolating mechanisms (species-specific and sexually dimorphic bioluminescent structures; Davis 

et al., 2014; Davis et al., 2016) could be a potential mechanism of diversification, if it allows for 

niche differentiation in the open ocean.    

 The focus of this work is to investigate the evolution of variation in mouth size across the 

lanternfish radiation. Paxton (1972) has suggested that there is variation in jaw morphology 

across lanternfishes, however this variation has never been quantitatively investigated. If 

significant variation exists in the size of the mouth (Figure 2.1A-F) among lanternfish species, 

and there is evidence this variation is having a potential impact on their diet as adults, then the 

possibility exists that niche partitioning is occurring in lanternfishes. In this study, the elongation 

of the upper jaw in lanternfishes is quantitatively investigated and the evolutionary pattern of 

36



Figure 2.1. Examples of variation in upper-jaw morphology among the four lanternfish 
subfamilies. Scale bars represent 5 mm. Representative for Myctophinae (A) Myctophum 
obtusirostre (MCZ 51389); Representative for Diaphinae (B) Diaphus rafinesquii (MCZ 
118953); Representative for Gymnoscopelinae (C) Scopelopsis multipunctatus (MCZ 102571); 
Representative for Lampanyctinae (D) Nannobrachium cuprarium (MCZ 112776); (E) 
Neoscopelus macrolepidotus (FMNH 112581); (F) Scopelengys tristis (USNM 201152); 
Geometric morphometric landmark placement sites on lanternfish specimens (G) Gonichthys 
tenuiculus (FMNH 71685). 
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changes in mouth size is reconstructed within a phylogenetic framework. We focused on 

addressing the following questions: (1) Is there quantitative evidence that mouth size changes 

across the lanternfish radiation, and what is the degree of that variation? (2) What is the character 

evolution of mouth size across the evolutionary history of lanternfishes? (3) Is there any 

evidence that variation in mouth size may influence the diet of lanternfishes?  

Materials and Methods 

Specimens 

 Lanternfish specimens from the Museum of Comparative Zoology, the Smithsonian 

Institution, and the Field Museum were used in this study. Photographs of 955 alcohol preserved 

specimens, representing 30 of 36 genera and 124 species (see Material Examined) were taken 

using a Canon EOS Rebel SL1 Digital SLR camera. Museum abbreviations follow Sabaj (2016).  

Geometric Morphometrics 

 In order to investigate the variation in mouth size across lanternfishes, digital landmarks 

were placed on three analogous areas using the geometric morphometric software tps (Rohlf, 

2010a, 2010b). Analogous areas include: the most anterior part of the premaxilla, the most 

posterior medial part of the maxilla, and the middle of the eye (Figure 2.1G). These landmarks 

were chosen as they provide a general estimate of variation in mouth shape and length in 

comparison to the eye. A relative warp analysis, which is a principal component analysis, was 

conducted to quantify the amount of variation in mouth size of each specimen from a consensus 

configuration that was created from a Procrustes superimposition (Rohlf & Slice, 1990). A 

Procrustes superimposition scales and rotates all of the shapes created based on landmark 
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placements prior to running the relative warp analysis. This removes any artifacts that may have 

been created due to inconsistencies in image size and specimen rotation.  

Character Evolution 

 Likelihood and parsimony ancestral-state reconstructions were performed in Mesquite 

2.75 (Maddison & Maddison, 2015). Our UCE based phylogeny of lanternfishes was used to 

reconstruct the character evolution of upper-jaw length. Character states for upper-jaw lengths 

were inferred from the quantitative results of the relative warp analysis following MacLeod 

(2002). For genera not included in the morphometric analysis, a character state was assigned 

based on the anatomy of the fish (Krefftichthys). The morphological character used to infer the 

ancestral character states among Myctophiformes is described below.  

1. Length of upper jaw relative to the position of the eye  

(010) Anterior margin of premaxilla extends well beyond eye, posterior margin of maxilla 

extends slightly behind eye. 

(011) Anterior margin of premaxilla extends slightly beyond eye, posterior margin of 

maxilla extends slightly behind eye. 

(012) Anterior margin of premaxilla extends slightly beyond eye, posterior margin of 

maxilla extends well behind eye.  

Results 

Variation in Mouth Size Across Lanternfishes 

 The relative warp analysis shows a quantitative differentiation in morphospace as 

represented by the center of the eye, the anteriormost margin of the premaxilla, and the distal 
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most margin of the maxilla in Myctophidae and Neoscopelidae, and also between the four 

lanternfish subfamilies, Gymnoscopelinae, Lampanyctinae, Diaphinae, and Myctophinae (Figure 

2.2), relative to other clades. Neoscopelidae (blackchins) trend towards a longer anterior portion 

of the upper jaw with an enlarged snout in relation to the eye. Within the family Myctophidae 

(lanternfishes), genera in the subfamily Gymnoscopelinae have a small overlapping distribution 

along the right side of the X-axis, indicating a trend towards longer upper jaws (Figure 2.2), with 

only small differences in upper-jaw length between genera (Figure 2.3A). In contrast, genera in 

the subfamily Myctophinae have a broad overlapping distribution across the left side of the X-

axis, indicating a trend towards shorter upper jaws (Figure 2.2). While there is broad overlap of 

the genera within this subfamily (Figure 2.3C), there are also differences between various genera 

in morphospace (e.g., Loweina, Metelectrona, Protomyctophum, and Tarletonbeania) showing 

distinctive clumping and separation (Figure 2.4A, B). Tarletonbeania is an exception to the 

general trend in that is contains species with both long and short upper jaws (Figure 2.4B). 

Genera within Lampanyctinae indicate a trend towards a longer posterior portion of the upper 

jaw in relation to the eye (Figure 2.2). While there is significant overlap of genera within 

Lampanyctinae across the right side of the X-axis (Figure 2.3B), only a few genera in this 

subfamily have a broad distribution in morphospace (Figure 2.4C) showing higher variation 

among species within a genus (i.e., Bolinichthys, and Lampanyctus). However, the overall 

variation among species within a genus is generally reduced across Lampanyctinae (Figure 

2.4D). Bolinichthys, and Ceratoscopelus both contain species that have both long and short upper 

jaws, and are exceptions to the general trend (Figure 2.4C, D). Additionally, there are multiple 

genera that do not overlap in morphospace (e.g., Ceratoscopelus, and Taaningichthys; Figure 
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Figure 2.2. Relative warp analysis of jaw landmarks for Myctophiformes. 
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Figure 2.3. Breakdown of relative warp analysis of mouth size in: (A) Gymnoscopelinae genera; 
(B) Lampanyctinae genera; (C) Myctophinae genera; (D) Diaphinae genera.
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Figure 2.4. Breakdown of relative warp analysis of mouth size in Myctophinae and 
Lampanyctinae genera. (A) myctophine genera with high morphospace variation; (B) examples 
of myctophine genera with separation in morphospace; (C) lampanyctine genera with high 
morphospace variation; (D) examples of lampanyctine genera with separation in morphospace. 
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2.4D). The genus Diaphus within Diaphinae have upper-jaw lengths that span across the 

morphospace of the other three subfamilies (Figures 2.2, 2.3D).  

Character Evolution of Mouth Size 

 Ancestral character states are indicated at nodes (Wiley et al., 2011). The common 

ancestor of the Myctophiformes either had a larger upper jaw with a robust snout, similar to that 

of the family Neoscopelidae, or a longer upper jaw similar to Gymnoscopeline and 

Lampanyctinae. This node was equivocal for both states under a parsimony reconstruction 

(Figure 2.5). The common ancestor of the Myctophidae most likely had a longer upper jaw, 

similar to that of the subfamily Lampanyctinae, under parsimony (Figure 2.5). The subfamily 

Myctophinae most likely evolved shorter upper jaws in its common ancestor.  

Discussion 

Evolution of Mouth Size in Myctophiformes 

 This work seeks to understand the evolution of mouth size in lanternfishes and its 

potential impact on the radiation of this species-rich group in the open ocean. Overall, the results 

indicate that there is considerable variation in mouth size among lanternfish lineages (Figure 

2.2). Within the family Neoscopelidae, the anterior portion of the mouth and snout are elongated 

in relation to the position of the eye. The relative warp analysis indicates that within the 

morphospace, this upper-jaw length is markedly different from species in the family 

Myctophidae (Figure 2.2). The ancestral character-state reconstruction inferred under parsimony 

(Figure 2.5) suggests that the upper-jaw length similar to that of Neoscopelidae may be the 

ancestral jaw length for all Myctophiformes. Fossil evidence of stem Myctophiformes, including 
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c

Figure 2.5. Parsimony ancestral character-state reconstruction of the evolution of upper-jaw 
length shown at nodes on a maximum likelihood phylogeny of lanternfish relationships based 
upon UCE sequences. 
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†Sardinoides (Cretaceous), †Neocassandra (Paleocene), and †Beckerophotus (Eocene; 

Prokofiev, 2006), indicates that stem lanternfish had a neoscopelid-like mouth, which coincides 

with our ancestral character-state reconstruction. In general, the family Neoscopelidae has upper 

jaws that are not as shortened or as elongated as species in the family Myctophidae (Figure 2.2). 

The family Neoscopelidae has low species diversity with three genera and approximately six 

species (Eschmeyer et al., 2017). In contrast, the species-rich family Myctophidae possesses 

higher variability in the length of the upper jaw (Figures 2.1, 2.2), which may have facilitated the 

broad diversification of the lanternfishes.  

 Paxton (1972) described two general trends in the mouth size in myctophids. He noticed 

a trend towards larger mouths in Lampanyctinae and smaller mouths in Myctophinae. This study 

identified similar trends in mouth-size evolution in lanternfishes (Figures 2.2, 2.3). There is a 

distinct elongation of the posterior portion of the upper jaw in relation to the eye in 

Gymnoscopelinae and Lampanyctinae, with only a few exceptions (e.g., some species of 

Bolinichthys, and Ceratoscopelus). Myctophinae shows a shortening of the upper jaw in relation 

to the eye (Figures 2.2, 2.3C). Paxton (1972) suggested that the ancestral character state for 

Myctophidae was a small mouth, with lampanyctines evolving larger mouths. The results of the 

parsimony character-state reconstruction indicate otherwise, inferring that the ancestral character 

state for myctophids was likely larger mouths with Myctophinae evolving shorter mouths (Figure 

2.5). A stem fossil lineage of Myctophidae known from Oligocene deposits, †Eomyctophum 

(Prokofiev, 2006), also has an elongated upper jaw which is consistent with the results of our 

ancestral character-state reconstructions. Not all lineages within Myctophidae follow the 

observed general trends of mouth size identified in their respective subfamilies. The genera 
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Tarletonbeania, Diaphus, Bolinichthys, and Ceratoscopelus all contain species that have evolved 

both smaller and larger mouths (Figure 2.4).  

Evolution of Mouth Size in Diaphus 

 The genus Diaphus was found to occupy the largest amount of morphospace for any 

lanternfish genus (Figures 2.2, 2.3D), and it is one of the only myctophid lineages to have 

species with both long and short upper jaws (Figure 2.2). In contrast, many taxa within a given 

genus of lanternfishes are generally restricted in their overall pattern of upper-jaw length (Figure 

2.4B, D). The genus Diaphus contains approximately 77 species (Eschmeyer et al., 2017), 30% 

of the total lanternfish species richness. Davis et al. (2014) found that the genus Diaphus has 

exceptional species richness given its clade age, indicating that this lineage of lanternfishes has 

been diversifying at a significantly elevated rate relative to all other lanternfish lineages. It is 

possible that the increased variation in the upper jaws of Diaphus, coupled with the variation of 

the head bioluminescent organs found in species of this genus, may have impacted its 

diversification. Diaphus is unique among all other lanternfish taxa in that species within this 

genus have evolved a complex system of anteriorly oriented light organs on the head. These 

additional light organs are often sexually dimorphic and may be used additionally to stun, 

confuse, illuminate, or induce fluorescence in prey (Sparks et al., 2014; Haddock et al., 2010). 

Many deep-sea fishes (e.g., dragonfishes, barracudinas) also use light organs associated with the 

eye to seek out prey items (Douglas & Partridge, 1997; Douglas et al., 1998; Douglas, 

Bowmaker, & Mullineaux, 2002; Ghedotti, Barton, Simons, & Davis, 2015).  

 The evolution of the upper jaw within the genus Diaphus indicates that mouth size is 

highly variable with species exhibiting either long or short upper jaws, and these species are 
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distributed throughout the evolutionary history of the lineage (Figure 2.6). This indicates that the 

evolutionary history of Diaphus is punctuated with changes in jaw length (Figure 2.6) and that 

the evolution of their jaws may have had an impact on shifts in ecological specializations within 

this lineage. To further elucidate the pattern and direction of jaw evolution in Diaphus, further 

work is needed to examine the jaws of additional species within the genus in relation to a densely 

sampled species phylogeny of the group. The high anatomical variation of upper-jaw length in 

Diaphus indicates that there is a possibility that niche differentiation may have played a role in 

their diversification if there are dietary changes that correlate with the variation in mouth size 

observed in this study (Figure 2.6). A study that focused on the diets of two species of Diaphus 

that are comparable in body size found that the diet of the short-jawed D. garmani included 

small copepods, euphausiids, ostracods, and amphipods, whereas the diet of the long-jawed D. 

chrysorhynchus included larger cephalopods and myctophids, in addition to zooplankton 

(Tanaka, Sassa, Ohshimo, & Aoki, 2013).  

Mouth Size and Feeding in Lanternfishes 

 Previous work on the diets of lanternfishes have identified that their diets consist 

predominantly of epipelagic zooplankton: copepods, amphipods, ostracods, and euphausiids 

(e.g., Pakhomov, Perissinotto, & McQuaid, 1996; Gaskett et al., 2001). Many of these studies 

also found variation in lanternfish diets based on the size of prey items (e.g., Hopkins, Sutton, & 

Lancraft, 1996; Williams, Koslow, Terauds, & Haskard, 2001; Conley & Hopkins, 2004; Shreeve 

et al., 2009). This further indicates that both mouth and body size may play a role in niche 

partitioning in this group. Because the diet of lanternfishes includes predominantly different 

species of epipelagic zooplankton, this enables the co-occurrence of many lanternfish species 
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Figure 2.6. Relative warp analysis of upper-jaw length among species of Diaphus. The two 
main trends of mouth size are represented by text color and outlines on the circles representing 
specimens; black text and outlines indicate longer upper jaws and orange text with white 
outlines indicate shorter upper jaws. The presence of short and long upper jaws are indicated on 
a summary phylogeny of species within Diaphus (Denton, 2014), with species included in this 
study indicated by a circle and species coded from an external source indicated by a square 
(Froese and Pauly, 2016). Circles and squares colored black indicate longer upper jaws, 
whereas orange indicates shorter upper jaws. 
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during nightly feeding migrations into the epipelagic zone. Lanternfishes are hypothesized to 

exhibit ‘diffuse competition’ for food resources, which could result in competitive exclusion and 

niche separation (Hopkins & Gartner, 1992). Differences in the diets and prey size of 

lanternfishes with similar body sizes but varying mouth sizes have been identified in previous 

studies. For example, Myctophum obtusirostre, a short-jawed species, was found to eat molluscs 

and bivalve larvae, compared to Diaphus watasei, a long-jawed species, which was found to eat 

zooplankton, squids, and other larval and adult myctophids (Alwis & Gjøsæter, 1988). As body 

length and mouth size increases within lanternfishes, there is usually a shift in the size of prey 

consumed, and species become more opportunistic, feeding on both large and small prey items 

and becoming more piscivorous (Takagi, Yatsu, Itoh, Moku, & Nishida, 2009; Bernal, Olivar, & 

de Puelles, 2013).  

 The variation we have found in the mouth size of lanternfishes may be the result of 

divergence due in part to differences in the size of prey items consumed and the result of 

divergent natural selection because of resource competition. Conley and Hopkins (2004) 

indicated that larvae of species within the subfamilies Gymnoscopelinae, Lampanyctinae, and 

Diaphinae exhibit a high diversity of prey type, with size restrictions of prey set by mouth size. 

This pattern continued in the postmetamorphic stages, with larger mouth sizes allowing for a 

greater range of prey size (Conley & Hopkins, 2004). Additional ontogenetic studies on 

lanternfishes also found this pattern in prey selectivity (e.g., Sabatés & Saiz, 2000; Tanimata et 

al., 2008; Bernal et al., 2013). A larger mouthed gymnoscopeline, lampanyctine, or diaphine 

species may be more successful at prey capture on larger prey items than a smaller mouthed 
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myctophine species, due to gape size. This may result in shifts into divergent diets over time and 

further facilitate diversification.  

 There are few studies that have investigated variation in mouth size across a lineage of 

deep-sea fishes, but similar studies on vertebrates have indicated that variation in dentition and 

the size and shape of the mouth has an impact on niche differentiation (Liem, 1973; Rosenberger, 

1992; Danley & Kocher, 2001; Lovette, Bermingham, & Ricklefs, 2002; Hulsey, Mims, Parnell, 

& Streelman, 2010; Muschick, Barluenga, Salzburger, & Meyer, 2011). The role of niche 

differentiation in the open ocean has been comparatively understudied compared to other aquatic 

habitats. There are few physical barriers to gene flow in the open ocean, and greatly separated 

areas may be connected genetically due to the reproductive strategies of many marine species 

that have high fecundity and rely on ocean currents to disperse their young (Palumbi, 1994; 

Gordeeva, 2011). Additionally, marine populations can be large, which may slow genetic 

divergence between populations (Palumbi, 1994).  

 Lanternfishes are among the most species-rich lineages of open-ocean fishes, a habitat 

with few physical barriers to gene flow, and niche partitioning can promote speciation in these 

kinds of habitats (Brawand et al., 2014). Many species within a given genus in Myctophidae are 

restricted in their upper-jaw morphospace, indicating a possible differentiation into specialized 

niches across the broader lanternfish radiation (Figure 2.4B, D). Taxa that overlap in 

morphospace (Figure 2.4A, C) likely prey on similar food sources, while species that do not 

overlap in morphospace potentially occupy different niches and are not directly in competition 

with each other for resources. In general, there is potential evidence for niche partitioning across 

the evolution of lanternfish lineages. Future studies will compare diets across all lanternfishes in 
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order to get a clearer picture of patterns of diet change and the potential for niche differentiation 

in this lineage. Other morphological characters that could impact diet, including the variation in 

dentition, body size, and geographic distribution will also be assessed. 

  

Conclusions 

 Overall, our results indicate that there is considerable variation in mouth size among 

lanternfish lineages (Figure 2.2), including general trends towards smaller mouths in 

Myctophinae, and larger mouths in Gymnoscopelinae, and Lampanyctinae (Figure 2.2, 2.3). The 

parsimony character-state reconstruction indicates that the ancestral state for Myctophiformes 

and Myctophidae was likely longer jaws (Figure 2.5). The broad variation in mouth size of 

lanternfishes indicates that this group may have undergone shifts in ecological specializations. Of 

particular note, Diaphinae and the genus Diaphus has high variation in upper-jaw length within 

morphospace and is one of the only lineages to exhibit species with both short and long jaws 

(Figure 2.6), which indicates that species of Diaphus may have an evolutionary history that is 

punctuated with niche partitioning. Further work is needed to compare the overall diets of all 

lanternfish species with variation in feeding anatomy.  

Material Examined 

Benthosema glaciale: MCZ 53426, 5, 37–60 mm SL; MCZ 125916, 5, 36–59 mm SL.  

Benthosema pterotum: MCZ 151480, 6, 24–40 mm SL; MCZ 151484, 7, 34–41 mm SL.  

Benthosema suborbitale: MCZ 92374, 9, 27–30 mm SL.  
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Bolinichthys indicus: MCZ 124300, 5, 35–39 mm SL; MCZ 124302, 3, 34–40 mm SL; MCZ 

124320, 3, 41–46 mm SL.  

Bolinichthys longipes: MCZ 151750, 2, 42–43 mm SL; MCZ 151781, 3, 15–38 mm SL.  

Bolinichthys photothorax: MCZ 123846, 4, 26–51 mm SL; MCZ 127392, 4, 18–25 mm SL.  

Bolinichthys supralateralis: MCZ 123602, 3, 18–19 mm SL; MCZ 157865, 5, 25–29 mm SL.  

Centrobranchus nigroocellatus: FMNH 64611, 1, 38 mm SL; FMNH 64711, 2, 24–30 mm SL; 

MCZ 98844, 10, 25–37 mm SL.  

Ceratoscopelus maderensis: MCZ 100705, 5, 58–66 mm SL.  

Ceratoscopelus townsendi: MCZ 164690, 3, 47–51 mm SL.  

Ceratoscopelus warmingii: MCZ 92411, 7, 40–52 mm SL.  

Diaphus adenomus: FMNH 58702, 1, 43 mm SL.  

Diaphus anderseni: MCZ 103200, 7, 22–27 mm SL.  

Diaphus arabicus: MCZ 151691, 12, 28–35 mm SL.  

Diaphus brachycephalus: MCZ 121432, 7, 29–40 mm SL; MCZ 121662, 3, 32–33 mm SL.  

Diaphus dumerilii: MCZ 120885, 5, 43–52 mm SL; MCZ 120888, 5, 24–37 mm SL.  

Diaphus effulgens: MCZ 109969, 2, 52–62 mm SL; MCZ 110019, 5, 37–56 mm SL; MCZ 

157869, 1, 57 mm SL; USNM 300852, 1, 98 mm SL.  

Diaphus fragilis: MCZ 90437, 5, 45–70 mm SL; MCZ 120741, 5, 44–70 mm SL.  

Diaphus garmani: MCZ 90863, 4, 48–52 mm SL; MCZ 151630, 5, 36–42 mm SL.  

Diaphus holti: MCZ 120623, 3, 22–47 mm SL; MCZ 120625, 7, 29–36 mm SL.  

Diaphus hudsoni: MCZ 97005, 3, 34–54 mm SL; MCZ 114101, 2, 45–56 mm SL.  

Diaphus lucidus: MCZ 120329, 5, 33–58 mm SL; MCZ 120456, 4, 35–48 mm SL.  
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Diaphus luetkeni: MCZ 120166, 6, 39–44 mm SL.  

Diaphus metopoclampus: MCZ 157871, 8, 26–32 mm SL.  

Diaphus mollis: MCZ 90306, 5, 39–48 mm SL; MCZ 119262, 5, 31–54 mm SL.  

Diaphus cf. mollis: MCZ 120148, 4, 38–44 mm SL. 

Diaphus ostenfeldi: MCZ 119162, 2, 42–45 mm SL; MCZ 119163, 2, 47–48 mm SL.  

Diaphus parri: MCZ 151451, 2, 32–52 mm SL.  

Diaphus perspicillatus: MCZ 126693, 5, 34–52 mm SL.  

Diaphus problematicus: MCZ 119046, 5, 54–66 mm SL; MCZ 128058, 5, 45–60 mm SL.  

Diaphus rafinesquii: MCZ 118651, 4, 37–40 mm SL; MCZ 118953, 4, 62–75 mm SL; MCZ 

151065, 2, 68–72 mm SL.  

Diaphus regani: MCZ 90115, 1, 59 mm SL.  

Diaphus splendidus: MCZ 118342, 5, 53–70 mm SL.  

Diaphus taaningi: MCZ 159064, 5, 62–70 mm SL.  

Diaphus termophilus: MCZ 118159, 4, 34–52 mm SL; MCZ 118161, 4, 30–49 mm SL.  

Diaphus thiollierei: MCZ 151465, 4, 57–59 mm SL; MCZ 151467, 5, 46–64 mm SL.  

Diaphus vanhoeffeni: MCZ 118098, 8, 27–31 mm SL.  

Diogenichthys atlanticus: FMNH 120916, 3, 65–75 mm SL; MCZ 55530, 8, 20–22 mm SL.  

Electrona antarctica: MCZ 149056, 10, 18–23 mm SL; USNM SOSC-38 IK-1, 4, 66–76 mm 

SL.  

Electrona carlsbergi: USNM 206858, 4, 82–86 mm SL. Electrona risso: MCZ 62188, 8, 18–23 

mm SL.  

Gonichthys barnesi: MCZ 103190, 7, 31–47 mm SL.  
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Gonichthys cocco: MCZ 116669, 8, 43–52 mm SL.  

Gonichthys tenuiculus: FMNH 71685, 6, 31–41 mm SL; MCZ 103199, 3, 45–49 mm SL; USNM 

150085, 3, 38–47 mm SL.  

Gymnoscopelus braueri: MCZ 148792, 3, 89–94 mm SL; MCZ 148797, 3, 70–96 mm SL; 

USNM 206612, 4, 102–122 mm SL; USNM 206645, 5, 55–95 mm SL.  

Hygophum benoiti: MCZ 116153, 7, 40–44 mm SL.  

Hygophum brunni: MCZ 98555, 7, 22–37 mm SL.  

Hygophum hanseni: MCZ 115977, 4, 29–40 mm SL.  

Hygophum hygomii: MCZ 92776, 7, 47–55 mm SL; MCZ 115383, 5, 32–48 mm SL; USNM 

253214, 5, 51–58 mm SL.  

Hygophum macrochir: MCZ 115225, 6, 39–51 mm SL; MCZ 115290, 4, 44–52 mm SL.  

Hygophum proximum: MCZ 148705, 4, 36–43 mm SL.  

Hygophum reinhardtii: MCZ 114759, 7, 29–34 mm SL.  

Hygophum taaningi: MCZ 114511, 2, 46–54 mm SL; MCZ 157874, 4, 24–28 mm SL.  

Lampadena chavesi: MCZ 98534, 1, 73 mm SL; MCZ 103117, 2, 62–71 mm SL.  

Lampadena luminosa: MCZ 102986, 4, 28–70 mm SL; MCZ 102987, 3, 60–66 mm SL.  

Lampadena pontifex: FMNH 117877, 2, 121–126 mm SL; MCZ 96997, 2, 60–62 mm SL.  

Lampadena speculigera: MCZ 55526, 2, 85–87 mm SL; MCZ 114311, 2, 51–53 mm SL; MCZ 

164146, 1, 127 mm SL.  

Lampadena urophaos: MCZ 114235, 2, 55–58 mm SL.  

Lampanyctodes hectoris: MCZ 91359, 10, 44–72 mm SL.  

Lampanyctus alatus: MCZ 113992, 9, 39–47 mm SL.  
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Lampanyctus australis: MCZ 55034, 2, 80–87 mm SL.  

Lampanyctus crocodilus: FMNH 63115, 1, 171 mm SL; MCZ 55470, 5, 60–105 mm SL.  

Lampanyctus festivus: MCZ 112559, 8, 29–55 mm SL.  

Lampanyctus iselinoides: MCZ 102845, 5, 57–84 mm SL.  

Lampanyctus macdonaldi: MCZ 164406, 9, 79–156 mm SL.  

Lampanyctus mexicanus: MCZ 45398, 6, 42–65 mm SL.  

Lampanyctus niger: MCZ 49150, 2, 73–82 mm SL.  

Lampanyctus nobilis: MCZ 110299, 8, 42–82 mm SL.  

Lampanyctus photonotus: MCZ 111820, 5, 47–61 mm SL; MCZ 157875, 5, 41–65 mm SL.  

Lampanyctus pusillus: MCZ 102137, 8, 29–33 mm SL.  

Lampanyctus vadulus: MCZ 110183, 4, 56–83 mm SL; MCZ 110187, 4, 40–83 mm SL.  

Lampichthys procerus: USNM 265347, 3, 30–34 mm SL.  

Lampichthys rectangularis: MCZ 51782, 10, 69–88 mm SL.  

Lepidophanes gaussi: MCZ 109655, 5, 17–33 mm SL; MCZ 109657, 5, 41–42 mm SL.  

Lepidophanes guentheri: FMNH 113578, 2, 27–46 mm SL; MCZ 108541, 8, 40–64 mm SL; 

USNM 254406, 5, 53–69 mm SL.  

Lepidophanes supralateralis: USNM 327068, 2, 59–102 mm SL.  

Lobianchia dofleini: MCZ 108030, 10, 24–29 mm SL; USNM 284037, 5, 32–57 mm SL.  

Lobianchia gemellari: FMNH 78441, 1, 46 mm SL; FMNH 78468, 5, 40–50 mm SL; MCZ 

107215, 7, 64–70 mm SL.  
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Loweina rara: USNM 274182, 2, 20–25 mm SL. 

Metelectrona ventralis: USNM 206602, 4, 94–108 mm SL; USNM 209344, 1, 40 mm SL. 

Myctophum affine: MCZ 106578, 7, 30–39 mm SL.  

Myctophum asperum: FMNH 59979, 1, 68 mm SL; MCZ 106460, 8, 31–62 mm SL.  

Myctophum fissunovi: MCZ 81734, 8, 37–57 mm SL.  

Myctophum nitidulum: MCZ 157588, 8, 23–50 mm SL.  

Myctophum obtusirostre: MCZ 51389, 4, 65–80 mm SL; MCZ 105868, 3, 30–47 mm SL.  

Myctophum phengodes: MCZ 105757, 4, 78–87 mm SL; MCZ 105766, 3, 73–87 mm SL.  

Myctophum punctatum: MCZ 105563, 10, 65–83 mm SL.  

Myctophum selenops: MCZ 105306, 4, 25–39 mm SL.  

Myctophum sp.: FMNH 39659, 5, 42–53 mm SL. 

Myctophum spinosum: MCZ 151450, 8, 41–71 mm SL.  

Nannobrachium atrum: MCZ 113519, 6, 57–92 mm SL.  

Nannobrachium cuprarium: MCZ 112776, 6, 55–67 mm SL; MCZ 112823, 4, 43–63 mm SL.  

Nannobrachium indicum: MCZ 151729, 6, 32–84 mm SL.  

Nannobrachium isaacsi: MCZ 55141, 6, 52–70 mm SL.  

Nannobrachium lineatum: MCZ 159035, 2, 59–66 mm SL; MCZ 164479, 2, 59–71 mm SL.  

Nannobrachium wisneri: MCZ 58390, 6, 55–65 mm SL.  

Neoscopelus macrolepidotus: FMNH 112580, 5, 96–118 mm SL; FMNH 112581, 6, 130–173 

mm SL; MCZ 28159, 2, 90–124 mm SL.  

Neoscopelus microchir: FMNH 119741, 7, 78–161 mm SL; FMNH 120855, 5, 97–138 mm SL.  
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Notolychnus valdiviae: MCZ 104374, 8, 18–20 mm SL; MCZ 104620, 6, 14–15 mm SL; USNM 

274026, 6, 15–20 mm SL.  

Notoscopelus bolini: MCZ 103988, 8, 36–56 mm SL.  

Notoscopelus caudispinosus: MCZ 104040, 2, 47–58 mm SL; MCZ 157882, 3, 59–66 mm SL.  

Notoscopelus elongatus kroyeri: MCZ 104150, 6, 62–72 mm SL.  

Notoscopelus resplendens: MCZ 166099, 8, 32–66 mm SL.  

Parvilux boschmai: USNM 269450, 3, 63–107 mm SL.  

Parvilux ingens: USNM 298057, 1, 57 mm SL.  

Protomyctophum anderssoni: USNM 206597, 3, 51–62 mm SL.  

Protomyctophum arcticum: MCZ 102601, 7, 31–41 mm SL.  

Protomyctophum beckeri: USNM 269393, 4, 35–40 mm SL.  

Protomyctophum crockeri: FMNH 120663, 1, 21 mm SL; FMNH 124688, 1, 33 mm SL.  

Protomyctophum subparallelum: MCZ 102557, 7, 23–29 mm SL.  

Scopelengys clarkei: FMNH 76368, 1, 40 mm SL. 

Scopelengys tristis: USNM 201152, 4, 97–131 mm SL.  

Scopelopsis multipunctatus: MCZ 102571, 8, 41–52 mm SL; USNM 274110, 3, 42–50 mm SL; 

USNM 274205, 3, 49–52 mm SL.  

Stenobrachius leucopsarus: FMNH 71832, 6, 38–51 mm SL; FMNH 122276, 1, 67 mm SL; 

MCZ 88957, 10, 42–71 mm SL; SIO 58–20, 5, 58–68 mm SL.  

Symbolophorus barnardi: MCZ 96811, 7, 40–59 mm SL.  

Symbolophorus boops: MCZ 103573, 5, 65–93 mm SL; MCZ 103574, 6, 66–91 mm SL.  

58



Symbolophorus evermanni: FMNH 71681, 1, 53 mm SL; MCZ 148717, 4, 64–76 mm SL; MCZ 

148720, 3, 44–72 mm SL.  

Symbolophorus kreffti: MCZ 102259, 6, 37–49 mm SL; MCZ 103553, 6, 42–52 mm SL.  

Symbolophorus rufinus: MCZ 103536, 2, 69–90 mm SL; MCZ 148934, 3, 55–75 mm SL.  

Symbolophorus veranyi: MCZ 45333, 5, 72–98 mm SL; MCZ 111606, 6, 64–74 mm SL.  

Taaningichthys bathyphilus: FMNH 85121, 1, 50 mm SL; FMNH 85184, 2, 55–59 mm SL; MCZ 

102467, 3, 35–52 mm SL; MCZ 102500, 2, 37–62 mm SL; USNM 252592, 3, 62–69 mm SL.  

Taaningichthys paurolychnus: FMNH 121661, 2, 24–27 mm SL.  

Taaningichthys spp.: USNM 407721, 1, 98 mm SL.  

Tarletonbeania crenularis: FMNH 74222, 7, 34–62 mm SL; MCZ 45847, 10, 44–64 mm SL.  

Triphoturus mexicanus: MCZ 125392, 5, 49–51 mm SL.  

Triphoturus nigrescens: MCZ 89185, 8, 28–34 mm SL.  
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CHAPTER III: EVOLUTION OF HETERODONTY ON THE ORAL JAWS OF 

LANTERNFISHES (TELEOSTEI: MYCTOPHIFORMES) 

Introduction 

 Lanternfishes are among the most abundant and species-rich groups of fishes endemic to 

the deep sea, containing 257 species in 36 genera (Eschmeyer et al., 2017) and two families, 

Neoscopelidae (blackchins) and Myctophidae (lanternfishes). Lanternfishes reside in the meso- 

and bathypelagic zones (≥ 200 meters deep), and most perform diel vertical migrations, moving 

to the epipelagic (open-ocean photic zone) at night to feed, and retreating to the darkness of the 

mesopelagic (open-ocean non-photic zone) during the day. They feed mainly on oceanic 

zooplankton (e.g. copepods, amphipods, euphausiids; Bernal, Olivar, Maynou, & de Puelles, 

2015), and play a major role in the oceanic ecosystem by transferring energy to deeper oceanic 

levels (Sutton et al., 2010). Little is known regarding how lanternfishes became so species rich in 

the deep sea, and the majority of previous studies that investigated diversification in this group 

have focused predominantly on bioluminescence (Davis et al., 2014). Studies that focus on 

diversification in association with variation in feeding structures are common for terrestrial 

organisms (e.g., birds, termites), but comparatively few studies have examined these features in 

deep-sea organisms (Kenaley, 2012; Martin & Davis, 2016). 

 Tooth morphology confers information regarding diet in many extant and extinct 

vertebrates (Massare, 1987; Van Valkenburgh, 1989; Anthony & Kay, 1993), and it is generally 

hypothesized that tooth morphology and tooth function vary together in predictable ways across 
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niches. The morphological adaptations of an animal’s feeding structures limit its ability to utilize 

food resources. Consequently, animals with similar tooth morphologies may have similar diets 

(e.g., Karr & James, 1975; Grossman, 1986). Studies on the evolution of African cichlid 

biodiversity have looked at variation in the morphology of the jaw and dentition and its influence 

in niche differentiation (Liem, 1973; Muschick et al., 2011). Most dentition of fishes follow 

patterns of convergent evolution based on niche similarities (e.g., Motta, 1988; Streelman, Webb, 

Albertson, & Kocher, 2003). Carnivorous fishes typically have canine teeth, that are long, 

conical, either straight or curved, and used for piercing and holding prey items (Grubich, Rice, & 

Westneat, 2008). Molariform teeth are flat broad teeth used for crushing and grinding food such 

as mollusks (Summers, 2000). Multicuspid teeth are commonly found in fishes that scrape algae 

off of substrates (Streelman et al., 2003), and ‘incisors’ in fish are used for cutting and are highly 

variable, coming in a variety of shapes (e.g. beak, saw edge, incisor; Bonaldo, Krajewski, 

Sazima, & Sazima, 2007; Grubich, Huskey, Crofts, Orti, & Porto, 2012). Villiform teeth are fine, 

closely set teeth used for stabbing and direction, and are more common in deep-sea fishes 

(Kenaley, 2012). 

 Myctophiformes possess villiform teeth on four oral jaw bones (i.e. premaxilla, dentary, 

palatine, mesopterygoid; Figure 3.1A, B) and additionally on the branchial arches (Paxton, 

1972). In lanternfishes, the premaxilla extends the entire length of the upper jaw, and is closely 

attached to the maxilla by ligaments and connective tissue, excluding the maxilla from the entire 

gape. Lanternfish teeth are made of two parts: a short base (pedicle), and a longer crown (Paxton, 

1972; Figure 3.1D). Paxton (1972) found that their teeth are depressible toward the oral cavity, 

and bend at the line separating the base and the crown, an attachment type that was later 
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Figure 3.1. Examples of homodont (A, Scopelengys tristis FMNH 71919; B, Gonichthys cocco 
MCZ 98562) and heterodont (C, Lampanyctus cuprarius FMNH 49323; D, Diaphus rafinesquii 
MCZ 166656; E, Diogenichthys laternatus FMNH 71937; F, Centrobranchus nigroocellatus 
MCZ 98563) dentition in lanternfishes. Scalebars represent 1 mm.

62



described as ‘type 4’ by Fink (1981). Teeth located on the premaxilla and dentary, deemed 

villiform are generally conical, small, and aligned in numerous rows (Figure 3.1A, B). When 

Paxton (1972) examined multiple species of myctophids he found a variety of tooth patterns, 

including teeth with the tips curved slightly anteriorly or medially, and others he described as 

hooked (Figure 3.1C, D, E, F). The presence of these morphologically different teeth in addition 

to villiform on the same bone indicates that some species of lanternfishes exhibit heterodont 

dentition. 

 Heterodonty is the possession of more than one tooth morphology on the same bone. It is 

found extensively in mammals, and many studies focus on its presence in this group (e.g. 

Yamanaka, Yasui, Sonomura, Uemura, 2007; Štembírek et al., 2010) whereas very few studies 

investigate heterodonty in other lineages (e.g. reptiles; Dessem, 1985). The presence of 

heterodont dentition allows animals to utilize food sources they may not normally be able to 

(Kay, 1975). Very few studies have investigated heterodonty in fishes (e.g. Bemis & Bemis, 

2015; Conway, Bertrand, Browning, Lancon, & Clubb, 2015), and those that do have focused on 

heterodonty in the pharyngeal teeth (e.g. Webb, Wallwork, & Elgood, 1981). There are currently 

no comprehensive anatomical studies on the presence and evolution of heterodonty across the 

lanternfish lineage. 

 This study investigates the evolution of heterodonty and anatomical variation in dentition 

across lanternfishes (e.g., hooked, villiform, caniniform), and reconstructs the repeated evolution 

of heterodonty within a phylogenetic framework. Previous studies assessing variation in 

dentition of lanternfishes (e.g. Paxton, 1972) did not investigate these traits within a phylogenetic 

framework. In this study we address the following questions related to the evolution of dentition 
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in lanternfishes: (1) What variation in dentition exists among the lanternfishes? (2) How many 

times has heterodonty on the oral jaws repeatedly evolved in lanternfishes? 

Materials and Methods 

Survey of Oral Dentition 

 We examined 229 lanternfish specimens covering 32 of 36 genera, and 85 species within 

Myctophiformes (see Material Examined). We assessed variation in tooth anatomy, presence on 

oral tooth-bearing bones (i.e. premaxilla, dentary, palatine, and mesopterygoid), and presence or 

absence of heterodonty. Specimen types include alcohol preserved, and clear and stained. 

Specimens used in this study are on loan from the Museum of Comparative Zoology, Scripps 

Institution of Oceanography, University of Kansas, Field Museum of Natural History, and the 

American Museum of Natural History. Museum abbreviations follow Sabaj (2016). Clear and 

staining followed Alcian blue (cartilage) and Alizarin red (bone) standard operating procedure 

(Taylor & Van Dyke, 1985). 

Character Evolution of Heterodonty 

 Likelihood ancestral-character state reconstructions were performed in Mesquite 3.04 

(Maddison & Maddison, 2015). We used a maximum likelihood phylogeny of lanternfishes 

based on UCE sequences to reconstruct the character evolution of heterodonty in lanternfishes. 

Character states include presence and absence for heterodonty on any oral tooth-bearing bones. 

For genera not included in the anatomical analysis (Loweina), a character state was assigned 

based on previous publications on the anatomy of the genus (Paxton, 1972). The morphological 

character used to infer the ancestral character states among Myctophiformes is described below.  
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1. Multiple tooth types (Heterodonty) on tooth-bearing bone of the oral jaws  

(010) Absent. 

(011) Present. 

Phylogeny of Diaphus 

To assess the evolutionary patterns of heterodonty in Diaphus, genetic data from 43 

species were downloaded from GenBank to infer a species-level phylogeny using five nuclear 

(bmp4, 579 bp; glyt, 783 bp; h3, 375 bp; tbr1, 723 bp; zic1, 810 bp) and two mitochondrial (12S, 

178 bp; COI, 690 bp) genes (Table 3.1). Each gene was aligned separately in MAFFT (Katoh & 

Standley, 2013) and concatenated in Mesquite v3.04 (Maddison & Maddison, 2015). The dataset 

was separated into 21 partitions, representing the three codon positions in each gene. All 

partitions were assigned a GTR + G substitution model in GARLI v2.01 (Zwickl, 2006) to 

conduct a maximum-likelihood analysis. The tree with the best likelihood score from 25 

independent analyses was selected as the preferred hypothesis. The resulting phylogenetic tree 

was visualized with FigTree (Rambaut, 2007).

Results 

Survey of Oral Dentition  

Villiform teeth were present on all assessed specimens within the family Neoscopelidae 

(blackchins) and Myctophidae (lanternfishes; Table 3.2, Figure 3.1). Heterodonty was present in 

13 genera, only in Myctophidae, and only located on the premaxilla and/or dentary. Villiform 

teeth were present on all oral tooth-bearing bones (i.e. dentary, premaxilla, palatine, 

mesopterygoid) and on all specimens, with the exception of the teeth located on the palatine of 
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Taxon COI 12S zic1 tbr1 glyt H3 bmp4

Outgroup

  Lobianchia gemellarii KJ190063.1 KJ190148.1 KJ556068.1 KJ555596.1 KJ555780.1 KJ555292.1
  Lobianchia dolfeini KP337918.1 KJ556256.1 KJ556067.1 KJ555595.1 KJ555779.1 KJ555291.1
  Lampanyctus jordani KJ555413.1 LC026533.1 KJ556245.1 KJ556055.1 KF139781.1 KJ555768.1 KJ555282.1

Ingroup

D. adenomas KJ555343.1 KJ556155.1 KJ555963.1 KJ555499.1 KJ555686.1 KJ555227.1
D. aliciae KJ555344.1 LC146161.1 KJ556156.1 KJ555964.1 KJ555500.1 KJ555687.1 KJ555228.1
D. anderseni KJ555346.1 LC146170.1 KJ556158.1 KJ555966.1 KJ555502.1 KJ555689.1
D. antonbruuni KJ555347.1 KJ556159.1 KJ555967.1 KJ555503.1 KJ555690.1 KJ555229.1
D. bertelseni EU148145.1
D. brachycephalus KJ555348.1 LC146156.1 KJ556160.1 KJ555968.1 KJ555691.1 KJ555230.1
D. chrysorhynchus AP012230 LC146157.1 KJ556165.1 KJ555973.1 KJ555506.1 KJ555694.1 KJ555233.1
D. danae KC136590.1 LC146369.1
D. dumerilii KF768169.1 LC146176.1 KF768161.1
D. effulgens KJ555350.1 LC146168.1 KJ190142.1 KJ555974.1 KJ555507.1 KJ555695.1 KJ555234.1
D. fragilis KJ555352.1 LC146358.1 KJ556168.1 KJ555976.1 KJ555509.1 KJ555697.1
D. fulgens KJ555353.1 KJ556169.1 KJ555977.1 KJ555510.1 KJ555698.1 KJ555235.1
D. garmani KJ555354.1 LC146160.1 KJ556170.1 KJ555978.1 KJ555511.1 KJ555699.1
D. gigas AP012235
D. holti KJ709514.1 LC146356.1
D. jenseni LC146172.1
D. knappi LC146181.1
D. kuroshio LC146162.1
D. lobatus KJ555355.1 KJ556171.1 KJ555979.1 KJ555512.1 KJ555700.1 KJ555236.1
D. lucidus AP012231 LC146153.1
D. malayanus KJ555356.1 KJ556172.1 KJ555980.1 KJ555513.1 KJ555701.1 KJ555237.1
D. meadi KJ555357.1 LC145981.1 KJ556173.1 KJ555981.1 KJ555514.1 KJ555702.1
D. metopoclampus KJ555358.1 KJ556174.1 KJ555982.1 KJ555515.1 KJ555703.1 KJ555238.1
D. mollis KJ555360.1 LC146371.1 KJ556176.1 KJ555984.1 KJ555517.1 KJ555704.1 KJ555240.1
D. nielseni KJ556177.1 KJ555985.1 KJ555518.1 KJ555705.1 KJ555241.1
D. ostenfeldi LC146166.1
D. parri KJ555363.1 LC146360.1 KJ556180.1 KJ555988.1 KJ555521.1 KJ555708.1 KJ555244.1
D. perspicillatus KJ555365.1 LC146158.1 KJ556183.1 KJ555991.1 KJ555524.1 KJ555711.1
D. phillipsi KJ556184.1 KJ555992.1 KJ555525.1 KJ555712.1 KJ555245.1
D. rafinesquii EU148154.1 LC146159.1 KF140525.1 KF139730.1
D. regani LC146365.1 KJ556185.1 KJ555993.1 KJ555526.1 KJ555713.1
D. richardsoni KJ555366.1 KJ556186.1 KJ555994.1 KJ555246.1
D. schmidti KJ555367.1 LC146171.1 KJ556187.1 KJ555995.1 KJ555527.1 KJ555714.1 KJ555247.1
D. signatus KJ555368.1 KJ556188.1 KJ555996.1 KJ555528.1 KJ555715.1 KJ555248.1
D. splendidus KJ555373.1 LC146154.1 KJ556194.1 KJ556002.1 KJ555534.1 KJ555720.1 KJ555254.1
D. suborbitalis AB974487.1 KJ556196.1 KJ556004.1 KJ555536.1 KJ555721.1
D. subtilis GU071745 LC146167.1
D. termophilus LC146370.1 KJ556197.1 KJ556005.1 KJ555537.1 KJ555723.1 KJ555255.1
D. theta KJ555374.1 LC145995.1 KJ556198.1 KJ556006.1 KJ555538.1 KJ555724.1 KJ555256.1
D. thiollierei KJ555376.1 KJ556201.1 KJ556009.1 KJ555541.1 KJ555726.1
D. umbroculus KJ556202.1 KJ556010.1 KJ555542.1 KJ555727.1 KJ555258.1
D. watasei KR231855.1 LC026566.1 KJ556204.1 KJ556012.1 KJ555544.1 KJ555729.1 KJ555260.1
D. whitleyi KJ555379.1 KJ556205.1 KJ556013.1 KJ555545.1 KJ555730.1 KJ555261.1

Table 3.1. Genbank accession numbers and associated gene sequences used in the phylogenetic 
reconstruction of Diaphus.
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Table 3.2. Tooth types present on oral tooth bearing bones in assessed genera. Colored cells 
correspond to myctophid tribes. Neoscopelus and Scopelengys reside within Neoscopelidae; teal, 
Gymnoscopelini; purple, Notolychnini; green, Lampanyctini; light green, Diaphini; salmon, 
Myctophini. Letter symbols represent tooth types, V: Villiform, H: Hooked, C: Caniniform, A: 
Arrowhead.

Subfamilies Genera Dentary Premaxilla Palatine Mesopterygoid
Neoscopelus V V V V

Scopelengys V V V V

Gymnoscopelinae Gymnoscopelus V V V V
Lampanyctodes V V V V
Lampichthys V V V V
Notoscopelus V V V V
Scopelopsis V V V V

Lampanyctinae Notolychnus V V V V
Bolinichthys V + H V V V
Ceratoscopelus V + H V V V
Lampadena V + H V V V
Lampanyctus V + H V V V
Lepidophanes V + H V V V
Parvilux V + H V V V
Stenobrachius V + H V V V
Taaningichthys V + H V V V
Triphoturus V + H V V V

Diaphinae Lobianchia V V V V
Diaphus V + H V V V

Myctophinae Benthosema V V V V
Centrobranchus V V + H V V

Diogenichthys V V + H + A V V

Electrona V V C V

Gonichthys V V V V

Hygophum V V V V

Krefftichthys V V V V

Myctophum V V V V

Protomyctophum V V V V

Symbolophorus V V V or C V

Tarletonbeania V V V V
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Electrona and two species of Symbolophorus. These specimens lacked villiform teeth on the 

palatine, and instead had a single row of enlarged caniniform teeth (Table 3.2). Neoscopelidae 

(Neoscopelus and Scopelengys) displayed rows of both small and large villiform teeth that are 

slightly more pointed than species within Myctophidae (Figure 3.1A, B).  

 Within Myctophidae, the subfamily Gymnoscopelinae includes species (Table 3.2) with 

rows of the moderately sized, conical villiform teeth (Figure 3.1B). Numerous rows of villiform 

teeth were observed on the dentary and the premaxilla, with fewer rows on the palatine, and 

scattered depressed villiform bumps observed across the mesopterygoid (Table 3.2).  

 All Lampanyctinae species examined had rows of either small to moderately sized 

conical villiform teeth (Table 3.2). These teeth were either densely packed in numerous rows, or 

more widespread in a smaller number of rows on the dentary, premaxilla, and palatine. On the 

mesopterygoid they are more scattered, but with similarly densely packed or widespread pockets 

of villiform teeth. Lampanyctinae contains two lanternfish tribes, the monotypic Notolychnini 

(Notolychnus) and the speciose Lampanyctini (Table 3.2). All specimens examined within 

Lampanyctini exhibited morphologically similar heterodont dentition. Other than the regular 

villiform teeth, the additional heterodont teeth were located on the posterior portion of the 

dentary in a single row (3-11 teeth). They were anteriorly facing ‘C’ shaped hooked teeth that 

were generally larger than regular villiform teeth (Figure 3.1C). They were always found on the 

most posterior position of the dentary, either nested among regular villiform teeth, or as a stand-

alone row (Figure 3.1C). Specimens representing all genera within Lampanyctini (9 total, 

Nannobrachum designated as synonym of Lampanyctus) were assessed (Table 3.2), and all 

exhibited this type of heterodont dentition.  
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 Diaphinae includes two genera, Lobianchia and Diaphus. Lobianchia exhibited villiform 

teeth on the dentary, premaxilla, palatine, and mestopterygoid. Diaphus had higher variation in 

their tooth morphology (Table 3.2). Some species of Diaphus possessed homodont dentition, 

exhibiting only villiform teeth on all of their oral tooth bearing bones (e.g. D. garmani, D. 

luetkeni, D. roei, D. splendidus; Figure 3.2A). Others possessed heterodont dentition on either 

the premaxilla or the dentary. Heterodont teeth in Diaphus were either recurved, with a slight 

anteriorly directed angular bend approximately halfway up the crown of the tooth (e.g. D. 

fragilis, D. sagamiensis, D. thiollierei; Figure 3.2B), or had a hook shape, with a combination of 

the base and crown forming an ’S’ like hook (e.g. D. mollis, D. rafinesquii, D. vanhoeffeni; 

Figures 3.1D, 3.2C). Within Diaphus, these types of heterodont teeth were either on the dentary 

or the premaxilla. These teeth usually formed one row either along the entire length of the bone, 

present on the most posterior portion of the bone, or in a row that stopped partway along it. A 

few species within Diaphus exhibited both recurved and hooked teeth (e.g. D. holti, D. 

anderseni, D. brachycephalus). 

 Most Myctophinae species had rows of either small or moderately sized, conical villiform 

teeth (Table 3.2). These teeth were either densely packed in numerous rows, or more widespread 

in a smaller number of rows on dentary, premaxilla, and palatine. They were scattered across the 

mesopterygoid, either similarly densely packed or widespread. Two genera within Myctophinae 

(Electrona and Symbolophorous) contained species that did not exhibit villiform teeth on the 

palatine (e.g. E. antarctica, E. risso, S. boops, S. veranyi), and instead had a single row of large, 

elongated caniniform teeth (Table 3.2). Two additional genera within Myctophinae exhibited 

heterodont dentition (Diogenichthys and Centrobranchus; Table 3.2). Diogenichthys exhibited 
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Figure 3.2. Examples of homodont (A, D. problematics MCZ 119046), recurved heterodont (B, 
D. holti MCZ 120623), and hooked heterodont (C, D. rafinesquii MCZ 166656) dentition in 
species of Diaphus.
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anteriorly facing ‘C’ shaped hooked teeth, that were generally more robust and rounded than 

those of the Lamapnyctini (Figure 3.1E). They were found in a single row on the most posterior 

position of the dentary. This group also possessed arrowhead shaped teeth on both the dentary 

and the premaxilla (Figure 3.1E). In addition to having regular villiform teeth, Centrobranchus 

possessed heterodont dentition in the form of 4-5 posteriorly facing rounded ‘C’ shaped hooked 

teeth located on the most anterior portion of the premaxilla (Figure 3.1F). 

Ancestral Character Reconstruction of Heterodonty 

The common ancestor of the Myctophiformes most likely did not have heterodont 

dentition (Figure 3.3) as inferred under a likelihood character reconstruction. The common 

ancestor of the Myctophidae most likely had homodont dentition (Figure 3.3). The common 

ancestor of Gymnoscopelinae likely had homodont dentition (Figure 3.3). The common ancestor 

of Lampanyctinae likely had homodont dentition (83%), but the common ancestor of 

Lampanyctini likely had heterodont dentition (96%), with a single row of anterior facing hooked 

teeth on the posterior end of the dentary. The common ancestor of Diaphinae likely had 

homodont dentition (Figure 3.3).  The common ancestor of Myctophinae likely had homodont 

dentition, and the Dasyscopelus + Centrobranchus clade likely had homodont dentition (Figure 

3.3). Results of the species-level hypothesis of relationships for Diaphus (Figure 3.4) indicate 

that heterodonty is widespread throughout the clade. An explicit analysis for character evolution 

was not run due to missing taxa, and species that exhibit heterodonty are highlighted on Figure 

3.4.
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Figure 3.3. Maximum likelihood ancestral character-state reconstruction of heterodonty shown at 
nodes on a maximum likelihood phylogeny of lanternfish relationships based upon UCE 
sequences. 
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Figure 3.4. The presence of homodont dentition, recurved heterodont, or hooked heterodont 
dentition are indicated on a summary phylogeny of species within Diaphus created from a 
maximum-likelihood analysis of molecular data.
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Discussion 

Evolution of Heterodonty 

 In this study we examine the evolution of heterodonty on the oral tooth-bearing bones in 

lanternfishes. Heterodont dentition has evolved at least four different times within lanternfishes, 

and are expressed by four different anatomical variations around a global ‘hook’ shape (Figure 

3.1). Our survey shows that species within Neoscopelidae are homodonts, with the dentary, 

premaxilla, palatine, and mesopterygoid possessing villiform teeth (Figure 3.1A). The maximum 

likelihood ancestral character-state reconstruction suggests homodont dentition is likely the 

ancestral state of Myctophiformes (Figure 3.3). Examination of the more speciose Myctophidae 

(lanternfishes) indicates that heterodonty likely evolved at least four separate times within this 

lineage (Figure 3.3): once in the last common ancestor of the tribe Lampanyctini, one or more 

times in Diaphus, once in Diogenichthys, and once in Centrobranchus (Figure 3.3). Paxton 

(1972) additionally noted ‘hooked’ dentition on the anterior portion of the premaxilla in 

specimens of Taaningichthys, Lampadena, and Lepidophanes. Our analysis of these genera did 

not corroborate these findings under our use of the term ‘hooked,’ describing the characteristic 

‘C’ or ’S’ shape. Instead we observed elongation and a slight increase in robustness of these 

teeth, a characteristic trending towards recurved. In this study, heterodonty was found to occur in 

13 of the 32 assessed genera and at least 61 species. There are likely greater than 100 species that 

exhibit heterodonty due to the character being a synapomorphy in Lampanyctini (Figure 3.3).  

Heterodonty in Lampanyctini 

 All Lampanyctini specimens examined exhibited the posteriorly positioned, anteriorly 

facing heterodont teeth (Figure 3.1C). These findings, combined with our ancestral character-
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state reconstruction (Figure 3.3) corroborate the presence of this feature as a synapomorphy of 

this tribe, evolving in their last common ancestor. Paxton (1972) also noted all species he 

examined within Lampanyctini exhibited this similar type of dentition, and had used the 

character ‘posterior portion of dentary with row of moderately or strongly hooked teeth’ in his 

key to identify taxa within the family Myctophidae (Figure 3.1C). Ahlstrom, Moser, and O’Toole 

(1976) analyzed specimens of Lampanyctus hectoris and found six to eight anteriorly facing 

hooked teeth on the posterior two-thirds of each dentary bone early in the larval stage in this 

species. Additionally, Paxton (1972) noted that the regular villiform teeth seemed to increase in 

size with an increase in size of the individual, but the posterior hooked teeth did not. This feature 

of the posteriorly positioned heterodont teeth (Figure 3.1C) may aid with specialized feeding in 

smaller individuals when the size difference between tooth types is more pronounced. Large 

hooked teeth, not seen in other lanternfish lineages, may make it harder for prey items to escape 

the oral cavity in larval and juvenile individuals before villiform teeth are fully grown. Some 

studies note that as body and mouth length increase with age in lanternfishes, there is often times 

a shift in the size and type of prey consumed. Takagi et al. (2009) notes an increase in the length 

of prey size consumed between juvenile and adult individuals of Symbolophorus californiensis, 

Ceratoscopelus warmingii, and Myctophum asperum. Bernal et al. (2013) found that as mouth 

width increased in Lamapnyctus pusillus, there was a similar increase in prey size. Some 

myctophid species become more opportunistic, and feed on both large and small prey items. In 

many carnivorous fishes (e.g. dragonfishes, anglerfishes), teeth are long, pointed, and curved 

slightly posteriorly towards the mouth interior, which functions primarily for holding and 

swallowing prey (Moore, 2002; Kenaley, 2009). The association of prey selectivity, mouth size, 
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and the presence of these large dentary teeth in early developmental stages of species within 

Lampanyctini, may support the increase in feeding potential that these hooked teeth may offer, 

especially to smaller individuals. 

Heterodonty in Diogenichthys 

 The genus Diogenichthys contains three species (Eschmeyer et al., 2017), all of which we 

examined in this study (D. atlanticus, D. laternatus, and D.  panurgus). All three exhibited 

similar heterodont dentition on the dentary, showing robust anteriorly facing hooked teeth 

(Figure 3.1E). Paxton (1972) noted the hooked teeth of Diogenichthys in his key to this lineage, 

stating: ‘posterior portion of dentary with row of strongly hooked teeth.’ Taxa within 

Diogenichthys are among the smallest of lanternfish species, ranging from 20-30 mm, and they 

have been found to eat copepods, tunicates, and fish eggs (Oliva, Ulloa, & Bleck, 2006). Species 

of Diogenichthys are closely related to species in Benthosema (Poulsen et al., 2013; Denton, 

2014), a genus containing individuals that do not exhibit heterodont dentition. A study assessing 

the diet of Benthosema suborbitale found large amounts of copepods in their diet (Pakhomov et 

al., 1996), which is the general prey item found in most lanternfish diet studies. The anteriorly 

facing hooked teeth present on species of Diogenichthys may have allowed them to specialize on 

food items like fish eggs, where the anatomy of the hook makes it harder for food items to 

escape the oral cavity in comparison to straighter teeth. Interestingly, Diogenichthys also exhibit 

arrow-shaped teeth (Figure 3.1E) on the premaxilla, but the functional role of these teeth is 

unknown and requires further study. 
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Heterodonty in Centrobranchus 

 In Centrobranchus, the presence of posterior facing hooked teeth on the most anterior 

portion on the premaxilla (Figure 3.1F) may function in a similar way to other types of hooked 

teeth, by holding prey in the oral cavity. In one study, Centrobranchus andreae fed 

predominately on cavolinid pteropods (Van Noord, 2013), marine molluscs that have a tough 

outer shell. In addition to the villiform and hooked teeth on their oral jaw bones, Centrobranchus 

is known to have surprisingly different gill rakers than other lanternfishes. Instead of long thin 

rakers, the ventral area of the pharyngobranchial is covered by a plate that possesses many 

moderate to strong teeth (Paxton, 1972; Wisner, 1976). The adaptation of specialized anterior 

hooked dentition allow for species in this genus to specialize on prey items not normally sought 

after by other lanternfishes, and to take advantage of niches other lanternfishes do not utilize. 

These specialized hooked teeth may enable Centrobranchus to hold pteropods in the oral cavity, 

while their modified branchial teeth crush their hard shells. 

Heterodonty in Diaphus 

 In this study we surveyed 29 of 77 species of Diaphus. Heterodonty was present 

throughout this group and is represented by two morphological types, recurved and ’S’ shaped 

hooked teeth (Figures 3.1, 3.2). The evolution of heterodonty within Diaphus (Figure 3.4) 

indicates that this trait may have evolved multiple times throughout the history of this lineage, 

and not as a single event in a recent common ancestor. Bolin (1959) characterized Diaphus as 

possessing moderately hooked teeth in the posterior portion of the premaxilla. Similar to our 

study, Nafpaktitis (1966) found intermediate forms between hooked and conical teeth of 

Diaphus, and noted that these tooth morphologies aren't a definitive character for describing the 
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group (Figure 3.2). Paxton (1972) also mentions the presence of hooked teeth on some species of 

Diaphus, but that this morphology type has no clear pattern of evolution in this lineage. We had 

similar difficulties in describing the evolution of heterodonty in this group. Our phylogeny of 

taxa within Diaphus (Figure 3.4) does not show support for a single evolution of heterodonty in 

this lineage, and instead supports the potential for multiple evolutions or losses of heterodont 

dentition. Species of Diaphus eat a wide range of food items (e.g. molluscs, chaetognaths, 

polychaetes, other myctophids), many of which are uncommon prey items for other 

lanternfishes, who feed mainly on copepods, amphipods, ostracods, and euphausiids (Collard, 

1970; Baird, Hopkins, & Wilson, 1975; Pakhomov et al., 1996; Tanaka et al., 2013). The ’S’ 

shaped hooked dentition found on either the premaxilla or dentary in many species of Diaphus 

may have evolved multiple times in this group to aid in specialized feeding.  

 The genus Diaphus contains ~30% of all lanternfish species, and has been diversifying 

faster than other lanternfish lineages (Davis et al., 2014). Species in Diaphus are known for their 

diverse and sometimes sexually dimorphic headlight organs (Haddock et al., 2010 ), and were 

found to have high variation in their upper-jaw length (Martin & Davis, 2016). Multiple 

evolutions of heterodonty, combined with variation in jaw length and diverse bioluminescent 

head light organs, may have had an impact on diversification in this group. Additional molecular 

and morphological work is needed to expand on the phylogeny of Diaphus to further elucidate 

the pattern of evolution of heterodonty and diversification in this group. Streelman and Danley 

(2003) propose three stages of vertebrate evolutionary radiations. Stage one is divergence into a 

novel habitat, which for lanternfishes is the movement into bathy- and mesopelagic areas. The 

second and third stages are divergence in trophic morphology, focusing predominantly on 
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feeding structures, and in communication, which includes characteristics of coloration, behavior, 

and sexual dimorphism. In this study we show that lanternfishes exhibit multiple evolutions of 

specialized heterodont dentition, and they are known to exhibit evolutionary patterns of variation 

in mouth size (Martin & Davis, 2016). Alternative studies have found species specific, and 

sexually dimorphic bioluminescent structures (Herring, 2007; Davis et al., 2014) on 

lanternfishes, which are hypothesized to be used in communication. This evidence is similar to 

other groups (sticklebacks, Taylor & McPhail, 1999; finches, Grant & Grant, 1997; cichlids, 

Deutsch, 1997) that similarly follow the hypothesized stages of radiation and diversification 

proposed by Streelman and Danley (2003). 

Conclusions 

 Our study finds at least four separate evolutions of heterodonty in lanternfishes (Figure 

3.3): once in the last common ancestor of Lampanyctini, Centrobranchus, Diogenichthys, and at 

least once in Diaphus,. Heterodont teeth are expressed by a global ‘hook’ shape in addition to the 

regular villiform teeth found on all lanternfishes. These hooks are only found on the premaxilla 

or the dentary. Heterodonty likely evolved multiple times within Diaphus (Figure 3.4), which 

indicates that species in this lineage may have an evolutionary history that is interspersed with 

specializations in feeding.  

Material Examined 

Benthosema glaciale: MCZ 53426, 3, 37–60 mm SL. 

Benthosema pterotum: MCZ 151484, 3, 34-41 mm SL. 
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Bolinichthys indicus: MCZ 124320, 3, 41-46 mm SL. 

Bolinichthys photothorax: MCZ 123846, 3, 26-51 mm SL. 

Centrobranchus nigroocellatus: MCZ 98563, 1; MCZ 98844, 3, 25-37 mm SL. 

Ceratoscopelus maderensis: MCZ 100705, 3, 58-66 mm SL. 

Certaoscopelus warmingii: MCZ 92411, 3, 40-52 mm SL. 

Diaphus anderseni: MCZ 103200, 3, 22-27 mm SL. 

Diaphus arabicus: MCZ 151691, 3, 28-35 mm SL. 

Diaphus brachycephalus: MCZ 121662, 3, 32-33 mm SL. 

Diaphus dumerilii: MCZ 120885, 3, 43-52 mm SL. 

Diaphus effulgens: MCZ 110019, 3, 37-56 mm SL. 

Diaphus fragilis: MCZ 120741, 3, 44-70 mm SL. 

Diaphus garmani: FMNH 64636, 3, 50-65 mm SL. 

Diaphus holti: MCZ 120623, 3, 22-47 mm SL. 

Diaphus hudsoni: MCZ 97005, 3, 34-54 mm SL. 

Diaphus lucidus: MCZ 120329, 3, 33-58 mm SL. 

Diaphus luetkeni: FMNH 71834, 3, 28-45 mm SL. 

Diaphus metapoclampus: MCZ 157871, 3, 26-32 mm SL. 

Diaphus minax: FMNH 64627, 2, 47-52 mm SL. 

Diaphus mollis: MCZ 90306, 3, 39-48 mm SL. 

Diaphus nielseni: FMNH 121332, 1, 87 mm SL. 

Diaphus ostenfeldi: MCZ 119163, 2, 47-48 mm SL. 

Diaphus parri: MCZ 151451, 2, 32-52 mm SL. 
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Diaphus perspicillatus: MCZ 126693, 3, 34-52 mm SL. 

Diaphus problematicus: MCZ 119046, 3, 54-66 mm SL. 

Diaphus rafinesquii: MCZ 118953, 3, 62-75 mm SL; MCZ 166656, 1. 

Diaphus regani: MCZ 90115, 1, 59 mm SL. 

Diaphus roei: FMNH 113577, 1, 77 mm SL. 

Diaphus rolfbolini: FMNH 78461, 2, 43-57 mm SL. 

Diaphus sagamiensis: FMNH 120847, 1, 87 mm SL. 

Diaphus splendidus: FMNH 120701, 3, 85-137 mm SL. 

Diaphus taaningi: MCZ 159064, 3, 62-70 mm SL. 

Diaphus termophilus: MCZ 118159, 3, 34-52 mm SL. 

Diaphus thiollierei: MCZ 151467, 3, 46-64 mm SL. 

Diaphus vanhoeffeni: MCZ 118089, 3, 27-31 mm SL. 

Diogenichthys atlanticus: MCZ 55530, 3, 20-22 mm SL. 

Diogenichthys laternatus: FMNH 71937, 3, 13-24 mm SL. 

Diogenichthys panurgus: FMNH 71942, 1, 17 mm SL. 

Electrona antarctica: MCZ 149056, 3, 18-23 mm SL. 

Electrona risso: MCZ 62188, 3, 18-23 mm SL. 

Gonichthys cocco: MCZ 98562, 1. 

Gonichthys tenuiculus: MCZ 103199, 3, 45-49 mm SL. 

Gymnoscopelus braueri: MCZ 148797, 3, 70-96 mm SL. 

Hygophum benoiti: MCZ 116153, 3, 40-44 mm SL. 

Hygophum hygomii: MCZ 92776, 3, 47-55 mm SL. 
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Hygophum macrochir: MCZ 115225, 3, 39-51 mm SL. 

Hygophum proximum: MCZ 148705, 3, 36-43 mm SL. 

Krefftichthys anderssoni: MCZ 148635, 1, 41 mm SL. 

Lampadena chavesi: MCZ 98534, 1, 73 mm SL. 

Lampadena luminosa: MCZ 102987, 3, 60-66 mm SL. 

Lampadena speculigera: MCZ 55526, 2, 85-87 mm SL. 

Lampanyctodes hectoris: MCZ 91359, 3, 44-74 mm SL. 

Lampanyctus australis: MCZ 55034, 2, 80-98 mm SL. 

Lampanyctus crocodilus: MCZ 55470, 3, 60-106 mm SL. 

Lampanyctus cuprarius: FMNH 49323, 1. 

Lampanyctus macdonaldi: MCZ 164406, 3, 79-156 mm SL. 

Lampanyctus vadulus: MCZ 110183, 3, 56-83 mm SL. 

Lampichthys rectangularis: MCZ 51782, 3, 69-88 mm SL. 

Lepidohpanes guentheri: MCZ 108541, 3, 40-65 mm SL. 

Lobianchia gemellarii: MCZ 107215, 3, 64-70 mm SL. 

Myctophum fissunovi: MCZ 81734, 3, 37-57 mm SL. 

Myctophum phengodes: MCZ 105757, 3, 78-89 mm SL. 

Myctophum punctatum: MCZ 105563, 3, 65-85 mm SL. 

Myctophum spinosum: MCZ 151450, 3, 41-71 mm SL. 

Nannobrachium atrum: MCZ 113519, 3, 57-92 mm SL. 

Nannobrachium cuprarium: MCZ 112776, 3, 55-67 mm SL. 

Nannobrachium indicum: MCZ 151729, 3, 32-85 mm SL. 
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Neoscopelus macrolepidotus: MCZ 28159, 2, 90-121 mm SL. 

Notolychnus valdiviae: FMNH 49465, 1, 23 mm SL. 

Notoscopelus caudispinosus: MCZ 157882, 3, 59-67 mm SL. 

Notoscopelus elongatus kroyeri: MCZ 104150, 3, 62-72 mm SL. 

Notoscopelus resplendens: MCZ 166099, 3, 32-66 mm SL. 

Parvilux boschmai: USNM 298170-5, 1. 

Protomyctophum arcticum: MCZ 102601, 3, 31-42 mm SL. 

Scopelengys tristis: FMNH 71919, 1; MCZ 140533, 3, 66-109 mm SL. 

Scopelopsis multipunctatus: MCZ 102571, 3, 41-52 mm SL. 

Stenobrachius leucopsarus: MCZ 88957, 3, 42-71 mm SL. 

Symbolophorus boops: MCZ 103574, 3, 66-92 mm SL. 

Symbolohporus evermanni: MCZ 148717, 3, 64-76 mm SL. 

Symbolophorus rufinus: MCZ 103536, 2, 69-90 mm SL. 

Symbolophorus veranyi: MCZ 111606, 3, 64-74 mm SL. 

Taaningichthys bathyphilus: MCZ 102500, 2, 37-63 mm SL. 

Tarletonbeania crenularis: MCZ 45847, 3, 44-64 mm SL. 

Triphoturus mexicanus: MCZ 125392, 3, 49-51 mm SL. 
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