
St. Cloud State University
theRepository at St. Cloud State
Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and Information
Technology

11-2016

Performance Comparison of a Hadoop DFS to a
Centralized File System of a Single Machine
Zhao Xie
mndarren@gmail.com

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at
St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized
administrator of theRepository at St. Cloud State. For more information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Xie, Zhao, "Performance Comparison of a Hadoop DFS to a Centralized File System of a Single Machine" (2016). Culminating Projects
in Computer Science and Information Technology. 14.
https://repository.stcloudstate.edu/csit_etds/14

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/14?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Performance Comparison of a Hadoop DFS to a Centralized File System of a

Single Machine

by

Zhao Xie

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science in

Computer Science

December, 2016

Starred Paper Committee:

Donald Hamnes, Chairperson

Jie Meichsner

Dennis Guster

2

Abstract

 With the coming of a big data era, Hadoop, developed by Doug Cutting and Mike

Cafarella, was presented in 2005 [1], which turned over a new page in the history of cloud

computing. The Hadoop Distributed File System (HDFS) is one of the most fundamental

layers in Hadoop. In the big data world, the performance of dealing with big data from HDFS

cannot satisfy the need because the amount of big data is getting larger and larger, and

simultaneously, the increasing rate of growth of big data is faster and faster. Nowadays

various new distributed file systems (DFS) are published attempting to solve this issue. The

core problem hindering the performance from becoming more effective is the metadata

service layer in HDFS, and most of the new DFSs are focusing on improving the metadata

service as well.

Most of the above-mentioned cases are centering on the issue of solving the big data

problem. However, for a small or medium-sized company, the data they may use is not so big.

In this case, do they need to build a distributed system to deal with their data? Of course, the

data in these companies will be getting larger and larger. When will be the best time for them

to need a distributed system to manage their data? This paper attempts to address this

problem by comparing the different performances between a distributed system computation

and a serial computation.

3

Acknowledgement

I would like to thank my advisor Dr. Hamnes for offering a lot of valuable suggestions

to my work. Without his guidance and assistance, it could not have been possible that my

whole progress has gone so smoothly. Also, I would express my deep appreciation and

indebtedness to the committee members—Dr. Meichsner and Dr. Guster, who contributed

their time and energy in modifying my paper and providing insightful suggestions. My sincere

appreciation also goes to Martin Smith, who provided great support in helping me set up the

hardware and system environment for the laboratory work. Finally, my family, Hailei and

Monica, gave me a huge support for this research.

4

Table of Contents

 Page

List of Tables ... 5

List of Figures ... 6

Section

 1. Introduction .. 7

 2. Background ... 7

 3. Problem Issue ... 8

 4. Methodology ... 9

 4.1 Laboratory Environment ... 10

 4.2 Laboratory Network Deployment .. 11

 4.3 Algorithm Choice and Design of Data File Sizes .. 12

 4.4 Program Execution .. 13

 5. Result Data Analysis .. 23

 6. Conclusion .. 25

 7. Limitation ... 25

References .. 27

Appendices

 A. Hadoop 2.6.0 Installation on Ubuntu 14.04 ... 30

 B. Centralized File System Performance Test .. 49

 C. Hadoop DFS Performance Test .. 51

 D. Source Codes .. 59

5

List of Tables

Table ... Page

 1. Hardware Configuration ... 10

 2. Virtual Machine Configuration .. 11

 3. Software Configuration .. 11

 4. Selected Data File Sizes ... 13

 5. Single Machine Result Data ... 18

 6. Hadoop Cluster Tested Result Data ... 22

 7. Total Execution Time Comparison .. 23

6

List of Figures

Figure ... Page

 1. The Hadoop network deployment .. 12

 2. External sort step 1 and step 2 .. 15

 3. External sort strep 2 and step 4 ... 16

 4. Hadoop sort data flow .. 20

 5. Hadoop cluster and single machine total execution time comparison 24

 6. The ratio of total execution time between Hadoop cluster and single

 machine ... 25

7

1. Introduction

All of the existing distributed systems, such as HDFS from Hadoop [2], GFS from

Google [3], TFS from Alibaba, BWFS from Chinese researcher [4], and Ceph [5], focus on

dealing with big data or biggest data. Other researchers provided many new and efficient

approaches to enhance the distributed systems. All of these approaches, such as CHMasters

(Consistent Hashing Masters) [6] , DROP (Dynamic Ring Online Partitioning) [7], and

CEFLS (Cost-Effective File Lookup Service) [8], are focusing on the improvement of the

metadata service, whose basic purpose is still managing the big data or biggest data as well.

The purpose of this paper is to compare differences in performance between a distributed

system computation and a serial computation in dealing with bigger data. The author

simulates a distributed system by using the Hadoop framework. After building up this Hadoop

cluster, a series of lab experiments are performed.

2. Background

For Big Data, there are three important history time points: First, in October

1997, Michael Cox and David Ellsworth published an article, named “Application-controlled

demand paging for out-of-core visualization”, in the Proceedings of the IEEE 8th conference

on Visualization. It is the first article in the ACM digital library to use the term “big data” [9].

From that point on big data started becoming a problem. Second, in 2008, a number of

prominent American computer scientists popularized the term, predicting that “big-data

computing” will “transform the activities of companies, scientific researchers, medical

practitioners, and our nation’s defense and intelligence operations” [10]. Big data developed a

real big problem. Third, recently (in 2012) the total amount of “big data” reached 7.9 ZB, and

http://www.evl.uic.edu/cavern/rg/20040525_renambot/Viz/parallel_volviz/paging_outofcore_viz97.pdf
http://www.evl.uic.edu/cavern/rg/20040525_renambot/Viz/parallel_volviz/paging_outofcore_viz97.pdf
http://www.cra.org/ccc/docs/init/Big_Data.pdf

8

will touch 35ZB in 2020 [11]. Every day we create 2.5 quintillion bytes of data [12]. Now big

data is an important and popular problem.

For distributed systems, there are two important time points:

First, the article, “The Google File System”, was published in October 2003 [3]. This

is an important milestone in distributed system development, because this is the first time for

the distributed file system, as a best approach to solve big data problem, to have been

successfully applied in a large company.

Second, Hadoop was produced in 2005 by Doug Cutting and Mike Cafarella, the first

open source distributed system framework. Subsequently, Amazon launched its Amazon Web

Services (AWS) in 2006 [13]. IBM Cloud, Microsoft Azure, Yahoo, Alibaba, and other large

companies all built their own distributed system.

All of these distributed system technique improvements focus on dealing with big data

or biggest data. Therefore, the ability and technology to manage big data is getting stronger

and stronger, and the amount of data to be dealt with per second is becoming bigger and

bigger.

3. Problem Issue

The research about the big data problem are all aiming at one end point, how to

enhance or improve the distributed system techniques to deal with larger amounts of data per

second. It was hard for me to find any researchers involving paying attention to another end

point: how much data should an enterprise accumulate before it starts to think about creating a

distributed system to process their data.

9

Most large companies grew from a small one, but does the company need to build its

own distributed system when it’s setting up? The answer is definitely “no” in that usually

when a company starts to run, there are insufficient resources, such as money, human

resources, etc. to support this, and also because there is not any big data that needs to be dealt

with. So when should the company consider building its distributed system to handle its data?

In other words, the data is increasing as the company is expanding. How much data should the

company accumulate before it starts to think about creating a distributed system or borrow

one to handle it? In this paper, I attempt to search for an appropriate answer by performing a

series of lab experiments.

4. Methodology

A number of components will be examined in this study. It begins with efforts in

building up a distributed system by using the Hadoop framework, and then creating a set of

files as data or “big data” to be tested. After that, the Word Count program, a Hadoop

example program, will be executed to examine whether the new Hadoop cluster works well.

Appendix A shows the steps in the installation of Ubuntu and Hadoop to create the test

environment.

The second step is to choose an algorithm for comparison purposes. The algorithm

selected was the sorting of data files of a fixed size. In this step, the specific sizes of data files

were selected. According to the chosen algorithm and the hardware and software

configuration, the third step is to write programs, including a Hadoop sort program, internal

sort program, external sort program, and create a data generation program and a program to

check the result data file (all of the source code files are located in Appendix D).

10

After having finished writing all of the programs, the fourth step is to perform the

program execution and to collect the resulting data. The whole lab experiments are divided

into two main parts: single machine test and Hadoop cluster test. Both of these tests are

performed on the same big size files so that the resulting data will be comparable. Appendix B

shows the results of performing the test on the centralized file system of a single machine.

Appendix C shows “tuning” of parameters—adjustment of Hadoop parameters for better

performance.

Eventually, the collected data will be compared and analyzed, and then conclusions

will be drawn.

4.1 Laboratory Environment

Tables 1-3 show the configuration of the Hardware, VMs and Software used in this

study. All of the Virtual Machines were located on one powerful physical server. Table 1

shows the server hardware configuration.

Table 1

Hardware Configuration

Hardware Name Pattern

CPU Intel Xeon E5-2680 (2.8 GHz, 10 physical cores)

Memory DDR3 (256 GB)

Hard Disk A centralized storage device (SAN server)

Network Bandwidth 2GB

11

Table 2

Virtual Machine Configuration

Hardware Name Information

Virtualization Platform Version: VMware vSphere 5.5

CPU Intel ® Xeon ® CPU E5-2680 V2 @ 2.80GHz, 2 cores

Memory Size: 4 GB

Hard Disk Size: 124 GB

zaho-hadoop1 IP: 10.59.7.42

zaho-hadoop2 IP: 10.59.7.43

zaho-hadoop3 IP: 10.59.7.44

zaho-hadoop4 IP: 10.59.7.45

zaho-hadoop5 IP: 10.59.7.46

zaho-hadoop6 IP: 10.59.7.47

zaho-hadoop7 IP: 10.59.7.48

zaho-hadoop8 IP: 10.59.7.49

Table 3

 Software Configuration

Software Name Version

Operating System Ubuntu 14.04.2, X86_64

Java Development Kit JDK 1.7.0_79

Secure Shell OpenSSH_6.6.1p1

Hadoop Hadoop 2.6.0

4.2 Laboratory Network Deployment

The Hadoop framework is deployed on 8 virtual machines as shown in Table 2 Virtual

Machine configuration. The master node is set up on the VM with IP address 10.59.7.42,

12

while the other 7 VMs with IP addresses 10.59.7.43 ~ 10.59.7.49 are slave nodes. For the

Hadoop framework, namenode service and YARN component are launched on the master

node, and datanode service is set up on each slave node. For single machine tests, either

internal sort or external sort, all will be executed on the VM with IP 10.59.7.43. When all

single machine tests are running, the whole Hadoop service is stopped so that the tests are

able to fully utilize the physical resources. Another reason to choose that VM, and not the

master VM, is that if the datanode service files were damaged because of single machine tests,

the node can be easily fixed by copying those files from other slave nodes. Figure 1

summarizes the Network Deployment.

Figure 1. The Hadoop network deployment.

4.3 Algorithm Choice and Design of Data File Sizes

This project chose quick sort as the test algorithm because Hadoop uses built-in quick

sort in the MapReduce framework so that the sorted result data information will be

comparable. According to the hard disk size (124 GB) and the memory size (4 GB) limitation,

the largest data file size to be tested can be about 40 GB. This is due to temporary file space

needs and OS needs. Therefore, two cases are chosen for internal sort, and another six cases

13

for external sort as shown in the following table. In order to keep the data comparable, the

maximum value of integers in each input data file is 100 million, and the input data file for

each program execution is created as one text file, not multiple files.

Table 4

Selected Data File Sizes

Case No. 1 2 3 4 5 6 7 8

Number of

Integers(million)

130 170 450 900 1700 2800 3500 4600

Data File Size

(GB)

1.16 1.51 4 8 15.11 24.89 31.11 40.89

4.4 Program Execution

There are two parts in this section: Single machine test and Hadoop cluster test. For

each part, I will provide program description, data process approach and final result data.

4.4.1 Single machine test

4.4.1.1 Program descriptions

In single machine test, four programs are needed: one is to create data as input;

another is internal sort program to test the files whose size will be less than free memory size;

the third is external sort program to test the files whose size will be larger than free memory

size; the last is the check output program to check if the output is correct.

In order to test the performance of the file system by using the sort algorithm, what we

need first is the input data file. The program, CreateData.java, is to create data files as input

by which we can generate multiple files by modifying the variable NUMOFFILES

14

(NUMOFFILES was set to 1 for this testing), and we can build files with different sizes by

changing the value of variable NUMSPERFILE. The code of the program, CreateData.java, is

shown in Source Code 1 in Appendix D.

The internal sort program is to test smaller-size files. This program contains two

classes: one is quick sort class; the other is the main sorting class. The code of the program

are shown in Source Code 2 and 3: QuickSort.java and SortingData.java.

The external sort program is to test bigger-size files. It is the main program in the

single machine test because most of our data files are bigger data files. The external sort

program contains one code file (ExternalSort.java) and the code is based on [14].

4.4.1.2 Data process approach

Once the size of unsorted data file exceeds the size of free memory, the internal sort

algorithm will not work anymore, in which case we will have to use an external sort

algorithm. There are four steps [14]:

Step 1, split the large file into small temporary files, and all these temporary files will

be deleted automatically by Java VM before this program stops;

Step 2, sort each of these small temporary files and store them in the disk. This step is

executed together with Step 1; Figure 2 shows the work of these two steps.

15

Figure 2. External sort step 1 and step 2.

Step 3. Delete the original data file, the reason for which is to save enough space to

store the final sorted data file.

Step 4, Merge all sorted small files into one sorted file. This step will be completed via

a priority queue and a certain number of buffers and all buffers are pushed in this

priority queue. Each buffer connects to one temporary sorted file. For every buffer,

once its integers are used up, it will be automatically reloaded from its connected

temporary file. The program will take the first item, which is always the smallest

integer in the queue, out of the first buffer and write it into the final-result data file.

This process proceeds repetitively until all the integers are written into the final-result

data file. For more details involving the work described in Step3 and 4, you could

refer to Figure 3 as below:

16

Figure 3. External sort step 3 and step 4.

The external sort program code (ExternalSort.java) is based on [14].

4.4.1.3 Result data from single machine test

All the tests were launched at least three times. The average result data will be used as

the comparison data. Timers were added to the sort programs to measure the amount of time

spent in reading, writing, and sorting. Also, it will provide the total execution time. However,

this measurement itself also took some CPU time, and based on my calculation, it turned out

that it had increased the overall run time at about 0.59% from a version without these timers.

In the Internal sort algorithm, I employed the quick sort algorithm, O(nlogn). In the

External sort algorithm, I adopted the built-in java function, Collections.sort() in Step 2,

which is an optimized merge sort [15] , so the time complexity O(nlogn) is the same with that

for quick sort.

17

In the Internal sort algorithm, the program reads data as int type from the disk, while

in the External sort algorithm, the program reads data as a string type from the disk. Since

Hadoop MapReduce program reads data as strings from disk, and then parses these data from

characters to integers, the External sort program and the MapReduce program are comparable.

All these programs, including Internal sort program, External sort program, and

MapReduce program are written in Java, which makes the results more comparable.

The following is the collected result data.

18

T
ab

le

5

S
in

g
le

 M
ac

h
in

e
R

es
u
lt

 D
at

a

19

In Table 5, the first column, “Test No.”, indicates there are altogether eight test cases.

The “Algorithm” column shows that the first two test cases use internal sort while the other

cases use the external sort. The “Files” column with value 1 means that there is only one

input-data file for all the tests. The “MaxValue” column refers to the maximum value of the

integers in the input file is 100 million. To make the result comparable, the same maximum

value was used. As for “NumsPerFile”, it refers to the number of integers in the input file.

The file size was controlled by way of modifying the “NumsPerFile” parameter.

Moreover, timers were set up to record the 4 types of time: “ReadTime”,

“WriteTime”, “SortTime” and “TotalTime”. In terms of their relationship, the total time is the

sum of read time, write time, and sort time. Besides, dividing “File Size” by “Read Time” is

equal to “Read Throughput”. The “Write Throughput” is calculated in a similar manner.

Furthermore, each test case was performed at least three times. In “TotalTime” column, the

“Average” = (Low + Medium + High)/3. Δ = . This formula is to calculate the

standard deviation for the Sample case.

4.4.2 Hadoop cluster test

4.4.2.1 Program description

 In the Hadoop cluster test, there are three programs to be used: data-creating program,

result-data-checking program, and the Hadoop sort program. The first two are the same as

those used for the single machine test. By doing so, it makes sure the input data file and

output data file are comparable. For Hadoop sort program, its inner class extends mapper or

reducer of the Hadoop MapReduce framework. (For more information, please refer to Source

Code 6 in Appendix D.)

20

4.4.2.2 Data process approach

The following are the steps in how Hadoop processes the data [16]:

Step 1. Put the data file into the HDFS. The HDFS will then split the data file into

smaller data pieces and store each piece with key/value format in 3 copies in the

HDFS.

Step 2. Map the data. In this phase, the data pieces will be processed for the first time.

Usually the important data will be screened out from the original data pieces.

Step 3. Shuffle the data. The data pieces will be shuffled or sorted based on the key of

each key/value pair.

Step 4. Reduce the data. In this phase, Hadoop will further process the data pieces

according to the command of the MapReduce program.

The whole Hadoop sort data flow process is shown in Figure 4, in which the first row

means the steps or phases, the second row introduces the data type changes in each different

phase, and the last row provides an example and demonstrates its changes in each phase. For

this example, it is assumed that the integers shown in the input box are the smallest five

integers so that the change for each phase, especially for output, could be clearly observed.

21

Figure 4. Hadoop sort data flow.

4.4.2.3 Result data from Hadoop cluster test

Similarly, all the Hadoop cluster test cases were launched at least three times. In the

Hadoop sort algorithm, the program uses default sort algorithm in the shuffle phase, which is

the merge sort [16].

Table 6 below shows the Hadoop cluster result data, in which the column headings are

totally the same with those of the Table 5, the single machine result data.

The following is the collected result data.

22

T
ab

le
 6

H
ad

o
o
p
 C

lu
st

er
 T

es
te

d
 R

es
u
lt

 D
at

a

23

5. Result Data Analysis

The total execution time should be the most important measurement for the two parts

of the whole experiment in that it probably will answer the question of our problem issue

raised at the beginning of this paper. Table 7 indicates the total execution time comparison

between Hadoop cluster and the single machine.

Table 7

Total Execution Time Comparison

FileSize (GB) Hadoop

(minutes)

Single

(minutes)

Hadoop/Single

1.15 10.05 4.21 2.38

1.51 12.69 6.81 1.86

4 35.10 21.75 1.61

8 74.55 43.57 1.71

15 155.14 90.36 1.72

24.89 247.36 161.36 1.53

31.11 309.42 192.71 1.61

40.89 421.44 255.66 1.65

Figure 5 and Figure 6 show the curves using absolute values and relative values,

respectively. To be specific, Figure 5 explicitly indicates that with the enlargement of the size

of the input data file, the total execution time of both Hadoop cluster and single machine is

increasing simultaneously; however, their respective increasing speeds are different.

24

Figure 5. Hadoop cluster and single machine total execution time comparison.

My original conjecture before these lab experiments was that the result ratio curve

should be a curve going from top left to the right down and through the horizontal line with

value 1. Besides, the intersection point between the curve and the horizontal line with value 1

would be what we are looking for. Before that point, the performance of the single machine

would be better than Hadoop cluster and after that point, the performance of the Hadoop

cluster would be better than that of a single machine.

However, the result of the whole experiment from Figure 6 indicates that the real

result curve is different from my original conjecture. It turns out that the curve does not go

through the horizontal line with value 1, but it goes up and down between value 1.5 and value

2.0.

25

Figure 6: The ratio of total execution time between Hadoop cluster and single machine.

6. Conclusion

According to the previous analysis on the result data, we didn’t achieve the expected

data size point. At that point, single machine and Hadoop cluster will get same performance;

before that point, the performance of single machine is better than that of Hadoop cluster;

after that point, the performance of Hadoop cluster is better than that of single machine. With

the data size ranging from 1 GB to 40 GB and on the hardware and software configuration

used, the single machine always performs better than the Hadoop cluster.

7. Limitation

In all the lab experiments, there exist some limitations, which could possibly be the

reasons that explain the disparity between my conjecture and the actual result. Here are the

limitations:

26

(1) The sizes of the data files in the experiments were still too small. The size of the

biggest data file in this research only has 40 GB, while generally only those whose

sizes are at least 1 TB can be called Big Data;

(2) The Hadoop cluster that was used is too small. The Hadoop cluster in this research

includes only 8 virtual machines and each machine in the cluster has very limited

resources;

(3) The data structure was too simple. Our input data files only include integers.

 In the future, it is possible for researchers to address the above-mentioned issues in

their lab experiments. On the condition that these researchers carry out adequate experiments

and have big enough data sizes, the critical point probably will be found. This is because a lot

of existing research results have indicated that when the cluster is big enough, the

performance of a Hadoop cluster is much better than that of a single machine. For example,

AliCloud from Alibaba sorted 100 TB of data within 377 seconds on Oct. 28, 2015, breaking

the previous world record of 1,406 seconds set by Apache Spark [17]. If this job was done by

a single machine, it apparently would expend a lot of time to complete it.

27

References

[1] D. Harris. (2013, Mar. 4). "GIGAOM–The history of Hadoop: From 4 nodes to the

future of data" [Online]. Available: https://gigaom.com/2013/03/04/the-history-of-

hadoop-from-4-nodes-to-the-future-of-data/. [Accessed 17 April 2015].

[2] T. White, "The Hadoop distributed file system," in Hadoop--Definitive Guide, Beijing,

Cambridge, Farnham, Köln, Sebastopol, Tokyo: O’Reilly Media, Inc., 2011, pp. 41-71.

[3] S. Ghemawat, H. Gobioff, and S. T. Leung, "The Google file system," in SOSP

(Symposium on Operating Systems Principles), Bolton Landing, New York, 2003.

[4] D. Yang, H. Huang, J. Zhang, and L. Xu, "BWFS: A distributed file system with large

capacity, high throughput and high scalability," Journal of Computer Research and

Development, vol. 42, no. 6, pp. 1028-1033, 2005.

[5] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn," Ceph: A scalable,

high-performance distributed file system," in USENIX, 2006.

[6] M. Xu, J. Zhou, W. Zhou, and H. An, "CHMasters: A scalable and speed-efficient

metadata service in distributed file system," in Parallel and Distributed Computing,

Applications and Technologies, Gwangju, 2011.

[7] Q. Xu, R. V. Arumugam, K. L. Yong, and S. Mahadevan, "DROP: Facilitating

distributed metadata management in EB-scale storage systems," in Mass Storage

Systems and Technologies, Long Beach, 2013.

[8] X. Li, B. Dong, L. Xiao, L. Ruan, and D. Liu, "CEFLS: A cost-effective file lookup

service in a distributed metadata file system," in Cluster, Cloud and Grid Computing,

Ottawa, ON, 2012.

[9] G. Press. (2013, May 9). "A very short history of big data (Forbes website)" [Online].

Available: http://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-

data/. [Accessed 22 April 2015].

[10] G. Press. (2014, Sep. 3). "12 big data definitions: What's yours? (Forbes website)"

[Online]. Available: http://www.forbes.com/sites/gilpress/2014/09/03/12-big-data-

definitions-whats-yours/. [Accessed 23 April 2015].

28

[11] C. S. Corp. (2012). "Big data universe beginning to explode" [Online]. Available:

http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode.

[Accessed 23 April 2015].

[12] B. Walker. (2015, Apr. 5). "Very day big data statistics" [Online]. Available:

http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-

created-daily/. [Accessed 18 April 2016].

[13] "Amazon Web Services" [Online]. Available: http://aws.amazon.com/about-aws/.

[Accessed 22 April 2015].

[14] A. Sharma. (2011, Aug. 19). "Ashish Sharma's tech blog" [Online]. Available:

http://www.ashishsharma.me/2011/08/external-merge-sort.html. [Accessed 11 Sep.

2015].

[15] Oracle. (2015). "Oracle Java documentation" [Online]. Available: https://docs.

oracle.com/javase/tutorial/collections/algorithms/#sorting. [Accessed 11 Sep. 2015].

[16] T. White, Hadoop The Definitive Guide, Sebastopol, CA: O'Reilly Media, Inc, 2015.

[17] C. Nyberg, "Sort benchmark home page" [Online]. Available: http://sortbenchmark.org/.

[Accessed 26 Aug. 2016].

[18] V. Prajapati. (2015, Apr. 20). "How to install Apache Hadoop 2.6.0 in Ubuntu (Multi

node/Cluster setup)" [Online]. Available: http://pingax.com/install-apache-hadoop-

ubuntu-cluster-setup/. [Accessed 10 Aug. 2015].

[19] Apache. (2014, Nov. 13). "MapReduce Tutorial about Hadoop 2.6.0 (Apache)," Apache

[Online]. Available: http://hadoop.apache.org/docs/r2.6.0/hadoop-mapreduce-

client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Source_Code.

[Accessed 17 Nov. 2015].

[20] "Ubuntu handbook," (2013, Oct. 5) [Online]. Available: http://ubuntuhandbook.

org/index.php/how-to-install-ubuntu/. [Accessed 24 Nov. 2015].

[21] Siva. (2015, Apr. 28). "Hadoop performance tuning" [Online]. Available:

http://hadooptutorial.info/hadoop-performance-tuning/. [Accessed 15 Sep. 2015].

29

[22] E. Sammer, Hadoop Operations, Beijing, Cambridge, Farnham, Koln, Sebastopol,

Tokyo: O'Reilly Media, Inc., 2012.

[23] D. Pollak, "Introduction," in Beginning Scala, New York: Octal Publishing, Inc., 2009,

p. 23.

[24] Apache. (2014, Nov. 13). "Hadoop cluster setup (Apache)," Apache [Online].

Available: http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-

common/ClusterSetup.html#Configuring_Environment_of_Hadoop_Daemons.

[Accessed 22 April 2015].

30

Appendix A: Hadoop 2.6.0 Installation on Ubuntu 14.04

1. Purpose of This Appendix

This document intends to demonstrate the way to install Hadoop 2.6.0 on Ubuntu 14.04 as

part of testing of the performance of Hadoop DFS.

2. Hadoop 2.6.0 Overview

 Hadoop 2.6.0 is an updated version of Hadoop, but not the newest one which is Hadoop

2.7.1. There are mainly two reasons for me to choose this version: one is that this version is

more powerful in its executive functions than the previous ones, and it provides torrents of

available previous experiences; the other is that compared to its newest version, I believe this

one has more advantage in supplying me with more solution options in fixing those

unexpected errors since it has been in existence for a longer time and was used by more

people.

3. Design of Lab Experiment

This installation was based on the installation guide [18].

(1) Install the relevant software which are required for Hadoop:

I. Install Operating System, Ubuntu 14.04.2

II. Install Java Development Kit, JDK 1.7.0_79

III. Install Secure Shell, SSH-2.0-OpenSSH_5.9

(2) Set up before installing Hadoop:

I. Adding a user group, adding a user, and authorizing the user

31

II. Disable IPv6, because Apache Hadoop is not supported on IPv6 networks. It has only

been tested and developed on IPv4 stacks. Hadoop needs IPv4 to work, and only IPv4 clients

can talk to the cluster.

(3) Install Hadoop 2.6.0

(4) Setting up configuration files

I. ~/.bashrc

II. /usr/local/hadoop/etc/hadoop/hadoop-env.sh

III. /usr/local/hadoop/etc/hadoop/core-site.xml

IV. /usr/local/hadoop/etc/hadoop/mapred-site.xml

V. /usr/local/hadoop/etc/hadoop/hdfs-site.xml

VI. /usr/local/hadoop/etc/hadoop/yarn-site.xml

(5) Format the new Hadoop FS and Start Hadoop on single machine

(6) Networking building and Start Hadoop on the cluster

(7) Testing Word Count MapReduce program

4. Details and Result of Lab Experiment

(1) Install the relevant software items

I. Installing Ubuntu 14.04.2

Check: lsb_release -a

II. Installing JDK 1.7.0_79

Command: sudo apt-get install openjdk-7-jdk

32

Check: java –version

III. Installing ssh

Command: sudo apt-get install ssh

Check: which ssh

 which sshd

(2) Configuration before installing Hadoop

I. Add a user group, add a user, and authorize the user

Command: sudo addgroup hadoop

 sudo adduser –-ingroup hadoop hduser

 sudo adduser hduser sudo //authorized hduser sudo right

 su hduser

 ssh-keygen –t rsa –P “”

 cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

/* the last two lines mean to add the newly created key to the list of authorized keys so that

Hadoop can use ssh without prompting for a password */

II. Disable ipv6

Add code in file: /etc/sysctl.conf

#disable ipv6

net.ipv6.conf.all.disable_ipv6 = 1

net.ipv6.conf.default.disable_ipv6 = 1

net.ipv6.conf.lo.disable_ipv6 = 1

Check: sudo sysctl –p

Or: cat /proc/sys/net/ipv6/conf/all/disable_ipv6

(3) Install Hadoop 2.6.0

Download Hadoop 2.6.0 in /usr/local/hadoop, command:

33

sudo su

wget http://mirrors.sonic.net/apache/hadoop/common/hadoop-2.6.0/hadoop-2.6.0.tar.gz

Install Hadoop, command:

tar xvzf hadoop-2.6.0.tar.gz

sudo mv * /usr/local/hadoop //copy * from hadoop-2.6.0 folder

sudo chown –R hduser:hadoop /usr/local/hadoop

(4) Setup configuration files

Note: This step should be done under hduser.

I. ~/.bashrc, add code at the end of the file, command: vi ~/.bashrc

source ~/.bashrc

javac –version

which javac

readlink –f /usr/bin/javac /usr/lib/jvm/java-7-openjdk-amd64/bin/javac

II. /usr/local/hadoop/etc/hadoop/hadoop-env.sh

Add code at the end of the file

III. /usr/local/hadoop/etc/hadoop/core-site.xml

Command: sudo mkdir –p /app/hadoop/tmp

 sudo chown hduser:hadoop /app/hadoop/tmp

add code in the file

http://mirrors.sonic.net/apache/hadoop/common/hadoop-2.6.0/hadoop-2.6.0.tar.gz

34

IV. /usr/local/hadoop/etc/hadoop/mapred-site.xml

There exists a file named mapred-site.xml.template, and create a new one named mapred-

site.xml. Add code in the file.

V. /usr/local/hadoop/etc/hadoop/hdfs-site.xml

Command: sudo mkdir –p /usr/local/hadoop_store/hdfs/namenode

 sudo mkdir –p /usr/local/hadoop_store/hdfs/datanode

 sudo chown –R hduser:hadoop /usr/local/hadoop_store

Add code in the file

VI. /usr/local/hadoop/etc/hadoop/yarn-site.xml

And code in the file

35

(5) Format the new Hadoop FS and Start Hadoop on single machine

I. Under /usr/local/hadoop_store/hdfs/namenode, execute command:

Hadoop namenode –format

Note: This command should be executed once before we start using Hadoop. If this command

is executed again after Hadoop has been used, it’ll destroy all the data on the Hadoop file

system.

II. Under /usr/local/hadhoop/sbin, execute command:

 start-all.sh

 jps //check if it really starts

 stop-all.sh //stop all services

(6) Networking building and Start Hadoop on the cluster

I. Modify the file /etc/hosts, command: sudo vi /etc/hosts

Note: use command ifconfig to find the ip for each machine first.

36

II. Copy the file hosts to each machine

Note: remove hosts first, command: rm hosts

Command: sudo scp hduser@zaho-hadoop1: /etc/hosts /etc/

III. Under master machine (zaho-hadoop1), execute command for all other machines:

 ssh-copy-id –i $HOME/.ssh/id_rsa.pub hduser@zaho-hadoop2

(my slaves: zaho-hadoop2, zaho-hadoop3, zaho-hadoop4, zaho-hadoop5, zaho-hadoop6,

zaho-hadoop7, zaho-hadoop8)

Note: After this command, you can ssh to each machine without password any more.

IV. Create/modify file, masters and slaves under /usr/local/hadoop/etc/hadoop

Note: zaho-hadoop1 machine will be a master and a slave.

Then copy these two files to other machines.

V. Reset core-site.xml and mapred-site.xml for multiple nodes

37

Then copy these two files to each machine

VI. Start Hadoop as a cluster.

 start-all.sh

 jps //check if it really starts

38

39

40

41

 stop-all.sh //stop all services

42

43

44

(7) Testing Word Count MapReduce program [19]

45

I. Environment variables are set

export JAVA_HOME=/usr/java/default

export PATH=$JAVA_HOME/bin:$PATH

export HADOOP_CLASSPATH=$JAVA_HOME/lib/tools.jar

II. Compiling the program and creating jar file

/usr/local/hadoop/bin/hadoop com.sun.tools.javac.Main WordCount.java

jar cf hs.jar WordCount*.class

III. Creating input and output folder in HDFS and data files as input

/usr/local/hadoop/bin/hdfs dfs –mkdir /user/zhao/input

/usr/local/hadoop/bin/hdfs dfs –mkdir /user/zhao/output

/usr/local/hadoop/bin/hdfs dfs –put input/* /user/zhao/input

IV. Running the program

/usr/local/hadoop/bin/hadoop jar wc.jar WordCount /user/zhao/input /user/zhao/output/wc

46

V. Output file of result

/usr/local/hadoop/bin/hdfs dfs –cat /user/zhao/output/wc/part-r-00000

47

5. Lessons Learned

No. Issues faced Solutions

1 The zaho-hadoop3 machine

cannot start up when starting

Hadoop cluster

Re-execute the relevant commands under the

user hduser.

2 Nodemanager does not show up

when jps. After restarting the

cluster, nodemanager shows up,

but after a while, cannot see it

when jps entered

The fact proves that nodemanager is running,

but just not shows up when excuting jps,

which does not impact the job execution

result.

6. Recommendations

Before doing every command, we have to first confirm under which user the command should

be executed: hduser or root or sudo su, because the result of the execution will affect the

authorization for the related files or folders.

7. Exit Criteria

a) All machines of Hadoop cluster can start and stop service correctly - Yes

b) Word Count MapReduce program can be executed successfully – Yes

48

8. Conclusion

As the Exit Criteria I set was met and satisfied as mentioned in Section 7, the Hadoop cluster

is successfully installed. It can be used for the next lab experiments.

49

Appendix B: Centralized File System Performance Test

1. Purpose

This appendix measures the performance of the centralized file system on (Ext4) [20] a single

test machine. The data includes read time, write time, sorting time, and total time, which will

be compared to the result of Hadoop DFS cluster execution.

It does this through the use of the sorting programs in Section 2, and running the test cases

identified in Section 3. The result is presented in Section 4 and discussed in Section 5, 6, and

7.

2. Programs for testing

(1) Creating data program, Internal sort program and External sort program are all

discussed in the main part of this paper.

(2) Result checking program

I. Description

The purpose of this program is to check if the output file is sorted correctly. When running

this program, we should add the file name to be tested in the command line, and then the

test result will be printed out on the screen.

II. Code. As shown in Source Code 4: CheckResult.java.

3. Designing test cases and result data explanation are talked about in main part of

this paper.

50

4. Lessons Learned

No. Issues faced Solutions

1 When file size is larger than free

memory size, how to sort the

data file?

External sort algorithm can solve this problem

2 If the free disk space is 30 GB,

only 10 GB data file can be

tested because the temporary

medium files are actually a copy

of original file and the output

file is another copy.

Modified the code: after having generated all

medium files, the program will delete the

original file so as to save more disk space to

store output file. After modification, 15 GB

data file can be tested when there is 30 GB of

free disk space.

3 If the data file is big enough, the

memory will be eaten up.

The buffer size can be set smaller when in

merge phase of the External sort algorithm

4 When dealing with more than

one file, recalling the splitting

data file function will need too

much time to recreate objects in

memory.

Use another algorithm: first, concatenating the

data files, and then running the external sort

program.

5. Recommendations

When running the programs to test data files, we should always pay attention to the boundary

values, such as the free memory size, free disk space size, the range of int variable type, and

so on. In these cases, we can use different algorithms or different programs or different types,

otherwise you will get error or wrong result.

6. Conclusion

The programs and algorithms worked correctly, and the necessary data was collected for the

research paper. The code can be examined by any other individual who intends to check my

result data.

51

Appendix C: Hadoop DFS Performance Test

1. Purpose

This appendix will collect the result data of a DFS from a Hadoop cluster test. The data

includes read time, write time, sorting time, and total time. These will be used to compare

with the result of a single machine test and adjust relevant parameters for better performance.

2. Optimizing for MapReduce Programs and Hadoop Setting

2.1 Optimizing MapReduce program

I. Description

In the old version, the output type of mapper is IntWritable/Text, while in the new

version, the output type of mapper is IntWritable/NullWritable. Also, in the old version

input and output type of reducer is IntWritable/Text, while in the final version, those of

reducer are IntWritable/NullWritable as shown in Figure 1. The change of the type

significantly improved the performance.

Note: LongWritable, IntWritable, Text and NullWritable are the different types in the

Hadoop. NullWritable is similar to null in java, but NullWritable is a type, not a value.

52

II. Code

i) Old version. As shown in Source Code 5: HadoopSort.java (the version before

optimizing).

ii) Final version. As shown in Source Code 6: HadoopSort.java (the version after

optimizing).

III. Result of testing (4 GB data file, default Hadoop Setting) (Total Time minutes)

Code

Version

Test 1 Test 2 Test 3 Average Δ

Old

47.75

47.07

49.28

48.03

1.13

Final

42.52

42.17

41.23 41.97 0.67

Δ 5.23 4.9 8.05 6.06

Note 1: Average = (Test1 + Test2 + Test3)/3.

Note 2: Δ = . This formula is for Sample case, not for Population case.

From the comparison of average total time between two code versions, the final version

apparently runs faster than the old one by about 6.06 minutes. Also, the final version is more

stable than the old one because the standard deviation of the final is lower than the old one

about 0.46 from the data of Δ. In conclusion, the final version is much better than the old.

2.2 Optimizing Hadoop setting

I. Description

Hadoop provides a set of parameters on CPU, memory, disk, and network for performance

tuning. Most Hadoop tasks are not CPU-bound; what we usually look into is how to optimize

usage of memory and disk spills.

53

II. Results of parameter tunings (Using 4G file size)

Note 1: I modified the configuration files (masters and slaves) to check the influence on

performance for different values of some parameters. The result of tuning cases 1 and 2 shows

that one master and seven slaves (1+7) is better than one master and eight slaves (1+8).

54

Note 2: The parameter of data copies was changed in cases 1, 3 and 4. The result shows that

the number of replications (data copies) does not affect the performance a lot, and we do not

choose one copy because one copy lowers the security of the Hadoop.

Note 3: The result of case 11 shows a 5 minutes’ difference between High and Low for Total

Time. This indicates that this configuration of Hadoop system has high variability.

Note 4: I modified the parameter: number of reducers in cases 8 and 9. The result shows that

setting up 2 reducers is little bit better than 1 reducer in performance.

Note 5: The parameter of “Total Amount of Buffer” was changed in cases 5, 6 and 8. The

result proved this parameter is the most sensitive for improving performance.

Note 6: The parameter of "Number of Mapper" was not chosen because the value of this

parameter is only a suggestion, and the number of split pieces (Hadoop will split the input

data file into smaller pieces based on the block size, default value is 128 MB) decides the real

number of mappers.

Note 7: Total Amount of Buffer can be calculated by a formula: (16 + R) * N/1048576, of

which R = Map output bytes/Map output records, and N = Map output records/# of Map tasks.

As Map output is being sorted, 16 bytes of metadata are added immediately before each key-

value pair. These 16 bytes include 12 bytes for the key-value offset and 4 bytes for the

indirect-sort index. 1048576 is 1 MB, a unit of Buffer size in memory. The value of the Total

Amount of Buffer calculated by this formula will lead to the least number of spills for each

Map tasks. [21]

Note 8: Δ = . This formula is to calculate the standard deviation for Sample

case.

55

Note 9: I modified the parameter, “mapreduce.job.jvm.numtasks” to cause JVM to be reused

instead of being re-created. I thought this would save time because JVM will stay alive

without opening and closing the JVM many times. However, the resulting execution time of

tuning case 15 in comparison to case 14 was worse.

3. Designing test cases and result data are talked about in the main part of the

paper

The approach to calculate read time, write time, and sort time is the following. Firstly, run

TestDFSIO to achieve read throughput and write throughput. Each test was executed three

times, and their arithmetic average value will be used; secondly, calculate the read time by the

formula “File Size/read throughput/60”, similarly for write time; finally, use the formula

“total time – read time – write time” to obtain sort time. Consider Test number 1 as an

example:

Step 1, to execute the TestDFSIO build-in jar to obtain the read throughput and write

throughput.

56

AVG Read Throughput = (376.06 + 311.51 + 298.63) / 3 = 328.73 (MB/sec)

57

AVG Write Throughput = (145.17 + 143.07 + 147.51) / 3 = 145.25 (MB/sec)

Step 2, to calculate the read time and write time by using the formula

 HDFS read bytes / read throughput / 60 = 1155.55/328.73/60 = 0.06 minutes

 HDFS write bytes / write throughput / 60 =1155.55/145.25/60 = 0.13 minutes

Step 3, to calculate the sort time by the formula (the value of total time comes from the

average total time for Test 1 in Table 6: Hadoop cluster tested result data).

 Total time – read time – write time = 10.05 – 0.06 – 0.13 = 9.86 minutes

4. Lessons Learned

No. Issues faced Solutions

1 The Hadoop MapReduce

program impacts the job

performance. See Section 2.1.

To choose appropriate input and output

key/value types will apparently improve the

performance.

2 The Hadoop setting parameters

influence the Hadoop job

performance.

According to job features, changing the

Hadoop setting parameters leads to better

performance. See Section 2.2.

3 When restarting the Hadoop

System after having modified

the configuration, the Hadoop

sometimes reports Error for

stop-all.sh command.

To follow the steps: stop Hadoop system ->

modify the configuration -> start Hadoop

system. Note: it is not necessary to format the

Namenode for just changing the configuration

files, and formatting Namenode will delete

everything from the HDFS.

5. Recommendations

When executing Hadoop jobs, we usually can optimize the MapReduce program and Hadoop

parameters setting so that the Hadoop system’s parallel computing advantages can be shown.

58

As for the MapReduce program optimizing, there are two options we usually need to be

considered: one is the input and output key/value types; the other is the algorithms. As for the

Hadoop parameter setting optimizing, there are four elements which will possibly become

bottlenecks. Theoretically, they are CPU, Main Memory, Network Bandwidth, and Storage

I/O. Practically, we focus on utilizing sufficiently Main Memory (tuning cases 6 – 11), and

reducing I/O operations (tuning cases 12 – 14) and node communication, or decreasing the

amount of data transferring between nodes and transferring between Memory and storage.

6. Conclusion

After optimizing of the Hadoop program and Hadoop parameter settings, the Hadoop jobs

worked correctly and efficiently and the performance was improved.

59

Appendix D: Source Codes

 Source Code 1: CreateData.java

60

 Source Code 2: QuickSort.java

61

 Source Code 3: SortingData.java

62

63

 Source Code 4: CheckResult.java

64

 Source Code 5: HadoopSort.java (the version before optimizing)

65

66

 Source Code 6: HadoopSort.java (the version after optimizing)

67

	St. Cloud State University
	theRepository at St. Cloud State
	11-2016

	Performance Comparison of a Hadoop DFS to a Centralized File System of a Single Machine
	Zhao Xie
	Recommended Citation

	tmp.1482349679.pdf.hTnRC

