
St. Cloud State University
theRepository at St. Cloud State
Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and Information
Technology

9-2016

A Comparative Study of Automated Software
Testing Tools
Nazia Islam
Nazia Islam, isna1301@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

Part of the Computer Sciences Commons

This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at
St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized
administrator of theRepository at St. Cloud State. For more information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Islam, Nazia, "A Comparative Study of Automated Software Testing Tools" (2016). Culminating Projects in Computer Science and
Information Technology. 12.
https://repository.stcloudstate.edu/csit_etds/12

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/12?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

A Comparative Study of Automated Software Testing Tools

by

Nazia Islam

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in Computer Science

September, 2016

Starred Paper Committee:
Dr. Jie Meichsner, Chairperson

Dr. Donald Hamnes
Dr. Susantha Herath

2

Abstract

Software testing is an integral phase in Software Development Life Cycle (SDLC) process.
Testing assesses the functionalities of a software item and quality of the product. Automated
software testing utilizes different tools to execute testing activities. In this paper, I have
discussed the features of automated and manual testing as well as analyzed three automated
software testing tools: Selenium, UFT/QTP and WATIR. In brief, I have presented a detailed
description focusing on multiple feature set, efficiency, simplicity and usability of each tool. I
also evaluated, tested and compared the different aspects of Selenium, UFT/QTP and WATIR.
Finally, this research allowed me to draw some solid differences between automated and manual
testing as well as learn and explore various characteristics of automated testing tools by having
real-world experience of testing effectively.

3

Table of Contents

List of Figures ... 5

List of Tables .. 6

Chapter 1: INTRODUCTION... 7

1.1 Software Testing ... 8

1.2 Objective of Research ... 9

1.3 Terminologies.. 10

Chapter 2: BACKGROUND AND RELATED WORK .. 12

2.1 Related Work... 12

2.2 Software Testing Techniques .. 13

2.3 Software Testing Tools ... 19

2.4 Selenium .. 21

2.5 QTP/ UFT .. 29

2.6 WATIR .. 33

Chapter 3: METHODOLOGY .. 38

3.1 Selected Tools ... 38

3.2 Evaluation Metrics .. 38

3.3 Target Application... 40

3.4 General Testing Approach .. 40

Chapter 4: TESTING AND RESULT ANALYSIS .. 41

4

4.1 Test cases... 41

4.2 Method used to locate HTML element ... 44

4.3 Test using Selenium IDE: ... 47

4.4 Test using Selenium Webdriver .. 54

4.5 Comparison between Selenium IDE and Selenium Webdriver .. 63

4.6 Test using UFT .. 65

4.7 Test using WATIR Webdriver .. 72

4.8 Comparison among Selenium, WATIR, and UFT/QTP ... 78

Chapter 5: CONCLUSION ... 83

REFERENCES ... 86

5

List of Figures

Figure-1: HTML element locating procedure on web page .. 44

Figure-2: HTML source code on e-services login page .. 47

Figure-3: Selenium IDE executing command on course search page .. 50

Figure-4: Selenium IDE test fails for not matching actual value on page with test input value .. 51

Figure-5: Test case passes on updating the target alert message on Selenium IDE...................... 52

Figure-6: When all the test cases pass from login to logout ... 53

Figure-8: Selenium Webdriver test script written in java eclipse IDE_part2 59

Figure-9: Error during executing test in Selenium Webdriver ... 60

Figure-10: UFT test script-1 ... 68

Figure-11: UFT test script-2 ... 69

Figure-12: Test result after executing test in UFT .. 70

Figure-13: Start of test scripting with WATIR Webdriver in Ruby command prompt 75

Figure-14: WATIR Webdriver test scripts .. 76

Figure-15: Error while testing with WATIR Webdriver .. 77

6

List of Tables

Table 1: Manual vs. Automated Testing ... 17

Table 2: Basic differences between QTP and UFT .. 30

Table 3: Features of the first Machine .. 39

Table 4: List of Test cases .. 41

Table 5: Selenium IDE Test script .. 48

Table 6: Selenium IDE vs. Selenium Webdriver .. 62

Table 7: Features of the second Machine ... 70

Table 8: Comparison among Selenium-WATIR-UFT/QTP ... 77

7

Chapter 1: INTRODUCTION

Software end users are more informed and demanding than before. The quality of software

determines the success of any software product. This provides a tremendous opportunity for

software quality assurance in software industries and that is driven by the customer satisfaction.

Developing quality and defect-free products under time and budget constraints have become

crucial. To implement such products, with minimum or no error is very difficult, that’s why the

idea of software testing has come into existence[1]. Software testing has become an essential and

extensive activity in the software industry. Testing is the critical part of software development

process and indicates the eventual review of the specification, design, and coding[2]. Nowadays,

probably no single company exists without performing software testing.

Software testing is a method, which is executed for evaluating the functionality and the

correctness of the software product, to determine whether it meets the expected features and

quality. Testing is an essential phase and an inevitable part of Software Development Life Cycle

(SDLC). A different compound definition of software testing states that “the dynamic

verification of the behavior of a program on a finite set of test cases, suitably selected from the

usually infinite executions domain, against the expected behavior”[3]. IEEE provides the

definition of software testing as, “the process of exercising or evaluating a system or system

component by manual or automated means to verify that it satisfies specified requirements or

identifies the difference between expected result and actual result” [4]. So, software testing

means executing a software program or system to detect any bugs or missing functionality which

differs from the expected result or requirements [5].

If appropriately executed, testing improves the performance or accuracy of a software system.

Locating the defects in software and making the corrections before releasing the software

8

product, helps business to save their extra maintenance cost.

All the software testing activities are executed in two ways: manual testing and automation

testing. Manual testing is the elementary software testing; it is performed manually by navigating

into the software application, following a test plan or test cases (overall test scenario in the form

of actions needed to perform while testing). However, in automated testing, the testing activity

can be performed utilizing different testing tools without the need for looking at different parts of

the application manually.

Previously, software testing was executed merely by manual testers. But by manual testing, some

errors can be easily ignored or some remain uncovered due to human errors. Thus, it has become

almost impossible to test any software program/application manually in order to gain the highest

level of accuracy. Automated testing has been developed to overcome the deficiency of manual

testing [6]. The evolution of automation testing has made the testing process much faster and

nowadays it has become more popular and is the preferred method of testing applications and

websites [7]. The base of automation test is the tools used to perform the testing. In this paper,

different aspects of three popular automation testing tools have been studied and analyzed to

evaluate the tools.

1.1 Software Testing

One very general conception is that software testing is needed to find the bugs. In reality, there

could be various reasons for conducting tests. One of the most important reasons is to improve

the quality of applications by making sure the software is meeting all the requirements as

designed and working as expected.

Software testing is necessary to ensure whether the application functions smoothly. It is more

important for the web based applications, as testing prevents the application from having down

9

time [8]. Most of the industries spend around 50 percent of their total time and more than 50

percent of the total cost towards testing during the software development life cycle [9]. So,

performing the test early during the development process helps to prevent the occurrence of

unnecessary bugs or unwanted changes during the maintenance phase. If the bugs or defects are

found later by the end users after releasing the software product then the testing and the

maintenance cost goes significantly higher. So, if the testing is done on a regular basis during the

SDLC process, it is a good way to verify how many defects the application product contain and

the level of risk is associated with this product. For the companies, it is much cheaper to fix a

bug if it's caught before releasing the product [10].

Software testing intends to assess the ability of an application or program and determines

whether it meets the quality criteria or not. There are different specifications, which need to be

established while developing a software or application, such as portability, reliability, security,

efficiency, usability etc. All these are also required to be validated and accomplished through

testing. [11].

Finally, there are also three main purposes of software testing, which focuses on the following:

Detection: Detection of errors or defects during testing.

Prevention: Preventing or shrinking the number of errors in the system to improve the overall

efficiency and performance of the system.

Demonstration: It demonstrates how a system can be managed to run with several risks which

are small and acceptable.

1.2 Objective of Research

The goal of this research paper is to introduce the various features and presentations of software

testing tools (Selenium, WATIR, and UFT/QTP) as well as assess and compare these tools to

10

determine their usefulness. This study also allows drawing the basic comparison among

automated and manual testing to represent the significance of automated testing in software

industries. To accomplish the goal of this research, the following steps are to be performed.

• Identifying a set of tools to be evaluated.

• Selecting the target application to be tested by all these tools.

• Testing the target application using the selected automated testing tools and gather

resulting data.

• Developing a set of comparisons to be used to assess the tools.

• Performing an analysis of each tool and comparing each other based on an ideal feature

set and depending on the result of test execution.

• Outlining inferences and making recommendations based on the outcome of research.

The web application to be tested for this research is the students’ E-services website for St Cloud

State University. The main focus of the testing will be the course registration process.

1.3 Terminologies

This section describes the different terms used in this paper.

Expected result: The standard test result, which is defined after requirement analysis and prior

testing.

Actual result: The real result of testing, after executing the test with input data to the software

[4].

Test case: It is a manuscript that provides a process to perform testing.

Each test case is an action, a combination of an expected result, actual result and pass or fail

criteria. [8].

Test suite: It is a collection of test cases.

11

Test Script: Test scripts are usually used for automated testing. It's a program written to execute

testing of the application.

Test Plan: In the industries, a test plan is a document, which defines the scope of testing, test

cases, test results and any test related activities.

Regression testing: When any changes occur to software/application, then it’s required to verify

that all the previous functionalities work accurately with the newly added functionality. This

process of testing is called regression test.

Functional testing: Functional testing of software is done when the whole system is ready to

check the system's performance with respect to its specified requirements [9]. It verifies that the

features or functionalities of the application are working as defined.

Load test: Load testing is executed to evaluate the system’s performance with various amount of

load applied (for example usual load and peak load).

Unit test: In unit testing, each unit of source code (classes, functions etc.) are tested to verify

whether all the individual parts of the program are working appropriately. The script and the

execution of unit tests are done by programmers.

12

Chapter 2: BACKGROUND AND RELATED WORK

The first part of this chapter mainly focuses on the related works performed in the area of the

automated software testing tools. It summarizes some of the researched works, with emphasis on

Selenium, QTP/UFT, and WATIR. The rest of this chapter describes the different software testing

techniques and explains various aspects of the automated testing tools used for this research.

2.1 Related Work

The research of Jagannatha and Niranjanamurthy, emphasizes the different components of

Selenium such as Selenium IDE, Selenium RC, Selenium Webdriver and Selenium Grid. It also

focuses on the need for the Selenium testing framework, most commonly used commands, and

makes the comparison with the QTP testing tool[10]. However, this research concentrates more

on Selenium, it does not discuss much QTP. The study here is more focused on Selenium, which

is also mentioned as the best tool for automated testing of websites.

The research performed by Vishawjyoti and Sachin Sharma [11], focuses mainly on Selenium

IDE, a component of Selenium. The research contains set of test cases and properly mentions the

way of recording test cases in IDE. However, the study is just confined to Selenium IDE.

Research conducted by Nisha Gogna [12], presented the basic features of the automation tool:

WATIR and Selenium. Gogna mentioned that Frames and pop-ups are accessible using WATIR.

However, Selenium requires the user to have advanced language skills in order to test for frames

and pop-ups. This is indeed a good paper to learn about Selenium and WATIR, but lacks in the

area of comparison between these two tools.

Harpreet Kaur and Gagan Gupta [13] showed a comparative study among Selenium, Test

Complete, and QTP tools. That study includes different aspects but does not provide the

automation features, such as record and play-back, cross-platform or browsers support features.

13

Rigzin Angmo and Monika Sharma [14] conducted a performance evaluation of Selenium suite

with WATIR Webdriver. Although that research covers most of the comparison criteria, the one

thing that’s absent in the research is comparisons with any commercial testing tool. There would

be more cases to compare while bringing both open source and commercial tools into

consideration.

T. J. Naidu and N. A. Basri conducted a research, [15] where both the tools are open source

(Selenium and SAHI). Finally, they mentioned, Selenium is aimed to be best for programmers

while SAHI is aimed at non-programmer testers.

In the research conducted by Abha Jain and Manish Jain, the different features of QTP and

Ranorex have been analyzed and compared. It’s a good research to follow but it lacked

comparison with any open source tools.[16]

Another research was conducted by Meenu and Yogesh Kumar, where the comparison was made

among UFT/QTP, Selenium, Test Complete and SoapUI. All these tools were compared to a

number of features and based on the comparison it declared SoapUI is the best tool [17].

However, SoapUI is a commercial tool, does not provide support for multiple languages,

operating systems, and windows applications.

2.2 Software Testing Techniques

There are different traditional methods used to perform software testing. Here the most common

techniques are described:

Black Box Testing

The core idea behind Black box testing is that the tester does not need to know the internal

structure of code or details of how the whole program is built. In this case, the tester only works

with the interface of the program. As the name indicates, the tester does not have vision or

14

knowledge of implementation. The goal of this testing is to verify that how accurate the

application or the program works with the specified requirement or set of inputs as well as

produces correct outputs. The tester does not necessarily need to have much programming

knowledge or internal logic of code but needs to know the expected output of the program[18].

White Box Testing

White box (also called, clear box) testing is completely opposite of the black box testing. In this

testing, tester requires having some level of programming skills. The internal structure of the

system, as well as details of code, should be clearly understood by the tester. As most of the

software defects or bugs are caught and also resolved during white box testing (during the unit

test), it’s a very effective way of testing. Here, the tester does not need to implement the program

but should have programming knowledge to find the bug or anomaly within the code. A good

example for white box testing is “unit testing”, where the code developed for a particular

module, that needs to be tested prior to integrating it with rest of the modules. Thus, unit testing

is very efficient in minimizing overall bugs in a system. Test- driven development (TDD) utilizes

the white box testing technique[19].

Manual Testing

In manual testing, the basic level of testing, the tests are performed following the test cases and

directly interacting with the application. In this testing, the tester prepares the test cases. Test

cases are written in simple English language, which illustrates the features or functionalities to

be tested and the expected result. As the tester needs to perform all these activities manually, the

whole process of testing can become too lengthy. However, for some particular complex system

or application manual testing is preferable and effective since some critical and rare bugs are

discovered during manual testing. The tester for manual testing a plays similar role to an end

15

user of that software application and explores the different parts of the application by testing and

making sure about the correctness of application[13]. Some of the drawbacks for manual testing

are [16]

- Time inefficient and labor intensive.

- Very flat learning curve.

- Lacking the advantage of reusability.

- Not an iterative process, or multiple iterations do not necessarily provide better accuracy[20].

- Manual tests provide limited visibility, as the tester does not have much knowledge of how the

code works.

- Tests have to be repeated by the software developer, tester and finally by the business analyst

(to verify that the User Interface is working properly).

- No validation process to verify that the test is actually performed correctly; test cases are

manually written whether the test passes or fails.

Automated Testing

With the boom of test automation within the industries, testing has become very efficient. Test

automation eliminates the burden of user initiation and difficulty of performing various types of

testing such as regression and load/ performance testing. With the advancement of automated

testing, complex testing tasks became much easier than before, as it allows performing the test

with numerous sets of data and multiple times without intervention of human [20].

Automation testing requires some initial investment for the software and compatible hardware

resources but could potentially be more economical since it reduces the human efforts in testing.

[21]. The process of automated testing can be conducted in different stages. But in general, can

be divided into the four basic ways:

16

1. Preparing the test plan or creating the test cases

2. Preliminary selection of testing tool

3. Writing/generating the test script

4. Performing the test using automated test scripts

Objectives of Automation

The main principle of automated testing is to minimize the testing effort and time. It also improves

the efficiency, while reducing the direct involvement of humans in executing test as well as

generating test results. Test automation provides the reusability of codes, by using the same scripts

for multiple times, only by changing the input set, as needed[20]. Automation testing also reduces

the future maintenance cost of the application, as it simplifies the test process of regression testing,

thus more testing can be performed during different SDLC stages and less maintenance cost are

issued for post-maintenance phase[11]. Some example where automation can be beneficial are

Simplifying Regression testing: In regression testing, when new releases/ bug fixes take place it

needs to be assured that the newly added changes or bug fixes have not introduced new bugs in

the system and it is functioning properly with all the existing features. Hence, this test needs to

be performed regularly. It becomes very effective for company cost, resources and time if

automation is used.

Executing same tests multiple times: When the test cases are needed to be executed a multiple

number of times with different input sets, automated testing is very efficient in that case, by

executing test scripts.

Time and budget constrain: Test automation saves time and energy of tester, so in this case, the

tester gets additional time to engage in other activity. Automation is a very productive and

profitable idea for industries nowadays. As most of the time tester has knowledge of

17

programming and can start working with the tool immediately. So automation is cost-effective

for companies since they don’t need to spend extra money in training the employees and it also

saves time.

Load or performance testing: While testing the load handling ability of an application, at least

many virtual test user accounts need to be created and tested simultaneously. Using only manual

testing this job seems too critical. However, with the help of automated testing this difficult

testing can be performed effectively.

Frequently changing functionalities: Test automation works best in the situation, where the

requirements are frequently changing and complex test cases are needed to be executed

repeatedly. For any application, where the GUI does not change much but the code changes

frequently, test automation can be more effective in that case [22].

Comparison between Manual and Automated testing

Table 1: Manual vs. Automated Testing

Manual testing Automated testing

1. The process of manual testing is slow

and lengthy, which takes a long time to

complete the test.

1. Automated tests can be performed in a

faster way than manual tests; because once the

test scripts are generated, it can be executed

any number of times.

2. The manual test requires vast human

effort. As the testing is time consuming, it

requires more testers to accomplish the

task.

2. Automated tests need one-time effort to

write the test scripts, as it can be executed

without having human effort. So, it requires

fewer investments for testers.

18

 Table 1 continued.

Manual testing Automated testing

3. It cannot be perfect or fully reliable test,

as testing is done manually by testers and

no one can avoid the human errors.

3. It can be performed using automated tools,

so there’s very little chance of mistakes while

executing the test.

4. A manual test is not good for executing

bulk amount of test cases.

4. Test automation is good when the test suite

is huge.

5. Manual testing is good for functional

tests and exploratory tests (where the

testing is performed by discovering the

various features of application in order to

find bugs).

5. Test automation is well suited for

regression test and almost all kinds of non-

functional testing, such as Load test,

performance test, which are very difficult to

execute with manual tests.

6. Manual testing can only avoid the cost

of automation tools.

6. With automated testing, the recurring and

bigger costs can be avoided. For example,

maintenance cost and cost of manual labors.

7. Most of the time new or critical bugs can

be found by executing manual tests only

7. Automated tests do not help much in

finding new bugs, as the same scripts are run a

number of times.

8. In manual testing there always a tester

needed to perform all the test steps

manually.

8. Test scripts can be run automatically

without the need of the tester to be present in

front of a computer during the time of test

execution.

19

2.3 Software Testing Tools

A testing tool needs to be selected in order to start the testing. As there are a huge variety of

testing tools available, selecting the proper tool does not depend on just a single or a couple of

things. While selecting the testing tools many things need to be analyzed in order to make sure

how much the intended tool is able to meet the expectations. Some important parameters for

selecting appropriate testing tool have been outlined here [14]

- Type of application to be tested (windows/web/ mobile)

- The type of testing (i.e. regression, unit, load, performance etc.).

- The whole test scenario or testing scope needs to be analyzed

- Associated cost to provide training for employees.

- The cost of the tool itself, when it’s a commercial one, it’s necessary to buy licenses for

the testers.

Other important factors are reusability, reliability, and cost. All the factors need to be considered

to obtain maximum benefit by utilizing the tool for testing. Additional features of the testing tool

also need attention (i.e. Ability to perform, record and run, providing test results), version of the

automated tool as well as the important parameters associated with the tools, including the

following[23]:

● Type of testing that the tool supports

● Different available features within the tool

● Associated cost for licensing (if commercial)

● Support for browsers and Operating system and programming languages

● Easy to work with (provides easy execution of tests)

● Integration with other test management tools

20

All these criteria need to be verified before finalizing the tool. So that the maximum utilization

of the testing tool can be made.

There are many commercial or open source tools available, among them, some of the general

categories of tools are listed below:

1. Unit testing tools: Unit testing validates that individual units of source code are working

properly. Few good examples for unit testing frameworks are Junit, TesNG, both of these

are based on Java programming language.

2. Functional testing tools: These are the tools that allow functional testing (making sure if

the application is working as expected). With the help of the tool, automated scripts can be

generated in order to handle functionality changes in the application. Some of the

functional testing tools are also able to perform regression testing. Here are some widely

used functional testing tools: Selenium, WATIR, UFT/QTP, Sahi [24].

3. Load testing tools: It is testing the performance of the application. Some of the load

testing tools are JMeter, HP LoadRunner[24][23].

All the above criteria are applicable while selecting tools for an industrial purpose. However, for

researching purpose, one can select any tool, depending on the availability of the testing

materials and resources. For this paper, I have chosen to work with Selenium, UFT/ QTP, and

WATIR for my research purpose. Nowadays Selenium is one of the most powerful and leading

functional testing tool for automation. Most of the industries are using either Selenium or

UFT/QTP. UFT/QTP also works with windows based desktop applications but it is a commercial

tool. On the other hand, WATIR is not as popular as Selenium or QTP/UFT but it’s a good tool

to work with Ruby.

21

2.4 Selenium

Selenium is an open source test automation tool, which supports different types of testing in web

applications. Selenium is not just a single tool but it consists of four tools: Selenium IDE,

Selenium RC, Selenium Webdriver and Selenium Grid. Selenium provides the ability to create

test scripts in different programming languages and the ability to perform different kinds of

testing, such as functional, regression test, etc. Selenium can be also integrated with various

frameworks to provide a hybrid framework, which makes the testing simpler[14].

2.4.1 Brief History of Selenium Project

Selenium first came into existence on 2004, by Jason Huggins. He implemented a JavaScript

library, which was able to drive the webpage automatically as well as able to run tests against

multiple browsers. That library ultimately became Selenium Core, which generated the

functionality of Selenium Remote Control (RC) and Selenium IDE. Earlier there was no other

tools, which could perform the test automation activities in multiple browsers and programming

languages, except for Selenium RC. Although Selenium was a marvelous tool, it also had some

limitations. For example, it was a JavaScript based automation tool and because of security

restrictions of browsers in supporting JavaScript, Selenium RC was allowed to perform only a

limited number of functionalities or actions [25].

Later, the Selenium and Webdriver, another tool, merged together and built the Selenium web

driver. The combination of both of these tools provided a set of great features and functionalities.

2.4.2 Selenium IDE

The Selenium IDE (Integrated Development Environment) is a plug-in for the Firefox browser,

which is used to generate test scripts. It’s the simplest tool in the Selenium package and provides

an easier way to automate the tests, using the recording and playing back feature. The feature

22

provides a Graphical User Interface (GUI) to record user’s actions. Unlike other Selenium tools,

Selenium IDE does not need any programming language skills to execute testing. Selenium IDE

has its own command language it uses for testing, called Selenese[25].

It’s a simple tool to use for automation. It has limited functionalities and most importantly it does

not support writing test code and supports only specific browsers (Mozilla Firefox). To

overcome all these issues and getting efficient testing support, Selenium RC or Webdriver can be

used.

2.4.3 Commonly Used Selenium IDE Commands

There are many commands in Selenium IDE. Below are some of the basic and widely used

Selenium commands.

- open: Starts browsing by opening a page with URL.

- type : Sends text input to an element

- click/ click and wait: performs a click operation; Clicks and waits for a new page to

load.

- verify: Performs a soft assertion against an expected value.

o verifyTitle/assertTitle: verifies an expected page title.

o verifyTextPresent: verifies expected text is somewhere on the page.

- select() : This command is used to select a label from a drop down box or a combo box.

- check () : This command will check the box when there is a checkbox on the testing

webpage[26].

- waitFor – Waits until the specified element is found on the webpage or the timeout is

reached.

23

2.4.4 Selenium RC

Selenium Remote Control (RC) is used to create test scripts for User Interface (UI) testing in

various programming languages, such as Java, C#, PHP, Python, Ruby, and PERL. Selenium RC

runs tests inside JavaScript web browser, it is now available on all web browsers.

Selenium RC has two basic components:

1. RC Server - The RC server bundles Selenium Core, which is a set of JavaScript codes

that control the browser, and automatically loads it into the browser. It performs as an

HTTP proxy, which verifies any HTTP messages passed between browsers and the

application.

2. RC Client – Provides an interface between the programming language and server.

It also provides an alternative as well as a better solution for users of Selenium IDE [27].

However, Selenium RC struggles while executing simultaneous tests, as it works slowly. There

are also many complex features of Selenium RC, which made RC deprecated after the

development of Selenium Webdriver.

2.4.4 Selenium Grid

The core idea of Selenium grid is running multiple tests concurrently across different browsers,

operating systems, and machines. Grid uses a hub-node concept, where the test is run in a central

machine called a ‘hub’ and the parallel execution of the test is conducted in different remote

machines, called nodes. Grid has two basic versions, such as Grid 1 (older) and Grid 2 (newer);

Grid 1 is capable of supporting Selenium RC commands only, but Grid 2 can support both RC

and Webdriver commands.

Since Grid 1 was lacking competent features and configurations, Grid 2 came into existence by

adding the latest, convenient features as well as correcting the issues with grid 1.

24

One of the enhancements in Selenium grid 2 is, with one remote control (RC), it can automate up

to 5 browsers ,where grid 1 could automate only 1 browser per RC [28].

Due to its complexities and running with only limited features, grid 1 has been gradually

deprecated.

2.4.5 Selenium Webdriver

Selenium Webdriver is the most widely used tool within the Selenium package. Selenium

Webdriver provides a simpler, more concise programming interface, which addresses most of the

issues of the Selenium-RC API [29]. Selenium Webdriver supports many more powerful features

which are not supported in other Selenium tools [30].

Advantages of Selenium Web Driver

1. Multiple Web Browsers support

It provides an option to execute test scripts against different web browsers such as (IE, Chrome,

Firefox, Opera, Safari), to perform testing.

2. Variety of Programming Languages

Selenium Webdriver also allows writing scripts in Java, Python, C#, Perl, Ruby and PHP. So, the

tester can choose any of the programming languages.

3. Multiple Testing Frameworks

With the features of Selenium, different other frameworks can be combined to make hybrid and

enriched framework. For source code compilation, Selenium provides Maven, Ant framework; it

also provides TestNG for unit, functional testing and report generation.

4. Defect management

Selenium Webdriver provides defect management with the help of Jenkins framework by

allowing users to enter bugs into JIRA (Defect management tool).

25

5. Free of cost

One of the greatest advantages of Selenium is, it’s free. The only cost associated with Selenium

testing is that the companies using Selenium as a primary testing tool might require training the

employees for the first time. [31][32].

Finally, Selenium Webdriver remediates many complex features of Selenium RC, some of the

major issues are below:

Webdriver classes are better organized and offer a cleaner API than Selenium RC, which

provides great support for web application testing.

Unlike Selenium RC, Webdriver testing does not require to start the server for executing test

scripts[30].

Webdriver is faster than Selenium RC and uses the browser's own engine to control it. It interacts

with web page elements in a more realistic way. For example, Selenium RC uses the command

as ‘Selenium.type’ and ‘Selenium.typeKeys’ and both of the commands perform the same thing

(typing text in the textbox), wherein Webdriver uses ‘sendKeys’ for type related commands.

Selenium RC works using JavaScript injection, which can be also used for hacking purpose

(Directly interacting with live web application from client side). Selenium Webdriver overcomes

this issue by using a different driver for every web browser. For firefox browser, Webdriver uses

firefox driver, for IE it uses IE driver and for chrome it uses the chrome driver.

For all these above-mentioned issues, Webdriver executes the test in a faster way.

Webdriver also supports testing mobile devices such as iPhone, iPad, and android phones as well

as tablets[33].

26

Disadvantages of Selenium [32]

1. Supports only web application testing:

Selenium supports web applications well enough but it doesn’t support windows based

applications.

2. Expertise required in programming language

As Selenium supports a variety of programming languages, it becomes easier for the

tester to write scripts in his preferred programming language. However, the professional

must have adequate expertise in the specific programming language to write test scripts.

3. Voluntary Assistance is required for Selenium Community

While using Selenium, testing professionals will need support and assistance to handle

technical issues. As Selenium is an open source technology, users (who are good

programmers) provide additional time to help of the Selenium community forums to

resolve the technical issues.

4. Additional Tools Required to Generate Reports [35]

Despite being effective in testing web applications comprehensively, Selenium still lacks

inbuilt reporting capabilities. Testing professionals have to use additional tools to

generate test reports while testing with Selenium. Additional framework or plug-ins like

JUnit or TestNG are used to generate test reports in Selenium.

5. Captcha and Bar code readers cannot be tested using Selenium.

In spite of all these limitations, Selenium is still effective in reducing the test cycles drastically.

The reduced release cycle further help software companies in reducing the overall project cost.

[32].

27

2.4.6 Basics of Selenium Webdriver scripting:

Selenium Webdriver has the default driver as Firefox (Mozilla Firefox browser). Following are

some of the basic commands used in Webdriver scripting.

1. Creating New Instance of Firefox browser

Webdriver driver = new FirefoxDriver();

2. Open the expected URL in Browser

driver .get("http://www.google.com ");

3. Get the page title

driver.getTitle();

“getTitle()”, returns the title of the web page as a string.

4. Clicking on any element or button of webpage

driver findElement(By.id(“abc.")).click ();

In this example, locator “id” is used to find the HTML element on the web page.

5. Typing text in textbox area

driver.findElement(By.name("search")).sendKeys(" Name");

This syntax finds a web element with textbox and types text in that area using ’sendKeys’.

6. Shows the URL for current web page:

driver.getCurrentUrl();

This command displays the actual URL (current) of webpage [34].

7. Ending Browser Session

driver.close(); [35]

Selenium Webdriver uses “close()” to close the browser session.

http://www.google.com/

28

The following section, briefly describes the different web elements, which are used to locate

HTML elements in web page.

2.4.7 Locators in Webdriver:

In Selenium Webdriver, everything is related to web elements as it is a web application

automation tool. Web elements are presented on the web page as HTML elements. To perform

operations on a web element we need to locate the elements exactly. When a web element is

located, the tool continues to execute the script but if the locator type is not the correct, then

throws an exception. The command for locating elements using Webdriver starts with

“findElement”.

driver.findElement (By. <Locator>);

In the above statement, “By” is the class, where different static methods can identify the element.

As there are different type of locators in HTML webpage, it needs to specify the “Locator” to

identify web element, as following –

a) id – Locating any element using “id”, is the most preferred and effective way. This type

of locator is more explicit, in this case, the testing tool considers the first element with

matching id attribute. Usually, ids are unique.

findElement(By.id(“someId”))

b) name- findElement(By.name(“someName”))

Locator ‘name’ will locate the first element with a matching name attribute. If several

elements exist on that web page with the same name attribute, it’s better to choose some

other type of locator.

29

c) XPath- When there’s no other way to uniquely identify an appropriate id or name

attribute for the element that needs to be located, then XPath locator is used. There are

two types of XPath, absolute XPath and relative XPath. All XPath locators start with “/”

The example below is taken from the testing.

findElement(By.xpath(“//html/body/div/table/tbody/tr/td[2]”)), [XPath is discussed in

chapter -4]

d) linkText

This locates hyperlinks in the web page by using the text of a link.

findElement(By.linkText(“Google”)

e) By.partialLinkText - Locates the link element with partial matching visible text

findElement(By.partialLinkText(“Goo”))[35]

Above, I captured some of the basic commands in Selenium Webdriver. As I have used Java, the

commands are actually following general Java programming syntax and styles.

2.5 QTP/ UFT

Quick Test Professional (QTP) or Unified Functional Testing (UFT) both are automated

functional testing tools provided by Hewlett Packard (HP). HP developed QTP in 2006 and UFT

was released first in 2012. UFT is actually the latest version of QTP. QTP is the graphical user

interface (GUI) record-playback automation tool. QTP/UFT enables testing in standard windows

applications and web applications, where the web applications consist of web objects, ActiveX

controls, Java applets, Visual Basic applications, .NET framework applications and multimedia

objects. QTP/UFT uses Visual Basic scripting language for writing tests [19].

UFT/QTP facilitates generating tests scripts by recording operations. When navigating through

the application, UFT/QTP records each step and creates the test script. Once a test is generated,

30

it’s possible to make some amendments in the test script. After running a test, a resultant report

is generated showing the overall test pass/fail with details of which steps the test succeeded or

failed[36]. QTP/ UFT tests can be created in another way without recording, which is creating

the test scripts by writing Visual Basic (VB Script) code.

31

Table 2: Basic differences between QTP and UFT

Criteria UFT QTP

Type of Testing Provides both GUI and API

(service) testing.

Provides automated GUI

testing only [38].

Browser Support All the latest versions of Internet

Explorer till 11.0 and few version

of Google Chrome and Firefox

Supports up to Internet

Explorer version 9

[7].

Operating System Windows XP, Vista,2003,7, 8,

8.1, 10 and Windows Server

2008/Windows Server 2012

Windows

XP/2003/Vista/7 and

Windows Server 2008

[23]

How does UFT/QTP locate elements in an application or webpage?

UFT or QTP recognizes each element on the web page as an object and it uses Object Repository

(OR) that stores the objects information in QTP or UFT. Object repository works as an interface

between test script and test application, which identifies objects during testing.[37].

2.5.1 Features of QTP / UFT

- Recording Efficiency & Playback of the scripts

UFT/QTP provides the facility of recording the test and generating test scripts, where the script

can be executed multiple times for testing the application.

- Ease of Use: Since UFT/QTP provides the recording interface and playback the recorded

script; it turn out to be easier to learn. Recording the test script and playing it a number of times

31

does not require deep knowledge of Visual Basic scripting. Each line of the test script is clear

and understandable to users [38].

- Better Object Identification Mechanism: One of the greatest features of UFT/ QTP is the

object repository for identifying objects. The well-defined object repository stores the

information of all objects being used in the script.

- Language support: UFT/QTP both provides the option to record test and create code for

testing in Visual Basic (VB) scripting language.

- Browser Support: UFT/QTP supports Internet Explorer (IE) browser version up to 9 only,

where UFT supports latest IE browser version 10, 11 as well.

- Use of Keyword Driven testing: UFT/QTP provides the keyword driven testing technology.

In keyword driven testing, there are set of actions as well as logic to read keywords are created in

excel document. Then the UFT/QTP driver executes the test by connecting with excel document.

Once, this framework is created, the test becomes faster and easy to execute.

- Data-driven testing: The idea behind data-driven testing is executing/reusing the test script

with multiple data sets. The input data is stored usually in MS Excel, Access or XML files.

Therefore, the test script can extract input parameter from the files. This method of data driven

testing is offered by QTP/UFT, which is an efficient way of using test scripts with multiple sets

of input data.

- Support of Variety of Environments: UFT/QTP supports various add-ins for functional

testing, such as Windows, Web, .Net, Visual Basic, ActiveX, Java, SAP, Siebel, Oracle,

PeopleSoft, and Web services [38].

- Test run result reports: Once the test is executed, UFT/ QTP provides a summary of test

execution and a final pass/ fail result. [39].

32

Advantages of Using QTP/UFT

- It provides an option to test both windows and web applications.

- QTP/ UFT can be integrated easily with test management tools like Quality Center (QC).

- QTP/UFT provides better support or services for any technical issues related to the testing tool

because it’s a commercial tool [31].

Disadvantages of QTP/UFT

Following are some of the limitations of QTP/UFT, for not using as a primary testing tool in the

companies.

- Scripting Language: It only allows creating the test with Visual Basic scripting and

that’s not an object-oriented language.

- Limitations with browser and OS support: QTP is not compatible with many of the

latest browser types and versions as well as Operating systems. Only UFT supports the

latest Internet Explorer browsers and Windows.

- High licensing and add-ins Cost: QTP/UFT is remarkably costly. There is not only the

licensing cost but also cost is associated with upgrading to the latest features and

technologies [38].

Worst case is possible. If the QTP is not upgraded and the associated platforms (OS and

browsers) are upgraded to latest version, then it becomes quite impossible to use of the QTP for

test automation. That’s why UFT came into existence; it supports some of the latest technologies,

which QTP does not. Still, the organization needs to upgrade the UFT version, at the same time

they upgrade their other applications associated with UFT [31].

33

2.6 WATIR

WATIR, which means Web Application Testing in Ruby (pronounced water). It is developed to

perform the test for automating the web browsers using object oriented-scripting language Ruby.

WATIR consists of several smaller components. Among them the most commonly used are

WATIR classic and WATIR web driver.

WATIR supports a number of browsers, such as Internet Explorer, Firefox, Chrome, and Opera.

It has been used for functional testing, regression, and system testing.

WATIR Classic

This is the original WATIR that drives Internet Explorer.

Brief Working Principle

WATIR makes the proper use of Ruby’s Object Linking and Embedding (OLE) capabilities,

which is a built–in feature of Ruby and developed over Component Object Model (COM)

architecture. It makes possible to drive the Internet Explorer. COM allows the communication

between Ruby and Internet Explorer which is also called inter-process communication. COM

also permits the dynamic object creation and then manipulation. That’s how Ruby handles the

browser[40] [16].

WATIR Webdriver

WATIR-Webdriver provides a clean syntax and was inspired by Selenium Webdriver

frameworks. It has similar frameworks in other languages (Watij for Java and Watin for .NET/

C#). It allows driving of many web browsers – such as Chrome, Internet Explorer, Safari and

Firefox[41]. It has control over the webpages, which are built in HTML and JavaScript [42].

The WATIR-Webdriver is also called WATIR 2 as it combines WATIR (classic), Webdriver as

well as some additional features[43].

http://watij.com/
http://watin.org/

35

Basic commands in WATIR Webdriver:

The following section outlines some of the commonly used WATIR Webdriver commands.

- This command is essential to get started with WATIR Webdriver.

require 'WATIR-Webdriver'

- Starting a new browser using Firefox web browser

browser = WATIR::Browser.new :firefox

-For opening new session to a specific site (here, it’s google)

browser.goto (“http://www.google.com”)

WATIR syntax can be defined basically in two different ways. For identifying fields where data

can be inserted:

-For setting a text field

browser.text_field(:id, "……..").set (“....”)

or

browser.text_field(:id=>, ‘……..’).set

-For clicking a button in browser

browser.button(:value,"…..").click()

or

browser.button(:value=>,’…..’).click

-For clicking on a link,

browser.link(:text ,"......").click()

-For setting a radio button,

browser.radio(:value => ‘.... ’).set

http://www.google.com/
http://www.google.com/

36

Locating HTML elements

Locating HTML web elements using WATIR Webdriver works similarly as Selenium

Webdriver. The main difference is the WATIR Webdriver has a different syntax.

WATIR Frameworks

This section briefly describes the frameworks compatible with WATIR:

RSpec

This ruby framework is required when a lot of testing needs to be done. RSpec provides good

testing practices for ruby test professionals.

Cucumber

The Cucumber framework allows to write the whole test scenario in a plain English language

and after that, the final automated test cases are written in Ruby. The plain text used is written in

a domain-specific language (a language is used for simplifying specific software

domain/systems) and it bridges the gap between technical and non-technical users[44].

Test/Unit

Test/Unit is a unit testing framework for Ruby. It allows to write test scripts, debug and evaluate

the code in order to make it easy to maintain. The main idea behind the unit test of this tool is to

write a test method, that makes certain assertions about the code (assertions means: statements of

expected outcome)[45].

Advantages of WATIR

- One of the advantages is that WATIR uses object-oriented ruby language and ruby is

easy to get started with.

- WATIR has an automatic wait, which means it waits for a page to fully load, then tries to

identify the web element on the page. Unlike Selenium or UFT, WATIR does not require

37

wait command. It requires using wait command when the webpage is built with AJAX

[43].

- WATIR has a straightforward API with a number of features and can be integrated with

other frameworks as well to provide more functionalities. So, testing becomes easier and

simpler with WATIR [40].

Limitations of WATIR

- WATIR only allows testing of web applications.

- WATIR does not come with the record and playback of testing, where most of the automated

testing tools provide this option.

- Because it’s not flourished as much as Selenium, it has only limited number of resources

available online. So it is not always helpful in the cases when someone is stuck and needs help to

resolve technical issues.

38

Chapter 3: METHODOLOGY

This chapter discusses the method used for testing. It includes the selection of testing tools, the

various criteria to consider while performing the comparison among tools and the specification

of machine used for testing.

3.1 Selected Tools

A number of open source and commercial testing tools for windows, web and mobile

applications have been used by software industries. The fundamental purpose of these tools is

similar, but they differ in functionality, features and usability. For my comparative study, I have

selected to work with three open source tools: Selenium, WATIR and the trial version of

commercial UFT tool as QTP was not compatible with my Operating system and browsers.

3.2 Evaluation Metrics

● Script generation- the process of test script generation or creation using the tool;

whether it is a record playback tool or provides an ability to create scripts using different

programming languages. Most of the testing tools have the ability to record the test steps

and playback the recorded actions.

● Versatility- whether the tool supports relevant technologies or integration with other

tools which might make the automation process more efficient.[46]

● Preparation for automation – configuring or installing the tool and preparing it for

automation testing; how successful the tool was in executing the tests.

● Utilization- how the tool is utilized for different types of testing; how easy or complex it

is to use the tool, based on test results.

● Various browsers or operating system (OS) support- providing support to different

browsers and OS. This is one of the core features to be analyzed for each automated

39

testing tool.

● Test result generation – after executing the entire test, a final test result should be

generated, which provides the availability of the complete test logs and a pass or fail

result in the form of a test report. It is essential for executing a large set of test cases in

industries.

● Cost- cost is one of the most important factors in automated testing. Most of the

software industries prefer a cost effective tool. Three different testing tools have been

discussed in this paper and only one of them is a commercial costly testing tool.

● Miscellaneous factors- there are also some other criteria to compare,

including flexibility in using programming languages, database testing compatibility, test

execution speed as well as the learning curves for the beginners [39].

Specifications of Testing Machines (for Selenium and WATIR)

The following table (Table-3), refers different features of the machine used to accomplish the

tests.

Table 3: Features of the first Machine

Features Machine selected to perform the test

Manufacturer of computer used Dell

Operating System Windows 8.0, 64 bit OS

RAM 4 GB

Processor Core i3,CPU 2.4GHz

Browser used

Mozilla Firefox version 41.0.2 ; for testing with

Selenium IDE, Webdriver, and WATIR

40

3.3 Target Application

For this research, I have chosen widely used university website to accomplish the testing task on

the course registration process. This is the e- Services website for St Cloud State University.

(https://webproc.mnscu.edu).

3.4 General Testing Approach

The first step is to write the test cases. Therefore, a number of test cases have been created in

order to perform the automated functional testing for course registration process using Selenium

(IDE and Webdriver), WATIR and UFT. The overall testing was done using the test cases. For

Selenium Webdriver writing test scripts were performed in java and within eclipse IDE; UFT has

its own IDE. Finally, for WATIR, each line of the test scripts has been written and executed one

by one using Ruby command prompt (irb).

The versions I used for each of the tools are the following:-

Selenium IDE (as a browser plugin) - 2.9.1

Ruby version for WATIR Webdriver -2.00- p645

UFT version- 12.5

Selenium Webdriver client version – 2.45.0 (for Java)

After executing the testing with all the tools, various features and aspects of all these tools will

be discussed as well as the comparison among these tools will be presented in the next chapter.

https://webproc.mnscu.edu/

41

Chapter 4: TESTING AND RESULT ANALYSIS

In this chapter, the details of the testing procedures will be described, which includes the creation

of test cases, test scripts, explanations of testing performed, observations after conducting the

tests as well as a comparison performed among all the testing tools.

4.1 Test cases

In Table-4, I encompassed the overall test scenario (includes expected result to perform, actual

result and overall result as pass/fail) of the course registration process, in the form of test cases.

Table 4: List of Test cases

Expected Result

Actual Result

Overall

Result

1. Able to redirect to the SCSU- e-

Services website (while testing with

Selenium);

Able to redirect to SCSU- record and

registration web page and able to click to e-

Services link (while testing with WATIR/

UFT).

Was able to see the homepage of e-

Services ;

Was able to see SCSU – Record and

Registration home page and then link

to e-Services was visible.

Pass

2. Able to click on the StarID field on the

homepage and enter the ID (as8834hl)

Was able to see Star ID (as8834hl)

field typed automatically

Pass

3. Able to click password(********) field

and enter password for sign in

Was able to see password (********)

typed automatically

Pass

42

 Table 4 Continued

Expected Result

Actual Result
Overall

Result

4. Able to click on the LOGIN button for

sign in.

Was able to see the successful login

and the student ID displayed on the

upper right side of home page.

5. Able to see ‘Courses and Registration’

on the left side of the page, and able click

into that link

Was able to see the page with title:

Courses and Registration

Pass

6. Able to click on the link for ‘Search for

a Course‘ on the left widget

Was able to see the course search page
Pass

7. Able to see a dropdown box for

‘Subject’ field and select a course

‘Chemistry’

Was able to select ‘Chemistry’ from

drop down

Pass

8. Able to click on the search button Was able to see search result page

displayed with all the offered courses

for ‘Chemistry’

Pass

9. Able to select and click on the desired

course : ‘Forensic science’

Was able to see the ‘Forensic science’

course detailed page displayed with all

the info of that course

Pass

10. Able to click on the ‘Add’ button on

the upper left side of the page

Was able to see a pop-up message box

appeared after the adding the course,

with displaying either of the following

Pass

43

 Table 4 Continued

 message ‘Course has been added to

your wish list’ or ‘The course is

already in your wish list’ (if the test is

run multiple times, without logging

out).

11. Able to ‘accept’ or click ‘ok’ to the

above appeared ‘Alert pop-up’ to leave that

page or change the action

Was able to see the alert pop-up

handled and disappeared

Pass

12. Able to click on the link for ‘Continue

to review my plan’ in order to verify

whether the course is added to wish list

Was able to add the course under the

wish list section

Pass

13. Able to select that course by clicking

the checkbox

Was able to see the course got selected
Pass

14. Able to click on the ‘Remove selected

course from the wish list’ button , in order

to remove that course from the wish list

Was able to see the selected course

removed from the list and a message

appeared as ‘Course has been removed

from wish list’

Pass

15. Able to click on the logout link on the

upper right of the page

Was able to see that it logs out and

brings back to the Logout Successful

page.

Pass

44

4.2 Method used to locate HTML element

In order to write the code for testing, regardless of tools (Selenium IDE, Selenium web driver or

WATIR) used, HTML content for the webpage is needed to generate and understand. To identify

web page elements fast and in an accurate way, different browser tools can be utilized. I have

used ‘Firebug’, which is a Firefox browser add-on. It just needs to be configured in the browser.

In order to find an HTML attribute, an individual needs to hover over that area on the web page

then, Firebug highlights the HTML code for that small portion.

For example, in Figure-1, on e-services login page, I went through the process of locating web

element using HTML tag name for StarID field. The bold circle outlined area in the left corner is

the tab for ‘Firebug’ tool. Using Firebug, I hovered over the ‘StarID’ field (outlined in bold) and

it showed the corresponding HTML code below in highlighted section. From that section, it is

possible to find out the exact HTML tag name or attribute, which should be unique for that field.

45

Figure-1: HTML element locating procedure on web page

But this is not the case always, as most of the page element attributes are not static. These

attributes can change anytime, then the code will fail. That’s why it’s required to look for an

alternative way and this can be done using ‘XPath’ from HTML source code. XPath is a syntax

and uses path expressions to navigate in the XML documents.

There are two types of XPath available:

Absolute XPath: It defines the specific location of the web element (finds element in the form of

a tree). An absolute XPath begins with a root node. The advantage of using absolute XPath is

that it identifies the element very fast. On the other hand, if a small change occurs in the source

code (if any other web element or HTML tag name is changed/ added in that webpage), the

46

absolute XPath will fail. Here’s the example of absolute XPath for StarID field:

html/body/div/div [id@=’userName’]

Relative XPath: It doesn't need to start from the root node. A relative XPath can begin from the

current location and is prefixed with a ‘//’. The syntax for writing a relative XPath,

//tag name[@attribute = ‘value’]

Here is the relative XPath for StarID field: //*[@id='userName'].

This one is very straightforward, as already there is a unique ‘id ‘attribute available for StarID.

XPaths can be complicated, when there is no unique attribute (id, name, value Etc.) available for

a specific field. The benefit of choosing the target elements as XPath is that the HTML tag

names are likely to stay unchanged for a longer period and therefore requires less maintenance

on code.

The following screenshot shows the method of locating the absolute XPath for StarID field.

47

Figure-2: HTML source code on e-services login page

It starts with the HTML root node ‘head ’, then inside the ‘body, there are two main div tags to

expand and then ‘id’ = username is found.

4.3 Test using Selenium IDE:

-Configuring the tool

The Selenium IDE tool can be downloaded directly and configured as a browser plugin for

Mozilla Firefox. There’s no need to install this tool.

48

-Testing Details:

Once the recording mode is activated, after starting play, then any data entered in the browser

will automatically be recorded in the Selenium IDE, in an unencrypted form. For example,

entered user IDs, passwords, and URL changes are recorded as clear texts. Scripts in Selenium

IDE consists of commands, target, and value. Command is an action to perform; the target is the

destination field, which is the HTML web element entered against each command; values are

very specific and entered against target field [11].

All the commands, targets and values in Selenium IDE can be entered either manually or by

recording a script. For each test step, Selenium IDE compares and matches the entered ‘target’,

and ‘value’ fields with the actual ones in the webpage. If the actions match, it passes the test,

otherwise test fails. Selenium IDE generates its test result or logs based on the execution of each

test case, which can be found under the ‘log’ tabs in the bottom.

I entered all the actions in Selenium IDE manually, following the HTML source code on the

webpage and based on the test cases.

In Table -5, I have enlisted the scripts, which were executed in Selenium IDE against each test

case.

Table 5: Selenium IDE Test script

Command Target Value

1. Open https://webproc.mnscu.edu/esession/authent

ication.do?campusId=073&postAuthUrl=htt

p%3A%2F%2Fwebproc.mnscu.edu%2Feser

vices%2Flogin.html%3Fcampusid%3D073

2. Type id=username as8834hl

https://webproc.mnscu.edu/esession/authentication.do?campusId=073&postAuthUrl=http%3A%2F%2Fwebproc.mnscu.edu%2Feservices%2Flogin.html%3Fcampusid%3D073
https://webproc.mnscu.edu/esession/authentication.do?campusId=073&postAuthUrl=http%3A%2F%2Fwebproc.mnscu.edu%2Feservices%2Flogin.html%3Fcampusid%3D073
https://webproc.mnscu.edu/esession/authentication.do?campusId=073&postAuthUrl=http%3A%2F%2Fwebproc.mnscu.edu%2Feservices%2Flogin.html%3Fcampusid%3D073
https://webproc.mnscu.edu/esession/authentication.do?campusId=073&postAuthUrl=http%3A%2F%2Fwebproc.mnscu.edu%2Feservices%2Flogin.html%3Fcampusid%3D073

49

 Table 5 Continued

Command Target Value

3. Type id=password ********

4. clickAndWait xpath=//input[@value='Login']

5. clickAndWait link=Courses & Registration

6. clickAndWait link=Search for a Course

7. select id=subject label=Chemistry

(CHEM)

8. click //option[@value='CHEM']

9. clickAndWait class=btn-primary

10. clickAndWait link=Forensic Science

11. click xpath=//*[@id='main']/table[1]/tbody[2]/tr/t

d[1]/div/a[1]/img

12. assertAlert The course is currently in your Wish List

13. clickAndWait link=Continue to Review My Plan >

14. click name=selectCourse_002163_20165_0073_0

073_false

15. clickAndWait xpath=(//*[@id='ViewCartForm']/p/input[2]

)

16. clickAndWait link=Logout

50

Figure-3: Selenium IDE executing command on course search page

51

Figure-4: Selenium IDE test fails for not matching actual value on page with test input value

Figure-3, in the above, is a snapshot of performing the test in Selenium IDE. The IDE also

provides the test execution logs; here it shows, each line of test script execution without any

error.

The Figure-4 shows a test case that failed to execute. It generated an error log at the end of the

test in Selenium IDE. It fails while testing the pop-up alert on the webpage. It failed because the

actual text of the pop-up alert was different than the text provided in ‘target’ field of Selenium

IDE as input.

52

Figure-5: Test case passes on updating the target alert message on Selenium IDE

53

Figure-6: When all the test cases pass from login to logout

Figure-5, shows the test passes successfully in Selenium IDE while providing the correct input

for the pop-up alert text. Figure-6, shows a snapshot of executing the final test case was

successful in Selenium IDE and it was the logging out activity from e-Services website.

Observation for Selenium IDE:

1. Setup and configuring with the browser is easy and fast, although it works with only

Firefox browser.

2. The execution time of test cases or whole test scenario can be controlled by adjusting

the speed of Selenium IDE, from slow to fast.

3. Sometimes the test cases fail because of not adjusting the speed of execution

appropriately and there’s no certain way to fix the speed always. If it fails because of

executing test very fast, it does not show the exact reason in ‘log’ tab. It needs some

54

troubleshooting, to figure out the actual reason for failing test cases.

4. Each time when the test case is run, it needs to start from the beginning; it can’t start

from the point where it was paused last time. So, when the numbers of test cases are

huge, it takes too much time to run multiple times, but provides better recording

efficiency, if the whole test scenario is recorded in one attempt (although, that’s not a

common scenario).

5. It’s not very reliable when the value of different attributes (such as id, name) are

changing frequently. So, for reusing the test script, it needs to be updated from time-

to- time.

4.4 Test using Selenium Webdriver

Configuring Selenium Webdriver:

As I have tested Selenium Webdriver using java language, it requires both java and eclipse IDE

to be installed first and then downloaded ‘Selenium client and Webdriver language bindings’ for

java. In order to start testing with Webdriver, I needed to configure the Selenium library and jar

files to the project build path. After creating the ‘Referenced Libraries’ along with the project, all

the library files need to be displayed inside reference libraries. Then only it allows executing java

test codes.

Scripts in Selenium Webdriver:

The section below is the java code for Selenium web driver which was executed in eclipse IDE.

import org.openqa.Selenium.Alert;

import org.openqa.Selenium.By;

import org.openqa.Selenium.firefox.FirefoxDriver;

import org.openqa.Selenium.support.ui.Select;

55

public class SelHusky1 {

/**

*@param args

* @throws InterruptedException

*/

public static void main(String[] args) throws InterruptedException {

// TODO Auto-generated method stub

//**Create firefox driver to drive the browser**

FirefoxDriver dr = new FirefoxDriver();

//** Open e-Services logon page website homepage**

dr.get("https://webproc.mnscu.edu/esession/authentication.do?campusId=073&postAuthUrl=http

%3A%2F%2Fwebproc.mnscu.edu%2Feservices%2Flogin.html%3Fcampusid%3D073");

//**Enter username in the StarID field**

dr.findElement(By.id("userName")).sendKeys("as8834hl");

//**Enter password field**

dr.findElement(By.id("password")).sendKeys("Today123");

//**clicking to the Login button, which brings to e-services homepage**

dr.findElementByXPath("//input[@value='Login']").click();

//**Clicking to the link of courses and registration **

dr.findElementByLinkText("Courses & Registration").click();

//**Waits for the next web element to load **

Thread.sleep(30000);

//**Clicking to the link of Search for a course**

56

dr.findElementByXPath("//div[@id='main']/ul/li/a").click();

//**Selecting a subject(here it's chemistry) from dropdown box **

Select course=new Select(dr.findElement(By.id("subject")));

course.selectByValue("CHEM");

//**Searching the courses for selected subject**

dr.findElementByXPath("//form[@id='AdvancedSearchForm']/input[5]").click();

//**Waits for correct page to be displayed......**

Thread.sleep(30000);

//**Looks for Quantitative Analysis course and enters to course content**

dr.findElementByXPath("//*[@id='Forensic Science002163']/a").click();

//**Waits for the next web element to load **

Thread.sleep(300);

//**Add course to the wish list**

dr.findElementByXPath("//*[@id='main']/table[1]/tbody[2]/tr/td[1]/div/a[1]/img"

).click();

//**Setting the alert command to handle the dialogbox,after adding the

course**

Alert alert = dr.switchTo().alert();

//**Will Click on OK button**

alert.accept();

//**Entering to link of Continue to review my plan **

dr.findElementByLinkText("Continue to Review My Plan >").click();

//**Waits for the next web element to load **

56

Thread.sleep(30000);

//**Selecting the course which was just added**

dr.findElementByName("selectCourse_002163_20165_0073_0073_false").click();

//**Removing that course from wish list**

dr.findElementByXPath("//*[@id='ViewCartForm']/p/input[2]").click();

// **Logout from e services**

dr.findElementByLinkText("Logout").click();

}

}

57

Figure-7: Selenium Webdriver test script written in java eclipse IDE_part1

58

Figure-8: Selenium Webdriver test script written in java eclipse IDE_part2

59

The above figures (Figure-7 and Figure-8) present the complete test scripts of Selenium

Webdriver written in java and within Eclipse IDE.

Explanation of the code used for testing

As I have chosen to test with only Firefox browser, Firefox plugins for Selenium must be

imported in beginning of writing the test code. The following packages are imported in the code:

Importing Selenium Packages

To start with the code we need to first import following packages: –

1. org.openqa.Selenium - Contains the Webdriver class needed to instantiate a new

browser loaded with a specific driver.

2. org.openqa.Selenium.firefox.FirefoxDriver – Contains the FirefoxDriver class needed

to instantiate a Firefox-specific driver onto the browser.

3. org.openqa.Selenium.By

The ‘By’ class is used to locate any element on the webpage and this class has subclasses.

Depending on the finding mechanism, there are many subclasses (i.e. ByName, ByXpath,

ByLinktext..etc).

4. org.openqa.Selenium.support.ui.Select

Represents a SELECT tag, providing helper methods to select and deselect options.

Initiating a Driver Object

For testing, I have used firefox browser, the Driver object is instantiated as below –

FirefoxDriver dr = new FirefoxDriver();

The default Selenium driver “FirefoxDriver()” is launched by the Java Program.

60

Launching the Browser Session

“dr.get()” method is used for launching new browser session, where the URL is specified as a

parameter in ‘get()’

Finding the element on the webpage

As discussed earlier, findElement() method is used to find any element on the webpage. In my

test, I have used various type of locators, such as id, name, value, XPath, linktext etc.

Applying Wait method:

Sometimes the browser needs time to load a specific page, this is the reason for using wait

command. In the code, I have used generic java wait method with Thread.sleep (). The fraction

of time used inside sleep (), is milliseconds and that can vary based on the wait time.

Following up Alerts :

I have used the following method to check if the alert is present on the webpage:

alert = dr.switchTo().alert();

"switchTo().alert()" method is used to access elements within alert box.

To close the alert pop-up with clicking 'OK', the following method is used:

alert.accept();

Selenium alert interface has own methods for handling alerts, such as accept (), dismiss (),

respectively for accepting or dismissing. It needs to import the following package:

import org.openqa.Selenium.Alert;

Observation for Selenium Webdriver:

1. Configuring Selenium Webdriver with java and eclipse takes a little more

time and it needs to follow a systematic process to configure properly.

2. Sometimes, I encountered a java error, “Unable to locate element” (error in

Figure-9), which occurred due to the fast loading of webpages. Although, a

61

human can view the availability of certain link/button/text in the webpage but

it takes little more time for the testing tool to compare and match the defined

input in the test code to the html element on the web page. In order to avoid

that error, I have used the thread.sleep () method, where the browser waits for

the definite amount of time entered in the sleep() function.

Another similar issue occurred, when the firefox browser was auto- updated

to latest version and I executed the Selenium Webdriver code without

upgrading Webdriver version and received the same error (in Figure-9).

Finally, I needed to revert back the browser upgrade, to execute the code

without error.

3. The main difference between Webdriver and IDE is that the commands for

IDE are too specific to each testing step, where the Webdriver coding style is

more generic. For example, the alert() function is appropriate for any type of

alert or pops up handling in the web page, regardless of the texts in the

dialogbox. Webdriver codes are more reusable.

4. Selenium Webdriver does not provide any test result after executing the test.

62

Figure-9: Error during executing test in Selenium Webdriver

4.5 Comparison between Selenium IDE and Selenium Webdriver

Table 6: Selenium IDE vs. Selenium Webdriver

Selenium IDE Selenium Webdriver

1. It’s mainly a record and playback tool This tool provides option to create test scripts.

2. It runs only on Mozilla Firefox It uses number of brewers: Firefox, IE,

Chrome, Safari, Opera

3. It uses IDE specific commands, which

is called ‘Selenese’ (the language used to

script in selenium IDE).

It utilizes different programming languages,

such as Java, Python, C#, PHP, Ruby, and

Perl.

63

 Table 6 Continued

Selenium IDE Selenium Webdriver

4. A test recorded using IDE, might not

always pass if it is saved and played again;

Because IDE just cares about the elements

on the web page at the time of recording,

which frequently changes.

Once a script is written and successfully

executed using Selenium web driver, it can be

run later and has fewer chances of failing; As

Webdriver coding style is more generic.

5. It explicitly shows if a test is a

pass (in Green) or fails (in Red).

It does not show anything if a test is pass or

fail. The console log shows only the number

of error messages if the test fails.

6. It’s easier to use, as a little

programming knowledge is needed only. It

requires understanding the HTML source

code for webpage.

Selenium Webdriver requires good skills in

any of the programming languages it offers.

7. This tool can be easily configured in

Mozilla Firefox browser and it’s a Firefox

browser add-on

Webdriver using java can be configured in

Eclipse IDE.

8. In IDE there is a built-in option of

adjusting test case execution speed

In Webdriver, there are different ways to

manage the test case execution speed. While

using java, it can be handled by

synchronization (explicit and implicit wait)

and also by using thread sleep() method.

64

4.6 Test using UFT

Installation of UFT:

Installing UFT or QTP for free of cost, is possible only for 1 month, with the unlicensed version.

In order to download the tool, an account in HP needs to be created. The installation process for

UFT is simple and easy, it provides option to install number of features such as ALM

(Application Lifecycle Management) plug-in, Visual Basic add-in .NET add-in, web add-in, java

add-in, oracle add-in and some more within the installation package. After the installation, it’s

recommended to use just a few feature at a time for faster execution. For my testing, I just used

web and visual basic add-in.

Scripts in UFT:

‘On Browser IE 11, open the SCSU- Record and Registration webpage and click to the e-

Services link

Browser("SCSU - e-Services").Page("Records and Registration").Link("eServices").Click

'Opens the e Services stduent login page; Entering StarID

Browser("SCSU - e-Services").Page("Login Page").WebEdit("userName").Set "as8834hl"

'Entering password

Browser("SCSU - e-Services").Page("Login Page").WebEdit("password").Click

wait(2)

' The line below added by UFT automatically for encrypting the password

Browser("SCSU - e-Services").Page("Login Page").WebEdit("password").SetSecure

"56a6f3de0800dde2ed5818872346949ec3ef33573aac"

‘Click to login button

Browser ("SCSU - e-Services").Page ("Login Page").WebButton("Login").Click

65

wait(2)

'On successful login, click to courses and registration link

Browser("SCSU - e-Services").Page("Student Portal - 2.8.0").Link("Courses &

Registration").Click

wait(2)

'On courses and registration link, click again to Search for a Course link

Browser("SCSU - e-Services").Page("Courses and Registration").Link("Search for a

Course").Click

wait(2)

'On course search page, select the subject of study and it's chemistry

Browser("SCSU - e-Services").Page("Course Search - Student").WebList("subject").Select

"Chemistry (CHEM)"

wait(2)

'Click search for classes

Browser ("SCSU - e-Services").Page ("Course Search - Student").WebButton("Search >").Click

wait(2)

‘Select and click for any of the classes offered for Chemistry (Selected class name is Forensic

Science)

Browser("SCSU - e-Services").Page("Course Search Results").Link("Forensic Science").Click

wait(2)

' Enter into the selected class(Forensic Science) and click to add the class

Browser("SCSU - e-Services").Page("Course Detail - Student").Image("plus-icon").Click

wait(2)

66

' An alert pop-up appears, after adding the course

' Below dialog box is to handle the pop up

Browser("SCSU - e-Services").Dialog("Message from webpage").WinButton("OK").Click

wait(2)

' Click Continue to review my plan link to view the added class

Browser("SCSU - e-Services").Page("Course Detail - Student").Link("Continue to Review

My").Click

wait(2)

'Select the added class to remove

Browser("SCSU - e-Services").Page("Review My Plan - Student").WebElement

("selectCourse_002163_20165_0073").Click

wait(2)

' To turn ON the check box, while selecting the course for removal

Browser("SCSU - e-Services").Page("Review My Plan - Student").

WebCheckBox("selectCourse_002163_20165_0073").Set "ON"

wait(2)

' Click the button to remove the selected course

Browser("SCSU - e-Services").Page("Review My Plan - Student").WebButton("Remove

Selected Course(s)").Click

wait(2)

' After successful removal of that course, Clicking logout link

Browser("SCSU - e-Services").Page("Review My Plan - Student_2").Link("Logout").Click

67

Figure-10: UFT test script-1

68

Figure-11: UFT test script-2

69

Figure-12: Test result after executing test in UFT

The above screenshot (Figure-10), presents the test scripts in UFT. The test scripts were

generated by recording the test cases of course registration process. Figure-11, shows the result,

after executing the entire test successfully. The result includes test execution time, duration and

overall result (pass or fail).Since the test was a ‘pass’, so there was no additional information

displayed in test result page.

Explanation of UFT Script:

Different versions of the system, OS and browser have been used to perform the test using UFT

tool, which is presented in the following table.

70

Table 7: Features of the second Machine

Operating System Windows 10, 64 bit

Browser Internet Explorer (IE) 11.0

UFT 12.52 version (latest)

Computer HP, core i3, 1.9 GHz processor, 8GB memory

UFT is the latest version of QTP, which supports some advanced new features. As mentioned

earlier, the core reason behind using UFT tool is that UFT supports all the latest operating

systems and browsers, whereas QTP supports only the older versions of browsers and operating

systems, which is not feasible for testing.

Testing with UFT is a little different than using Selenium or WATIR, as it generates code in

Visual Basic scripting language and identifies any web element in the form of ‘object’. When it

tests a web application, UFT records everything and saves the objects in the object repository. If

any changes occur in the web page, it needs to change the name of the specific element in the

object repository, instead of changing the script. Then object repository modifies the script

automatically.

UFT executes test script very fast. In order to adjust the test execution speed, I have used the

wait () method, which takes parameter in seconds. In UFT, each line of the test script is

generated in a hierarchical manner. It starts with the ‘browser’ class, then a web ‘page’ class and

then performs any specific action with WebEdit, WebButton, Link (classes) on objects using

‘click’ or ‘set’ method. The web elements recognized as objects in QTP/UFT, are stored in the

object repository. Using the object repository, the object names can be customized as well. As,

QTP / UFT provides default names to the objects, while recording.

71

Observation for UFT Test:

1. UFT records or executes scripts very fast.

2. UFT utilizes the idea of object repository for identifying web element.

3. It generates test result, after running and completing the test, which shows the duration of

testing time as well as lines of code, whether it passes or fails.

4.7 Test using WATIR Webdriver

Installing and configuring WATIR:

For installing WATIR, first of all Ruby needs to be installed. I installed Ruby version of 2.00-

p645. Then from control panel, systems -> Advanced system settings-> Environment variable ->

Path should be appended with the Ruby’s current location. The following command needs to be

executed in command prompt to install Ruby gems, ‘gem update --system’. Finally, to install

WATIR Webdriver, ‘gem install WATIR-Webdriver’ needs to be run.

Scripts in WATIR Webdriver:

Using command prompt, executed following commands:

**To start with Ruby **

irb

**code will be written using WATIR Webdriver **

‘require WATIR-Webdriver’

** Starts a new session in firefox browser**

irb(main):050:0> browser = WATIR::Browser.new :firefox

WATIR response after opening a new browser session

=> #<WATIR::Browser:0x..f81a18b4 url="about:blank" title="">

Redirects to the St Cloud State, Records and registration website

72

irb(main):051:0> browser.goto("https:stcloudstate.edu/registrar/")

**WATIR response: successfully loads the URL **

=> "https://stcloudstate.edu/registrar/"

**Clicks to the link of e Services **

irb(main):053:0> browser.link(:text,"eServices").click()

=> nil

**Setting username field for e- Services sign in **

irb(main):054:0> browser.text_field(:id,"userName").set("as8834hl")

=> ""

**Setting password field for e- Services sign in **

irb(main):055:0> browser.text_field(:id,"password").set("Today123")

=> ""

Clicks to the Login button

irb(main):056:0> browser.button(:value,"Login").click()

=> nil

**Clicks to the link of Courses & Registration **

irb(main):057:0> browser.link (:xpath,"//*[@id='app-links']/ul/li[4]/a").click()

=> nil

Clicks to the link of Search for a course

irb(main):058:0> browser.link(:xpath,"//*[@id='main']/ul/li[1]/a").click()

=> nil

**Selecting a subject (here it's chemistry) from dropdown box **

irb(main):059:0> browser.select_list(:id,"subject").select("Chemistry (CHEM)")

73

=> "Chemistry (CHEM)"

Searching the courses for selected subject

irb(main):060:0> browser.button(:value,"Search >").click()

=> nil

**Enters to the search course results page and clicks to the link for ‘Forensic Science’

course **

irb(main):061:0> browser.link(:xpath ,"//*[@id='Forensic Science002163']/a").click()

=> nil

Add course to the wish list

irb(main):062:0>browser.img(:xpath,"//*[@id='main']/table[1]/tbody[2]/tr/td[1]/div/a[1]/img"

).click()

=> nil

Setting the alert to handle the dialog box, after adding the course

irb(main):063:0> browser.alert.ok

=> ""

** Entering link to -Continue to review my plan **

irb(main):064:0> browser.link(:xpath,"//*[@id='main']/span/a").click()

=> nil

** Select (click to the checkbox) the course, just added**

irb(main):065:0>

browser.checkbox(:name,"selectCourse_002163_20165_0073_0073_false").set

=> nil

Removing that course from wish list

74

irb(main):066:0> browser.button(:value,"Remove Selected Course(s) from Wish List"”).click()

=> nil

** Clicks to the Logout link **

irb(main):067:0> browser.link(:text,"Logout").click()

=> nil

Explanation of WATIR Webdriver script:

WATIR Webdriver works similarly like Selenium Webdriver. It also uses HTML source codes

to locate web elements. The main difference is in the syntax, although the WATIR Webdriver

functions in a simpler way [41].

Figure-13: Start of test scripting with WATIR Webdriver in Ruby command prompt

75

Figure-14: WATIR Webdriver test scripts

Figure-12 shows the initiation of the test using scripting in WATIR Webdriver. The first line in

command prompt shows the inclusion of WATIR Webdriver.

Figure-13 shows each line of test script execution in WATIR Webdriver. If the test script runs

successfully, it provides a null response (“” or ‘nil’). Otherwise, it shows error.

76

Figure-15: Error while testing with WATIR Webdriver

Observation for WATIR Webdriver:

1. I used command prompt for executing WATIR Webdriver test code. In the command

prompt, at a time each line of test code is executed instead of executing the whole code,

which provides better efficiency.

2. In case of any error or test script fails to execute, the testing does not need to restart the

testing from the beginning (see in Figure-13). Once the issue is resolved it starts

executing subsequent test cases.

3. There are actually not much online support or resources available for testing with

WATIR.

4. Several times I encountered an error (WATIR::

Exception::UnknownObjectException:unable to locate element) for using either

incorrect HTML attributes name (id, name, value) or non-matching HTML elements

(Link, button, text_field) on the webpage (see Figure-14). WATIR is very specific about

spacing in the code. The test might fail because of more/less spacing while executing a

command.

77

5. If the source code of web application is written in HTML, then WATIR Webdriver can

be used for test automation.

4.8 Comparison among Selenium, WATIR, and UFT/QTP

The key features among the testing tools have been compared and the result is summarized in the

following table (Table-8). Most of the comparison criteria encompassed here are based on

available features of the testing tool as well as some of the criteria are also based the test results.

Table 8: Comparison among Selenium-WATIR-UFT/QTP

Criteria Selenium WATIR QTP/UFT

Browser Multi-Browser support,

such as Internet Explorer

(IE), Firefox, Chrome,

Opera, Safari.

WATIR-Webdriver

supports Chrome,

Firefox, Internet

Explorer(IE) and

Opera

QTP supports only older

versions of IE, Firefox,

chrome and safari. UFT

supports the latest

versions of IE and some

of the Firefox and

chrome browsers.

Programming

language

support

Java, Ruby, Perl, Python,

and C#.

Ruby Visual Basic scripting

OS Support Windows, Mac, Linux. Windows, Mac,

Linux.

All Windows; Also UFT

supports the latest

windows 10.

http://watirwebdriver.com/
http://watirwebdriver.com/
http://watirwebdriver.com/
http://watirwebdriver.com/
http://watirwebdriver.com/

78

 Table 8 Continued

Criteria Selenium WATIR QTP/UFT

Framewor

k support

C# : Nunit

Java: JUnit/TestNG

Python: pyunit, py.test,

robot

Javascript:WebdriverJS,

WebdriverIO, Nightwatch

JS

Cucumber, RSpec,

Test/Unit

Data Driven automation

framework

Keyword Driven

automation framework

Pop-up

support

Selenium has built-in

support for pop-up dialog

boxes.

Pop-ups are

accessible using API

Support testing with

pop-up dialog box.

Identification

of web

elements

Locates web element from

HTML source code using

a link, text, checkbox,

XPath etc. and attributes

(id, name, value).

Uses the same

method as Selenium

Webdriver.

Recognizes everything

as an object (uses object

repository) on the

webpage.

Installation

process

Selenium IDE is just a

Firefox plug-in, so it’s

simple and quick;

Selenium web driver

requires JDK (for java)

and IDE installed.

Configuring WATIR

web driver using ruby

command prompt is

simple, requires prior

installation of ruby.

Install process allows to

include required add-ins

for testing. Installation

is quick and simple.

79

 Table 8 Continued

Criteria Selenium WATIR QTP/UFT

Script

execution

speed

Depends on wait method.

Executes too fast, if wait is

not used.

Slower than Selenium

Webdriver and UFT

Depends on wait

method. Executes too

fast, if wait is not used.

Ease of use Easy to get started with

Selenium IDE, because it

provides the recording of

test. However, Selenium

Webdriver requires

programming skills.

Basic level of

scripting is not too

difficult with

WATIR.

Easy to get started with

recording and playback

mode of the tool.

Learning

Curve

Learning curve rises high,

switching from Selenium

IDE to Selenium

Webdriver. Good

programming knowledge

required to create test

scripts in Webdriver.

Learning curve is not

as high as Selenium

Webdriver / UFT.

Good knowledge of

Ruby is required for

advanced level.

Deep learning curve;

As it requires test code

creation in Visual Basic

scripting, for both

windows and web

based applications.

Type of Web

application

support

Supports HTML, flash

contents in web the

application.

WATIR supports

only the web

applications, built

with HTML code.

HTML based web

applications and Flex

add-in for supporting

flash.

80

 Table 8 Continued

Criteria Selenium WATIR QTP/UFT

Parallel

executions

Supports parallel

execution; with the concept

of Selenium grid.

It uses WATIR Grid,

which supports

parallel execution of

water test cases by

using threads.

Supports test execution

on multiple browsers at

the same time, in only

one machine.

Types of

testing done

Mostly functional and

regression

Mostly regression

and functional.

Functional and

regression.

Application

support

Web and mobile

Applications

Web and mobile

Applications

Windows, web and

mobile applications

Cost of using Free of cost, as its open

source

Free of cost, as its

open source

Costly, as having the

only commercial

version. And a 30-day

trial version available

for free.

Different

mobile device

support

Two major mobile

platform iOS and Android

Android and iOS

device support

Supports iOS, Android,

blackberry and

windows phone

Support for

file upload

Supports file uploading,

during test

Supports file

uploading during test

QTP/UFT provides file

uploading with HP

Quality Center tool (a

test management tool)

81

 Table 8 Continued

Criteria Selenium WATIR QTP/UFT

Databas

e

Support

Selenium can't connect

with the database by itself.

Depends on the

programming language it’s

using if that supports

database; For example,

Java has JDBC API, to

connect with database

(requires JVM to run in

system)

With the help of

ruby, it can connect

to database

With the help of Visual

Basic script and

ODBC, it can connect

to the database.

Test result

generatio

n

Selenium Webdriver can

generate test result by

integrating with other

testing frameworks (such

as TestNG).

With the help of

RSpec famework

WATIR can generate

HTML report of test

results.

After each test

execution, QTP/UFT

provides test run

results, which shows,

whether each line of

test script passes/ fails

as well as the duration

of test execution.

82

Chapter 5: CONCLUSION

Traditionally, automated and manual testing are considered as different and separate approaches

are used for their execution. In reality, they depend on each other, as the limitation of one is

addressed by the other one. Manual testing can be useful for finding bugs in special cases where

the requirement changes continuously, and situations where automated tests might not be the

most effective. However, test automation has many advantages such as repeatability,

consistency, better and effective handling of test cases (for situations where a large number of

test cases need to be executed). The core difference between manual and automation testing is

that test automation is most appropriate for the situation where repetitive work needs to be done

(re- testing with same or different test data but the same test script). But it cannot eliminate all of

the bugs in the application without the help of manual testing. So, automated tests are good at

breadth but not much at depth [47].

In this paper, the analysis and comparison are made among different automated testing tools

(Selenium IDE, Selenium Webdriver, WATIR and UFT/QTP) on various quality factors. After

the overall analysis, it is not easy to rank these tools based on a number of factors only. Selenium

provides the freedom to work with all types and almost all the versions of browsers, operating

system as well as flexibility to choose one among many programming languages. However, its

access is limited to web applications only. Another automation tool WATIR has become also

popular nowadays. It also supports almost all the browsers, but it lacks record and playback

functionality, which could be a great functionality to get started with for beginners. Similar to

Selenium, it also does not provide testing for windows applications. Finally, when it comes to

UFT/QTP, it works well with both web and windows applications. It has a built-in mechanism of

object identification as well as options to work with different add-ins. It also integrates with

83

Application Life cycle Management (ALM) tools (effective in managing several phases of

SDLC). On the other hand, QTP is not compatible with latest versions of browsers and OS,

although UFT supports all the latest versions of Internet Explorer and most of the Chrome and

some of Firefox browsers as well as it performs API testing. The biggest limitation with UFT/

QTP is licensing cost, which is too high.

Finally, all these tools have advantages, limitations as well as utilization for some certain types

of testing, based on the scope of applications. None of these tools is absolutely perfect or best.

Although, in recent years, Selenium has been preferred by most software industries and is

used more than other tools by testers or developers. Selenium's variety of features and

functionalities, ability to integrate with various frameworks, its number of different

programming languages, and its free cost provides major advantages. However, not all the

applications are web-based. For that reason, there will always be demand for UFT or tools which

are able to perform testing in both web and windows based applications. Moreover, WATIR has

been gradually overcoming its limitations and gaining popularity within the industries.

While concluding this research, I learned that, each software testing tool has its own

distinguishing features and it’s a matter of time to learn each different tool and know how to

utilize the tools for automation testing. It also takes a lot effort to find out the tool that works best

to meet the goal of testing. From my own perspective, an ideal tool should meet at least some

criteria. First, the installation process should be simple and quick. Second, getting started with

the tool for novices should not be too difficult and there should be adequate learning material

available for the tool, which helps to create and execute a basic set of test scripts. Finally, the

tool should be friendly to work with as well as it should be able to generate an overall test result

84

(pass/fail). So, if the testing fails, it makes easily understandable logs to troubleshoot, which

saves a lot of time.

For future work, my goal is to extend this research by including a few more testing tools to

analyze and compare. Then the selected tools should have latest features.

85

References

[1] X. Wang and G. He, “The research of data-driven testing based on QTP,” Computer

Science & Education (ICCSE), 2014 9th International Conference on. pp. 1063–1066,

2014.

[2] M. Monier and M. M. El-mahdy, “Evaluation of automated web testing tools,” vol. 4, no.

5, pp. 405–408, 2015.

[3] K. M. Mustafa, R. E. Al-Qutaish, M. I. Muhairat, P. S. K. and D. N. S. S. Rao, W.

Xinbian, and H. Guangjun, “Classification of Software Testing Tools Based on the

Software Testing Methods,” in Computer Science & Education (ICCSE), 2014 9th

International Conference on, 2014, vol. 3, no. 7, pp. 1063–1066.

[4] G. Saini, “Software Testing Techniques for Test Cases Generation,” vol. 3, no. 9, pp. 261–

265, 2013.

[5] “Software Testing Tutorial,” www.tutorialspoint.com. [Online]. Available:

http://moodle.nccu.edu.tw/pluginfile.php/77731/mod_resource/content/1/software_testing

%281%29.pdf. [Accessed: 20-Jan-2016].

[6] “SOFTWARE TESTING on WordPress.com.” [Online]. Available:

https://softwaretestingupdates.wordpress.com/. [Accessed: 15-Feb-2016].

[7] R. Gupta, Test Automation and QTP: QTP 9.2, QTP 9.5, QTP 10.0 and Functional Test

11.0. Pearson Education India.

[8] T. Bharti and E. Vidhu, “Functionality Appraisal of Automated Testing Tools,” vol. 3, no.

1, pp. 129–134, 2015.

[9] K. Bahl, “Software Testing Tools & Techniques for Web Applications,” no. 5, pp. 315–

318, 2015.

http://www.tutorialspoint.com/
http://moodle.nccu.edu.tw/pluginfile.php/77731/mod_resource/content/1/software_testing

86

[10] S. Jagannatha, M. Niranjanamurthy, M. Sp, and C. Gs, “Comparative Study on

Automation Testing using Selenium Testing Framework and QTP,” vol. 3, no. 10, pp.

258–267, 2014.

[11] Vishawjyoti* and and S. Sharma, “STUDY AND ANALYSIS OF AUTOMATION

TESTING TECHNIQUES,” J. Glob. Res. Comput. Sci., vol. 3, no. 10, pp. 2010–2013,

2012.

[12] N. Gogna, “Study of Browser Based Automated Test Tools WATIR and Selenium,” Int. J.

Inf. Educ. Technol., vol. 4, no. 4, pp. 336–339, 2014.

[13] H. Kaur and G. Gupta, “Comparative Study of Automated Testing Tools : Selenium ,

Quick Test Professional and Testcomplete,” vol. 3, no. 5, pp. 1739–1743, 2013.

[14] R. Angmo and M. Sharma, “Performance evaluation of web based automation testing

tools,” 2014 5th Int. Conf. - Conflu. Next Gener. Inf. Technol. Summit, pp. 731–735, 2014.

[15] T. J. Naidu, N. A. Basri, and S. Nagenthram, “SAHI vs. Selenium: A comparative

analysis,” Proc. 2014 Int. Conf. Contemp. Comput. Informatics, IC3I 2014, pp. 967–970,

2014.

[16] A. Jain, M. Jain, and S. Dhankar, “A Comparison of RANOREX and QTP Automated

Testing Tools and their impact on Software Testing,” no. 1, pp. 8–12, 2014.

[17] Y. Kumar, “Comparative Study of Automated Testing Tools : Selenium , SoapUI , HP

Unified Functional Testing and Test Complete,” vol. 2, no. 9, pp. 42–48, 2015.

[18] R. S. Pressman, Software Engineering: A Practitioner’s Approach. McGraw-Hill Higher

Education, 2010.

[19] U. Eriksson, “Test design techniques explained #1: Black-box vs White-box Testing,”

Jun. 08, 2015. [Online]. Available: http://reqtest.com/testing-blog/test-design-techniques-

http://reqtest.com/testing-blog/test-design-techniques-

87

explained-1-black-box-vs-white-box-testing/. [Accessed: 18-Jan-2016].

[20] P. V. N. Maurya and E. R. Kumar, “Analytical Study on Manual vs . Automated Testing

Using with Simplistic Cost Model,” vol. 2, no. 1, pp. 23–35, 2012.

[21] T. Xie and D. Notkin, “Improving Effectiveness of Automated Software Testing in the

Absence of Specifications,” 2006 22nd IEEE Int. Conf. Softw. Maint., pp. 355–359, 2006.

[22] “10 Tips you should read before automating your testing work,”

www.softwaretestinghelp.com. [Online]. Available:

http://www.softwaretestinghelp.com/10-tips-you-should-read-before-automating-your-

testing-work/. [Accessed: 21-Jan-2016].

[23] “QTP Introduction,” www.tutorialspoint.com. [Online]. Available:

http://www.tutorialspoint.com/qtp/qtp_overview.htm. [Accessed: 21-Jan-2016].

[24] “Software Testing Tools list,” www.softwaretestingclass.com. [Online]. Available:

http://www.softwaretestingclass.com/software-testing-tools-list/. [Accessed: 21-Jan-

2016].

[25] “Selenium Documentation: Test Automation for Web Applications,”

www.Seleniumhq.org. [Online]. Available:

http://www.Seleniumhq.org/docs/01_introducing_Selenium.jsp. [Accessed: 21-Jan-2016].

[26] “‘check’, ‘uncheck’, ‘checkAndWait’ and ‘uncheckAndWait’ command example of

Selenium IDE,” Software testing tutorials and automation. [Online]. Available:

http://software-testing-tutorials-automation.blogspot.com/search/label/check command.

[Accessed: 21-Jan-2016].

[27] “Selenium 1 (Selenium RC) — Selenium Documentation,” www.Seleniumhq.org.

[Online]. Available: http://www.Seleniumhq.org/docs/05_Selenium_rc.jsp. [Accessed: 21-

http://www.softwaretestinghelp.com/
http://www.softwaretestinghelp.com/10-tips-you-should-read-before-automating-your-
http://www.tutorialspoint.com/
http://www.tutorialspoint.com/qtp/qtp_overview.htm
http://www.softwaretestingclass.com/
http://www.softwaretestingclass.com/software-testing-tools-list/
http://www.seleniumhq.org/
http://www.seleniumhq.org/docs/01_introducing_Selenium.jsp
http://software-testing-tutorials-automation.blogspot.com/search/label/check
http://software-testing-tutorials-automation.blogspot.com/search/label/check
http://www.seleniumhq.org/
http://www.seleniumhq.org/docs/05_Selenium_rc.jsp

88

Jan-2016].

[28] “Selenium-Grid — Selenium Documentation.” [Online]. Available:

http://www.Seleniumhq.org/docs/07_Selenium_grid.jsp. [Accessed: 07-Mar-2016].

[29] “TOOLSQA | Selenium Webdriver,” www.toolsqa.com. [Online]. Available:

http://toolsqa.com/Selenium-Webdriver/. [Accessed: 21-Jan-2016].

[30] “What is Selenium Webdriver?” [Online]. Available: http://scraping.pro/what-is-

Selenium-Webdriver/. [Accessed: 21-Jan-2016].

[31] P. Malhotra, “Test Automation Tool Comparison – HP UFT/QTP vs. Selenium.”

[32] “Selenium – Some Advantages and Disadvantages of the Tool | Application Software

Testing on WordPress.com.” [Online]. Available:

https://qaandtestingservices.wordpress.com/2014/07/17/Selenium-some-advantages-and-

disadvantages-of-the-tool/. [Accessed: 21-Jan-2016].

[33] “Obvious reason to move from Selenium RC to Webdriver.? - Stack Overflow.” [Online].

Available: http://stackoverflow.com/questions/10779571/obvious-reason-to-move-from-

Selenium-rc-to-Webdriver. [Accessed: 21-Jan-2016].

[34] “Selenium Webdriver Tutorials - Basic Action Commands And Operations With

Examples.” [Online]. Available: http://software-testing-tutorials-

automation.blogspot.com/2014/01/Selenium-Webdriver-tutorials-basic.html. [Accessed:

21-Jan-2016].

[35] P. Bindal, C. Science, and P. College, “Test Automation Selenium Webdriver using

TestNG,” vol. 3, no. 9, pp. 18–40, 2014.

[36] P. Station and L. Controller, “QuickTest Professional User ’s Guide.”

[37] “QTPWorld: Object Repository.” [Online]. Available:

http://www.seleniumhq.org/docs/07_Selenium_grid.jsp
http://www.toolsqa.com/
http://toolsqa.com/Selenium-Webdriver/
http://scraping.pro/what-is-
http://stackoverflow.com/questions/10779571/obvious-reason-to-move-from-
http://software-testing-tutorials-/

89

http://www.qtpworld.com/index.php?cid=59. [Accessed: 21-Jan-2016].

[38] “Want to know key features of QTP at a Glance.” [Online]. Available:

http://www.softwaretestinggenius.com/want-to-know-key-features-of-qtp-at-a-glance.

[Accessed: 21-Jan-2016].

[39] M. Kaur and R. Kumari, “Comparative Study Automated Testing Tools: TestComplete

and QuickTest Pro,” Int. J. Comput. Appl., vol. 24, no. 1, pp. 1–7, 2011.

[40] N. Gogna, “COMPARATIVE STUDY OF BROWSER BASED OPEN SOURCE

TESTING TOOLS WATIR AND WET,” Int. J. Comput. Sci. Eng., vol. 3, no. 5, pp.

1910–1923, 2011.

[41] “Read WATIRways.” [Online]. Available:

https://leanpub.com/WATIRways/read#leanpub-auto-unknownobjectexception---unable-

to-locate-element. [Accessed: 21-Jan-2016].

[42] J. K. and P. Rogers, “Test automation of Web applications can be done more effectively

by accessing the plumbing within the user interface. Here is a detailed walk-through of

WATIR, a tool many are using to check the pipes.” [Online]. Available:

http://www.kohl.ca/articles/WATIR_works.pdf. [Accessed: 21-Jan-2016].

[43] “WATIR-Webdriver: Control the Browser.” [Online]. Available:

http://www.sitepoint.com/WATIR-Webdriver-control-browser/. [Accessed: 21-Jan-2016].

[44] “Frameworks.” [Online]. Available: http://WATIR.com/frameworks/. [Accessed: 21-Jan-

2016].

[45] “Module: Test::Unit (Ruby 1.8.7).” [Online]. Available: http://ruby-doc.org/stdlib-

1.8.7/libdoc/test/unit/rdoc/Test/Unit.html. [Accessed: 21-Jan-2016].

[46] R. Rattan and Shallu, “Performance Evaluation & Comparison of Software Testing Tool,”

http://www.qtpworld.com/index.php?cid=59
http://www.softwaretestinggenius.com/want-to-know-key-features-of-qtp-at-a-glance
http://www.kohl.ca/articles/WATIR_works.pdf
http://www.sitepoint.com/WATIR-Webdriver-control-browser/
http://watir.com/frameworks/
http://ruby-doc.org/stdlib-

90

vol. 3, no. 7, pp. 711–716, 2013.

[47] A. Leitner, H. Ciupa, B. Meyer, and M. Howard, “Reconciling manual and automated

testing: The AutoTest experience,” Proc. Annu. Hawaii Int. Conf. Syst. Sci., 2007.

	St. Cloud State University
	theRepository at St. Cloud State
	9-2016

	A Comparative Study of Automated Software Testing Tools
	Nazia Islam
	Recommended Citation

	A Comparative Study of Automated Software Testing Tools
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1: INTRODUCTION
	1.1 Software Testing
	1.2 Objective of Research
	1.3 Terminologies
	Chapter 2: BACKGROUND AND RELATED WORK
	2.1 Related Work
	2.2 Software Testing Techniques
	Black Box Testing
	Manual Testing
	Automated Testing
	Objectives of Automation
	Comparison between Manual and Automated testing
	2.3 Software Testing Tools
	2.4 Selenium
	2.4.1 Brief History of Selenium Project
	2.4.2 Selenium IDE
	2.4.3 Commonly Used Selenium IDE Commands
	2.4.4 Selenium Grid
	2.4.5 Selenium Webdriver
	Advantages of Selenium Web Driver
	2. Variety of Programming Languages
	3. Multiple Testing Frameworks
	4. Defect management
	5. Free of cost
	Disadvantages of Selenium [32]
	2. Expertise required in programming language
	3. Voluntary Assistance is required for Selenium Community
	4. Additional Tools Required to Generate Reports [35]
	2.4.6 Basics of Selenium Webdriver scripting:
	1. Creating New Instance of Firefox browser
	3. Get the page title
	4. Clicking on any element or button of webpage
	5. Typing text in textbox area
	6. Shows the URL for current web page:
	driver.getCurrentUrl();

	7. Ending Browser Session driver.close(); [35]
	2.4.7 Locators in Webdriver:
	driver.findElement (By. <Locator>);

	d) linkText
	2.5 QTP/ UFT
	2.5.1 Features of QTP / UFT
	Advantages of Using QTP/UFT
	Disadvantages of QTP/UFT
	2.6 WATIR
	WATIR Classic
	Brief Working Principle
	WATIR Webdriver
	Basic commands in WATIR Webdriver:
	require 'WATIR-Webdriver'
	browser = WATIR::Browser.new :firefox
	browser.goto (“http://www.google.com”)
	browser.text_field(:id=>, ‘……..’).set
	browser.link(:text ,"......").click()

	WATIR Frameworks
	RSpec
	Cucumber
	Test/Unit
	Advantages of WATIR
	Limitations of WATIR
	Chapter 3: METHODOLOGY
	3.1 Selected Tools
	3.2 Evaluation Metrics
	Specifications of Testing Machines (for Selenium and WATIR)
	3.3 Target Application
	3.4 General Testing Approach
	Chapter 4: TESTING AND RESULT ANALYSIS
	4.1 Test cases
	4.2 Method used to locate HTML element
	html/body/div/div [id@=’userName’]
	//tag name[@attribute = ‘value’]
	4.3 Test using Selenium IDE:
	-Testing Details:
	Observation for Selenium IDE:
	4.4 Test using Selenium Webdriver Configuring Selenium Webdriver:
	Scripts in Selenium Webdriver:
	// TODO Auto-generated method stub
	//** Open e-Services logon page website homepage**
	//**Enter username in the StarID field**
	//**Enter password field**
	//**clicking to the Login button, which brings to e-services homepage**
	//**Clicking to the link of courses and registration **
	//**Waits for the next web element to load **
	//**Clicking to the link of Search for a course**
	//**Searching the courses for selected subject**
	//**Waits for correct page to be displayed......**
	//**Looks for Quantitative Analysis course and enters to course content**
	//**Waits for the next web element to load **
	//**Add course to the wish list**
	//**Setting the alert command to handle the dialogbox,after adding the course**
	//**Will Click on OK button**
	//**Entering to link of Continue to review my plan **
	//**Waits for the next web element to load **
	//**Selecting the course which was just added**
	//**Removing that course from wish list**
	// **Logout from e services**
	Explanation of the code used for testing
	3. org.openqa.Selenium.By
	4. org.openqa.Selenium.support.ui.Select
	Initiating a Driver Object
	FirefoxDriver dr = new FirefoxDriver();
	Finding the element on the webpage
	Applying Wait method:
	Following up Alerts :
	alert = dr.switchTo().alert();
	Observation for Selenium Webdriver:
	4.5 Comparison between Selenium IDE and Selenium Webdriver
	4.6 Test using UFT Installation of UFT:
	Scripts in UFT:
	‘On Browser IE 11, open the SCSU- Record and Registration webpage and click to the e- Services link
	'Opens the e Services stduent login page; Entering StarID
	'Entering password
	‘Click to login button
	'On successful login, click to courses and registration link
	'On course search page, select the subject of study and it's chemistry
	'Click search for classes
	‘Select and click for any of the classes offered for Chemistry (Selected class name is Forensic Science)

	' An alert pop-up appears, after adding the course
	' Below dialog box is to handle the pop up
	' Click Continue to review my plan link to view the added class
	'Select the added class to remove
	' Click the button to remove the selected course
	' After successful removal of that course, Clicking logout link

	Explanation of UFT Script:
	Observation for UFT Test:
	4.7 Test using WATIR Webdriver Installing and configuring WATIR:
	Scripts in WATIR Webdriver:
	**To start with Ruby **
	**code will be written using WATIR Webdriver **
	** Starts a new session in firefox browser**
	WATIR response after opening a new browser session
	Redirects to the St Cloud State, Records and registration website
	**WATIR response: successfully loads the URL **
	**Clicks to the link of e Services **
	**Setting username field for e- Services sign in **
	**Setting password field for e- Services sign in **
	Clicks to the Login button
	**Clicks to the link of Courses & Registration **
	Clicks to the link of Search for a course
	**Selecting a subject (here it's chemistry) from dropdown box **
	Searching the courses for selected subject
	**Enters to the search course results page and clicks to the link for ‘Forensic Science’ course **
	Add course to the wish list
	Setting the alert to handle the dialog box, after adding the course
	** Entering link to -Continue to review my plan **
	** Select (click to the checkbox) the course, just added**
	Removing that course from wish list
	** Clicks to the Logout link **
	Explanation of WATIR Webdriver script:
	Observation for WATIR Webdriver:
	4.8 Comparison among Selenium, WATIR, and UFT/QTP
	Chapter 5: CONCLUSION
	References

