Introduction

Although the bonding in the symmetric groups 2 and 12 dihalides $\left(\mathrm{MX}_{2}\right)$ has been studied extensively ${ }^{1,2}$, remarkably little work experimental or theoretical - has been done on the mixed (ternary) dihalides, MXY.

Previously, a criterion ${ }^{3,4}$ based on atomic softness (σ) was proposed for the bending of MX_{2} and MXY molecules. We extend this softness criterion on the slate of the mixed dihalides and the predicted separation is achieved between the bent and linear structures with almost the same cutoff, and with quasilinear species straddling the boundary.

In this work, we report a complete assessment of the bonding preferences and vibrational frequencies of the mixed dihalides of the groups 2 and 12 metals MX_{2} and MXY.

Computational Methods

The molecular geometries and harmonic vibrational frequency data for all systems considered in this work been examined at the B3PW91, MP2(full), and CCSD(t) levels using Gaussian 09. cc-pV5Z ${ }^{5}$ basis sets were employed for all elements preceding Br . Small core MDF pseudopotentials were used for heavier elements, along with the corresponding quintuple zeta basis sets for valence electrons. The barrier to linearization has been computed as:

$$
E_{\text {barrier }}=E_{\text {linear }}-E_{\text {bent }}
$$

References

1. Hargittai, M. The molecular geometry of gas phase metalhalides Coord. Chem. Rev. 1988, 91, 35-88.
2. Hargittai, M. Molecular structure of metal-halides Chem. Rev. 2000, 100, 2233-2301.
3. von Szentpály, L.; Schwerdffeger, P. Which double-octet ABC molecules are bent? Chem. Phys. Lett. 1990, 170, 555-560.
4. von Szentpály, L. Hard bends soft J. Phys. Chem. A 2002, 106, 11945-11949.
5. Peterson, K.; Manoj K. M.; Martin, J. Mol. Phys. 2014, 113, 1551-1558.

Bending Ternary Dihalides

 A Single Functional Form For Linearization EnergiesSupreeth Prasad and Kelling J. Donald*

Department of Chemistry, Gottwald Center of the Sciences, University of Richmond, VA 23173

Figure 1. Computed bond angles at the B3PW91, MP2(full), and $\operatorname{CCSD}(\mathrm{T})$ levels for $\mathrm{M}=\mathrm{Sr}$, and Ra. All $\mathrm{M}=\mathrm{Be}$, $\mathrm{Mg}, \mathrm{Zn}, \mathrm{Cd}$ and Hg systems are linear. For $\mathrm{M}=\mathrm{Ca}$, only the difluoride is bent for the ab initio methods. At the B3PW91 level, CaFCl and CaFBr are also bent with very shallow minima. The data tracks closely for all methods for $\mathrm{M}=\mathrm{Ba}$ as they do for $\mathrm{M}=\mathrm{Ra}$.

Figure 3. A representation of the relationship between bond angle and the energy barriers to linearization, $\mathrm{E}_{\text {barrier }}$ for the bent group 2 binary and ternary dihalides of Sr, Ba, and Ra at the $\operatorname{CCSD}(\mathrm{T})$ level of theory.

Key Observations

Figure 2. Barriers to linearization at the $\operatorname{CCSD}(\mathrm{T})$ level for the Ba and Ra dihalides. For the Sr and Ca systems that are bent the well depths in kcal-mol ${ }^{-1}$ units are as follows: for SrFY: $1.54,0.50,0.31,0.15$, and 0.09 , for $\mathrm{Y}=$ $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, and At , with 0.04 for SrCl_{2}, and 0.00 for SrClBr . For CaF_{2}, we obtained a barrier of $0.07 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$.

MXY	$\mathbf{B e}$	$\mathbf{M g}$	$\mathbf{C a}$	$\mathbf{S r}$	$\mathbf{B a}$	$\mathbf{R a}$	$\mathbf{Z n}$	$\mathbf{C d}$	$\mathbf{H g}$
$\mathbf{F}_{\mathbf{2}}$	0.190	0.266	0.332	0.366	0.395	0.429	0.224	0.224	0.230
$\mathbf{F C l}$	0.160	0.236	0.302	0.336	0.365	0.399	0.194	0.194	0.200
$\mathbf{F B r}$	0.149	0.225	0.291	0.325	0.354	0.388	0.183	0.183	0.189
$\mathbf{F I}$	0.139	0.215	0.281	0.315	0.344	0.378	0.173	0.173	0.179
FAt	0.147	0.223	0.289	0.323	0.352	0.386	0.181	0.181	0.187
$\mathbf{C l}_{\mathbf{2}}$	0.129	0.205	0.271	0.305	0.334	0.368	0.163	0.163	0.169
$\mathbf{C I B r}$	0.119	0.195	0.261	0.295	0.324	0.358	0.153	0.153	0.159
$\mathbf{C I I}$	0.109	0.185	0.251	0.285	0.314	0.348	0.143	0.143	0.149
$\mathbf{C l A t}$	0.117	0.193	0.259	0.293	0.322	0.356	0.151	0.151	0.157
$\mathbf{B r}$	0.108	0.184	0.250	0.284	0.313	0.347	0.142	0.142	0.148
$\mathbf{B r I}$	0.098	0.174	0.240	0.274	0.303	0.337	0.132	0.132	0.138
$\mathbf{B r A t}_{2}$	0.106	0.182	0.248	0.282	0.311	0.345	0.140	0.140	0.146
$\mathbf{I}_{\mathbf{2}}$	0.088	0.164	0.230	0.264	0.293	0.327	0.122	0.122	0.128
IAt	0.096	0.172	0.238	0.272	0.301	0.335	0.130	0.130	0.136
At	0.104	0.180	0.246	0.280	0.309	0.343	0.138	0.138	0.144

mean of σ_{X} and σ_{Y}. Orange and white cells indicate systems with bent and linear geometries respectively.

